-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·1505 lines (1238 loc) · 62.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import struct
import math
import numpy as np
import warnings
import cv2
from scipy import ndimage
import datetime
import os
import json
import yaml
import torch
from scipy.special import softmax
import pathlib
import matplotlib.pyplot as plt
import pygame
import pdb
# Import necessary packages
#try:
from spacy.lang.en import English
from spacy.tokenizer import Tokenizer
from encoders import LSTMEncoder
from language_embedders import RandomEmbedder, GloveEmbedder, BERTEmbedder
from unet_shared import SharedUNet
from transformer import TransformerEncoder, tiles_to_image
from train_language_encoder import get_free_gpu, load_data, get_vocab, LanguageTrainer, FlatLanguageTrainer
#except ImportError:
# print('Unable to import the language embedder, language trainer, or transformer encoder. This is OK if you are not using the language model.')
# to convert action names to the corresponding ID number and vice-versa
ACTION_TO_ID = {'push': 0, 'grasp': 1, 'place': 2}
ID_TO_ACTION = {0: 'push', 1: 'grasp', 2: 'place'}
def mkdir_p(path):
"""Create the specified path on the filesystem like the `mkdir -p` command
Creates one or more filesystem directory levels as needed,
and does not return an error if the directory already exists.
"""
# http://stackoverflow.com/questions/600268/mkdir-p-functionality-in-python
try:
os.makedirs(path)
except OSError as exc: # Python >2.5
if exc.errno == errno.EEXIST and os.path.isdir(path):
pass
else:
raise
def timeStamped(fname, fmt='%Y-%m-%d-%H-%M-%S_{fname}'):
""" Apply a timestamp to the front of a filename description.
see: http://stackoverflow.com/a/5215012/99379
"""
return datetime.datetime.now().strftime(fmt).format(fname=fname)
class NumpyEncoder(json.JSONEncoder):
""" json encoder for numpy types
source: https://stackoverflow.com/a/49677241/99379
"""
def default(self, obj):
if isinstance(obj,
(np.int_, np.intc, np.intp, np.int8,
np.int16, np.int32, np.int64, np.uint8,
np.uint16, np.uint32, np.uint64)):
return int(obj)
elif isinstance(obj,
(np.float_, np.float16, np.float32,
np.float64)):
return float(obj)
elif isinstance(obj, (np.ndarray,)):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def clearance_log_to_trial_count(clearance_log):
""" Convert clearance log list of end indices to a list of the current trial number at each iteration.
# Returns
List of lists of the current trial index.
ex: [[0], [0], [0], [1], [1]]
"""
if not len(clearance_log):
return []
clearance_log = np.squeeze(clearance_log).astype(np.int)
# Make a list of the right length containing all zeros
trial_count = []
prev_trial_end_index = 0
for trial_num, trial_end_index in enumerate(clearance_log):
trial_count += [[trial_num]] * int(trial_end_index - prev_trial_end_index)
prev_trial_end_index = trial_end_index
return trial_count
def get_pointcloud(color_img, depth_img, camera_intrinsics):
# Get depth image size
im_h = depth_img.shape[0]
im_w = depth_img.shape[1]
# Project depth into 3D point cloud in camera coordinates
pix_x,pix_y = np.meshgrid(np.linspace(0,im_w-1,im_w), np.linspace(0,im_h-1,im_h))
cam_pts_x = np.multiply(pix_x-camera_intrinsics[0][2],depth_img/camera_intrinsics[0][0])
cam_pts_y = np.multiply(pix_y-camera_intrinsics[1][2],depth_img/camera_intrinsics[1][1])
cam_pts_z = depth_img.copy()
cam_pts_x.shape = (im_h*im_w,1)
cam_pts_y.shape = (im_h*im_w,1)
cam_pts_z.shape = (im_h*im_w,1)
# Reshape image into colors for 3D point cloud
rgb_pts_r = color_img[:,:,0]
rgb_pts_g = color_img[:,:,1]
rgb_pts_b = color_img[:,:,2]
rgb_pts_r.shape = (im_h*im_w,1)
rgb_pts_g.shape = (im_h*im_w,1)
rgb_pts_b.shape = (im_h*im_w,1)
cam_pts = np.concatenate((cam_pts_x, cam_pts_y, cam_pts_z), axis=1)
rgb_pts = np.concatenate((rgb_pts_r, rgb_pts_g, rgb_pts_b), axis=1)
return cam_pts, rgb_pts
def get_heightmap(color_img, depth_img, cam_intrinsics, cam_pose, workspace_limits, heightmap_resolution, background_heightmap=None, median_filter_pixels=5, color_median_filter_pixels=5):
""" Note:
Arg median_filter_pixels is used for the depth image.
Arg color_median_filter_pixels is used for the color image.
"""
if median_filter_pixels > 0:
depth_img = ndimage.median_filter(depth_img, size=median_filter_pixels)
# Compute heightmap size
heightmap_size = np.round(((workspace_limits[1][1] - workspace_limits[1][0])/heightmap_resolution, (workspace_limits[0][1] - workspace_limits[0][0])/heightmap_resolution)).astype(int)
depth_heightmap = np.zeros(heightmap_size)
# Get 3D point cloud from RGB-D images
surface_pts, color_pts = get_pointcloud(color_img, depth_img, cam_intrinsics)
# Transform 3D point cloud from camera coordinates to robot coordinates
surface_pts = np.transpose(np.dot(cam_pose[0:3,0:3],np.transpose(surface_pts)) + np.tile(cam_pose[0:3,3:],(1,surface_pts.shape[0])))
# Sort surface points by z value
sort_z_ind = np.argsort(surface_pts[:,2])
surface_pts = surface_pts[sort_z_ind]
color_pts = color_pts[sort_z_ind]
# Filter out surface points outside heightmap boundaries
heightmap_valid_ind = np.logical_and(np.logical_and(np.logical_and(np.logical_and(surface_pts[:,0] >= workspace_limits[0][0], surface_pts[:,0] < workspace_limits[0][1]), surface_pts[:,1] >= workspace_limits[1][0]), surface_pts[:,1] < workspace_limits[1][1]), surface_pts[:,2] < workspace_limits[2][1])
surface_pts = surface_pts[heightmap_valid_ind]
color_pts = color_pts[heightmap_valid_ind]
# Create orthographic top-down-view RGB-D depth heightmap
heightmap_pix_x = np.floor((surface_pts[:,0] - workspace_limits[0][0])/heightmap_resolution).astype(int)
heightmap_pix_y = np.floor((surface_pts[:,1] - workspace_limits[1][0])/heightmap_resolution).astype(int)
depth_heightmap[heightmap_pix_y,heightmap_pix_x] = surface_pts[:,2]
z_bottom = workspace_limits[2][0]
depth_heightmap = depth_heightmap - z_bottom
depth_heightmap[depth_heightmap < 0] = 0
if median_filter_pixels > 0:
depth_heightmap = ndimage.median_filter(depth_heightmap, size=median_filter_pixels)
depth_heightmap[depth_heightmap == -z_bottom] = np.nan
# subtract out the scene background heights, if available
if background_heightmap is not None:
depth_heightmap -= background_heightmap
min_z = np.nanmin(depth_heightmap)
if min_z < 0:
depth_heightmap = np.clip(depth_heightmap, 0, None)
if min_z < -0.005:
print('WARNING: get_heightmap() depth_heightmap contains negative heights with min ' + str(min_z) + ', '
'saved depth heightmap png files may be invalid! '
'See README.md for instructions to collect the depth heightmap again. '
'Clipping the minimum to 0 for now.')
# Create orthographic top-down-view RGB-D color heightmaps
color_heightmap_r = np.zeros((heightmap_size[0], heightmap_size[1], 1), dtype=np.uint8)
color_heightmap_g = np.zeros((heightmap_size[0], heightmap_size[1], 1), dtype=np.uint8)
color_heightmap_b = np.zeros((heightmap_size[0], heightmap_size[1], 1), dtype=np.uint8)
color_heightmap_r[heightmap_pix_y,heightmap_pix_x] = color_pts[:,[0]]
color_heightmap_g[heightmap_pix_y,heightmap_pix_x] = color_pts[:,[1]]
color_heightmap_b[heightmap_pix_y,heightmap_pix_x] = color_pts[:,[2]]
if color_median_filter_pixels > 0:
color_heightmap_r = ndimage.median_filter(color_heightmap_r, size=color_median_filter_pixels)
color_heightmap_b = ndimage.median_filter(color_heightmap_b, size=color_median_filter_pixels)
color_heightmap_g = ndimage.median_filter(color_heightmap_g, size=color_median_filter_pixels)
color_heightmap = np.concatenate((color_heightmap_r, color_heightmap_g, color_heightmap_b), axis=2)
return color_heightmap, depth_heightmap
def common_sense_action_failure_heuristic(heightmap, heightmap_resolution=0.002, gripper_width=0.06, min_contact_height=0.02, push_length=0.0, z_buffer=0.01):
""" Get heuristic scores for the grasp Q value at various pixels. 0 means our model confidently indicates no progress will be made, 1 means progress may be possible.
"""
pixels_to_dilate = int(np.ceil((gripper_width + push_length)/heightmap_resolution))
kernel = np.ones((pixels_to_dilate, pixels_to_dilate), np.uint8)
object_pixels = (heightmap > min_contact_height).astype(np.uint8)
contactable_regions = cv2.dilate(object_pixels, kernel, iterations=1)
if push_length > 0.0:
# For push, skip regions where the gripper would be too high
regional_maximums = ndimage.maximum_filter(heightmap, (pixels_to_dilate, pixels_to_dilate))
block_pixels = (heightmap > (regional_maximums - z_buffer)).astype(np.uint8)
# set all the pixels where the push would be too high to zero,
# meaning it is not an action which would contact any object
# the blocks and the gripper width around them are set to zero.
gripper_width_pixels_to_dilate = int(np.ceil((gripper_width)/heightmap_resolution))
kernel = np.ones((gripper_width_pixels_to_dilate, gripper_width_pixels_to_dilate), np.uint8)
push_too_high_pixels = cv2.dilate(block_pixels, kernel, iterations=1)
contactable_regions[np.nonzero(push_too_high_pixels)] = 0
return contactable_regions
def common_sense_action_space_mask(depth_heightmap, push_predictions=None, grasp_predictions=None, place_predictions=None, place_dilation=None, show_heightmap=False, color_heightmap=None):
""" Convert predictions to a masked array indicating if tasks may make progress in this region, based on depth_heightmap.
The masked arrays will indicate 0 where progress may be possible (no mask applied), and 1 where our model confidently indicates no progress will be made.
Note the mask values here are the opposite of the common_sense_failure_heuristic() function, so where that function has a mask value of 0, this function has a value of 1.
In other words the mask values returned here are equivalent to 1-common_sense_action_failure_heuristic().
This is because in the numpy MaksedArray a True value inticates the data at the corresponding location is INVALID.
# Returns
Numpy MaskedArrays push_predictions, grasp_predictions, place_predictions
"""
# TODO(ahundt) "common sense" dynamic action space parameters should be accessible from the command line
# "common sense" dynamic action space, mask pixels we know cannot lead to progress
if push_predictions is not None:
push_contactable_regions = common_sense_action_failure_heuristic(depth_heightmap, gripper_width=0.04, push_length=0.1)
# "1 - push_contactable_regions" switches the values to mark masked regions we should not visit with the value 1
push_predictions = np.ma.masked_array(push_predictions, np.broadcast_to(1 - push_contactable_regions, push_predictions.shape, subok=True))
if grasp_predictions is not None:
grasp_contact_regions = common_sense_action_failure_heuristic(depth_heightmap, gripper_width=0.00)
grasp_predictions = np.ma.masked_array(grasp_predictions, np.broadcast_to(1 - grasp_contact_regions, push_predictions.shape, subok=True))
if place_predictions is not None:
place_contact_regions = common_sense_action_failure_heuristic(depth_heightmap, gripper_width=place_dilation)
place_predictions = np.ma.masked_array(place_predictions, np.broadcast_to(1 - place_contact_regions, push_predictions.shape, subok=True))
if show_heightmap:
# visualize the common sense function results
# show the heightmap
f = plt.figure()
# f.suptitle(str(trainer.iteration))
f.add_subplot(1,4, 1)
if grasp_predictions is not None:
plt.imshow(grasp_contact_regions)
f.add_subplot(1,4, 2)
if push_predictions is not None:
plt.imshow(push_contactable_regions)
f.add_subplot(1,4, 3)
plt.imshow(depth_heightmap)
f.add_subplot(1,4, 4)
if color_heightmap is not None:
plt.imshow(color_heightmap)
plt.show(block=True)
return push_predictions, grasp_predictions, place_predictions
def process_prediction_language_masking(language_data, predictions, show_heightmap=False, color_heightmap=None, tile_size = 4, threshold = 0.9, single_max = True, abs_threshold = 0.10, from_transformer = True, baseline_language_mask = False):
"""
Adds a language mask to the predictions array.
language_data: an array with shape [1, 256, 2, 1] which will be processed into a mask
predictions: masked array or ndarray with prediction values for a specific action
"""
# Convert inputs to np.ma.masked_array objects if they are inputted as np.ndarrays
if not np.ma.is_masked(predictions):
if isinstance(predictions, np.ndarray):
predictions = np.ma.masked_array(predictions, mask=False)
else:
raise TypeError("predictions passed into the process_prediction_language_masking function should be np.ma.masked_array or np.ndarray objects.")
# Extract current masks
curr_mask = np.ma.getmask(predictions).copy()
# Peform data processing on the language model output to convert float values to logits
# NOTE(zhe) should the function be more generic and take in a reformatted list?
# language_data should have shape torch([1, 256, 2, 1])
if from_transformer:
language_data = tiles_to_image(language_data, tile_size = tile_size, output_type="per-patch")
language_data = softmax(language_data, axis = 1)
# take prob yes
language_mask = language_data[:,1,:,:]
language_mask = np.float32(language_mask).reshape(64,64, 1).copy()
new_w = curr_mask.shape[1]
if single_max:
language_mask_before = language_mask.copy()
# mask out non-blocks
language_mask = cv2.resize(language_mask, (new_w, new_w), interpolation=cv2.INTER_NEAREST)
language_mask *= 1 - curr_mask[0,:,:]
language_mask = torch.tensor(language_mask)
# get max pixel
row_values, row_indices = torch.max(language_mask, axis=0)
col_values, col_idx = torch.max(row_values, dim=0)
row_idx = row_indices[col_idx]
threshold = None
# abs_threshold = 0.10
language_mask *= 0
language_mask[row_idx, col_idx] = 1
language_mask[language_mask != 1] = 0
language_mask = language_mask.detach().cpu().numpy()
else:
language_mask_before = language_mask.copy()
# mask out non-blocks
language_mask = cv2.resize(language_mask, (new_w, new_w), interpolation=cv2.INTER_NEAREST)
language_mask[language_mask > threshold] = 1
language_mask[language_mask <= threshold] = 0
if threshold is not None:
language_mask[language_mask > threshold] = 1
language_mask[language_mask <= threshold] = 0
# largest_four = np.argpartition(language_mask_before, -64, axis=None)[-64:]
# largest_four_values = language_mask_before.reshape(-1)[largest_four]
# threshold = np.min(largest_four_values) - 0.00001
# language_mask_before[language_mask_before >= threshold] = 1
# language_mask_before[language_mask_before < threshold] = 0
# TODO(zhe) Should we erode/dilate the mask array? The current mask lets the whole block pass. We may want to increase or decrease the mask area.
# Scale language masks to match the prediction array sizes
language_mask = cv2.resize(language_mask, (new_w, new_w), interpolation=cv2.INTER_NEAREST)
language_mask = np.broadcast_to(language_mask, predictions.shape, subok=True)
language_mask_before = cv2.resize(language_mask_before, (new_w, new_w), interpolation=cv2.INTER_NEAREST)
# Catching errors
assert language_mask.shape == curr_mask.shape and language_mask.shape == predictions.shape, print("ERROR: Shape missmatch in language masking")
# Combine language mask with existing masks if necessary
if curr_mask is np.ma.nomask:
predictions.mask = language_mask
else:
# TODO (elias) why not just multiply probs in with the mask
if (threshold is not None or single_max) and not baseline_language_mask:
# intersection_mask = 1 - np.logical_and(1 - curr_mask, language_mask)
# expand out: if any pixel of a block is yes under language mask, then whole block is yes
predictions.mask = infect_mask(language_mask.astype(bool), curr_mask.copy().astype(bool))
if show_heightmap:
# visualize the common sense function results
# show the heightmap
fig, ax = plt.subplots(2,3)
ax[0,0].imshow(curr_mask[0,:,:])
ax[0,1].imshow(1 - language_mask_before)
ax[0,2].imshow(predictions.mask[0,:,:])
# ax[1,0].imshow((curr_mask[0,:,:] + 1 - language_mask[0,:,:])/2)
ax[1,0].imshow((curr_mask[0,:,:] + 1 - language_mask_before)/2)
if color_heightmap is not None:
ax[1,1].imshow(color_heightmap)
plt.show(block=True)
return predictions
def infect_mask(language_mask, curr_mask, block_width = 16):
# expand out from intersection: if any pixel of a block is yes under language mask, then whole block should be yes
curr_mask = 1 - curr_mask
intersection_mask = np.logical_and(curr_mask, language_mask).astype(float)
# use inf as sentinel value
orig_intersection_mask = intersection_mask.copy()
intersection_mask *= 1000
# top-down, left to right across mask
language_mask = language_mask[0]
curr_mask = curr_mask[0]
intersection_mask = intersection_mask[0]
curr_mask[intersection_mask == 1000] = 1000
def get_neighbors(idxs):
neighbors = []
for (x,y) in idxs:
neighbors.append((x-1, y))
neighbors.append((x+1, y))
neighbors.append((x, y-1))
neighbors.append((x, y+1))
neighbors.append((x-1, y-1))
neighbors.append((x+1, y+1))
neighbors.append((x-1, y+1))
neighbors.append((x-1, y+1))
return neighbors
total_infected = 0
total_it = 0
max_it = block_width * 2
# for it in range(block_width * 2):
while total_infected < (2*block_width)**2 and total_it < max_it:
# get selected indices
curr_idxs = np.where(curr_mask == 1000)
curr_idxs = list(zip(curr_idxs[0], curr_idxs[1]))
total_infected = len(curr_idxs)
# look one pix in each direction
neighbors = get_neighbors(curr_idxs)
done = []
for x,y in neighbors:
try:
if curr_mask[x,y] == 1000:
continue
if curr_mask[x,y] == 1:
curr_mask[x,y] = 1000
else:
# if you hit a zero, that's the border
continue
except IndexError:
continue
total_it += 1
curr_mask[curr_mask < 1000] = 0
curr_mask[curr_mask == 1000] = 1
curr_mask = curr_mask.astype(bool).reshape(1, 224, 224)
curr_mask = np.tile(curr_mask, (16, 1, 1))
# fig, ax = plt.subplots(1,2)
# ax[0].imshow(orig_intersection_mask[0,:,:])
# ax[1].imshow(curr_mask[0,:,:])
# plt.show(block=True)
return 1 - curr_mask
# TODO(zhe) implement language model masking using language model output. The inputs should already be np.masked_arrays
def common_sense_language_model_mask(language_output, push_predictions=None, grasp_predictions=None, place_predictions=None, color_heightmap=None, check_row = False, baseline_language_mask = False):
"""
Processes the language output into a mask and combine it with existing masks in prediction arrays
"""
# language masks are currently for grasp and place only. The push predictions will not be operated upon.
# (elias) makes push illegal
#push_predictions = 1 - push_predictions * np.inf
push_predictions = np.ones_like(push_predictions) * -np.inf
#push_predictions = process_prediction_language_masking(language_output['prev_position'], push_predictions, color_heightmap=color_heightmap, threshold = 0.6)
from_transformer = True
if type(language_output) == tuple:
next_pos, prev_pos = language_output
next_pos = next_pos['next_position']
prev_pos = prev_pos['next_position']
from_transformer = False
else:
prev_pos, next_pos = language_output['prev_position'], language_output['next_position']
if baseline_language_mask:
print(f"RUNNING RANDOM BASELINE FOR LANGUAGE")
prev_pos = torch.ones(prev_pos.shape).to(prev_pos.device)
next_pos = torch.ones(next_pos.shape).to(next_pos.device)
grasp_predictions = process_prediction_language_masking(prev_pos, grasp_predictions, color_heightmap=color_heightmap, threshold = 0.1, abs_threshold = 0.03, from_transformer = from_transformer, baseline_language_mask=baseline_language_mask)
place_predictions = process_prediction_language_masking(next_pos, place_predictions, color_heightmap=color_heightmap, threshold = 0.1, abs_threshold = 0.10, single_max = not check_row, from_transformer = from_transformer, baseline_language_mask=baseline_language_mask)
return push_predictions, grasp_predictions, place_predictions
# Loads a transformer model from a config file
def load_language_model_from_config(configYamlPath, weightsPath):
# Load config yaml file if possible
if os.path.exists(configYamlPath):
with open(configYamlPath) as file:
config=yaml.load(file, Loader=yaml.FullLoader)
else:
raise FileNotFoundError(f'unable to find {configYamlPath}')
# Move model to available gpu
device = "cpu"
if config["cuda"] is not None and config["cuda"] >= 0:
free_gpu_id = get_free_gpu()
if free_gpu_id > -1:
device = f"cuda:{free_gpu_id}"
device = torch.device(device)
print(f"Language Model on device {device}")
test = torch.ones((1))
test = test.to(device)
# Read the vocab from a json file.
checkpoint_dir = pathlib.Path(config["checkpoint_dir"])
print(f"Reading vocab from {checkpoint_dir}")
if os.path.exists(checkpoint_dir.joinpath('vocab.json')):
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
else:
raise FileNotFoundError(f'unable to find {checkpoint_dir.joinpath("vocab.json")}')
# Load the embedder (type specified in the config.yaml)
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
if config['embedder'] == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, config["embedding_dim"], trainable=True)
elif config['embedder'] == "glove":
embedder = GloveEmbedder(tokenizer, train_vocab, config["embedding_file"], config["embedding_dim"], trainable=True)
elif config['embedder'].startswith("bert"):
embedder = BERTEmbedder(model_name = config["embedder"], max_seq_len = config["max_seq_length"])
else:
raise NotImplementedError(f'No embedder {config["embedder"]}')
if "encoder_type" in config.keys() and config["encoder_type"] == "TransformerEncoder":
# Initiate the encoder
encoder = TransformerEncoder(image_size = config["resolution"],
patch_size = config["patch_size"],
language_embedder = embedder,
n_layers_shared = config["n_shared_layers"],
n_layers_split = config["n_split_layers"],
n_classes = 2,
channels = config["channels"],
n_heads = config["n_heads"],
hidden_dim = config["hidden_dim"],
ff_dim = config["ff_dim"],
dropout = config["dropout"],
embed_dropout = config["embed_dropout"],
output_type = config["output_type"],
positional_encoding_type = config["pos_encoding_type"],
# device = device,
log_weights = config["test"],
do_reconstruction = config['do_reconstruction'])
else:
if config['embedder'] == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, config['embedding_dim'], trainable=True)
elif config['embedder'] == "glove":
embedder = GloveEmbedder(tokenizer, train_vocab, config['embedding_file'], config['embedding_dim'], trainable=True)
elif config['embedder'].startswith("bert"):
embedder = BERTEmbedder(model_name = config['embedder'], max_seq_len = config['max_seq_length'])
else:
raise NotImplementedError(f"No embedder {config['embedder']}")
# get the encoder from args
if config['encoder'] == "lstm":
encoder = LSTMEncoder(input_dim = config['embedding_dim'],
hidden_dim = config['encoder_hidden_dim'],
num_layers = config['encoder_num_layers'],
dropout = config['dropout'],
bidirectional = config['bidirectional'])
else:
raise NotImplementedError(f"No encoder {config['encoder']}") # construct the model add UNet code here
unet_kwargs = dict(in_channels = 6,
out_channels = config["unet_out_channels"],
lang_embedder = embedder,
lang_encoder = encoder,
hc_large = config["unet_hc_large"],
hc_small = config["unet_hc_small"],
kernel_size = config["unet_kernel_size"],
stride = config["unet_stride"],
num_layers = config["unet_num_layers"],
num_blocks = 1,
unet_type = config["unet_type"],
dropout = config["dropout"],
depth = 1,
#device=device,
do_reconstruction=config['do_reconstruction'])
if config['compute_block_dist']:
unet_kwargs["mlp_num_layers"] = config['mlp_num_layers']
encoder = SharedUNet(**unet_kwargs)
# Load weights
print(f'loading model weights from {config["checkpoint_dir"]}')
state_dict = torch.load(pathlib.Path(config["checkpoint_dir"]).joinpath("best.th"), map_location = device)
encoder.load_state_dict(state_dict, strict=True)
return encoder
# Save a 3D point cloud to a binary .ply file
def pcwrite(xyz_pts, filename, rgb_pts=None):
assert xyz_pts.shape[1] == 3, 'input XYZ points should be an Nx3 matrix'
if rgb_pts is None:
rgb_pts = np.ones(xyz_pts.shape).astype(np.uint8)*255
assert xyz_pts.shape == rgb_pts.shape, 'input RGB colors should be Nx3 matrix and same size as input XYZ points'
# Write header for .ply file
pc_file = open(filename, 'wb')
pc_file.write('ply\n')
pc_file.write('format binary_little_endian 1.0\n')
pc_file.write('element vertex %d\n' % xyz_pts.shape[0])
pc_file.write('property float x\n')
pc_file.write('property float y\n')
pc_file.write('property float z\n')
pc_file.write('property uchar red\n')
pc_file.write('property uchar green\n')
pc_file.write('property uchar blue\n')
pc_file.write('end_header\n')
# Write 3D points to .ply file
for i in range(xyz_pts.shape[0]):
pc_file.write(bytearray(struct.pack("fffccc",xyz_pts[i][0],xyz_pts[i][1],xyz_pts[i][2],rgb_pts[i][0].tostring(),rgb_pts[i][1].tostring(),rgb_pts[i][2].tostring())))
pc_file.close()
def get_affordance_vis(grasp_affordances, input_images, num_rotations, best_pix_ind):
vis = None
for vis_row in range(num_rotations/4):
tmp_row_vis = None
for vis_col in range(4):
rotate_idx = vis_row*4+vis_col
affordance_vis = grasp_affordances[rotate_idx,:,:]
affordance_vis[affordance_vis < 0] = 0 # assume probability
# affordance_vis = np.divide(affordance_vis, np.max(affordance_vis))
affordance_vis[affordance_vis > 1] = 1 # assume probability
affordance_vis.shape = (grasp_affordances.shape[1], grasp_affordances.shape[2])
affordance_vis = cv2.applyColorMap((affordance_vis*255).astype(np.uint8), cv2.COLORMAP_JET)
input_image_vis = (input_images[rotate_idx,:,:,:]*255).astype(np.uint8)
input_image_vis = cv2.resize(input_image_vis, (0,0), fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST)
affordance_vis = (0.5*cv2.cvtColor(input_image_vis, cv2.COLOR_RGB2BGR) + 0.5*affordance_vis).astype(np.uint8)
if rotate_idx == best_pix_ind[0]:
affordance_vis = cv2.circle(affordance_vis, (int(best_pix_ind[2]), int(best_pix_ind[1])), 7, (0,0,255), 2)
if tmp_row_vis is None:
tmp_row_vis = affordance_vis
else:
tmp_row_vis = np.concatenate((tmp_row_vis,affordance_vis), axis=1)
if vis is None:
vis = tmp_row_vis
else:
vis = np.concatenate((vis,tmp_row_vis), axis=0)
return vis
def get_difference(color_heightmap, color_space, bg_color_heightmap):
color_space = np.concatenate((color_space, np.asarray([[0.0, 0.0, 0.0]])), axis=0)
color_space.shape = (color_space.shape[0], 1, 1, color_space.shape[1])
color_space = np.tile(color_space, (1, color_heightmap.shape[0], color_heightmap.shape[1], 1))
# Normalize color heightmaps
color_heightmap = color_heightmap.astype(float)/255.0
color_heightmap.shape = (1, color_heightmap.shape[0], color_heightmap.shape[1], color_heightmap.shape[2])
color_heightmap = np.tile(color_heightmap, (color_space.shape[0], 1, 1, 1))
bg_color_heightmap = bg_color_heightmap.astype(float)/255.0
bg_color_heightmap.shape = (1, bg_color_heightmap.shape[0], bg_color_heightmap.shape[1], bg_color_heightmap.shape[2])
bg_color_heightmap = np.tile(bg_color_heightmap, (color_space.shape[0], 1, 1, 1))
# Compute nearest neighbor distances to key colors
key_color_dist = np.sqrt(np.sum(np.power(color_heightmap - color_space,2), axis=3))
# key_color_dist_prob = F.softmax(Variable(torch.from_numpy(key_color_dist), volatile=True), dim=0).data.numpy()
bg_key_color_dist = np.sqrt(np.sum(np.power(bg_color_heightmap - color_space,2), axis=3))
# bg_key_color_dist_prob = F.softmax(Variable(torch.from_numpy(bg_key_color_dist), volatile=True), dim=0).data.numpy()
key_color_match = np.argmin(key_color_dist, axis=0)
bg_key_color_match = np.argmin(bg_key_color_dist, axis=0)
key_color_match[key_color_match == color_space.shape[0] - 1] = color_space.shape[0] + 1
bg_key_color_match[bg_key_color_match == color_space.shape[0] - 1] = color_space.shape[0] + 2
return np.sum(key_color_match == bg_key_color_match).astype(float)/np.sum(bg_key_color_match < color_space.shape[0]).astype(float)
# Get rotation matrix from euler angles
def euler2rotm(theta):
R_x = np.array([[1, 0, 0 ],
[0, math.cos(theta[0]), -math.sin(theta[0]) ],
[0, math.sin(theta[0]), math.cos(theta[0]) ]
])
R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1]) ],
[0, 1, 0 ],
[-math.sin(theta[1]), 0, math.cos(theta[1]) ]
])
R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0],
[math.sin(theta[2]), math.cos(theta[2]), 0],
[0, 0, 1]
])
R = np.dot(R_z, np.dot( R_y, R_x ))
return R
# Checks if a matrix is a valid rotation matrix.
def isRotm(R) :
Rt = np.transpose(R)
shouldBeIdentity = np.dot(Rt, R)
I = np.identity(3, dtype = R.dtype)
n = np.linalg.norm(I - shouldBeIdentity)
return n < 1e-6
# Calculates rotation matrix to euler angles
def rotm2euler(R) :
assert(isRotm(R))
sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0])
singular = sy < 1e-6
if not singular :
x = math.atan2(R[2,1] , R[2,2])
y = math.atan2(-R[2,0], sy)
z = math.atan2(R[1,0], R[0,0])
else :
x = math.atan2(-R[1,2], R[1,1])
y = math.atan2(-R[2,0], sy)
z = 0
return np.array([x, y, z])
def angle2rotm(angle, axis, point=None):
# Copyright (c) 2006-2018, Christoph Gohlke
sina = math.sin(angle)
cosa = math.cos(angle)
axis_magnitude = np.linalg.norm(axis)
axis = np.divide(axis, axis_magnitude, out=np.zeros_like(axis), where=axis_magnitude!=0)
# Rotation matrix around unit vector
R = np.diag([cosa, cosa, cosa])
R += np.array(np.outer(axis, axis) * (1.0 - cosa))
axis *= sina
RA = np.array([[ 0.0, -axis[2], axis[1]],
[ axis[2], 0.0, -axis[0]],
[-axis[1], axis[0], 0.0]])
R = RA + np.array(R)
M = np.identity(4)
M[:3, :3] = R
if point is not None:
# Rotation not around origin
point = np.array(point[:3], dtype=np.float64, copy=False)
M[:3, 3] = point - np.dot(R, point)
return M
def rotm2angle(R):
# From: euclideanspace.com
epsilon = 0.01 # Margin to allow for rounding errors
epsilon2 = 0.1 # Margin to distinguish between 0 and 180 degrees
assert(isRotm(R))
if ((abs(R[0][1]-R[1][0])< epsilon) and (abs(R[0][2]-R[2][0])< epsilon) and (abs(R[1][2]-R[2][1])< epsilon)):
# Singularity found
# First check for identity matrix which must have +1 for all terms in leading diagonaland zero in other terms
if ((abs(R[0][1]+R[1][0]) < epsilon2) and (abs(R[0][2]+R[2][0]) < epsilon2) and (abs(R[1][2]+R[2][1]) < epsilon2) and (abs(R[0][0]+R[1][1]+R[2][2]-3) < epsilon2)):
# this singularity is identity matrix so angle = 0
return [0,1,0,0] # zero angle, arbitrary axis
# Otherwise this singularity is angle = 180
angle = np.pi
xx = (R[0][0]+1)/2
yy = (R[1][1]+1)/2
zz = (R[2][2]+1)/2
xy = (R[0][1]+R[1][0])/4
xz = (R[0][2]+R[2][0])/4
yz = (R[1][2]+R[2][1])/4
if ((xx > yy) and (xx > zz)): # R[0][0] is the largest diagonal term
if (xx< epsilon):
x = 0
y = 0.7071
z = 0.7071
else:
x = np.sqrt(xx)
y = xy/x
z = xz/x
elif (yy > zz): # R[1][1] is the largest diagonal term
if (yy< epsilon):
x = 0.7071
y = 0
z = 0.7071
else:
y = np.sqrt(yy)
x = xy/y
z = yz/y
else: # R[2][2] is the largest diagonal term so base result on this
if (zz< epsilon):
x = 0.7071
y = 0.7071
z = 0
else:
z = np.sqrt(zz)
x = xz/z
y = yz/z
return [angle,x,y,z] # Return 180 deg rotation
# As we have reached here there are no singularities so we can handle normally
s = np.sqrt((R[2][1] - R[1][2])*(R[2][1] - R[1][2]) + (R[0][2] - R[2][0])*(R[0][2] - R[2][0]) + (R[1][0] - R[0][1])*(R[1][0] - R[0][1])) # used to normalise
if (abs(s) < 0.001):
s = 1
# Prevent divide by zero, should not happen if matrix is orthogonal and should be
# Caught by singularity test above, but I've left it in just in case
angle = np.arccos(( R[0][0] + R[1][1] + R[2][2] - 1)/2)
x = (R[2][1] - R[1][2])/s
y = (R[0][2] - R[2][0])/s
z = (R[1][0] - R[0][1])/s
return [angle,x,y,z]
def quat2rotm(quat):
"""
Quaternion to rotation matrix.
Args:
- quat (4, numpy array): quaternion w, x, y, z
Returns:
- rotm: (3x3 numpy array): rotation matrix
"""
w = quat[0]
x = quat[1]
y = quat[2]
z = quat[3]
s = w*w + x*x + y*y + z*z
rotm = np.array([[1-2*(y*y+z*z)/s, 2*(x*y-z*w)/s, 2*(x*z+y*w)/s ],
[2*(x*y+z*w)/s, 1-2*(x*x+z*z)/s, 2*(y*z-x*w)/s ],
[2*(x*z-y*w)/s, 2*(y*z+x*w)/s, 1-2*(x*x+y*y)/s]
])
return rotm
def make_rigid_transformation(pos, orn):
"""
Rigid transformation from position and orientation.
Args:
- pos (3, numpy array): translation
- orn (4, numpy array): orientation in quaternion
Returns:
- homo_mat (4x4 numpy array): homogenenous transformation matrix
"""
rotm = quat2rotm(orn)
homo_mat = np.c_[rotm, np.reshape(pos, (3, 1))]
homo_mat = np.r_[homo_mat, [[0, 0, 0, 1]]]
return homo_mat
def axis_angle_and_translation_to_rigid_transformation(tool_position, tool_orientation):
tool_orientation_angle = np.linalg.norm(tool_orientation)
tool_orientation_axis = tool_orientation/tool_orientation_angle
# Note that this following rotm is the base frame in tool frame
tool_orientation_rotm = angle2rotm(tool_orientation_angle, tool_orientation_axis, point=None)[:3,:3]
# Tool rigid body transformation
tool_transformation = np.zeros((4, 4))
tool_transformation[:3, :3] = tool_orientation_rotm
tool_transformation[:3, 3] = tool_position
tool_transformation[3, 3] = 1
return tool_transformation
def axxb(robotPose, markerPose, baseToCamera=True):
"""
Copyright (c) 2019, Hongtao Wu
AX=XB solver for eye-on base
Using the Park and Martin Method: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=326576
Args:
- robotPose (list of 4x4 numpy array): poses (homogenous transformation) of the robot end-effector in the robot base frame.
- markerPose (list of 4x4 numpy array): poses (homogenous transformation) of the marker in the camera frame.
- baseToCamera (boolean): If true it will compute the base to camera transform, if false it will compute the robot tip to fiducial transform.
Return:
- cam2base (4x4 numpy array): poses of the camera in robot base frame.
"""
assert len(robotPose) == len(markerPose), 'robot poses and marker poses are not of the same length!'
n = len(robotPose)
print("Total number of poses: %i" % n)
A = np.zeros((4, 4, n-1))
B = np.zeros((4, 4, n-1))
alpha = np.zeros((3, n-1))
beta = np.zeros((3, n-1))
M = np.zeros((3, 3))
nan_num = 0
sequence = np.arange(n)
np.random.shuffle(sequence)
for i in range(n-1):
if baseToCamera:
# compute the robot base to the robot camera
A[:, :, i] = np.matmul(robotPose[sequence[i+1]], pose_inv(robotPose[sequence[i]]))
B[:, :, i] = np.matmul(markerPose[sequence[i+1]], pose_inv(markerPose[sequence[i]]))
else:
# compute the robot tool tip to the robot fiducial marker seen by the camera
A[:, :, i] = np.matmul(pose_inv(robotPose[sequence[i+1]]), robotPose[sequence[i]])
B[:, :, i] = np.matmul(pose_inv(markerPose[sequence[i+1]]), markerPose[sequence[i]])
alpha[:, i] = get_mat_log(A[:3, :3, i])
beta[:, i] = get_mat_log(B[:3, :3, i])
# Bad pair of transformation are very close in the orientation.
# They will give nan result
if np.sum(np.isnan(alpha[:, i])) + np.sum(np.isnan(beta[:, i])) > 0:
nan_num += 1
continue
else:
M += np.outer(beta[:, i], alpha[:, i])
print("Invalid poses number: {}".format(nan_num))
# Get the rotation matrix
mtm = np.matmul(M.T, M)
u_mtm, s_mtm, vh_mtm = np.linalg.svd(mtm)
R = np.matmul(np.matmul(np.matmul(u_mtm, np.diag(np.power(s_mtm, -0.5))), vh_mtm), M.T)
# Get the tranlation vector
I_Ra_Left = np.zeros((3*(n-1), 3))
ta_Rtb_Right = np.zeros((3 * (n-1), 1))
for i in range(n-1):
I_Ra_Left[(3*i):(3*(i+1)), :] = np.eye(3) - A[:3, :3, i]
ta_Rtb_Right[(3*i):(3*(i+1)), :] = np.reshape(A[:3, 3, i] - np.dot(R, B[:3, 3, i]), (3, 1))
t = np.linalg.lstsq(I_Ra_Left, ta_Rtb_Right, rcond=None)[0]
cam2base = np.c_[R, t]
cam2base = np.r_[cam2base, [[0, 0, 0, 1]]]
return cam2base
def pose_inv(pose):
"""
Inverse of a homogenenous transformation.
Args:
- pose (4x4 numpy array)
Return:
- inv_pose (4x4 numpy array)
"""
R = pose[:3, :3]
t = pose[:3, 3]
inv_R = R.T
inv_t = - np.dot(inv_R, t)
inv_pose = np.c_[inv_R, np.transpose(inv_t)]
inv_pose = np.r_[inv_pose, [[0, 0, 0, 1]]]
return inv_pose
def get_mat_log(R):
"""
Get the log(R) of the rotation matrix R.
Args:
- R (3x3 numpy array): rotation matrix
Returns:
- w (3, numpy array): log(R)
"""
theta = np.arccos((np.trace(R) - 1) / 2)
w_hat = (R - R.T) * theta / (2 * np.sin(theta)) # Skew symmetric matrix
w = np.array([w_hat[2, 1], w_hat[0, 2], w_hat[1, 0]]) # [w1, w2, w3]
return w
def calib_grid_cartesian(workspace_limits, calib_grid_step):
"""
Construct 3D calibration grid across workspace
# Arguments
workspace_limits: list of [min,max] coordinates for the list [x, y, z] in meters.
calib_grid_step: the step size of points in a 3d grid to be created in meters.
# Returns
num_calib_grid_pts, calib_grid_pts
"""
gridspace_x = np.linspace(workspace_limits[0][0], workspace_limits[0][1], (workspace_limits[0][1] - workspace_limits[0][0])/calib_grid_step)
gridspace_y = np.linspace(workspace_limits[1][0], workspace_limits[1][1], (workspace_limits[1][1] - workspace_limits[1][0])/calib_grid_step)
gridspace_z = np.linspace(workspace_limits[2][0], workspace_limits[2][1], (workspace_limits[2][1] - workspace_limits[2][0])/calib_grid_step)
calib_grid_x, calib_grid_y, calib_grid_z = np.meshgrid(gridspace_x, gridspace_y, gridspace_z)
num_calib_grid_pts = calib_grid_x.shape[0]*calib_grid_x.shape[1]*calib_grid_x.shape[2]
calib_grid_x.shape = (num_calib_grid_pts,1)
calib_grid_y.shape = (num_calib_grid_pts,1)
calib_grid_z.shape = (num_calib_grid_pts,1)
calib_grid_pts = np.concatenate((calib_grid_x, calib_grid_y, calib_grid_z), axis=1)
return num_calib_grid_pts, calib_grid_pts
def check_separation(values, distance_threshold, small_distance_threshold = 0.05):
"""Checks that the separation among the values is close enough about distance_threshold.
:param values: array of values to check, assumed to be sorted from low to high
:param distance_threshold: threshold
:returns: success
:rtype: bool
"""
for i in range(len(values) - 1):
x = values[i]
y = values[i + 1]
assert x < y, '`values` assumed to be sorted'
if y < x + small_distance_threshold / 2.:
# # print('check_separation(): not long enough for idx: {}'.format(i))
return False
if abs(y - x) > distance_threshold:
# print('check_separation(): too far apart')
return False
return True
def polyfit(*args, **kwargs):
with warnings.catch_warnings():
# suppress the RankWarning, which just means the best fit line was bad.
warnings.simplefilter('ignore', np.RankWarning)
out = np.polyfit(*args, **kwargs)