-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_language_encoder.py
executable file
·768 lines (667 loc) · 31.3 KB
/
train_language_encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
import json
import argparse
import glob
import os
import pathlib
import pdb
import subprocess
import sys
import re
import logging
from io import StringIO
from typing import List, Dict
from collections import defaultdict
from tqdm import tqdm
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
from matplotlib import pyplot as plt
from matplotlib import gridspec
import matplotlib
import torch
import numpy as np
import pandas as pd
from image_encoder import ImageEncoder, DeconvolutionalNetwork, DecoupledDeconvolutionalNetwork
from language import LanguageEncoder, ConcatFusionModule, TiledFusionModule
from encoders import LSTMEncoder
from language_embedders import RandomEmbedder
from mlp import MLP
from data import DatasetReader
np.random.seed(12)
torch.manual_seed(12)
logger = logging.getLogger(__name__)
def load_data(path):
all_data = []
with open(path) as f1:
for line in f1.readlines():
all_data.append(json.loads(line))
return all_data
def get_vocab(data, tokenizer):
vocab = set()
for example_line in data:
for sent in example_line["notes"]:
# only use first example for testing
sent = sent["notes"][0]
tokenized = tokenizer(sent)
tokenized = set(tokenized)
vocab |= tokenized
return vocab
class LanguageTrainer:
def __init__(self,
train_data: List,
val_data: List,
encoder: LanguageEncoder,
optimizer: torch.optim.Optimizer,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
resolution: int = 64,
depth: int = 4,
score_type: str = "acc",
best_epoch: int = -1,
do_regression: bool = False):
self.train_data = train_data
self.val_data = val_data
self.encoder = encoder
self.optimizer = optimizer
self.num_epochs = num_epochs
self.num_blocks = num_blocks
self.checkpoint_dir = pathlib.Path(checkpoint_dir)
self.num_models_to_keep = num_models_to_keep
self.generate_after_n = generate_after_n
self.best_epoch = best_epoch
self.depth = depth
self.resolution = resolution
self.do_regression = do_regression
self.loss_fxn = torch.nn.CrossEntropyLoss()
self.xent_loss_fxn = torch.nn.CrossEntropyLoss()
self.nll_loss_fxn = torch.nn.NLLLoss()
self.fore_loss_fxn = torch.nn.CrossEntropyLoss(ignore_index=0)
self.device = device
self.compute_block_dist = self.encoder.compute_block_dist
self.score_type = score_type
def is_better(self, score, best_score):
if self.score_type in ['block_acc', 'acc']:
if score > best_score:
return True
else:
return False
else:
if score < best_score:
return True
else:
return False
def train(self):
self.best_score = 0.0 if self.score_type in ['block_acc', 'acc'] else np.inf
for epoch in range(self.best_epoch + 1, self.num_epochs, 1):
score, __ = self.train_and_validate_one_epoch(epoch)
# handle checkpointing
is_best = False
if self.is_better(score, self.best_score):
is_best = True
self.best_score = score
self.save_model(epoch, is_best)
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
for b, batch_trajectory in tqdm(enumerate(self.train_data)):
#print(f"batch {b} has trajectory of length {len(batch_trajectory.to_iterate)}")
for i, batch_instance in enumerate(batch_trajectory):
#self.generate_debugging_image(batch_instance, f"input_batch_{b}_image_{i}_gold", is_input = True)
self.optimizer.zero_grad()
outputs = self.encoder(batch_instance)
# skip bad examples
if outputs is None:
skipped += 1
continue
loss = self.compute_loss(batch_instance, outputs)
#print(f"loss {loss.item()}")
loss.backward()
self.optimizer.step()
print(f"Validating epoch {epoch}...")
total_acc = 0.0
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_trajectory in tqdm(enumerate(self.val_data)):
for i, dev_batch_instance in enumerate(dev_batch_trajectory):
pixel_acc, block_acc = self.validate(dev_batch_instance, epoch, b, i)
total_acc += pixel_acc
total_block_acc += block_acc
total += 1
mean_acc = total_acc / total
mean_block_acc = total_block_acc / total
print(f"Epoch {epoch} has pixel acc {mean_acc * 100}, block acc {mean_block_acc * 100}")
return mean_acc, mean_block_acc
def validate(self, batch_instance, epoch_num, batch_num, instance_num):
outputs = self.encoder(batch_instance)
accuracy = self.compute_localized_accuracy(batch_instance, outputs)
if self.compute_block_dist:
block_accuracy = self.compute_block_accuracy(batch_instance, outputs)
else:
block_accuracy = -1.0
if epoch_num > self.generate_after_n:
for i in range(outputs["next_position"].shape[0]):
output_path = self.checkpoint_dir.joinpath(f"batch_{batch_num}").joinpath(f"instance_{i}")
output_path.mkdir(parents = True, exist_ok=True)
self.generate_debugging_image(batch_instance["next_position"][i],
outputs["next_position"][i],
output_path.joinpath("image"),
caption=batch_instance["caption"][i])
return accuracy, block_accuracy
def compute_localized_accuracy(self, batch_instance, outputs):
next_pos = batch_instance["next_pos_for_acc"]
prev_pos = batch_instance["prev_pos_for_acc"]
gold_pixels_of_interest = next_pos[next_pos != prev_pos]
values, pred_pixels = torch.max(outputs['next_position'], dim=1)
neg_indices = next_pos != prev_pos
pred_pixels_of_interest = pred_pixels[neg_indices.squeeze(-1)]
# flatten
pred_pixels = pred_pixels_of_interest.reshape(-1).detach().cpu()
gold_pixels = gold_pixels_of_interest.reshape(-1).detach().cpu()
# compare
total = gold_pixels.shape[0]
matching = torch.sum(pred_pixels == gold_pixels).item()
try:
acc = matching/total
except ZeroDivisionError:
acc = 0.0
return acc
def wrap_caption(self, caption):
caption_words = re.split("\s+", caption)
max_line_width = 21
curr_line_width = 0
curr_line = []
text = []
for word in caption_words:
if len(word) >= max_line_width:
# trim super long words
word = word[0:max_line_width-3]
if curr_line_width + len(word) + 1 <= max_line_width:
curr_line.append(word)
curr_line_width += len(word)+1
else:
text.append(curr_line)
curr_line = [word]
curr_line_width = len(word)+1
text.append(curr_line)
text = [" ".join(x) for x in text]
text = "\n".join(text)
return text
def generate_debugging_image(self,
true_data,
pred_data,
out_path,
is_input=False,
caption = None,
pred_center = None,
true_center = None):
order = ["adidas", "bmw", "burger king", "coca cola", "esso", "heineken", "hp",
"mcdonalds", "mercedes benz", "nvidia", "pepsi", "shell", "sri", "starbucks",
"stella artois", "target", "texaco", "toyota", "twitter", "ups"]
legend = [f"{i+1}: {name}" for i, name in enumerate(order)]
legend_str = "\n".join(legend)
caption = self.wrap_caption(caption)
cmap = plt.get_cmap("Reds")
# num_blocks x depth x 64 x 64
c = pred_data.shape[0]
if c == 2:
pred_data = pred_data[1,:,:,:]
else:
pred_data = pred_data[0,:,:,:]
xs = np.arange(0, self.resolution, 1)
zs = np.arange(0, self.resolution, 1)
depth = 0
fig = plt.figure(figsize=(16,12))
gs = gridspec.GridSpec(1, 2, width_ratios=[4, 1])
text_ax = plt.subplot(gs[1])
text_ax.axis([0, 1, 0, 1])
text_ax.text(0.2, 0.02, legend_str, fontsize = 12)
text_ax.axis("off")
props = dict(boxstyle='round',
facecolor='wheat', alpha=0.5)
text_ax.text(0.05, 0.95, caption, wrap=True, fontsize=14,
verticalalignment='top', bbox=props)
ax = plt.subplot(gs[0])
#ax.set_xticks([0, 16, 32, 48, 64])
#ax.set_yticks([0, 16, 32, 48, 64])
ticks = [i for i in range(0, self.resolution + 16, 16)]
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_ylim(0, self.resolution)
ax.set_xlim(0, self.resolution)
plt.grid()
to_plot_xs_lab, to_plot_zs_lab, to_plot_labels = [], [], []
to_plot_xs_prob, to_plot_zs_prob, to_plot_probs = [], [], []
for x_pos in xs:
for z_pos in zs:
label = true_data[x_pos, z_pos, depth].item()
# don't plot background
if label > 0:
to_plot_xs_lab.append(x_pos)
to_plot_zs_lab.append(z_pos)
to_plot_labels.append(int(label))
prob = pred_data[x_pos, z_pos, depth].item()
to_plot_xs_prob.append(x_pos)
to_plot_zs_prob.append(z_pos)
to_plot_probs.append(prob)
ax.plot(to_plot_xs_lab, to_plot_zs_lab, ".")
for x,z, lab in zip(to_plot_xs_lab, to_plot_zs_lab, to_plot_labels):
ax.annotate(lab, xy=(x,z), fontsize = 12)
# plot centers if availalbe
if pred_center is not None and true_center is not None:
plt.plot(*pred_center, marker = "D", color='0000')
plt.plot(*true_center, marker = "X", color='0000')
# plot as grid squares at all positions
squares = []
for x,z, lab in zip(to_plot_xs_prob, to_plot_zs_prob, to_plot_probs):
rgba = list(cmap(lab))
# make opaque
rgba[-1] = 0.4
sq = matplotlib.patches.Rectangle((x,z), width = 1, height = 1, color = rgba)
ax.add_patch(sq)
file_path = f"{out_path}-{depth}.png"
#data_path = f"{out_path}.npy"
#np.save(data_path, true_data)
print(f"saving to {file_path}")
plt.savefig(file_path)
plt.close()
def compute_block_accuracy(self, inputs, outputs):
pred_block_logits = outputs["pred_block_logits"]
true_block_idxs = inputs["block_to_move"]
true_block_idxs = true_block_idxs.to(self.device).long().reshape(-1)
pred_block_decisions = torch.argmax(pred_block_logits, dim = -1)
num_correct = torch.sum(pred_block_decisions == true_block_idxs).detach().cpu().item()
accuracy = num_correct / true_block_idxs.shape[0]
return accuracy
def compute_loss(self, inputs, outputs):
pred_image = outputs["next_position"]
true_image = inputs["next_position"]
pred_block_logits = outputs["pred_block_logits"]
true_block_idxs = inputs["block_to_move"]
true_block_idxs = true_block_idxs.to(self.device).long().reshape(-1)
bsz, n_blocks, width, height, depth = pred_image.shape
true_image = true_image.reshape((bsz, width, height, depth)).long()
true_image = true_image.to(self.device)
if self.compute_block_dist:
# loss per pixel
#pixel_loss = self.nll_loss_fxn(pred_image, true_image)
# (elias): for now just do as auxiliary task
pixel_loss = self.xent_loss_fxn(pred_image, true_image)
foreground_loss = self.fore_loss_fxn(pred_image, true_image)
# loss per block
block_loss = self.xent_loss_fxn(pred_block_logits, true_block_idxs)
#print(f"computing loss with blocks {pixel_loss.item()} + {block_loss.item()}")
total_loss = pixel_loss + block_loss + foreground_loss
#total_loss = block_loss
else:
# loss per pixel
pixel_loss = self.xent_loss_fxn(pred_image, true_image)
# foreground loss
foreground_loss = self.fore_loss_fxn(pred_image, true_image)
#print(f"computing loss no blocks {pixel_loss.item()}")
total_loss = pixel_loss + foreground_loss
#print(f"loss {total_loss.item()}")
return total_loss
def save_model(self, epoch, is_best):
print(f"Saving checkpoint {epoch}")
# get path
save_path = self.checkpoint_dir.joinpath(f"model_{epoch}.th")
torch.save(self.encoder.state_dict(), save_path)
print(f"Saved checkpoint to {save_path}")
# if it's best performance, save extra
if is_best:
best_path = self.checkpoint_dir.joinpath(f"best.th")
torch.save(self.encoder.state_dict(), best_path)
json_info = {"epoch": epoch}
with open(self.checkpoint_dir.joinpath("best_training_state.json"), "w") as f1:
json.dump(json_info, f1)
print(f"Updated best model to {best_path} at epoch {epoch}")
# remove old models
all_paths = list(self.checkpoint_dir.glob("model_*th"))
if len(all_paths) > self.num_models_to_keep:
to_remove = sorted(all_paths, key = lambda x: int(os.path.basename(x).split(".")[0].split('_')[1]))[0:-self.num_models_to_keep]
for path in to_remove:
os.remove(path)
def evaluate(self):
total_acc = 0.0
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_trajectory in tqdm(enumerate(self.val_data)):
for i, dev_batch_instance in enumerate(dev_batch_trajectory):
pixel_acc, block_acc = self.validate(dev_batch_instance, 1, b, i)
total_acc += pixel_acc
total_block_acc += block_acc
total += 1
mean_acc = total_acc / total
mean_block_acc = total_block_acc / total
print(f"Test-time pixel acc {mean_acc * 100}, block acc {mean_block_acc * 100}")
return mean_acc
class FlatLanguageTrainer(LanguageTrainer):
def __init__(self,
train_data: List,
val_data: List,
encoder: LanguageEncoder,
optimizer: torch.optim.Optimizer,
num_epochs: int,
num_blocks: int,
device: torch.device,
checkpoint_dir: str,
num_models_to_keep: int,
generate_after_n: int,
score_type: str = "acc",
resolution: int = 64,
depth: int = 4,
best_epoch: int = -1,
do_regression: bool = False,
save_all_eval: bool = False):
super(FlatLanguageTrainer, self).__init__(train_data=train_data,
val_data=val_data,
encoder=encoder,
optimizer=optimizer,
num_epochs=num_epochs,
num_blocks=num_blocks,
device=device,
checkpoint_dir=checkpoint_dir,
num_models_to_keep=num_models_to_keep,
generate_after_n=generate_after_n,
score_type=score_type,
resolution=resolution,
depth=depth,
best_epoch=best_epoch,
do_regression = do_regression)
self.save_all_eval = save_all_eval
def train_and_validate_one_epoch(self, epoch):
print(f"Training epoch {epoch}...")
self.encoder.train()
skipped = 0
for b, batch_instance in tqdm(enumerate(self.train_data)):
self.optimizer.zero_grad()
outputs = self.encoder(batch_instance)
# skip bad examples
if outputs is None:
skipped += 1
continue
loss = self.compute_loss(batch_instance, outputs)
loss.backward()
self.optimizer.step()
print(f"skipped {skipped} examples")
print(f"Validating epoch {epoch}...")
total_acc = 0.0
total = 0
total_block_acc = 0.0
self.encoder.eval()
for b, dev_batch_instance in tqdm(enumerate(self.val_data)):
pixel_acc, block_acc = self.validate(dev_batch_instance, epoch, b, 0)
total_acc += pixel_acc
total_block_acc += block_acc
total += 1
mean_acc = total_acc / total
mean_block_acc = total_block_acc / total
print(f"Epoch {epoch} has pixel acc {mean_acc * 100}, block acc {mean_block_acc * 100}")
return mean_acc, mean_block_acc
def evaluate(self, out_path = None):
self.encoder.eval()
all_res_dicts = []
bin_dict = defaultdict(list)
for b, dev_batch_instance in tqdm(enumerate(self.val_data)):
all_res_dicts.append(self.validate(dev_batch_instance, 1, b, 0))
try:
batch_bin_dict = all_res_dicts[-1]['bin_dict']
for k,v in batch_bin_dict.items():
bin_dict[k] += v
except KeyError:
continue
with open(self.checkpoint_dir.joinpath("bin_dict.json"), "w") as f1:
json.dump(bin_dict, f1)
if len(all_res_dicts) == 0:
return None
pre_mean_dict = {k: [] for k in all_res_dicts[0].keys()}
mean_dict = {k: [] for k in all_res_dicts[0].keys()}
#print(all_res_dicts)
for res_d in all_res_dicts:
for k, v in res_d.items():
if type(v) in [float, int, np.float64, np.int]:
pre_mean_dict[k].append(v)
for k, v in pre_mean_dict.items():
if k in ["next_f1", "prev_f1", "block_acc", "next_r", "prev_r", "next_p", "prev_p"]:
v = 100 * np.mean(v)
else:
v = np.mean(v)
mean_dict[k] = v
if out_path is None:
out_path = "val_metrics.json"
if self.save_all_eval:
to_dump = pre_mean_dict
else:
to_dump = mean_dict
with open(self.checkpoint_dir.joinpath(out_path), "w") as f1:
json.dump(to_dump, f1)
return mean_dict
def get_free_gpu():
try:
gpu_stats = subprocess.check_output(["nvidia-smi", "--format=csv", "--query-gpu=memory.used,memory.free"]).decode("utf-8")
except FileNotFoundError:
# on a laptop
return -1
gpu_df = pd.read_csv(StringIO(u"".join(gpu_stats)),
names=['memory.used', 'memory.free'],
skiprows=1)
print('GPU usage:\n{}'.format(gpu_df))
gpu_df['memory.free'] = gpu_df['memory.free'].map(lambda x: x.rstrip(' [MiB]'))
gpu_df['memory.used'] = gpu_df['memory.used'].map(lambda x: x.rstrip(' [MiB]'))
gpu_df['memory.free'] = gpu_df['memory.free'].astype(np.int64)
gpu_df['memory.used'] = gpu_df['memory.used'].astype(np.int64)
idx = gpu_df['memory.free'].idxmax()
if gpu_df["memory.used"][idx] > 60.0:
print(f"No free gpus!")
sys.exit()
return -1
print('Returning GPU{} with {} free MiB'.format(idx, gpu_df.iloc[idx]['memory.free']))
return idx
def main(args):
# load the data
dataset_reader = DatasetReader(args.train_path,
args.val_path,
None,
batch_by_line = args.traj_type != "flat",
traj_type = args.traj_type,
batch_size = args.batch_size,
max_seq_length = args.max_seq_length)
checkpoint_dir = pathlib.Path(args.checkpoint_dir)
if not args.test:
print(f"Reading data from {args.train_path}")
train_vocab = dataset_reader.read_data("train")
try:
os.mkdir(checkpoint_dir)
except FileExistsError:
pass
with open(checkpoint_dir.joinpath("vocab.json"), "w") as f1:
json.dump(list(train_vocab), f1)
else:
print(f"Reading vocab from {checkpoint_dir}")
with open(checkpoint_dir.joinpath("vocab.json")) as f1:
train_vocab = json.load(f1)
print(f"Reading data from {args.val_path}")
dev_vocab = dataset_reader.read_data("dev")
print(f"got data")
# construct the vocab and tokenizer
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
print(f"constructing model...")
# get the embedder from args
if args.embedder == "random":
embedder = RandomEmbedder(tokenizer, train_vocab, args.embedding_dim, trainable=True)
else:
raise NotImplementedError(f"No embedder {args.embedder}")
# get the encoder from args
if args.encoder == "lstm":
encoder = LSTMEncoder(input_dim = args.embedding_dim,
hidden_dim = args.encoder_hidden_dim,
num_layers = args.encoder_num_layers,
dropout = args.dropout,
bidirectional = args.bidirectional)
else:
raise NotImplementedError(f"No encoder {args.encoder}") # construct the model
device = "cpu"
if args.cuda is not None:
free_gpu_id = get_free_gpu()
if free_gpu_id > -1:
device = f"cuda:{free_gpu_id}"
device = torch.device(device)
print(f"On device {device}")
# construct image encoder
flatten = args.fuser == "concat"
image_encoder = ImageEncoder(input_dim = 2,
n_layers = args.conv_num_layers,
factor = args.conv_factor,
dropout = args.dropout,
flatten = flatten)
# construct image and language fusion module
fusion_options = {"concat": ConcatFusionModule,
"tiled": TiledFusionModule}
encoder_hidden_dim = encoder.hidden_dim
if encoder.bidirectional:
encoder_hidden_dim *= 2
fuser = fusion_options[args.fuser](image_encoder.output_dim, encoder_hidden_dim)
# construct image decoder
deconv_options = {"coupled": DeconvolutionalNetwork,
"decoupled": DecoupledDeconvolutionalNetwork}
output_module = deconv_options[args.deconv](input_channels = fuser.output_dim,
num_blocks = args.num_blocks,
num_layers = args.deconv_num_layers,
dropout = args.dropout,
flatten = flatten,
factor = args.deconv_factor,
initial_width = 6)
block_prediction_module = MLP(input_dim = fuser.output_dim,
hidden_dim = args.mlp_hidden_dim,
output_dim = args.num_blocks+1,
num_layers = args.mlp_num_layers,
dropout = args.mlp_dropout)
# put it all together into one module
encoder = LanguageEncoder(image_encoder = image_encoder,
embedder = embedder,
encoder = encoder,
fuser = fuser,
output_module = output_module,
block_prediction_module = block_prediction_module,
device = device,
compute_block_dist = args.compute_block_dist)
# construct optimizer
optimizer = torch.optim.Adam(encoder.parameters())
if args.traj_type == "flat":
trainer_cls = FlatLanguageTrainer
else:
trainer_cls = LanguageTrainer
best_epoch = -1
if not args.test:
if not args.resume:
try:
os.mkdir(args.checkpoint_dir)
except FileExistsError:
# file exists
try:
assert(len(glob.glob(os.path.join(args.checkpoint_dir, "*.th"))) == 0)
except AssertionError:
raise AssertionError(f"Output directory {args.checkpoint_dir} non-empty, will not overwrite!")
else:
# resume from pre-trained
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
encoder.load_state_dict(state_dict, strict=True)
# get training info
best_checkpoint_data = json.load(open(pathlib.Path(args.checkpoint_dir).joinpath("best_training_state.json")))
print(f"best_checkpoint_data {best_checkpoint_data}")
best_epoch = best_checkpoint_data["epoch"]
# save arg config to checkpoint_dir
with open(pathlib.Path(args.checkpoint_dir).joinpath("config.json"), "w") as f1:
json.dump(args.__dict__, f1)
# construct trainer
trainer = trainer_cls(train_data = dataset_reader.data["train"],
val_data = dataset_reader.data["dev"],
encoder = encoder,
optimizer = optimizer,
num_epochs = args.num_epochs,
num_blocks = args.num_blocks,
device = device,
resolution = args.resolution,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = args.num_models_to_keep,
generate_after_n = args.generate_after_n,
best_epoch = best_epoch,
score_type=args.score_type)
print(encoder)
trainer.train()
else:
# test-time, load best model
print(f"loading model weights from {args.checkpoint_dir}")
state_dict = torch.load(pathlib.Path(args.checkpoint_dir).joinpath("best.th"))
encoder.load_state_dict(state_dict, strict=True)
if "test" in dataset_reader.data.keys():
eval_data = dataset_reader.data['test']
out_path = "test_metrics.json"
else:
eval_data = dataset_reader.data['dev']
out_path = "val_metrics.json"
eval_trainer = trainer_cls(train_data = dataset_reader.data["train"],
val_data = eval_data,
encoder = encoder,
optimizer = None,
num_epochs = 0,
device = device,
resolution = args.resolution,
checkpoint_dir = args.checkpoint_dir,
num_models_to_keep = 0,
generate_after_n = 0,
score_type=args.score_type)
print(f"evaluating")
eval_trainer.evaluate(out_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--test", action="store_true", help="load model and test")
parser.add_argument("--resume", action="store_true", help="resume training a model")
# data
parser.add_argument("--train-path", type=str, default = "blocks_data/trainset_v2.json", help="path to train data")
parser.add_argument("--val-path", default = "blocks_data/devset.json", type=str, help = "path to dev data" )
parser.add_argument("--num-blocks", type=int, default=20)
parser.add_argument("--traj-type", type=str, default="flat", choices = ["flat", "trajectory"])
parser.add_argument("--batch-size", type=int, default = 32)
parser.add_argument("--max-seq-length", type=int, default = 65)
parser.add_argument("--do-filter", action="store_true", help="set if we want to restrict prediction to the block moved")
# language embedder
parser.add_argument("--embedder", type=str, default="random", choices = ["random", "glove"])
parser.add_argument("--embedding-dim", type=int, default=300)
# language encoder
parser.add_argument("--encoder", type=str, default="lstm", choices = ["lstm", "transformer"])
parser.add_argument("--encoder-hidden-dim", type=int, default=128)
parser.add_argument("--encoder-num-layers", type=int, default=2)
parser.add_argument("--bidirectional", action="store_true")
# image encoder
parser.add_argument("--conv-factor", type=int, default = 4)
parser.add_argument("--conv-num-layers", type=int, default=2)
# image decoder
parser.add_argument("--deconv", type=str, default="coupled", choices=["coupled", "decoupled"])
parser.add_argument("--deconv-factor", type=int, default = 2)
parser.add_argument("--deconv-num-layers", type=int, default=2)
# fuser
parser.add_argument("--fuser", type=str, default="concat", choices=["tiled", "concat"])
# block mlp
parser.add_argument("--compute-block-dist", action="store_true")
parser.add_argument("--mlp-hidden-dim", type=int, default = 128)
parser.add_argument("--mlp-num-layers", type=int, default = 3)
parser.add_argument("--mlp-dropout", type=float, default = 0.20)
# misc
parser.add_argument("--output-type", type=str, default="mask")
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--cuda", type=int, default=None)
parser.add_argument("--checkpoint-dir", type=str, default="models/language_pretrain")
parser.add_argument("--num-models-to-keep", type=int, default = 5)
parser.add_argument("--num-epochs", type=int, default=3)
parser.add_argument("--generate-after-n", type=int, default=10)
parser.add_argument("--score-type", type=str, default="acc", choices = ["acc", "block_acc", "tele_score"])
args = parser.parse_args()
main(args)