-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
executable file
·615 lines (558 loc) · 36.9 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import os
import json
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.ticker import PercentFormatter
from glob import glob
import utils
import scipy
def best_success_rate(success_rate, window, title):
# Print the best success rate ever
dict_title = str(title).replace(' ', '_')
best_dict = {dict_title + '_best_value': float(-np.inf), dict_title + '_best_index': None}
current_dict = {dict_title + '_current_value': float(success_rate[-1]), dict_title + '_current_index': int(len(success_rate)-1)}
if success_rate.shape[0] > window:
best = np.max(success_rate[window:])
# If there are multiple entries with equal maximum success rates, take the last one because it will have the most training.
best_index = np.max(np.argmax(success_rate[window:], axis=0)) + window
best_dict = {dict_title + '_best_value': float(best), dict_title + '_best_index': int(best_index)}
print('Max ' + title + ': ' + str(best) +
', at action iteration: ' + str(best_index) +
'. (total of ' + str(success_rate.shape[0]) + ' actions, max excludes first ' + str(window) + ' actions)')
return best_dict, current_dict
def count_preset_arrangements(trial_complete_indices, trial_successes, num_preset_arrangements, hotfix_trial_success_index=True, log_dir=None):
arrangement_successes = np.zeros(num_preset_arrangements)
trials_per_arrangement = int(float(len(trial_complete_indices)) / float(num_preset_arrangements))
arrangement_trials = np.array([trials_per_arrangement]*num_preset_arrangements)
if hotfix_trial_success_index:
# TODO(ahundt) currently the trial success values are inserted too early in the array. Fix then set hotfix param above to false
trial_successes = np.insert(trial_successes, [0]*3, 0)
num_arrangements_complete = 0
length = np.min([np.max(trial_complete_indices), trial_successes.shape[0]])
arrangement_idx = 0
trial_num = 0
clearance_start = 0
successes_this_arrangement = 0
prev_trial_successes = 0
print('max trial successes: ' + str(np.max(trial_successes)))
for trial_num, index in enumerate(trial_complete_indices):
index = int(index)
cur_trial_successes = np.max(trial_successes[clearance_start:index])
# print(success)
arrangement_successes[arrangement_idx] += prev_trial_successes < cur_trial_successes
prev_trial_successes = cur_trial_successes
if trial_num > 0 and trial_num % trials_per_arrangement == 0:
arrangement_idx += 1
clearance_start = index
individual_arrangement_trial_success_rate = np.divide(np.array(arrangement_successes), arrangement_trials, out=np.zeros(num_preset_arrangements), where=arrangement_trials!=0.0)
print('individual_arrangement_trial_success_rate: ' + str(individual_arrangement_trial_success_rate))
senarios_100_percent_complete = np.sum(individual_arrangement_trial_success_rate == 1.0)
print('senarios_100_percent_complete: ' + str(senarios_100_percent_complete))
best_dict = {'senarios_100_percent_complete': senarios_100_percent_complete}
return best_dict
def get_trial_success_rate(trials, trial_successes, window=200, hotfix_trial_success_index=True):
"""Evaluate moving window of grasp success rate
trials: Nx1 array of the current total trial count at that action
trial_successes: Nx1 array of the current total successful trial count at the time of that action
"""
length = np.min([trials.shape[0], trial_successes.shape[0]])
success_rate = np.zeros(length - 1)
lower = np.zeros_like(success_rate)
upper = np.zeros_like(success_rate)
if hotfix_trial_success_index:
# TODO(ahundt) currently the trial success values are inserted too early in the array. Fix then set hotfix param above to false
trial_successes = np.insert(trial_successes, [0]*3, 0)
for i in range(length - 1):
start = max(i - window, 0)
# get the number of trials that have passed starting with 0 at
# the beginning of the trial window, by subtracting the
# min trial count in the window from the current
trial_window = trials[start:i+1] - np.min(trials[start:i+1])
# get the number of successful trials that have passed starting with 0 at
# the beginning of the trial window, by subtracting the
# min successful trial count in the window from the current
success_window = trial_successes[start:i+1] - np.min(trial_successes[start:i+1])
# if success_window.shape[0] < window:
# print(window - success_window.shape[0])
# success_window = np.concatenate([success_window, np.zeros(window - success_window.shape[0])], axis=0)
success_window_max = np.max(success_window)
trial_window_max = np.max(trial_window)
if trials.shape[0] >= window and i < window:
trial_window_max = max(trial_window_max, np.max(trials[:window]))
success_rate[i] = np.divide(success_window_max, trial_window_max, out=np.zeros(1), where=trial_window_max!=0.0)
# TODO(ahundt) fix the discontinuities in the log from writing the success count at a slightly different time, remove median filter workaround
if np.any(success_rate > 1.0):
print('WARNING: BUG DETECTED, applying median filter to compensate for trial success time step offsets. '
'The max is ' + str(np.max(success_rate)) + ' at index ' + str(np.argmax(success_rate)) +
' but the largest valid value is 1.0. You should look at the raw log data, '
'fix the bug in the original code, and preprocess the raw data to correct this error.')
# success_rate = np.clip(success_rate, 0, 1)
success_rate = scipy.ndimage.median_filter(success_rate, 7)
for i in range(length - 1):
var = np.sqrt(success_rate[i] * (1 - success_rate[i]) / success_window.shape[0])
lower[i] = success_rate[i] + 3*var
upper[i] = success_rate[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(success_rate, window, 'trial success rate')
return success_rate, lower, upper, best_dict, current_dict
def get_grasp_success_rate(actions, rewards=None, window=200, reward_threshold=0.5):
"""Evaluate moving window of grasp success rate
actions: Nx4 array of actions giving [id, rotation, i, j]
rewards: an array of size N with the rewards associated with each action, only viable in pushing/grasping scenario,
do not specify if placing is available, because a place action indicates the previous grasp was successful.
"""
grasps = actions[:, 0] == utils.ACTION_TO_ID['grasp']
if rewards is None:
places = actions[:, 0] == utils.ACTION_TO_ID['place']
length = np.min([rewards.shape[0], actions.shape[0]])
success_rate = np.zeros(length - 1)
lower = np.zeros_like(success_rate)
upper = np.zeros_like(success_rate)
for i in range(length - 1):
start = max(i - window, 0)
if rewards is None:
# Where a place entry is True, the grasp on the previous action was successful
successes = places[start+1: i+2][grasps[start:i+1]]
else:
successes = (rewards[start: i+1] > reward_threshold)[grasps[start:i+1]]
grasp_count = grasps[start:i+1].sum()
if successes.shape[0] < window and length > window and i < window:
# Inital actions are zero filled, assuming an "infinite past of failure" before the first action.
# print('extra zeros: ' + str(np.sum(grasps[i:window])))
grasp_count = grasps[start:min(start+window, grasps.shape[0])].sum()
success_rate[i] = float(successes.sum()) / float(grasp_count) if grasp_count > 0 else 0.0
var = np.sqrt(success_rate[i] * (1 - success_rate[i]))
# use np.divide to prevent dividing by zero
var = np.divide(var, successes.shape[0], out=np.zeros_like(var), where=var!=0)
lower[i] = success_rate[i] + 3*var
upper[i] = success_rate[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(success_rate, window, 'grasp success rate')
return success_rate, lower, upper, best_dict, current_dict
def get_place_success_rate(stack_height, actions, include_push=False, window=200, hot_fix=False, max_height=4, task_type=None):
"""
stack_heights: length N array of integer stack heights
actions: Nx4 array of actions giving [id, rotation, i, j]
hot_fix: fix the stack_height bug, where the trial didn't end on successful pushes, which reached a stack of 4.
where id=0 is a push, id=1 is grasp, and id=2 is place.
"""
if hot_fix:
indices = np.logical_or(stack_height < 4, np.array([True] + list(stack_height[:-1] < 4)))
actions = actions[:stack_height.shape[0]][indices]
stack_height = stack_height[indices]
if include_push:
success_possible = actions[:, 0] == 2
else:
success_possible = np.logical_or(actions[:, 0] == 0, actions[:, 0] == 2)
stack_height_increased = np.zeros_like(stack_height, np.bool)
stack_height_increased[0] = False
if task_type is None or task_type != 'unstack':
# the stack height increased if the next stack height is higher than the previous
stack_height_increased[1:] = stack_height[1:] > stack_height[:-1]
else:
# the action was sucessful if the next stack height is equal to or higher than the previous
stack_height_increased[1:] = stack_height[1:] >= stack_height[:-1]
success_rate = np.zeros_like(stack_height)
lower = np.zeros_like(success_rate)
upper = np.zeros_like(success_rate)
for i in range(stack_height.shape[0]):
start = max(i - window, 0)
successes = stack_height_increased[start:i+1][success_possible[start:i+1]]
if stack_height.shape[0] > window and i < window:
successes = np.concatenate([successes, np.zeros(window - i)], axis=0)
success_rate[i] = successes.mean()
success_rate[np.isnan(success_rate)] = 0
var = np.sqrt(success_rate[i] * (1 - success_rate[i]))
# use np.divide to prevent dividing by zero
var = np.divide(var, successes.shape[0], out=np.zeros_like(var), where=var!=0)
lower[i] = success_rate[i] + 3*var
upper[i] = success_rate[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(success_rate, window, 'place success rate')
return success_rate, lower, upper, best_dict, current_dict
def get_action_efficiency(stack_height, window=200, ideal_actions_per_trial=6, max_height=4, task_type=None, trial_success_log=None):
"""Calculate the running action efficiency from successful trials.
trials: array giving the number of trials up to iteration i (TODO: unused?)
min_actions: ideal number of actions per trial
Formula: successful_trial_count * ideal_actions_per_trial / window_size
"""
# a stack is considered successful when the height is >= 4 blocks tall (~20cm)
# if unstacking, additionally check if trial was completed at that index
# success = np.rint(stack_height) == max_height
# TODO(ahundt) it may be better to drop this function and modify get_trial_success_rate() to calculate: max(trial_successes)-min(trial_successes)/(window/ideal_actions_per_trial)
success = stack_height >= max_height
if task_type is not None and task_type == 'unstack':
if trial_success_log is None:
raise ValueError("Must provide trial success log when evaluating unstacking action efficiency")
# successes are when trial was logged as successful
success[0] = trial_success_log[0]
success[1:] = trial_success_log[1:] - trial_success_log[:-1]
efficiency = np.zeros_like(stack_height, np.float64)
lower = np.zeros_like(efficiency)
upper = np.zeros_like(efficiency)
for i in range(1, efficiency.shape[0]):
start = max(i - window, 1)
window_size = min(i, window)
num_trials = success[start:i+1].sum()
# assume historical actions are failures if we haven't completed window # actions
efficiency[i] = num_trials * ideal_actions_per_trial / window
var = efficiency[i] / np.sqrt(window_size)
lower[i] = efficiency[i] + 3*var
upper[i] = efficiency[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(efficiency, window, 'action efficiency')
return efficiency, lower, upper, best_dict, current_dict
def get_grasp_action_efficiency(actions, rewards, reward_threshold=0.5, window=200, ideal_actions_per_trial=3):
"""Get grasp efficiency from when the trial count increases.
"""
grasps = actions[:, 0] == 1
length = np.min([rewards.shape[0], actions.shape[0]])
efficiency = np.zeros(length, np.float64)
lower = np.zeros_like(efficiency)
upper = np.zeros_like(efficiency)
for i in range(1, length):
start = max(i - window, 0)
window_size = np.array(min(i+1, window), np.float64)
successful = rewards[start: i+1] > reward_threshold
successful_grasps = np.array(successful[grasps[start:start+successful.shape[0]]].sum(), np.float64)
# print(successfu)
# print(successful_grasps)
efficiency[i] = successful_grasps / window
var = efficiency[i] / np.sqrt(window_size)
lower[i] = efficiency[i] + 3*var
upper[i] = efficiency[i] - 3*var
lower = np.clip(lower, 0, 1)
upper = np.clip(upper, 0, 1)
# Print the best success rate ever, excluding actions before the initial window
best_dict, current_dict = best_success_rate(efficiency, window, 'grasp action efficiency')
return efficiency, lower, upper, best_dict, current_dict
def real_robot_speckle_noise_hotfix(heights, trial, trial_success, clearance, over_height_threshold=6.0):
# length = min([heights.shape[0], trial.shape[0], trial_success.shape[0]])
actions_with_height_noise = heights > over_height_threshold
new_clearance = []
for trial_it in clearance:
recent_actions = actions_with_height_noise[int(trial_it) - 3:int(trial_it)]
if not np.any(recent_actions):
new_clearance += [trial_it]
trial = np.array(utils.clearance_log_to_trial_count(new_clearance)).astype(np.int)
heights[actions_with_height_noise] = 1.0
return heights, trial, trial_success, clearance
def plot_it(log_dir, title, window=1000, colors=None,
alpha=0.16, mult=100, max_iter=None, place=None, rasterized=True, clear_figure=True,
apply_real_robot_speckle_noise_hotfix=False, num_preset_arrangements=None,
label=None, categories=None, ylabel=None, save=True, save_dir='',
task_type=None):
# set the global plot font to Times New Roman https://stackoverflow.com/a/40734893
plt.rcParams["font.family"] = "Times New Roman"
if categories is None:
categories = ['place_success', 'grasp_success', 'action_efficiency', 'trial_success']
if colors is None:
colors = ['tab:blue', 'tab:green', 'tab:orange', 'tab:purple']
best_dict = {}
current_dict = {}
stack_height_file = os.path.join(log_dir, 'transitions', 'stack-height.log.txt')
if os.path.isfile(stack_height_file):
heights = np.loadtxt(stack_height_file)
rewards = None
if place is None:
place = True
else:
rewards = np.loadtxt(os.path.join(log_dir, 'transitions', 'reward-value.log.txt'))
if place is None:
place = False
actions = np.loadtxt(os.path.join(log_dir, 'transitions', 'executed-action.log.txt'))
trial_complete_indices = np.loadtxt(os.path.join(log_dir, 'transitions', 'clearance.log.txt'))
print('trial_complete_indices: ' + str(trial_complete_indices))
trials = np.array(utils.clearance_log_to_trial_count(trial_complete_indices)).astype(np.int)
if window is None:
# if window isn't defined, make it just shy of the full data length,
# since log updates are delayed by a couple actions in some cases
window = len(actions) - 4
if max_iter is not None:
if place:
heights = heights[:max_iter]
else:
rewards = rewards[:max_iter]
actions = actions[:max_iter]
trials = trials[:max_iter]
grasp_success_file = os.path.join(log_dir, 'transitions', 'grasp-success.log.txt')
if os.path.isfile(grasp_success_file):
grasp_rewards = np.loadtxt(grasp_success_file)
else:
# old versions of logged code don't have the grasp-success.log.txt file, data must be extracted from rewards.
grasp_rewards = rewards
# create and clear the figure
if clear_figure:
fig = plt.figure()
fig.clf()
else:
# get the currently active figure
fig = plt.gcf()
# Plot the rate and variance of trial successes
trial_success_file = os.path.join(log_dir, 'transitions', 'trial-success.log.txt')
if os.path.isfile(trial_success_file):
trial_successes = np.loadtxt(trial_success_file)
if max_iter is not None:
trial_successes = trial_successes[:max_iter]
if apply_real_robot_speckle_noise_hotfix:
clearance = np.loadtxt(os.path.join(log_dir, 'transitions', 'clearance.log.txt'))
heights, trials, trial_successes, clearance = real_robot_speckle_noise_hotfix(heights, trials, trial_successes, clearance)
if trial_successes.size > 0:
trial_success_rate, trial_success_lower, trial_success_upper, best, current = get_trial_success_rate(trials, trial_successes, window=window)
best_dict.update(best)
current_dict.update(current)
if num_preset_arrangements is not None:
best = count_preset_arrangements(trial_complete_indices, trial_successes, num_preset_arrangements)
best_dict.update(best)
current_dict.update(current)
# trial_reward_file = os.path.join(log_dir, 'transitions', 'trial-reward-value.log.txt')
# if os.path.isfile(trial_reward_file):
# grasp_rewards = np.loadtxt(trial_reward_file)
grasp_rate, grasp_lower, grasp_upper, best, current = get_grasp_success_rate(actions, rewards=grasp_rewards, window=window)
best_dict.update(best)
current_dict.update(current)
if place:
if 'row' in log_dir or 'row' in title.lower():
place_rate, place_lower, place_upper, best, current = get_place_success_rate(heights, actions, include_push=True, hot_fix=True, window=window, task_type=task_type)
else:
place_rate, place_lower, place_upper, best, current = get_place_success_rate(heights, actions, window=window, task_type=task_type)
best_dict.update(best)
current_dict.update(current)
eff, eff_lower, eff_upper, best, current = get_action_efficiency(heights, window=window, trial_success_log=trial_successes)
best_dict.update(best)
current_dict.update(current)
else:
eff, eff_lower, eff_upper, best, current = get_grasp_action_efficiency(actions, grasp_rewards, window=window)
best_dict.update(best)
current_dict.update(current)
if 'action_efficiency' in categories:
plt.plot(mult*eff, color=colors[2], label=label or 'Action Efficiency')
# plt.fill_between(np.arange(1, eff.shape[0]+1),
# mult*eff_lower, mult*eff_upper,
# color=colors[2], alpha=alpha)
if 'grasp_success' in categories:
plt.plot(mult*grasp_rate, color=colors[0], label=label or 'Grasp Success Rate')
# plt.fill_between(np.arange(1, grasp_rate.shape[0]+1),
# mult*grasp_lower, mult*grasp_upper,
# color=colors[0], alpha=alpha)
if place and 'place_success' in categories:
plt.plot(mult*place_rate, color=colors[1], label=label or 'Place Success Rate')
# plt.fill_between(np.arange(1, place_rate.shape[0]+1),
# mult*place_lower, mult*place_upper,
# color=colors[1], alpha=alpha)
if 'trial_success' in categories and os.path.isfile(trial_success_file) and trial_successes.size > 0:
plt.plot(mult*trial_success_rate, color=colors[3], label=label or 'Trial Success Rate')
# plt.fill_between(np.arange(1, trial_success_rate.shape[0]+1),
# mult*trial_success_lower, mult*trial_success_upper,
# color=colors[3], alpha=alpha)
ax = plt.gca()
plt.xlabel('Number of Actions')
plt.ylabel('Mean % Over ' + str(window) + ' Actions, Higher is Better' if ylabel is None else ylabel)
plt.title(title)
plt.legend(loc='upper left')
ax.yaxis.set_major_formatter(PercentFormatter())
# we save the best stats and the generated plots in multiple locations for user convenience and backwards compatibility
file_format = '.png'
save_file = os.path.basename(log_dir + '-' + title).replace(':', '-').replace('.', '-').replace(',', '').replace(' ', '-') + '_success_plot'
# plt.show()
# print('title: ' + str(title) + ' label: ' + str(label))
if save:
if save_dir:
log_dir = os.path.join(save_dir, save_file)
dir_to_create = os.path.join(log_dir, 'data')
if not os.path.exists(dir_to_create):
utils.mkdir_p(dir_to_create)
dir_to_create = os.path.join(log_dir, 'transitions')
if not os.path.exists(dir_to_create):
utils.mkdir_p(dir_to_create)
if 'trial_success' in categories and os.path.isfile(trial_success_file) and trial_successes.size > 0:
trial_success_path = os.path.join(log_dir, 'transitions', 'trial-success-rate.log.csv')
print('saving trial success rate: ' + str(trial_success_path))
np.savetxt(trial_success_path, trial_success_rate, delimiter=', ', header='trial_success_rate')
if 'grasp_success' in categories:
grasp_success_path = os.path.join(log_dir, 'transitions', 'grasp-success-rate.log.csv')
print('saving grasp success rate: ' + str(grasp_success_path))
np.savetxt(grasp_success_path, grasp_rate, delimiter=', ', header='grasp_success_rate')
if place and 'place_success' in categories:
place_success_path = os.path.join(log_dir, 'transitions', 'place-success-rate.log.csv')
print('saving place success rate: ' + str(place_success_path))
np.savetxt(place_success_path, place_rate, delimiter=', ', header='place_success_rate')
if 'action_efficiency' in categories:
action_efficiency_path = os.path.join(log_dir, 'transitions', 'action-efficiency.log.csv')
print('saving action efficiency: ' + str(action_efficiency_path))
np.savetxt(action_efficiency_path, eff, delimiter=', ', header='action_efficiency')
print('saving plot: ' + save_file + file_format)
plt.savefig(save_file + file_format, dpi=300, optimize=True)
log_dir_fig_file = os.path.join(log_dir, save_file)
plt.savefig(log_dir_fig_file + file_format, dpi=300, optimize=True)
# plt.savefig(save_file + '.pdf')
# this is a backwards compatibility location for best_stats.json
best_stats_file = os.path.join(log_dir, 'data', 'best_stats.json')
print('saving best stats to: ' + best_stats_file)
with open(best_stats_file, 'w') as f:
json.dump(best_dict, f, cls=utils.NumpyEncoder, sort_keys=True)
# this is the more useful location for best_stats.json
best_stats_file = os.path.join(log_dir, 'best_stats.json')
print('saving best stats to: ' + best_stats_file)
with open(best_stats_file, 'w') as f:
json.dump(best_dict, f, cls=utils.NumpyEncoder, sort_keys=True)
if clear_figure:
plt.close(fig)
return best_dict, current_dict
def plot_compare(dirs, title, colors=None, labels=None, category='trial_success', **kwargs):
if labels is None:
labels = dirs
kwargs['categories'] = [category]
best_dicts = {}
current_dicts = {}
if colors is None:
cmap = plt.get_cmap('viridis')
colors = [[cmap(i / len(dirs))] * 4 for i, run_dir in enumerate(dirs)]
for i, run_dir in enumerate(dirs):
kwargs['clear_figure'] = i == 0
kwargs['label'] = labels[i]
kwargs['colors'] = colors[i]
kwargs['save'] = i == len(dirs)-1
# kwargs['save'] = True
print('plotting fig: ' + str(i) + ' label: ' + str(labels[i]))
best_dicts[run_dir], current_dicts[run_dir] = plot_it(run_dir, title, **kwargs)
return best_dicts, current_dicts # for some reason
if __name__ == '__main__':
# workaround matplotlib plotting thread crash https://stackoverflow.com/a/29172195
matplotlib.use('Agg')
# window = 1000
max_iter = None
window = 500
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-24-01-16-21_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim to Real Pushing And Grasping, SPOT-Q', max_iter=None, window=None, save_dir='./paper_figures/')
plot_it('/media/costar/f5f1f858-3666-4832-beea-b743127f1030/real_good_robot/logs/2020-05-13-12-21-00_Sim-Rows-SPOT-Trial-Reward-Masked-Training/2020-05-17-13-08-59_Sim-Rows-SPOT-Trial-Reward-Masked-Testing', title='Rows Rtrial + SPOT-Q', window=1785, max_iter=None)
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-22-19-54-28_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim to Real Pushing And Grasping, SPOT-Q',max_iter=None, window=None)
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-23-11-43-55_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training/2020-02-23-18-51-58_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Testing','Real Push and Grasp, SPOT-Q, Training', max_iter=None,window=None)
# plot_it('/home/costar/src/real_good_robot/logs/2020-02-23-11-43-55_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training', 'Real Push and Grasp, SPOT-Q, Training', max_iter=1000, window=500)
##############################################################
#### IMPORTANT PLOT IN FINAL PAPER, data on costar workstation
# best_dict, current_dict = plot_compare(['./logs/2020-02-03-16-57-28_Sim-Stack-Trial-Reward-Common-Sense-Training',
# './logs/2020-02-20-16-20-23_Sim-Stack-SPOT-Trial-Reward-Common-Sense-Training',
# './logs/2020-02-03-16-58-06_Sim-Stack-Trial-Reward-Training'],
# title='Effect of Action Space on Early Training Progress',
# labels=['Dynamic with SPOT-Q',
# 'Dynamic no SPOT-Q',
# 'Standard'],
# max_iter=3000, window=window,
# ylabel='Mean Trial Success Rate Over ' + str(window) + ' Actions\nHigher is Better')
best_dict, current_dict = plot_compare(['./logs/2020-05-13-12-51-39_Sim-Stack-SPOT-Trial-Reward-Masked-Training',
'./logs/2020-05-23-14-31-09_Sim-Stack-SPOT-Trial-Reward-Masked-Training',
'./logs/2020-05-18-19-56-49_Sim-Stack-SPOT-Trial-Reward-Training'],
title='Effect of SPOT-Q on Early Training Progress',
labels=['Mask with SPOT-Q',
'Mask no SPOT-Q',
'No Mask, no SPOT-Q (Standard)'],
max_iter=None, window=window,
ylabel='Mean Trial Success Rate Over ' + str(window) + ' Actions\nHigher is Better',
save_dir='./paper_figures/')
##############################################################
# window = 200
# best_dict, current_dict = plot_compare(['./logs/2020-02-16-push-and-grasp-comparison/2020-02-16-21-33-59_Sim-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training',
# './logs/2020-02-16-push-and-grasp-comparison/2020-02-16-21-37-47_Sim-Push-and-Grasp-SPOT-Trial-Reward-Training',
# './logs/2020-02-16-push-and-grasp-comparison/2020-02-16-21-33-55_Sim-Push-and-Grasp-Two-Step-Reward-Training'],
# title='Early Grasping Success Rate in Training', labels=['SPOT-Q (Dynamic Action Space)', 'SPOT (Standard Action Space)', 'VPG (Prior Work)'],
# max_iter=2000, window=window,
# category='grasp_success',
# ylabel='Mean Grasp Success Rate Over ' + str(window) + ' Actions\nHigher is Better')
# # best_dict, current_dict = plot_it('./logs/2020-02-03-16-58-06_Sim-Stack-Trial-Reward-Training','Sim Stack, SPOT Trial Reward, Standard Action Space', window=1000)
# best_dict, current_dict = plot_it('./logs/2020-02-19-15-33-05_Real-Push-and-Grasp-SPOT-Trial-Reward-Common-Sense-Training', 'Real Push and Grasp, SPOT Reward, Common Sense', window=150)
# best_dict, current_dict = plot_it('./logs/2020-02-18-18-58-15_Real-Push-and-Grasp-Two-Step-Reward-Training', 'Real Push and Grasp, VPG', window=150)
# best_dict, current_dict = plot_it('./logs/2020-02-14-15-24-00_Sim-Rows-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim Rows, SPOT Trial Reward, Common Sense, Testing', window=None)
# Sim stats for final paper:
# best_dict, current_dict = plot_it('./logs/2020-02-11-15-53-12_Sim-Push-and-Grasp-Two-Step-Reward-Testing', 'Sim Push & Grasp, VPG, Challenging Arrangements', window=None, num_preset_arrangements=11)
# best_dict, current_dict = plot_it('./logs/2020-02-12-21-10-24_Sim-Rows-SPOT-Trial-Reward-Common-Sense-Testing', 'Sim Rows, SPOT Trial Reward, Common Sense, Testing', window=563)
# print(best_dict)
# log_dir = './logs/2020-01-20-11-40-56_Sim-Push-and-Grasp-Trial-Reward-Training'
# log_dir = './logs/2020-01-20-14-25-13_Sim-Push-and-Grasp-Trial-Reward-Training'
# log_dir = './logs/2020-02-03-14-47-16_Sim-Stack-Trial-Reward-Common-Sense-Training'
# plot_it('./logs/2020-02-10-14-57-07_Real-Stack-SPOT-Trial-Reward-Common-Sense-Training','Real Stack, SPOT Reward, Common Sense, Training', window=200, max_iter=1000)
# #############################################################
# # REAL ROBOT STACKING run
# plot_it('./logs/2020-02-09-11-02-57_Real-Stack-SPOT-Trial-Reward-Common-Sense-Training','Real Stack, SPOT-Q Dynamic Action Space, Training', window=500, max_iter=2500, apply_real_robot_speckle_noise_hotfix=True)
# # Max trial success rate: 0.5833333333333334, at action iteration: 449. (total of 737 actions, max excludes first 200 actions)
# # Max grasp success rate: 0.794392523364486, at action iteration: 289. (total of 750 actions, max excludes first 200 actions)
# # Max place success rate: 0.7582417582417582, at action iteration: 119. (total of 751 actions, max excludes first 200 actions)
# # Max action efficiency: 0.3, at action iteration: 37. (total of 751 actions, max excludes first 200 actions)
# #############################################################
# # Here is the good & clean simulation common sense push & grasp densenet plot with SPOT reward, run on the costar workstation.
# # It can basically complete trials 100% of the time within 400 actions!
# plot_it('./logs/2020-02-07-14-43-44_Sim-Push-and-Grasp-Trial-Reward-Common-Sense-Training','Sim Push and Grasp, SPOT Reward, Common Sense, Training', window=200, max_iter=2500)
# # plot_it(log_dir, log_dir, window=window, max_iter=max_iter)
# #############################################################
# # ABSOLUTE BEST STACKING RUN AS OF 2020-02-04, on costar workstation
# log_dir = './logs/2020-02-03-16-57-28_Sim-Stack-Trial-Reward-Common-Sense-Training'
# # plot_it(log_dir, 'Sim Stack, Trial Reward, Common Sense, Training', window=window, max_iter=max_iter)
# plot_it(log_dir,'Sim Stack, SPOT Reward, Common Sense, Training', window=window, max_iter=4000)
# #############################################################
# log_dir = './logs/2020-01-22-19-10-50_Sim-Push-and-Grasp-Two-Step-Reward-Training'
# log_dir = './logs/2020-01-22-22-50-00_Sim-Push-and-Grasp-Two-Step-Reward-Training'
# log_dir = './logs/2020-02-03-17-35-43_Sim-Push-and-Grasp-Two-Step-Reward-Training'
# log_dir = './logs/2020-02-06-14-41-48_Sim-Stack-Trial-Reward-Common-Sense-Training'
# plot_it(log_dir, log_dir, window=window, max_iter=max_iter)
# # log_dir = './logs/2019-12-31-20-17-06'
# # log_dir = './logs/2020-01-01-14-55-17'
# log_dir = './logs/2020-01-08-17-03-58'
# log_dir = './logs/2020-01-08-17-03-58-test-resume'
# # Stacking 0.
# log_dir = './logs/2020-01-12-12-33-41'
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-12-12-33-41 # this run had a problem
# # ± /usr/bin/python3 /home/costar/src/real_good_robot/main.py --is_sim --obj_mesh_dir objects/blocks --num_obj 8 --push_rewards --experience_replay --explore_rate_decay --trial_reward --save_visualizations --skip_noncontact_actions --check_z_height --tcp_port 19997 --place --future_reward_discount 0.65
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-12-17-56-46
# # log_dir = './logs/2020-01-13-10-15-49' # this run stopped after 1750 actions
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-13-10-15-49 # stopped after 1750 actions
# log_dir = './logs/2020-01-14-18-36-16'
# # Creating data logging session: /home/costar/src/real_good_robot/logs/2020-01-14-18-36-16
# log_dir = './logs/2020-01-15-15-44-39'
# title = 'Stack 4 Blocks, Trial Reward 0.65, Training'
# # plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# # this is a solid but slow training trial_reward grasp and push run without symmetry
# # title = 'Push and Grasp, Trial Reward, No Symmetry, Training'
# # log_dir = './logs/2020-01-06-19-15-55'
# # plot_it(log_dir, title, window=window, max_iter=max_iter, place=False)
# run = 2
# if run == 0:
# title = 'Rows, Trial Reward 0.5, No Symmetry, Training'
# # log_dir = './logs/2020-01-07-17-53-42' # some progress, not complete
# # log_dir = './logs/2020-01-08-17-08-57' # run killed early
# log_dir = './logs/2020-01-09-12-54-53'
# # Training iteration: 22769
# # Current count of pixels with stuff: 2513.0 threshold below which the scene is considered empty: 1200
# # WARNING variable mismatch num_trials + 1: 3118 nonlocal_variables[stack].trial: 3359
# # Change detected: True (value: 2799)
# # Primitive confidence scores: 4.359684 (push), 2.701111 (grasp), 4.351819 (place)
# # Strategy: exploit (exploration probability: 0.100000)
# # Action: push at (1, 99, 10)
# # Real Robot push at (-0.704000, -0.026000, 0.000994) angle: 0.392699
# # Trainer.get_label_value(): Current reward: 0.750000 Current reward multiplier: 1.000000 Predicted Future reward: 4.402410 Expected reward: 0.750000 + 0.500000 x 4.402410 = 2.951205
# # Trial logging complete: 3117 --------------------------------------------------------------
# # Training loss: 0.897331
# # /home/ahundt/src/real_good_robot/logs/2020-01-08-18-16-12
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# if run == 1:
# title = 'Rows, Trial Reward 0.65, No Symmetry, Training'
# # ± export CUDA_VISIBLE_DEVICES="0" && python3 main.py --is_sim --obj_mesh_dir 'objects/blocks' --num_obj 4 --push_rewards --experience_replay --explore_rate_decay --trial_reward --tcp_port 19997 --place --check_row --future_reward_discount 0.65
# # Creating data logging session: /home/ahundt/src/real_good_robot/logs/2020-01-11-19-54-58
# log_dir = './logs/2020-01-11-19-54-58'
# # /home/ahundt/src/real_good_robot/logs/2020-01-08-18-16-12
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)
# if run == 2:
# title = 'Rows, Trial Reward 0.65, No Symmetry, Training'
# # ± export CUDA_VISIBLE_DEVICES="0" && python3 main.py --is_sim --obj_mesh_dir 'objects/blocks' --num_obj 4 --push_rewards --experience_replay --explore_rate_decay --trial_reward --tcp_port 19997 --place --check_row --future_reward_discount 0.65
# # Creating data logging session: /home/ahundt/src/real_good_robot/logs/2020-01-12-17-42-46
# # Creating data logging session: /home/ahundt/src/real_good_robot/logs/2020-01-12-17-45-22
# log_dir = './logs/2020-01-12-17-45-22'
# plot_it(log_dir, title, window=window, max_iter=max_iter, place=True)