-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_transformer.py
executable file
·903 lines (784 loc) · 43.7 KB
/
train_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
import json
from jsonargparse import ArgumentParser, ActionConfigFile
import yaml
from typing import List, Dict
import glob
import os
import pathlib
import pdb
import subprocess
import copy
from io import StringIO
from collections import defaultdict
import torch
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
from einops import rearrange
import logging
from tqdm import tqdm
from matplotlib import pyplot as plt
import matplotlib
from matplotlib import gridspec
import numpy as np
import torch.autograd.profiler as profiler
from torch.nn import functional as F
from torch.optim.lr_scheduler import StepLR
from allennlp.training.scheduler import Scheduler
from allennlp.training.learning_rate_schedulers import NoamLR
import pandas as pd
from transformer import TransformerEncoder, ResidualTransformerEncoder, image_to_tiles, tiles_to_image
from metrics import TransformerTeleportationMetric, MSEMetric, AccuracyMetric, F1Metric
from language_embedders import RandomEmbedder, GloveEmbedder, BERTEmbedder
from data import DatasetReader
from train_language_encoder import get_free_gpu, load_data, get_vocab, LanguageTrainer, FlatLanguageTrainer
logger = logging.getLogger(__name__)
class TransformerTrainer(FlatLanguageTrainer):
def __init__(self,
train_data: List,
val_data: List,
encoder: TransformerEncoder,
optimizer: torch.optim.Optimizer,
scheduler: Scheduler,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
resolution: int = 64,
patch_size: int = 8,
block_size: int = 4,
output_type: str = "per-pixel",
depth: int = 7,
score_type: str = "acc",
best_epoch: int = -1,
seed: int = 12,
zero_weight: float = 0.05,
next_weight: float = 1.0,
prev_weight: float = 1.0,
do_regression: bool = False,
do_reconstruction: bool = False,
n_epochs_pre_valid: int = 0,
save_all_eval: bool = False):
super(TransformerTrainer, self).__init__(train_data=train_data,
val_data=val_data,
encoder=encoder,
optimizer=optimizer,
num_epochs=num_epochs,
num_blocks=num_blocks,
device=device,
checkpoint_dir=checkpoint_dir,
num_models_to_keep=num_models_to_keep,
generate_after_n=generate_after_n,
score_type=score_type,
resolution=resolution,
depth=depth,
best_epoch=best_epoch,
do_regression=do_regression,
save_all_eval=save_all_eval)
weight = torch.tensor([zero_weight, 1.0-zero_weight]).to(device)
total_steps = num_epochs * len(train_data)
self.n_epochs_pre_valid = n_epochs_pre_valid
print(f"total steps {total_steps}")
self.weighted_xent_loss_fxn = torch.nn.CrossEntropyLoss(weight = weight)
self.xent_loss_fxn = torch.nn.CrossEntropyLoss()
self.next_loss_weight = next_weight
self.prev_loss_weight = prev_weight
self.scheduler = scheduler
self.patch_size = patch_size
self.output_type = output_type
self.next_to_prev_weight = (next_weight, prev_weight)
self.do_reconstruction = do_reconstruction
self.teleportation_metric = TransformerTeleportationMetric(block_size = block_size,
image_size = resolution,
patch_size = patch_size)
self.f1_metric = F1Metric()
self.masked_f1_metric = F1Metric(mask=True)
if self.do_regression:
self.mse_metric = MSEMetric()
self.reg_loss_fxn = torch.nn.MSELoss()
if self.do_reconstruction:
self.reconstruction_metric = AccuracyMetric()
self.set_all_seeds(seed)
def set_all_seeds(self, seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
for b, batch_instance in tqdm(enumerate(self.train_data)):
self.optimizer.zero_grad()
outputs = self.encoder(batch_instance)
#next_outputs, prev_outputs = self.encoder(batch_instance)
# skip bad examples
if outputs is None:
skipped += 1
continue
if self.output_type == "per-pixel":
loss = self.compute_weighted_loss(batch_instance, outputs, (epoch + 1) * (b+1))
elif self.output_type == "per-patch":
loss = self.compute_patch_loss(batch_instance, outputs, self.next_to_prev_weight)
elif self.output_type == "patch-softmax":
loss = self.compute_xent_loss(batch_instance, outputs)
else:
raise AssertionError("must have output in ['per-pixel', 'per-patch', 'patch-softmax']")
loss.backward()
self.optimizer.step()
it = (epoch + 1) * (b+1)
self.scheduler.step_batch(it)
print(f"skipped {skipped} examples")
print(f"Validating epoch {epoch}...")
total_dict = defaultdict(float)
total = 0
if epoch >= self.n_epochs_pre_valid:
self.encoder.eval()
for b, dev_batch_instance in tqdm(enumerate(self.val_data)):
#prev_pixel_acc, block_acc = self.validate(dev_batch_instance, epoch, b, 0)
score_dict = self.validate(dev_batch_instance, epoch, b, 0)
for k,v in score_dict.items():
if type(v) in [float, int, np.float64, np.int]:
total_dict[k] += score_dict[k]
total += 1
for k,v in total_dict.items():
total_dict[k] = v / total
print(f"Epoch {epoch}")
ordered_keys = sorted(list(total_dict.keys()))
for k in ordered_keys:
if type(v) in [float, int, np.float64, np.int]:
print(f"\t{k}: {total_dict[k]:.2f}")
mean_next_acc = total_dict["next_f1"]
mean_prev_acc = total_dict["prev_f1"]
mean_block_acc = total_dict["block_accuracy"]
mean_tele_score = total_dict["tele_score"]
#print(f"Epoch {epoch} has next pixel F1 {mean_next_acc * 100} prev F1 {mean_prev_acc * 100}, block acc {mean_block_acc * 100} teleportation score: {mean_tele_score}, MSE: {mean_mse}, prev recon acc: {mean_prev_recon*100}, next recon acc {mean_next_recon*100}")
#print(f"Epoch {epoch} prev acc {mean_prev_acc * 100} ")
#return (mean_next_acc + mean_prev_acc)/2, mean_block_acc
if self.score_type == "acc":
return (mean_next_acc + mean_prev_acc)/2, mean_block_acc
elif self.score_type == "block_acc":
return mean_block_acc, 0.0
elif self.score_type == "tele_score":
return mean_tele_score, 0.0
else:
raise AssertionError(f"invalid score type {self.score_type}")
else:
if self.score_type == "acc" or self.score_type == "block_acc":
# return s.t. best epoch is latest, but will never be greater than an actual validation
return 0 + 0.00001 * epoch, 0
else:
# return s.t. best epoch is latest, but will never be less than an actual tele score
return 100 - 0.001 * epoch, 0
def compute_weighted_loss(self, inputs, outputs, it):
"""
compute per-pixel for all pixels, with additional loss term for only foreground pixels (where true label is 1)
"""
pred_next_image = outputs["next_position"]
true_next_image = inputs["next_pos_for_pred"]
bsz, n_blocks, width, height, depth = pred_next_image.shape
pred_next_image = pred_next_image.squeeze(-1)
true_next_image = true_next_image.squeeze(-1).squeeze(-1)
true_next_image = true_next_image.long().to(self.device)
next_pixel_loss = self.next_loss_weight * self.weighted_xent_loss_fxn(pred_next_image, true_next_image)
pred_prev_image = outputs["prev_position"]
true_prev_image = inputs["prev_pos_for_pred"]
pred_prev_image = pred_prev_image.squeeze(-1)
true_prev_image = true_prev_image.squeeze(-1).squeeze(-1)
true_prev_image = true_prev_image.long().to(self.device)
prev_pixel_loss = self.prev_loss_weight * self.weighted_xent_loss_fxn(pred_prev_image, true_prev_image)
total_loss = next_pixel_loss + prev_pixel_loss
print(f"loss {total_loss.item()}")
return total_loss
def compute_patch_loss(self, inputs, outputs, next_to_prev_weight = [1.0, 1.0]):
"""
compute per-patch for each patch
"""
bsz, __, w, h = inputs['prev_pos_input'].shape
pred_next_image = outputs["next_position"]
pred_prev_image = outputs["prev_position"]
true_next_image = image_to_tiles(inputs["next_pos_for_pred"].reshape(bsz, 1, w, h), self.patch_size)
true_prev_image = image_to_tiles(inputs["prev_pos_for_pred"].reshape(bsz, 1, w, h), self.patch_size)
# binarize patches
prev_sum_image = torch.sum(true_prev_image, dim = 2, keepdim=True)
prev_patches = torch.zeros_like(prev_sum_image)
next_sum_image = torch.sum(true_next_image, dim = 2, keepdim=True)
next_patches = torch.zeros_like(next_sum_image)
# any patch that has a 1 pixel in it gets 1
prev_patches[prev_sum_image != 0] = 1
next_patches[next_sum_image != 0] = 1
pred_prev_image = pred_prev_image.squeeze(-1)
pred_next_image = pred_next_image.squeeze(-1)
prev_patches = prev_patches.squeeze(-1).to(self.device).long()
next_patches = next_patches.squeeze(-1).to(self.device).long()
pred_prev_image = rearrange(pred_prev_image, 'b n c -> b c n')
pred_next_image = rearrange(pred_next_image, 'b n c -> b c n')
prev_pixel_loss = self.weighted_xent_loss_fxn(pred_prev_image, prev_patches)
next_pixel_loss = self.weighted_xent_loss_fxn(pred_next_image, next_patches)
next_weight = next_to_prev_weight[0]
prev_weight = next_to_prev_weight[1]
total_loss = next_weight * next_pixel_loss + prev_weight * prev_pixel_loss
print(f"loss {total_loss.item()}")
if self.do_regression:
pred_pos = outputs["next_pos_xyz"].reshape(-1)
true_pos = inputs["next_pos_for_regression"].reshape(-1).to(self.device)
reg_loss = self.reg_loss_fxn(pred_pos, true_pos)
total_loss += reg_loss
if self.do_reconstruction:
# do state reconstruction from image input for previous and next image
true_next_image_recon = image_to_tiles(inputs["next_pos_for_acc"].reshape(bsz, 1, w, h), self.patch_size)
true_prev_image_recon = image_to_tiles(inputs["prev_pos_for_acc"].reshape(bsz, 1, w, h), self.patch_size)
# take max of each patch so that even mixed patches count as having a block
true_next_image_recon, __ = torch.max(true_next_image_recon, dim=2)
true_prev_image_recon, __ = torch.max(true_prev_image_recon, dim=2)
pred_next_image_recon = outputs["next_per_patch_class"]
pred_prev_image_recon = outputs["prev_per_patch_class"]
bsz, n = true_next_image_recon.shape
pred_next_image_recon = pred_next_image_recon.reshape(bsz * n, 21)
pred_prev_image_recon = pred_prev_image_recon.reshape(bsz * n, 21)
true_next_image_recon = true_next_image_recon.reshape(-1).to(pred_next_image_recon.device).long()
true_prev_image_recon = true_prev_image_recon.reshape(-1).to(pred_next_image_recon.device).long()
prev_loss = self.xent_loss_fxn(pred_prev_image_recon, true_prev_image_recon)
next_loss = self.xent_loss_fxn(pred_next_image_recon, true_next_image_recon)
total_loss += prev_loss + next_loss
return total_loss
def compute_xent_loss(self, inputs, outputs):
"""
instead of bce against each patch, one distribution over all patches
"""
bsz, __, w, h = inputs['prev_pos_input'].shape
pred_next_image = outputs["next_position"]
pred_prev_image = outputs["prev_position"]
pred_next_image = pred_next_image.reshape((bsz, -1))
pred_prev_image = pred_prev_image.reshape((bsz, -1))
true_next_image = image_to_tiles(inputs["next_pos_for_pred"].reshape(bsz, 1, w, h), self.patch_size)
true_prev_image = image_to_tiles(inputs["prev_pos_for_pred"].reshape(bsz, 1, w, h), self.patch_size)
# binarize patches
prev_sum_image = torch.sum(true_prev_image, dim = 2, keepdim=True)
prev_patches = torch.zeros_like(prev_sum_image)
next_sum_image = torch.sum(true_next_image, dim = 2, keepdim=True)
next_patches = torch.zeros_like(next_sum_image)
# any patch that has a 1 pixel in it gets 1
prev_patches[prev_sum_image != 0] = 1
next_patches[next_sum_image != 0] = 1
# get single patch index (for now)
prev_patches_max = torch.argmax(prev_patches, dim = 1).reshape(-1)
next_patches_max = torch.argmax(next_patches, dim = 1).reshape(-1)
prev_patches_max = prev_patches_max.to(pred_prev_image.device)
next_patches_max = next_patches_max.to(pred_next_image.device)
prev_loss = self.xent_loss_fxn(pred_prev_image, prev_patches_max)
next_loss = self.xent_loss_fxn(pred_next_image, next_patches_max)
total_loss = prev_loss + next_loss
print(f"loss {total_loss.item()}")
return total_loss
def validate(self, batch_instance, epoch_num, batch_num, instance_num):
self.encoder.eval()
outputs = self.encoder(batch_instance)
prev_position = outputs['prev_position']
next_position = outputs['next_position']
if self.output_type == 'per-patch':
prev_position = tiles_to_image(prev_position, self.patch_size, output_type="per-patch", upsample=True)
next_position = tiles_to_image(next_position, self.patch_size, output_type="per-patch", upsample=True)
prev_position = prev_position.unsqueeze(-1)
next_position = next_position.unsqueeze(-1)
elif self.output_type == "patch-softmax":
prev_position = tiles_to_image(prev_position, self.patch_size, output_type="patch-softmax", upsample=True)
next_position = tiles_to_image(next_position, self.patch_size, output_type="patch-softmax", upsample=True)
prev_position = prev_position.unsqueeze(-1)
next_position = next_position.unsqueeze(-1)
else:
pass
prev_p, prev_r, prev_f1 = self.f1_metric.compute_f1(batch_instance["prev_pos_for_pred"], prev_position)
next_p, next_r, next_f1 = self.f1_metric.compute_f1(batch_instance["next_pos_for_pred"], next_position)
masked_prev_p, masked_prev_r, masked_prev_f1 = self.masked_f1_metric.compute_f1(batch_instance["prev_pos_for_pred"], prev_position)
masked_next_p, masked_next_r, masked_next_f1 = self.masked_f1_metric.compute_f1(batch_instance["next_pos_for_pred"], next_position)
all_tele_scores = []
all_oracle_tele_scores = []
all_tele_dicts = []
block_accs = []
pred_centers, true_centers = [], []
bsz = prev_position.shape[0]
for batch_idx in range(bsz):
if self.do_regression:
# NOT AS ACCURATE
# next_xyz = outputs['next_pos_xyz'].reshape(bsz, 3)[batch_idx]
#pdb.set_trace()
next_xyz_batch = None
else:
next_xyz_batch = None
tele_dict = self.teleportation_metric.get_metric(batch_instance["next_pos_for_acc"][batch_idx].clone(),
batch_instance["prev_pos_for_acc"][batch_idx].clone(),
prev_position[batch_idx].clone(),
outputs["next_position"][batch_idx].clone(),
batch_instance["block_to_move"][batch_idx].clone(),
next_xyz = next_xyz_batch)
all_tele_dicts.append(tele_dict)
all_tele_scores.append(tele_dict['distance'])
all_oracle_tele_scores.append(tele_dict['oracle_distance'])
block_accs.append(tele_dict['block_acc'])
pred_centers.append(tele_dict['pred_center'])
true_centers.append(tele_dict['true_center'])
total_tele_score = np.mean(all_tele_scores)
total_oracle_tele_score = np.mean(all_oracle_tele_scores)
block_accuracy = np.mean(block_accs)
bin_dict = defaultdict(list)
if self.do_regression:
mse = self.mse_metric(batch_instance['next_pos_for_regression'],
outputs['next_pos_xyz'])
else:
mse = 100
if self.do_reconstruction:
bsz, w, h, __, __ = batch_instance["next_pos_for_acc"].shape
true_next_image_recon = image_to_tiles(batch_instance["next_pos_for_acc"].reshape(bsz, 1, w, h), self.patch_size)
true_prev_image_recon = image_to_tiles(batch_instance["prev_pos_for_acc"].reshape(bsz, 1, w, h), self.patch_size)
# take max of each patch so that even mixed patches count as having a block
true_next_image_recon, __= torch.max(true_next_image_recon, dim=2)
true_prev_image_recon, __ = torch.max(true_prev_image_recon, dim=2)
next_recon_metric = self.reconstruction_metric(true_next_image_recon,
outputs['next_per_patch_class'])
prev_recon_metric = self.reconstruction_metric(true_prev_image_recon,
outputs['prev_per_patch_class'])
else:
prev_recon_metric = 0.0
next_recon_metric = 0.0
if epoch_num > self.generate_after_n:
for i in range(outputs["next_position"].shape[0]):
output_path = self.checkpoint_dir.joinpath(f"batch_{batch_num}").joinpath(f"instance_{i}")
output_path.mkdir(parents = True, exist_ok=True)
command = batch_instance["command"][i]
command = [x for x in command if x != "<PAD>"]
command = " ".join(command)
next_pos = batch_instance["next_pos_for_acc"][i]
prev_pos = batch_instance["prev_pos_for_acc"][i]
if "prev_per_patch_class" in outputs.keys() and outputs["prev_per_patch_class"] is not None:
self.generate_reconstruction_image(prev_pos,
outputs['prev_per_patch_class'][i],
output_path.joinpath("prev_recon"),
caption = command)
self.generate_reconstruction_image(next_pos,
outputs['next_per_patch_class'][i],
output_path.joinpath("next_recon"),
caption = command)
self.generate_debugging_image(next_pos,
next_position[i],
output_path.joinpath("next"),
caption = command,
pred_center = pred_centers[i],
true_center = true_centers[i])
self.generate_debugging_image(prev_pos,
prev_position[i],
output_path.joinpath("prev"),
caption = command)
bin_distance = int(all_tele_dicts[i]["distance"])
bin_dict[bin_distance].append(str(output_path) )
try:
with open(output_path.joinpath("attn_weights"), "w") as f1:
# for now, just take the last layer
to_dump = {"command": batch_instance['command'][i],
"prev_weight": outputs['prev_attn_weights'][-1][i],
"next_weight": outputs['next_attn_weights'][-1][i]}
json.dump(to_dump, f1)
except IndexError:
# train-time, pass
pass
return {
"prev_r": prev_r,
"prev_p": prev_p,
"prev_f1": prev_f1,
"next_r": next_r,
"next_p": next_p,
"next_f1": next_f1,
"masked_prev_r": masked_prev_r,
"masked_prev_p": masked_prev_p,
"masked_prev_f1": masked_prev_f1,
"masked_next_r": masked_next_r,
"masked_next_p": masked_next_p,
"masked_next_f1": masked_next_f1,
"block_acc": block_accuracy,
"mse": mse,
"prev_recon_acc": prev_recon_metric,
"next_recon_acc": next_recon_metric,
"tele_score": total_tele_score,
"oracle_tele_score": total_oracle_tele_score,
"bin_dict": bin_dict}
def compute_localized_accuracy(self, true_pos, pred_pos, waste):
values, pred_pixels = torch.max(pred_pos, dim=1)
pred_pixels = pred_pixels.unsqueeze(-1)
gold_pixels_ones = true_pos[true_pos == 1]
pred_pixels_ones = pred_pixels[true_pos == 1]
# flatten
pred_pixels_ones = pred_pixels_ones.reshape(-1).detach().cpu()
gold_pixels_ones = gold_pixels_ones.reshape(-1).detach().cpu()
# compare
total_foreground = gold_pixels_ones.shape[0]
matching_foreground = torch.sum(pred_pixels_ones == gold_pixels_ones).item()
try:
foreground_acc = matching_foreground/total_foreground
except ZeroDivisionError:
foreground_acc = 0.0
gold_pixels_zeros = true_pos[true_pos == 0]
pred_pixels_zeros = pred_pixels[true_pos == 0]
# flatten
pred_pixels_zeros = pred_pixels_zeros.reshape(-1).detach().cpu()
gold_pixels_zeros = gold_pixels_zeros.reshape(-1).detach().cpu()
total_background = gold_pixels_zeros.shape[0]
matching_background = torch.sum(pred_pixels_zeros == gold_pixels_zeros).item()
try:
background_acc = matching_background/total_background
except ZeroDivisionError:
background_acc = 0.0
#print(f"foreground {foreground_acc} background {background_acc}")
return (foreground_acc + background_acc ) / 2
def generate_reconstruction_image(self,
true_data,
pred_data,
out_path,
is_input=False,
caption = None,
pred_center = None,
true_center = None):
# upsample predictions
pred_data = pred_data.unsqueeze(0).unsqueeze(-1)
pred_data_image = tiles_to_image(pred_data, self.patch_size, output_type="per-patch", upsample=True)
pred_classes = torch.argmax(pred_data_image, dim=1)
order = ["adidas", "bmw", "burger king", "coca cola", "esso", "heineken", "hp",
"mcdonalds", "mercedes benz", "nvidia", "pepsi", "shell", "sri", "starbucks",
"stella artois", "target", "texaco", "toyota", "twitter", "ups"]
legend = [f"{i+1}: {name}" for i, name in enumerate(order)]
legend_str = "\n".join(legend)
caption = self.wrap_caption(caption)
cmap = plt.get_cmap("tab20b")
# num_blocks x depth x 64 x 64
xs = np.arange(0, self.resolution, 1)
zs = np.arange(0, self.resolution, 1)
depth = 0
fig = plt.figure(figsize=(16,12))
gs = gridspec.GridSpec(1, 2, width_ratios=[4, 1])
# add text command for debugging
text_ax = plt.subplot(gs[1])
text_ax.axis([0, 1, 0, 1])
text_ax.text(0.2, 0.02, legend_str, fontsize = 12)
text_ax.axis("off")
props = dict(boxstyle='round',
facecolor='wheat', alpha=0.5)
text_ax.text(0.05, 0.95, caption, wrap=True, fontsize=14,
verticalalignment='top', bbox=props)
ax = plt.subplot(gs[0])
ticks = [i for i in range(0, self.resolution + 16, 16)]
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_ylim(0, self.resolution)
ax.set_xlim(0, self.resolution)
plt.grid()
to_plot_xs_lab, to_plot_zs_lab, to_plot_labels = [], [], []
to_plot_xs_prob, to_plot_zs_prob, to_plot_probs = [], [], []
for x_pos in xs:
for z_pos in zs:
label = true_data[x_pos, z_pos, depth].item()
# don't plot background
if label > 0:
to_plot_xs_lab.append(x_pos)
to_plot_zs_lab.append(z_pos)
to_plot_labels.append(int(label))
prob = pred_classes[0, x_pos, z_pos].item()
to_plot_xs_prob.append(x_pos)
to_plot_zs_prob.append(z_pos)
to_plot_probs.append(prob)
ax.plot(to_plot_xs_lab, to_plot_zs_lab, ".")
for x,z, lab in zip(to_plot_xs_lab, to_plot_zs_lab, to_plot_labels):
ax.annotate(lab, xy=(x,z), fontsize = 12)
# plot centers if availalbe
if pred_center is not None and true_center is not None:
plt.plot(*pred_center, marker = "D", color='0000')
plt.plot(*true_center, marker = "X", color='0000')
# plot as grid squares at all positions
squares = []
for x,z, lab in zip(to_plot_xs_prob, to_plot_zs_prob, to_plot_probs):
rgba = list(cmap(lab))
# make opaque
rgba[-1] = 0.4
sq = matplotlib.patches.Rectangle((x,z), width = 1, height = 1, color = rgba)
ax.add_patch(sq)
file_path = f"{out_path}.png"
#data_path = f"{out_path}.npy"
#np.save(data_path, true_data)
print(f"saving to {file_path}")
plt.savefig(file_path)
plt.close()
def main(args):
if args.binarize_blocks:
args.num_blocks = 1
device = "cpu"
if args.cuda is not None:
#free_gpu_id = get_free_gpu()
#if free_gpu_id > -1:
#device = f"cuda:{free_gpu_id}"
device = f"cuda:{args.cuda}"
#device = "cuda:0"
device = torch.device(device)
print(f"On device {device}")
test = torch.ones((1))
test = test.to(device)
# load the data
dataset_reader = DatasetReader(args.train_path,
args.val_path,
args.test_path,
image_path = args.image_path,
include_depth = args.include_depth,
batch_by_line = args.traj_type != "flat",
traj_type = args.traj_type,
batch_size = args.batch_size,
max_seq_length = args.max_seq_length,
do_filter = args.do_filter,
do_one_hot = args.do_one_hot,
top_only = args.top_only,
resolution = args.resolution,
is_bert = "bert" in args.embedder,
binarize_blocks = args.binarize_blocks,
augment_with_noise = args.augment_with_noise)
checkpoint_dir = pathlib.Path(args.checkpoint_dir)
if not args.test:
print(f"Reading data from {args.train_path}")
train_vocab = dataset_reader.read_data("train")
try:
os.mkdir(checkpoint_dir)
except FileExistsError:
pass
with open(checkpoint_dir.joinpath("vocab.json"), "w") as f1:
json.dump(list(train_vocab), f1)
else:
print(f"Reading vocab from {checkpoint_dir}")
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
# don't read if doing test
if args.test_path is None:
print(f"Reading data from {args.val_path}")
dev_vocab = dataset_reader.read_data("dev")
if args.test_path is not None:
test_vocab = dataset_reader.read_data("test")
# no test then delete
else:
del(dataset_reader.data['test'])
print(f"got data")
print(f"train/dev: {len(dataset_reader.data['train'])}/{len(dataset_reader.data['dev'])}")
# construct the vocab and tokenizer
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
print(f"constructing model...")
# get the embedder from args
if args.embedder == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, args.embedding_dim, trainable=True)
elif args.embedder == "glove":
embedder = GloveEmbedder(tokenizer, train_vocab, args.embedding_file, args.embedding_dim, trainable=True)
elif args.embedder.startswith("bert"):
embedder = BERTEmbedder(model_name = args.embedder, max_seq_len = args.max_seq_length)
else:
raise NotImplementedError(f"No embedder {args.embedder}")
if args.top_only:
depth = 1
else:
depth = 7
encoder_cls = ResidualTransformerEncoder if args.encoder_type == "ResidualTransformerEncoder" else TransformerEncoder
encoder_kwargs = dict(image_size = args.resolution,
patch_size = args.patch_size,
language_embedder = embedder,
n_layers_shared = args.n_shared_layers,
n_layers_split = args.n_split_layers,
n_classes = 2,
channels = args.channels,
n_heads = args.n_heads,
hidden_dim = args.hidden_dim,
ff_dim = args.ff_dim,
dropout = args.dropout,
embed_dropout = args.embed_dropout,
output_type = args.output_type,
positional_encoding_type = args.pos_encoding_type,
device = device,
log_weights = args.test,
init_scale = args.init_scale,
do_regression = False,
do_reconstruction = args.do_reconstruction,
pretrained_weights = args.pretrained_weights)
if args.encoder_type == "ResidualTransformerEncoder":
encoder_kwargs["do_residual"] = args.do_residual
# Initialize encoder
encoder = encoder_cls(**encoder_kwargs)
if args.cuda is not None:
encoder = encoder.cuda(device)
print(encoder)
# construct optimizer
optimizer = torch.optim.Adam(encoder.parameters(), lr=args.learn_rate)
# scheduler
scheduler = NoamLR(optimizer, model_size = args.hidden_dim, warmup_steps = args.warmup, factor = args.lr_factor)
best_epoch = -1
block_size = int((args.resolution * 4)/64)
if not args.test:
if not args.resume:
try:
os.mkdir(args.checkpoint_dir)
except FileExistsError:
# file exists
try:
assert(len(glob.glob(os.path.join(args.checkpoint_dir, "*.th"))) == 0)
except AssertionError:
raise AssertionError(f"Output directory {args.checkpoint_dir} non-empty, will not overwrite!")
else:
# resume from pre-trained
encoder = encoder.to("cpu")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"), map_location='cpu')
encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.cuda(device)
# get training info
best_checkpoint_data = json.load(open(pathlib.Path(args.checkpoint_dir).joinpath("best_training_state.json")))
print(f"best_checkpoint_data {best_checkpoint_data}")
best_epoch = best_checkpoint_data["epoch"]
# save arg config to checkpoint_dir
with open(pathlib.Path(args.checkpoint_dir).joinpath("config.yaml"), "w") as f1:
dump_args = copy.deepcopy(args)
# drop stuff we can't serialize
del(dump_args.__dict__["cfg"])
del(dump_args.__dict__["__cwd__"])
del(dump_args.__dict__["__path__"])
to_dump = dump_args.__dict__
# dump
yaml.safe_dump(to_dump, f1, encoding='utf-8', allow_unicode=True)
# construct trainer
trainer = TransformerTrainer(train_data = dataset_reader.data["train"],
val_data = dataset_reader.data["dev"],
encoder = encoder,
optimizer = optimizer,
scheduler = scheduler,
num_epochs = args.num_epochs,
num_blocks = args.num_blocks,
device = device,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = args.generate_after_n,
score_type=args.score_type,
depth = depth,
resolution = args.resolution,
output_type = args.output_type,
patch_size = args.patch_size,
block_size = block_size,
best_epoch = best_epoch,
seed = args.seed,
zero_weight = args.zero_weight,
next_weight = args.next_weight,
prev_weight = args.prev_weight,
do_regression = args.do_regression,
do_reconstruction = args.do_reconstruction,
n_epochs_pre_valid = args.n_epochs_pre_valid)
trainer.train()
else:
# test-time, load best model
print(f"loading model weights from {args.checkpoint_dir}")
#state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
#encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.to("cpu")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"), map_location='cpu')
encoder.load_state_dict(state_dict, strict=True)
encoder = encoder.cuda(device)
if "test" in dataset_reader.data.keys():
eval_data = dataset_reader.data['test']
if args.out_path is None:
out_path = "test_metrics.json"
else:
out_path = args.out_path
else:
eval_data = dataset_reader.data['dev']
if args.out_path is None:
out_path = "val_metrics.json"
else:
out_path = args.out_path
eval_trainer = TransformerTrainer(train_data = dataset_reader.data["train"],
val_data = eval_data,
encoder = encoder,
optimizer = None,
scheduler = None,
num_epochs = 0,
num_blocks = args.num_blocks,
device = device,
resolution = args.resolution,
output_type = args.output_type,
checkpoint_dir = args.checkpoint_dir,
patch_size = args.patch_size,
block_size = block_size,
num_models_to_keep = 0,
seed = args.seed,
generate_after_n = args.generate_after_n,
score_type=args.score_type,
do_regression = args.do_regression,
do_reconstruction = args.do_reconstruction,
save_all_eval=args.save_all_eval)
print(f"evaluating")
eval_trainer.evaluate(out_path)
if __name__ == "__main__":
np.random.seed(12)
torch.manual_seed(12)
parser = ArgumentParser()
# config file
parser.add_argument("--cfg", action = ActionConfigFile)
# training
parser.add_argument("--test", action="store_true", help="load model and test")
parser.add_argument("--resume", action="store_true", help="resume training a model")
# data
parser.add_argument("--train-path", type=str, default = "blocks_data/trainset_v2.json", help="path to train data")
parser.add_argument("--val-path", default = "blocks_data/devset.json", type=str, help = "path to dev data" )
parser.add_argument("--test-path", default = None, help = "path to test data" )
parser.add_argument("--image-path", default = None, help = "path to simulation-generated heighmap images of scenes")
parser.add_argument("--include-depth", default=True, action = "store_true", help = "include depth heightmap with images when training from images of state")
parser.add_argument("--num-blocks", type=int, default=20)
parser.add_argument("--binarize-blocks", action="store_true", help="flag to treat block prediction as binary task instead of num-blocks-way classification")
parser.add_argument("--traj-type", type=str, default="flat", choices = ["flat", "trajectory"])
parser.add_argument("--batch-size", type=int, default = 32)
parser.add_argument("--max-seq-length", type=int, default = 65)
parser.add_argument("--do-filter", action="store_true", help="set if we want to restrict prediction to the block moved")
parser.add_argument("--do-one-hot", action="store_true", help="set if you want input representation to be one-hot" )
parser.add_argument("--channels", type=int, default=21)
parser.add_argument("--top-only", action="store_true", help="set if we want to train/predict only the top-most slice of the top-down view")
parser.add_argument("--resolution", type=int, help="resolution to discretize input state", default=64)
parser.add_argument("--next-weight", type=float, default=1)
parser.add_argument("--prev-weight", type=float, default=1)
parser.add_argument("--augment-with-noise", type=bool, action='store_true', default=False, help = "set to augment training images with gaussian noise")
# language embedder
parser.add_argument("--embedder", type=str, default="random", choices = ["random", "glove", "bert-base-cased", "bert-base-uncased"])
parser.add_argument("--embedding-file", type=str, help="path to pretrained glove embeddings")
parser.add_argument("--embedding-dim", type=int, default=300)
# transformer parameters
parser.add_argument("--encoder-type", type=str, default="TransformerEncoder", choices = ["TransformerEncoder", "ResidualTransformerEncoder"], help = "choice of dual-stream transformer encoder or one that bases next prediction on previous transformer representation")
parser.add_argument("--pos-encoding-type", type = str, default="learned")
parser.add_argument("--patch-size", type=int, default = 8)
parser.add_argument("--n-shared-layers", type=int, default = 6)
parser.add_argument("--n-split-layers", type=int, default = 2)
parser.add_argument("--n-classes", type=int, default = 2)
parser.add_argument("--n-heads", type= int, default = 8)
parser.add_argument("--hidden-dim", type= int, default = 512)
parser.add_argument("--ff-dim", type = int, default = 1024)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--embed-dropout", type=float, default=0.2)
parser.add_argument("--output-type", type=str, choices = ["per-pixel", "per-patch", "patch-softmax"], default='per-pixel')
parser.add_argument("--do-residual", action = "store_true", help = "set to residually connect unshared and next prediction in ResidualTransformerEncoder")
parser.add_argument("--pretrained-weights", type=str, default=None, help = "path to best.th file for a pre-trained initialization")
# misc
parser.add_argument("--cuda", type=int, default=None)
parser.add_argument("--learn-rate", type=float, default = 3e-5)
parser.add_argument("--warmup", type=int, default=4000, help = "warmup setps for learn-rate scheduling")
parser.add_argument("--n-epochs-pre-valid", type=int, default = 0, help = "number of epochs to run before doing validation")
parser.add_argument("--lr-factor", type=float, default = 1.0, help = "factor for learn-rate scheduling")
parser.add_argument("--gamma", type=float, default = 0.7)
parser.add_argument("--checkpoint-dir", type=str, default="models/language_pretrain")
parser.add_argument("--num-models-to-keep", type=int, default = 5)
parser.add_argument("--num-epochs", type=int, default=3)
parser.add_argument("--generate-after-n", type=int, default=10)
parser.add_argument("--score-type", type=str, default="acc", choices = ["acc", "block_acc", "tele_score"])
parser.add_argument("--zero-weight", type=float, default = 0.05, help = "weight for loss weighting negative vs positive examples")
parser.add_argument("--init-scale", type=int, default = 4, help = "initalization scale for transformer weights")
parser.add_argument("--seed", type=int, default=12)
parser.add_argument("--do-regression", action="store_true", help="add a regression task to learning")
parser.add_argument("--do-reconstruction", action="store_true", help="add a reconstruction task to learning")
parser.add_argument("--out-path", type=str, default=None, help = "when decoding, path to output file")
parser.add_argument("--save-all-eval", action="store_true", help="set to true to save all predictions at eval time rather than their means. For significance testing.")
args = parser.parse_args()
if args.do_one_hot:
args.channels = 21
main(args)