-
Notifications
You must be signed in to change notification settings - Fork 0
/
navigation_data.py
355 lines (304 loc) · 15.9 KB
/
navigation_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import numpy as np
from jsonargparse import ArgumentParser, ActionConfigFile
import json
from tqdm import tqdm
import pdb
import pathlib
from matplotlib import pyplot as plt
import pickle as pkl
from spacy.tokenizer import Tokenizer
from spacy.lang.en import English
import torch
from torch.nn import functional as F
nlp = English()
np.random.seed(12)
torch.manual_seed(12)
PAD = "<PAD>"
class NavigationImageTrajectory:
def __init__(self,
image_path: np.array,
path: np.array,
command: str,
tokenizer: Tokenizer,
max_len: int = 40,
image_size: int = 512,
width: int = 8):
self.image_path = image_path
self.tokenizer = tokenizer
self.traj_vocab = set()
self.lengths = []
self.command = self.tokenize(command)[0:max_len]
self.path_state = np.zeros((image_size, image_size)).astype(int)
# convert path to int
self.path = path * 100
self.path = self.path.astype(int)
self.width = width
self.start_pos = self.path[0]
for x, y in self.path:
self.path_state[x-self.width:x+self.width, y-self.width:y+self.width] = 1
self.tensorize()
def tokenize(self, command):
# lowercase everything
command = [str(x).lower() for x in self.tokenizer(command)]
self.lengths = [len(command)]
# add to vocab
self.traj_vocab |= set(command)
return command
def tensorize(self):
#self.image = plt.imread(self.image_path)
#self.image = torch.tensor(self.image, dtype = torch.long).unsqueeze(0)
self.path_state = torch.tensor(self.path_state, dtype = torch.uint8).unsqueeze(0)
self.start_pos = torch.tensor(self.start_pos, dtype = torch.long).unsqueeze(0)
class NavigationDatasetReader:
def __init__(self,
dir: str,
out_path: str,
path_width: int = 8,
read_limit: int = -1,
batch_size: int = 64,
max_len: int = 40,
tokenizer: Tokenizer = Tokenizer(nlp.vocab),
shuffle: bool = True,
is_bert: bool = False,
overfit: bool = False):
self.path_width = path_width
self.dir = pathlib.Path(dir)
self.pkl_dir = self.dir.joinpath("data/simulator_basic/")
self.image_dir = self.dir.joinpath("configs/env_img/simulator/")
self.train_json = self.dir.joinpath("configs/train_annotations_6000.json")
self.test_json = self.dir.joinpath("configs/test_annotations_6000.json")
self.dev_json = self.dir.joinpath("configs/dev_annotations_6000.json")
self.trajectory_class = NavigationImageTrajectory
self.batch_size = batch_size
self.shuffle = shuffle
self.max_len = max_len
self.tokenizer = tokenizer
self.read_limit = read_limit
self.is_bert = is_bert
self.overfit = overfit
self.out_path = pathlib.Path(out_path)
self.train_out_path = self.out_path.joinpath("train")
self.dev_out_path = self.out_path.joinpath("dev")
self.test_out_path = self.out_path.joinpath("test")
for p in [self.train_out_path, self.dev_out_path, self.test_out_path]:
if not p.exists():
p.mkdir()
self.path_dict = {"train": self.train_out_path,
"test": self.test_out_path,
"dev": self.dev_out_path}
def make_vocab(self):
with open(self.train_json) as f1:
data = json.load(f1)
print(f"reading vocab...")
for line in tqdm(data):
try:
id = line['id']
pkl_data = pkl.load(open(self.pkl_dir.joinpath(f"supervised_train_data_env_{id}"), "rb"))
for step in pkl_data:
command = step['instruction']
command = [str(x).lower() for x in self.tokenizer(command)]
self.vocab |= set(command)
except FileNotFoundError:
pass
def preprocess_batches(self):
vocab = set()
for name, path in [("train", self.train_json), ("test", self.test_json), ("dev", self.dev_json)]:
print(f"loading data from {path}")
with open(path) as f1:
data = json.load(f1)
skipped = 0
if self.read_limit > -1:
data = data[0:self.read_limit]
line_num = 0
curr_batch = []
batch_num = 0
for line in tqdm(data):
try:
id = line['id']
image_data = plt.imread(self.image_dir.joinpath(f"{id}.png"))
pkl_data = pkl.load(open(self.pkl_dir.joinpath(f"supervised_train_data_env_{id}"), "rb"))
# get unique steps
unique_steps = []
all_commands = [step['instruction'] for step in pkl_data]
unique_commands = set(all_commands)
if len(unique_commands) > 1:
unique_indices = [all_commands.index(c) for c in unique_commands]
else:
unique_indices = [0]
for step_idx in unique_indices:
step = pkl_data[step_idx]
assert(int(step['env_id']) == int(id))
path = step['seg_path']
command = step['instruction']
image_path = self.image_dir.joinpath(f"{id}.png")
if not image_path.exists():
continue
traj = NavigationImageTrajectory(image_path = image_path,
path = path,
command = command,
width = self.path_width,
tokenizer = self.tokenizer,
max_len = self.max_len)
if name == "train":
vocab |= traj.traj_vocab
curr_batch.append(traj)
if line_num % self.batch_size == 0:
ready_batch = self.batchify(curr_batch)
with open(self.path_dict[name].joinpath(f"{batch_num}.pkl"), "wb") as f1:
pkl.dump(ready_batch, f1)
# TODO: remove after debugging
with open(self.path_dict['train'].joinpath("vocab.json"), "w") as f1:
json.dump(list(vocab), f1)
batch_num += 1
curr_batch = []
line_num += 1
except FileNotFoundError:
skipped += 1
continue
# add last incomplete batch
if len(curr_batch)>0:
ready_batch = self.batchify(curr_batch)
with open(self.path_dict[name].joinpath(f"{batch_num+1}.pkl"), "wb") as f1:
pkl.dump(ready_batch, f1)
print(f"skipped {skipped} of {len(data)}: {100*skipped/len(data):.2f}%")
with open(self.path_dict['train'].joinpath("vocab.json"), "w") as f1:
json.dump(list(vocab), f1)
#if self.overfit:
# self.all_data['train'] = self.all_data['train'][0:self.read_limit]
# self.all_data['dev'] = self.all_data['train']
def batchify(self, batch_as_list):
"""
pad and tensorize
"""
commands = []
input_image = []
path_state = []
start_position = []
# get max len
if not self.is_bert:
max_length = min(self.max_len, max([traj.lengths[0] for traj in batch_as_list]))
else:
max_length = self.max_len
length = []
image_paths = []
for idx in range(len(batch_as_list)):
traj = batch_as_list[idx]
# trim!
if len(traj.command) > max_length:
traj.command = traj.command[0:max_length]
length.append(len(traj.command))
image_paths.append(traj.image_path)
commands.append(traj.command + [PAD for i in range(max_length - len(traj.command))])
#input_image.append(traj.image)
path_state.append(traj.path_state)
start_position.append(traj.start_pos)
#input_image = torch.cat(input_image, 0)
path_state = torch.cat(path_state, 0)
start_position = torch.cat(start_position, 0)
return {"command": commands,
"image_paths": image_paths,
"path_state": path_state,
"start_position": start_position,
"length": length}
def pad_command(self, commands, max_len):
for i, c in enumerate(commands):
c = c[0:max_len]
l = len(c)
c = c + [PAD for i in range(max_len - l)]
commands[i] = c
return commands
def read(self, split, limit=None):
path = self.path_dict[split]
all_batches = path.glob("*.pkl")
if self.shuffle and split == "train":
np.random.shuffle(all_batches)
if limit is not None:
all_batches = list(all_batches)[0:limit]
for batch in all_batches:
with open(batch, "rb") as f1:
batch_data = pkl.load(f1)
image_paths = batch_data['image_paths']
image_data = [torch.tensor(plt.imread(p), dtype=torch.float64).unsqueeze(0) for p in image_paths]
batch_data['input_image'] = torch.cat(image_data, dim=0)
if self.is_bert:
batch_data['command'] = self.pad_command(batch_data['command'], self.max_len)
yield batch_data
def configure_parser():
parser = ArgumentParser()
# config file
parser.add_argument("--cfg", action = ActionConfigFile)
# training
parser.add_argument("--test", action="store_true", help="load model and test")
parser.add_argument("--resume", action="store_true", help="resume training a model")
parser.add_argument("--overfit", action="store_true", help="overfit to training data for development")
# data
parser.add_argument("--data-dir", type=str, default = "/srv/local2/estengel/nav_data/drif_workspace_corl2019", help="path to train data")
parser.add_argument("--out-path", type=str, default = "/srv/local2/estengel/nav_data/preprocessed", help = "path to write preprocessed batches")
parser.add_argument("--batch-size", type=int, default = 32)
parser.add_argument("--small-batch-size", type=int, default = 8)
parser.add_argument("--max-len", type=int, default = 65)
parser.add_argument("--resolution", type=int, help="resolution to discretize input state", default=64)
parser.add_argument("--channels", type=int, default=3)
parser.add_argument("--split-type", type=str, choices= ["random", "leave-out-color",
"train-stack-test-row",
"train-row-test-stack"],
default="random")
parser.add_argument("--shuffle", action = "store_true")
parser.add_argument("--read-limit", type=int, default=-1)
parser.add_argument("--path-width", type=int, default=8)
parser.add_argument("--output-type", type=str, default="per-patch")
parser.add_argument("--validation-limit", type=int, default=16, help = "how many dev batches to evaluate every n steps ")
# language embedder
parser.add_argument("--embedder", type=str, default="random", choices = ["random", "glove", "bert-base-cased", "bert-base-uncased"])
parser.add_argument("--embedding-file", type=str, help="path to pretrained glove embeddings")
parser.add_argument("--embedding-dim", type=int, default=300)
# transformer parameters
parser.add_argument("--encoder-type", type=str, default="TransformerEncoder", choices = ["TransformerEncoder", "ResidualTransformerEncoder"], help = "choice of dual-stream transformer encoder or one that bases next prediction on previous transformer representation")
parser.add_argument("--pos-encoding-type", type = str, default="fixed-separate")
parser.add_argument("--patch-size", type=int, default = 8)
parser.add_argument("--n-layers", type=int, default = 6)
parser.add_argument("--n-classes", type=int, default = 2)
parser.add_argument("--n-heads", type= int, default = 8)
parser.add_argument("--hidden-dim", type= int, default = 512)
parser.add_argument("--ff-dim", type = int, default = 1024)
parser.add_argument("--dropout", type=float, default=0.2)
parser.add_argument("--embed-dropout", type=float, default=0.2)
parser.add_argument("--pretrained-weights", type=str, default=None, help = "path to best.th file for a pre-trained initialization")
parser.add_argument("--locality-mask", type=bool, default = False, action='store_true', help="mask image transformer to only attend to nearby regions")
parser.add_argument("--locality-neighborhood", type=int, default = 5, help="size of the region to attend to in locality masking, extends in each direction from the center point")
# misc
parser.add_argument("--cuda", type=int, default=None)
parser.add_argument("--learn-rate", type=float, default = 3e-5)
parser.add_argument("--warmup", type=int, default=4000, help = "warmup setps for learn-rate scheduling")
parser.add_argument("--lr-factor", type=float, default = 1.0, help = "factor for learn-rate scheduling")
parser.add_argument("--gamma", type=float, default = 0.7)
parser.add_argument("--checkpoint-dir", type=str, default="models/language_pretrain")
parser.add_argument("--num-models-to-keep", type=int, default = 5)
parser.add_argument("--num-epochs", type=int, default=3)
parser.add_argument("--generate-after-n", type=int, default=10)
parser.add_argument("--score-type", type=str, default="acc", choices = ["acc", "block_acc", "tele_score"])
parser.add_argument("--zero-weight", type=float, default = 0.05, help = "weight for loss weighting negative vs positive examples")
parser.add_argument("--init-scale", type=int, default = 4, help = "initalization scale for transformer weights")
parser.add_argument("--checkpoint-every", type=int, default=64, help = "save a checkpoint every n training steps")
parser.add_argument("--seed", type=int, default=12)
parser.add_argument("--debug-image-top-k", type=int, default=-1, help = "for generating debugging images, only show the top k regions")
parser.add_argument("--debug-image-threshold", type=float, default=-1, help = "for generating debugging images, only predicted patches above a fixed threshold")
return parser
if __name__ == "__main__":
np.random.seed(12)
torch.manual_seed(12)
parser = configure_parser()
args = parser.parse_args()
nlp = English()
tokenizer = Tokenizer(nlp.vocab)
dataset_reader = NavigationDatasetReader(dir = args.data_dir,
out_path=args.out_path,
path_width = args.path_width,
read_limit = args.read_limit,
batch_size = args.batch_size,
max_len = args.max_len,
tokenizer = tokenizer,
shuffle = args.shuffle,
overfit = args.overfit,
is_bert = "bert" in args.embedder)
dataset_reader.preprocess_batches()