-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_transformer_navigation.py
496 lines (428 loc) · 20.7 KB
/
train_transformer_navigation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
import json
from jsonargparse import ArgumentParser, ActionConfigFile
import yaml
from typing import List, Dict
import glob
import os
import pathlib
import pdb
import subprocess
import copy
from io import StringIO
from collections import defaultdict
import torch
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
from einops import rearrange
import logging
from tqdm import tqdm
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.patches as patches
from matplotlib import gridspec
import numpy as np
import torch.autograd.profiler as profiler
from torch.nn import functional as F
from torch.optim.lr_scheduler import StepLR
from allennlp.training.scheduler import Scheduler
from allennlp.training.learning_rate_schedulers import NoamLR
import pandas as pd
from transformer import TransformerEncoder, ResidualTransformerEncoder, image_to_tiles, tiles_to_image
from metrics import MSEMetric, AccuracyMetric, F1Metric
from language_embedders import RandomEmbedder, GloveEmbedder, BERTEmbedder
from navigation_data import NavigationDatasetReader, NavigationImageTrajectory, configure_parser
from train_language_encoder import get_free_gpu, load_data, get_vocab, LanguageTrainer, FlatLanguageTrainer
from navigation_transformer import NavigationTransformerEncoder
from train_transformer import TransformerTrainer
logger = logging.getLogger(__name__)
class NavigationTransformerTrainer(TransformerTrainer):
def __init__(self,
dataset_reader: NavigationDatasetReader,
encoder: TransformerEncoder,
optimizer: torch.optim.Optimizer,
scheduler: Scheduler,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
resolution: int = 64,
patch_size: int = 8,
block_size: int = 4,
batch_size: int = 16,
output_type: str = "per-pixel",
checkpoint_every: int = 64,
validation_limit: int = 16,
depth: int = 7,
score_type: str = "acc",
best_epoch: int = -1,
seed: int = 12,
zero_weight: float = 0.05,
debug_image_top_k: int = None,
debug_image_threshold: float = None):
super(NavigationTransformerTrainer, self).__init__(train_data=[],
val_data=[],
encoder=encoder,
optimizer=optimizer,
scheduler=scheduler,
num_epochs=num_epochs,
num_blocks=num_blocks,
device=device,
checkpoint_dir=checkpoint_dir,
num_models_to_keep=num_models_to_keep,
generate_after_n=generate_after_n,
score_type=score_type,
patch_size=patch_size,
block_size=block_size,
output_type=output_type,
resolution=resolution,
depth=depth,
best_epoch=best_epoch,
seed=seed,
zero_weight=zero_weight)
self.f1_metric = F1Metric()
self.dataset_reader = dataset_reader
self.batch_size = batch_size
self.checkpoint_every = checkpoint_every
self.validation_limit = validation_limit
if debug_image_top_k < 0:
debug_image_top_k = None
if debug_image_threshold < 0:
debug_image_threshold = None
self.debug_image_top_k = debug_image_top_k
self.debug_image_threshold = debug_image_threshold
def split_large_batch(self, batch):
large_bsz = batch['path_state'].shape[0]
small_batches = []
for i in range(0, large_bsz, self.batch_size):
small_batch = {}
for k in batch.keys():
small_batch[k] = batch[k][i:i+self.batch_size]
small_batches.append(small_batch)
return small_batches
def validate_one_epoch(self, epoch, step, validation_limit):
print(f"Validating epoch {epoch} step {step}...")
total_prev_acc, total_next_acc = 0.0, 0.0
total = 0
self.encoder.eval()
for b, dev_batch_instance in enumerate(self.dataset_reader.read("dev", validation_limit)):
actual_batches = self.split_large_batch(dev_batch_instance)
for small_batch in actual_batches:
score_dict = self.validate(small_batch, epoch, b, 0)
total_next_acc += score_dict['next_f1']
total += 1
mean_next_acc = total_next_acc / total
return mean_next_acc
def evaluate(self):
total_acc = 0.0
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_instance in tqdm(enumerate(self.dataset_reader.read("dev", self.validation_limit))):
actual_batches = self.split_large_batch(dev_batch_instance)
for small_batch in actual_batches:
score_dict = self.validate(small_batch, 10, b, 0, self.debug_image_top_k, self.debug_image_threshold)
total_acc += score_dict['next_f1']
total += 1
mean_acc = total_acc / total
print(f"Test-time pixel acc {mean_acc * 100}")
return mean_acc
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
step = 0
for b, batch_instance in enumerate(self.dataset_reader.read("train")):
actual_batches = self.split_large_batch(batch_instance)
for sb, small_batch in enumerate(actual_batches):
is_best = False
self.optimizer.zero_grad()
outputs = self.encoder(small_batch)
# skip bad examples
if outputs is None:
skipped += 1
continue
loss = self.compute_patch_loss(small_batch, outputs, self.next_to_prev_weight)
loss.backward()
self.optimizer.step()
it = (epoch + 1) * (step+1)
self.scheduler.step_batch(it)
#print(f"step: {step+1} checkpoint_every: {self.checkpoint_every} {(step +1) % self.checkpoint_every}")
if (step+1) % self.checkpoint_every == 0:
step_acc = self.validate_one_epoch(epoch, step, self.validation_limit)
print(f"Epoch {epoch} step {step} has next pixel F1 {step_acc * 100:.2f}")
if step_acc > self.best_score:
is_best = True
self.best_score = step_acc
self.save_model(f"{epoch}_{step}", is_best)
step += 1
print(f"skipped {skipped} examples")
epoch_acc = self.validate_one_epoch(epoch, step, 10 * self.validation_limit)
print(f"Epoch {epoch} has next pixel F1 {epoch_acc * 100:.2f}")
if self.score_type == "acc":
return (epoch_acc)/2, -1.0
else:
raise AssertionError(f"invalid score type {self.score_type}")
def compute_patch_loss(self, inputs, outputs, next_to_prev_weight = [1.0, 1.0]):
"""
compute per-patch for each patch
"""
bsz, w, h, __ = inputs['input_image'].shape
pred_next_image = outputs["next_position"]
path_state = inputs['path_state'].reshape(bsz, 1, w, h).float()
true_next_image = image_to_tiles(path_state, self.patch_size)
# binarize patches
next_sum_image = torch.sum(true_next_image, dim = 2, keepdim=True)
next_patches = torch.zeros_like(next_sum_image)
# any patch that has a 1 pixel in it gets 1
next_patches[next_sum_image != 0] = 1
pred_next_image = pred_next_image.squeeze(-1)
next_patches = next_patches.squeeze(-1).to(self.device).long()
pred_next_image = rearrange(pred_next_image, 'b n c -> b c n')
next_pixel_loss = self.weighted_xent_loss_fxn(pred_next_image, next_patches)
total_loss = next_pixel_loss
print(f"loss {total_loss.item()}")
return total_loss
def generate_debugging_image(self,
true_img,
path_state,
pred_path,
out_path,
caption = None,
top_k = None,
threshold = None):
caption = self.wrap_caption(caption)
fig, ax = plt.subplots(2,2, figsize=(16,16))
# gs = gridspec.GridSpec(2, 2, width_ratios=[2, 1])
text_ax = ax[0,1]
text_ax.axis([0, 1, 0, 1])
text_ax.text(0.2, 0.02, caption, fontsize = 12)
text_ax.axis("off")
props = dict(boxstyle='round',
facecolor='wheat', alpha=0.5)
text_ax.text(0.05, 0.95, caption, wrap=True, fontsize=14,
verticalalignment='top', bbox=props)
# img_ax = plt.subplot(gs[2])
img_ax = ax[1,0]
#w = int(40 * (self.resolution / 224))
true_img = true_img.detach().cpu().numpy().astype(float)[:,:,0:3]
img_ax.imshow(true_img)
true_path = path_state.detach().numpy()
true_path = np.tile(true_path.reshape(512, 512, 1), (1,1,3)).astype(float)
true_ax = ax[0,0]
true_ax.imshow(true_path)
pred_path = torch.softmax(pred_path, dim=0)
pred_path = pred_path[1,:,:]
pred_path = pred_path.cpu().detach().numpy().reshape(512, 512, 1)
if top_k is not None:
top_k_inds = np.argpartition(pred_path, -top_k, axis=None)[-top_k:]
top_k_inds = np.unravel_index(top_k_inds, shape = (512, 512))
pred_path[top_k_inds] = 1.1
pred_path[pred_path<1.0] = 0
pred_path[top_k_inds] = 1.0
elif threshold is not None:
pred_path[pred_path < threshold] = 0
else:
pred_path = pred_path
pred_path = np.tile(pred_path, (1,1,3)).astype(float)
pred_ax = ax[1,1]
pred_ax.imshow(pred_path)
file_path = f"{out_path}.png"
print(f"saving to {file_path}")
plt.savefig(file_path)
plt.close()
def validate(self, batch_instance, epoch_num, batch_num, instance_num, top_k, threshold):
self.encoder.eval()
outputs = self.encoder(batch_instance)
next_position = outputs['next_position']
next_position = tiles_to_image(next_position, self.patch_size, output_type="per-patch", upsample=True)
# f1 metric
next_p, next_r, next_f1 = self.f1_metric.compute_f1(batch_instance["path_state"].unsqueeze(-1), next_position)
if epoch_num > self.generate_after_n:
for i in range(outputs["next_position"].shape[0]):
output_path = self.checkpoint_dir.joinpath(f"batch_{batch_num}").joinpath(f"instance_{i}")
output_path.mkdir(parents = True, exist_ok=True)
command = batch_instance["command"][i]
command = [x for x in command if x != "<PAD>"]
command = " ".join(command)
image = batch_instance['input_image'][i]
path_state = batch_instance["path_state"][i]
pred_path = next_position[i]
self.generate_debugging_image(image,
path_state,
pred_path,
output_path,
caption = command,
top_k = top_k,
threshold = threshold)
return {"next_f1": next_f1}
def compute_f1(self, true_pos, pred_pos):
eps = 1e-8
values, pred_pixels = torch.max(pred_pos, dim=1)
gold_pixels = true_pos
pred_pixels = pred_pixels.unsqueeze(1)
pred_pixels = pred_pixels.detach().cpu().float()
gold_pixels = gold_pixels.detach().cpu().float()
total_pixels = sum(pred_pixels.shape)
true_pos = torch.sum(pred_pixels * gold_pixels).item()
true_neg = torch.sum((1-pred_pixels) * (1 - gold_pixels)).item()
false_pos = torch.sum(pred_pixels * (1 - gold_pixels)).item()
false_neg = torch.sum((1-pred_pixels) * gold_pixels).item()
precision = true_pos / (true_pos + false_pos + eps)
recall = true_pos / (true_pos + false_neg + eps)
f1 = 2 * (precision * recall) / (precision + recall + eps)
return precision, recall, f1
def main(args):
device = "cpu"
if args.cuda is not None:
free_gpu_id = get_free_gpu()
if free_gpu_id > -1:
device = f"cuda:{free_gpu_id}"
#device = "cuda:0"
device = torch.device(device)
print(f"On device {device}")
#test = torch.ones((1))
#test = test.to(device)
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
dataset_reader = NavigationDatasetReader(dir = args.data_dir,
out_path = args.out_path,
path_width = args.path_width,
read_limit = args.read_limit,
batch_size = args.batch_size,
max_len = args.max_len,
tokenizer = tokenizer,
shuffle = args.shuffle,
overfit = args.overfit,
is_bert = "bert" in args.embedder)
checkpoint_dir = pathlib.Path(args.checkpoint_dir)
if not checkpoint_dir.exists():
checkpoint_dir.mkdir()
if not args.test:
with open(dataset_reader.path_dict['train'].joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
with open(checkpoint_dir.joinpath("vocab.json"), "w") as f1:
json.dump(list(train_vocab), f1)
else:
print(f"Reading vocab from {checkpoint_dir}")
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
print(f"got data")
# construct the vocab and tokenizer
print(f"constructing model...")
# get the embedder from args
if args.embedder == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, args.embedding_dim, trainable=True)
elif args.embedder == "glove":
embedder = GloveEmbedder(tokenizer, train_vocab, args.embedding_file, args.embedding_dim, trainable=True)
elif args.embedder.startswith("bert"):
embedder = BERTEmbedder(model_name = args.embedder, max_seq_len = args.max_len)
else:
raise NotImplementedError(f"No embedder {args.embedder}")
depth = 1
encoder_cls = NavigationTransformerEncoder
encoder_kwargs = dict(image_size = args.resolution,
patch_size = args.patch_size,
language_embedder = embedder,
n_layers = args.n_layers,
channels = args.channels,
n_heads = args.n_heads,
hidden_dim = args.hidden_dim,
ff_dim = args.ff_dim,
dropout = args.dropout,
embed_dropout = args.embed_dropout,
output_type = args.output_type,
positional_encoding_type = args.pos_encoding_type,
device = device,
log_weights = args.test,
locality_mask = args.locality_mask,
locality_neighborhood = args.locality_neighborhood,
init_scale = args.init_scale)
# Initialize encoder
encoder = encoder_cls(**encoder_kwargs)
if args.cuda is not None:
encoder = encoder.cuda(device)
print(encoder)
# construct optimizer
optimizer = torch.optim.Adam(encoder.parameters(), lr=args.learn_rate)
# scheduler
scheduler = NoamLR(optimizer, model_size = args.hidden_dim, warmup_steps = args.warmup, factor = args.lr_factor)
best_epoch = -1
block_size = int((args.resolution * 4)/64)
if not args.test:
if not args.resume:
try:
os.mkdir(args.checkpoint_dir)
except FileExistsError:
# file exists
try:
assert(len(glob.glob(os.path.join(args.checkpoint_dir, "*.th"))) == 0)
except AssertionError:
raise AssertionError(f"Output directory {args.checkpoint_dir} non-empty, will not overwrite!")
else:
# resume from pre-trained
encoder = encoder.to("cpu")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"), map_location='cpu')
encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.cuda(device)
# get training info
best_checkpoint_data = json.load(open(pathlib.Path(args.checkpoint_dir).joinpath("best_training_state.json")))
print(f"best_checkpoint_data {best_checkpoint_data}")
best_epoch = best_checkpoint_data["epoch"]
# save arg config to checkpoint_dir
with open(pathlib.Path(args.checkpoint_dir).joinpath("config.yaml"), "w") as f1:
dump_args = copy.deepcopy(args)
# drop stuff we can't serialize
del(dump_args.__dict__["cfg"])
del(dump_args.__dict__["__cwd__"])
del(dump_args.__dict__["__path__"])
to_dump = dump_args.__dict__
# dump
yaml.safe_dump(to_dump, f1, encoding='utf-8', allow_unicode=True)
else:
# test-time, load best model
print(f"loading model weights from {args.checkpoint_dir}")
#state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
#encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.to("cpu")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"), map_location='cpu')
encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.cuda(device)
num_blocks = 1
# construct trainer
trainer = NavigationTransformerTrainer(dataset_reader = dataset_reader,
encoder = encoder,
optimizer = optimizer,
scheduler = scheduler,
num_epochs = args.num_epochs,
num_blocks = num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
checkpoint_every = args.checkpoint_every,
validation_limit = args.validation_limit,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = args.generate_after_n,
score_type=args.score_type,
depth = depth,
resolution = args.resolution,
output_type = args.output_type,
patch_size = args.patch_size,
block_size = block_size,
best_epoch = best_epoch,
seed = args.seed,
zero_weight = args.zero_weight,
debug_image_top_k = args.debug_image_top_k,
debug_image_threshold = args.debug_image_threshold)
if not args.test:
trainer.train()
else:
print(f"evaluating")
acc = trainer.evaluate()
print(f"accuracy: {acc}")
if __name__ == "__main__":
np.random.seed(12)
torch.manual_seed(12)
parser = configure_parser()
args = parser.parse_args()
main(args)