Skip to content

Latest commit

 

History

History
90 lines (68 loc) · 2.97 KB

README.md

File metadata and controls

90 lines (68 loc) · 2.97 KB

memoize.py

This repo contains a decorator factory memoize that manages a local file cache of function results. The cache is stored as a JSON file.

Quick Start

Install using pip:

python3 -m pip install git+https://github.com/ethho/memoize.git

By default, memoize stores its cache in /tmp/memoize/<date>.json, but this can be overridden by passing optional kwargs to the decorator factory.

from memoize import memoize
from functools import lru_cache


@lru_cache() # Optionally, use with LRU cache to also cache in RAM
# All are optional kwargs
@memoize(stub='my_cache',               # file stub override
         cache_dir='/tmp/my_cache_dir', # cache directory override
         log_func=logger.info           # logging function override, print by default
         ignore_invalid=True)           # ignore cache if not JSON serializable
def my_func(s: str, b: bool = True, opt=None):
    return {"s": s, "b": b, "opt": opt}

Memoize Pandas DataFrames

The memoize_df decorator caches the pandas.DataFrame returned from a function to a CSV file. The pandas module must be installed to use this feature:

python3 -m pip install pandas

The memoize_df decorator factory can be used for any function that returns a pandas.DataFrame. While memoize stores the results of many calls in one cache file, memoize_df writes a separate cache file for each unique call. Also note that DataFrame index will be written to the CSV cache if and only if the index has a non-null name attribute.

import pandas as pd
from memoize.dataframe import memoize_df


@memoize_df(cache_dir='/tmp/memoize')
def make_dataframe(foo: int):
    df = pd.DataFrame(data=reversed(range(foo)), index=range(foo), columns=['my_column'])
    df.index.name = 'my_index'
    return df


print(make_dataframe(4))
# Using cache fp='/tmp/memoize/make_dataframe_44566a0_20230120.csv' to write results of function make_dataframe
#           my_column
# my_index
# 0                 3
# 1                 2
# 2                 1
# 3                 0

print(make_dataframe(3))
# Using cache fp='/tmp/memoize/make_dataframe_3c15101_20230120.csv' to write results of function make_dataframe
#           my_column
# my_index
# 0                 2
# 1                 1
# 2                 0

print(make_dataframe(4))
# Using cache fp='/tmp/memoize/make_dataframe_44566a0_20230120.csv' to write results of function make_dataframe
# Using cached call from /tmp/memoize/make_dataframe_44566a0_20230120.csv
#    my_index  my_column
# 0         0          3
# 1         1          2
# 2         2          1
# 3         3          0

License

MIT

Limitations

Args, kwargs, and function return value must be JSON-serializable if using the memoize decorator. The return value of the wrapped function must be a pandas.DataFrame when using the memoize_df decorator. The entire contents of the date-stamped cache file will be read and written on every function call, which may post I/O challenges.