-
Notifications
You must be signed in to change notification settings - Fork 0
/
tuning_options.py
executable file
·46 lines (33 loc) · 1.12 KB
/
tuning_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import random
import sys
import json
from itertools import product
import numpy as np
import pdb
import pathlib
np.random.seed(12)
num_workers = 4
jobs_per_worker = 5
total_jobs = num_workers * jobs_per_worker
#dropouts = [ 0.20, 0.33, 0.40]
dropouts = [0.38, 0.40]
n_shared_layers = [0, 2, 4]
n_split_layers = [2, 4, 6]
n_heads = [4]
warmups = [ 800, 1000, 1500, 2000]
zero_weight = [0.2, 0.3]
init_scale = [4, 16]
all_combos = product(dropouts, n_shared_layers, n_split_layers, n_heads, warmups, zero_weight, init_scale)
all_combos = [x for x in all_combos]
all_ids = [i for i in range(len(all_combos))]
chosen_combos = [all_combos[i] for i in np.random.choice(all_ids, total_jobs, replace = False)]
for i in range(num_workers):
start = i * jobs_per_worker
end = (i+1) * jobs_per_worker
settings = chosen_combos[start:end]
settings_dir = pathlib.Path(f"tune_files/{i}")
settings_dir.mkdir(exist_ok=True)
for j, setting in enumerate(settings):
setting = [str(x) for x in setting]
with open(settings_dir.joinpath(f"{j}.txt"), "w") as f1:
f1.write(" ".join(setting))