-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_move.py
executable file
·123 lines (104 loc) · 6.34 KB
/
test_move.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from robot import Robot
import numpy as np
import time
# This grasp position results in an elbow down grasp, we need to fix that.
# Training iteration: 7
# Change detected: True (value: 485)
# Primitive confidence scores: 2.547277 (push), 3.074675 (grasp)
# Strategy: exploit (exploration probability: 0.499400)
# Action: grasp at (14, 19, 2)
# Executing: grasp at (0.380000, -0.226000, -0.040000)
# Grasp position before applying workspace bounds: [ 0.38 -0.226 0.11 ]
# ('Real Good Robot grasping at: [ 0.38 -0.226 0.15 ]', ', [ 2.90245315 -1.20223546 0. ]')
# Trainer.get_label_value(): Current reward: 0.000000 Current reward multiplier: 1.000000 Predicted Future reward: 3.074675 Expected reward: 0.000000 + 0.500000 x 3.074675 = 1.537337
# Here is another grasp which went to elbow down:
# Change detected: False (value: 144)
# Trainer.get_label_value(): Current reward: 0.000000 Current reward multiplier: 1.000000 Predicted Future reward: 0.000000 Expected reward: 0.000000 + 0.500000 x 0.000000 = 0.000000
# Primitive confidence scores: 3.739099 (push), 2.467160 (grasp)
# Strategy: explore (exploration probability: 0.499001)
# Action: grasp at (14, 19, 2)
# Training loss: 0.000447
# Executing: grasp at (0.380000, -0.226000, -0.040000) orientation: 5.497787
# Grasp position before applying workspace bounds: [ 0.38 -0.226 0.11 ]
# ('Real Good Robot grasping at: [ 0.38 -0.226 0.15 ]', ', [ 2.90245315 -1.20223546 0. ]')
# This is a grasp motion which hits the joint limits:
# Training iteration: 3
# Change detected: False (value: 22)
# Trainer.get_label_value(): Current reward: 0.000000 Current reward multiplier: 1.000000 Predicted Future reward: 0.000000 Expected reward: 0.000000 + 0.50
# 0000 x 0.000000 = 0.000000
# Primitive confidence scores: 2.997465 (push), 2.999384 (grasp)
# Strategy: explore (exploration probability: 0.499800)
# Action: grasp at (4, 120, 220)
# Training loss: 3.493566
# Experience Replay: We do not have samples for the push action with a success state of True, so sampling from the whole history.
# Executing: grasp at (0.816000, -0.024000, -0.040000) orientation: 1.570796
# Grasp position before applying workspace bounds: [ 0.816 -0.024 0.11 ]
# ('Real Good Robot grasping at: [ 0.816 -0.024 0.15 ]', ', [2.22144147 2.22144147 0. ]')
i = 0
r = Robot(is_sim=False, tcp_host_ip='192.168.1.155', tcp_port=30002, place=False)
# print('Robot cartesian home: ' + str(r.get_cartesian_position()))
# r.move_to([0.4387914740866465, -0.02251891154755168, 0.6275728717960743], None)
# r.move_to([0.4387914740866465, -0.02251891154755168, 0.3275728717960743], None)
# tool_orientation = [0.0, 0.0, 0.0] # Real Good Robot
# above_bin_waypoint = [0.3, 0.0, 0.8]
# r.move_to(above_bin_waypoint, tool_orientation)r.grasp([0.414000, -0.092000, 0.103734], 0.0)
# r.grasp([0.818000, -0.226000, 0.003854], 3.141593)
# The test gripper functionality loop
# closes the gripper 5 times in a row,
# then opens the gripper. This allows
# you to test and check the gripper's
# built in object detection functionality
test_gripper_functionality = False
while test_gripper_functionality:
i += 1
# Loop to
stat1 = r.close_gripper()
time.sleep(1.0)
stat2 = r.close_gripper()
time.sleep(1.0)
stat3 = r.close_gripper()
time.sleep(1.0)
stat4 = r.close_gripper()
stat5 = r.open_gripper()
print('i: ' + str(i) + ' close1: ' + str(stat1) + ' close2: ' + str(stat2) + ' close3: ' + str(stat3) + ' close4: ' + str(stat4) + ' open5: ' + str(stat3))
# r.grasp([0.414000, -0.092000, 0.003734], 0.0)
# r.place([0.414000, -0.092000, 0.003734], 0.0)
# # r.push([0.414000, -0.092000, 0.003734], 0.0)
# r.grasp([0.816000, -0.024000, -0.040000], 1.570796)
retry_grasp = True
while retry_grasp:
r.grasp([0.380000, -0.226000, -0.040000], 5.497787)
print_robot_pose = True
while print_robot_pose:
# Loop and print current position so you can use that data
# for updating and configuring the robot.
state_data = r.get_state()
actual_tool_pose = r.parse_tcp_state_data(state_data, 'cartesian_info')
joint_position = r.parse_tcp_state_data(state_data, 'joint_data')
robot_state = 'cart_pose: ' + str(actual_tool_pose) + ' joint pos: ' + str(joint_position)
print(robot_state)
time.sleep(1.0)
# Action: grasp at (8, 19, 221)
# Executing: grasp at (0.818000, -0.226000, 0.003854) orientation: 3.141593
# Grasp position before applying workspace bounds: [ 0.818 -0.226 0.14385387]
# Real Good Robot grasping at: [ 0.818 -0.226 0.15 ], [1.92367069e-16 3.14159265e+00 0.00000000e+00]
# time.sleep(.1)
# Training iteration: 1
# Change detected: True (value: 972)
# Primitive confidence scores: 3.698842 (push), 3.391453 (grasp)
# Strategy: exploit (exploration probability: 0.500000)
# Action: push at (0, 86, 19)
# Real Robot push at (0.414000, -0.092000, 0.003734) angle: 0.000000
# Gripper finished moving!
# Trainer.get_label_value(): Current reward: 1.000000 Current reward multiplier: 1.000000 Predicted Future reward: 3.698842 Expected reward: 1.000000 + 0.500000 x 3.698842 = 2.849421
# Training loss: 0.984293
# tool_pos = [0.6, -0.1, 0.4]
# tool_orientation = [0.0, np.pi, 0.0]
# r.move_to(tool_pos, tool_orientation)
# grasp_orientation = [1, 0]
# tool_rotation_angle = np.pi/2 / 2
# tool_orientation = np.asarray([grasp_orientation[0]*np.cos(tool_rotation_angle) - grasp_orientation[1]*np.sin(tool_rotation_angle), grasp_orientation[0]*np.sin(tool_rotation_angle) + grasp_orientation[1]*np.cos(tool_rotation_angle), 0.0])*np.pi
# print(tool_orientation)
# r.move_to(tool_pos, tool_orientation)
# tool_orientation = [np.pi/2, np.pi/2, 0.0]
# r.move_to(tool_pos, tool_orientation)