-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBilinear.py
26 lines (24 loc) · 1.18 KB
/
Bilinear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import numpy as np
def bilinear(array, dsize=(30,20)):
array_new = np.ones(dsize)
x, y = np.where(array_new)
x = x.reshape(dsize)
y = y.reshape(dsize)
init_shape = array.shape
ratio_x = (init_shape[0]-1) / (dsize[0]-1)
ratio_y = (init_shape[1]-1) / (dsize[1]-1)
qx, qy = ratio_x*x, ratio_y*y
x_floor, y_floor = np.floor(qx), np.floor(qy)
x_ceil, y_ceil = np.ceil(qx), np.ceil(qy)
p1 = array[x_floor.astype(int), y_floor.astype(int)]
p2 = array[x_floor.astype(int), y_ceil.astype(int)]
p3 = array[x_ceil.astype(int), y_floor.astype(int)]
p4 = array[x_ceil.astype(int), y_ceil.astype(int)]
array_new = ((qx-x_floor)*p3 + (x_ceil-qx)*p1)*(y_ceil-qy)+((qx-x_floor)*p4 + (x_ceil-qx)*p2)*(qy-y_floor)
array_new = np.where(x_ceil==x_floor, p1*(y_ceil-qy) + p2*(qy-y_floor), array_new)
array_new = np.where(y_ceil==y_floor, p1*(x_ceil-qx) + p3*(qx-x_floor), array_new)
array_new = np.where(np.all(np.concatenate((np.expand_dims(y_ceil==y_floor, -1),np.expand_dims(x_ceil==x_floor,-1)), -1),-1), p1, array_new)
return array_new
if __name__ == '__main__':
array = np.random.rand(16).reshape(4,4)
print(bilinear(array, dsize=(16,16)))