-
Notifications
You must be signed in to change notification settings - Fork 0
/
language.py
executable file
·195 lines (164 loc) · 7 KB
/
language.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from typing import Tuple
import pdb
import math
import torch
from torch.nn import functional as F
class SourceAttention(torch.nn.Module):
def __init__(self,
language_dim: int,
image_dim: int,
output_dim: int):
super(SourceAttention, self).__init__()
self.language_dim = language_dim
self.image_dim = image_dim
self.output_dim = output_dim
self.q_proj = torch.nn.Linear(image_dim, output_dim)
self.k_proj = torch.nn.Linear(language_dim, output_dim)
self.v_proj = torch.nn.Linear(language_dim, output_dim)
def forward(self, q, k, v):
# flatten q [batch, width, height, hidden] to [batch, width * height , hidden]
bsz, hidden_dim, width, height = q.shape
q = q.reshape(bsz, width * height, hidden_dim)
# project keys queries and values
q, k, v = self.q_proj(q), self.k_proj(k), self.v_proj(v)
# get image to input tokens attention weights, scaled by dim
weights = torch.bmm(q, k.permute(0,2,1))
weights = weights/math.sqrt(self.output_dim)
# softmax the weights
weights = F.softmax(weights, dim = 2)
# reweight values (langauge) by attention weight
output = torch.bmm(weights, v)
# break back out to image shape
output = output.reshape(bsz, self.output_dim, width, height)
return output
class BaseFusionModule(torch.nn.Module):
def __init__(self,
image_size,
language_size):
super(BaseFusionModule, self).__init__()
self.image_size = image_size
self.language_size = language_size
self.output_dim = image_size + language_size
def forward(self, image, language):
raise NotImplementedError
class ConcatFusionModule(BaseFusionModule):
def __init__(self,
image_size,
language_size):
super(ConcatFusionModule, self).__init__(image_size, language_size)
def forward(self, image, language):
output = torch.cat([image, language], dim=1)
return output
class TiledFusionModule(BaseFusionModule):
def __init__(self,
image_size,
language_size):
super(TiledFusionModule, self).__init__(image_size, language_size)
self.output_dim = self.image_size + self.language_size
def forward(self, image, language):
bsz, n_channels, width, height = image.shape
# language: bsz x 2
__, num_lang_channels = language.shape
language = language.reshape((bsz, num_lang_channels, 1, 1))
language = language.repeat((1, 1, width, height))
# cat across channel dimension
output = torch.cat([image, language], dim=1)
return output
class LanguageEncoder(torch.nn.Module):
"""
Handle language instructions as an API call to an encoder
that tokenizes, embed tokens, and runs a selected encoder
over it, returning an output specified by the model.
"""
def __init__(self,
image_encoder: torch.nn.Module,
embedder: torch.nn.Module,
encoder: torch.nn.Module,
fuser: BaseFusionModule,
output_module: torch.nn.Module,
block_prediction_module: torch.nn.Module,
device: torch.device,
compute_block_dist: bool):
"""
embedder: a choice of
encoder: a choice of LSTM or Transformer
output_type: choices are object mask, dense vector,
"""
super(LanguageEncoder, self).__init__()
self.image_encoder = image_encoder
self.embedder = embedder
self.encoder = encoder
self.fuser = fuser
self.output_module = output_module
self.device = device
self.block_prediction_module = block_prediction_module
self.softmax_fxn = torch.nn.LogSoftmax(dim = -1)
self.compute_block_dist = compute_block_dist
# enable cuda
for module in [self.embedder, self.image_encoder, self.encoder, self.fuser, self.output_module, self.block_prediction_module]:
module = module.to(self.device)
module.device = device
def forward(self,
data_batch: dict) -> torch.Tensor:
language = data_batch["command"]
# sort lengths
lengths = data_batch["length"]
lengths = [(i,x) for i, x in enumerate(lengths)]
lengths = sorted(lengths, key = lambda x: x[1], reverse=True)
idxs, lengths = zip(*lengths)
# tensorize lengths
lengths = torch.tensor(lengths).float()
# at train-time, uses the gold previous input
pos_input = data_batch["previous_position"]
# embed langauge
if type(language[0]) == str:
lang_embedded = self.embedder(language).unsqueeze(0).to(self.device)
else:
try:
lang_embedded = torch.cat([self.embedder(language[i]).unsqueeze(0) for i in idxs], dim=0).to(self.device)
except RuntimeError:
return None
# encode image
pos_encoded = self.image_encoder(pos_input)
# encode language
lang_encoded = self.encoder(lang_embedded, lengths)
bsz, __ = lang_encoded.shape
# fuse image and language
image_and_language = self.fuser(pos_encoded, lang_encoded)
# get image output
image_output = self.output_module(image_and_language)
if self.compute_block_dist:
# get block output
block_output = self.block_prediction_module(image_and_language)
output = image_output
#output = self.filter_image_output(block_output, image_output)
else:
output = image_output
block_output = None
to_ret = {"next_position": output,
"pred_block_logits": block_output}
return to_ret
def filter_image_output(self, block_output, image_output):
"""
combing block distribution with per-pixel distribution
Parameters
----------
block output: [bsz, num_blocks]
logits per block
image_output [bsz, 64, 64, 4, num_blocks]
logits per pixel
"""
bsz, num_blocks = block_output.shape
bsz, num_blocks, width, depth, height = image_output.shape
image_output = image_output.permute(0, 4, 2, 3, 1)
block_output = block_output.reshape((bsz, 1, 1, 1, num_blocks))
# tile block softmax across shape
block_output = block_output.repeat((1, height, width, depth, 1))
# now in logspace with softmax across blocks dim
image_output = self.softmax_fxn(image_output)
block_output_ln = self.softmax_fxn(block_output)
# multiply probs by adding logprobs
output = image_output + block_output_ln
# reshape output
output = output.permute(0, 4, 2, 3, 1)
return output