forked from clvrai/furniture
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_vision.py
211 lines (168 loc) · 6.21 KB
/
demo_vision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
"""
Vision demo for the IKEA furniture assembly environment.
It will show the user the various observation options available
to the environment. The video generation can be RAM heavy, so
decrease --screen_width and --screen_height if it crashes.
"""
import argparse
import pickle
import numpy as np
from env import make_env
from env.models import furniture_names, background_names
import env.image_utils as I
from util import str2bool
from util.video_recorder import VideoRecorder
# available agents
agent_names = ['Baxter', 'Sawyer', 'Cursor']
# available furnitures
furniture_names
# available background scenes
background_names
def argsparser():
"""
Returns argument parser for furniture assembly environment.
"""
parser = argparse.ArgumentParser("Demo for IKEA Furniture Assembly Environment")
parser.add_argument('--seed', type=int, default=123)
parser.add_argument('--debug', type=str2bool, default=False)
import config.furniture as furniture_config
furniture_config.add_argument(parser)
args = parser.parse_args()
return args
def main(args):
"""
Inputs type of agent, observation types and simulates the environment.
"""
print("The observation tutorial will show you the various observation configurations available.")
background_name = background_names[1]
# load demo file for playback
demo = args.load_demo = input('Input path to demo file, such as demos/Sawyer_7.pkl: ')
if demo == '':
demo = args.load_demo = 'demos/Sawyer_7.pkl'
agent_name, furniture_id = demo.split('/')[-1].split('.')[0].split('_')
agent_name = agent_name[0].upper() + agent_name[1:]
furniture_id = int(furniture_id)
furniture_name = furniture_names[furniture_id]
# choose robot observation
print()
print("Include robot observation?\n")
try:
s = input("Put 1 for True or 0 for False: ")
k = int(s) == 1
except:
print("Input is not valid. Use 0 by default.")
k = False
args.robot_ob = k
# choose furniture observation
print()
print("Include furniture observation?\n")
try:
s = input("Put 1 for True or 0 for False: ")
k = int(s) == 1
except:
print("Input is not valid. Use 0 by default.")
k = False
args.object_ob = k
# choose segmentation
print()
print("Use segmentation?\n")
try:
s = input("Put 1 for True or 0 for False: ")
k = int(s) == 1
except:
print("Input is not valid. Use 0 by default.")
k = False
use_seg = k
# choose depth
print()
print("Use depth map?\n")
try:
s = input("Put 1 for True or 0 for False: ")
k = int(s) == 1
except:
print("Input is not valid. Use 0 by default.")
k = False
use_depth = k
# set parameters for the environment (env, furniture_id, background)
env_name = 'Furniture{}Env'.format(agent_name)
args.env = env_name
args.furniture_id = furniture_id
args.background = background_name
print()
print("Creating environment (robot: {}, furniture: {}, background: {})".format(
env_name, furniture_name, background_name))
# make environment with rgb, depth map, and segmentation
args.depth_ob = True
args.segmentation_ob = True
# make environment following arguments
env = make_env(env_name, args)
ob = env.reset(args.furniture_id, args.background)
# tell user about environment observation space
print('-' * 80)
print('Observation configuration:')
print(f"Robot ob: {args.robot_ob}, Furniture ob: {args.object_ob}")
print(f"Depth Map: {use_depth}, Segmentation Map: {use_seg}")
print()
print("Observation Space:\n")
print("The observation space is a dictionary. For furniture (object) observations, it is "+
"a multiple of 7 because each part has 3 dims for position and 4 dims for quaternion. "+
"The robot_ob is dependent on the agent, and contains position, velocity, or angles of "+
"the current robot.\n")
print(env.observation_space)
print()
input("Type anything to record an episode's visual observations")
# run the trajectory, save the video
rgb_frames = []
depth_frames = []
seg_frames = []
# load demo from pickle file
with open(env._load_demo, 'rb') as f:
demo = pickle.load(f)
all_qpos = demo['qpos']
# playback first 100 frames
for qpos in all_qpos:
# set furniture part positions
for i, body in enumerate(env._object_names):
pos = qpos[body][:3]
quat = qpos[body][3:]
env._set_qpos(body, pos, quat)
env._stop_object(body, gravity=0)
# set robot positions
if env._agent_type == 'Sawyer':
env.sim.data.qpos[env._ref_joint_pos_indexes] = qpos['sawyer_qpos']
env.sim.data.qpos[env._ref_gripper_joint_pos_indexes] = qpos['l_gripper']
elif env._agent_type == 'Baxter':
env.sim.data.qpos[env._ref_joint_pos_indexes] = qpos['baxter_qpos']
env.sim.data.qpos[env._ref_gripper_right_joint_pos_indexes] = qpos['r_gripper']
env.sim.data.qpos[env._ref_gripper_left_joint_pos_indexes] = qpos['l_gripper']
elif env._agent_type == 'Cursor':
env._set_pos('cursor0', qpos['cursor0'])
env._set_pos('cursor1', qpos['cursor1'])
env.sim.forward()
env._update_unity()
img, depth = env.render('rgbd_array')
seg = I.color_segmentation(env.render('segmentation'))
rgb_frames.append(img)
depth_frames.append(depth)
seg_frames.append(seg)
env.close()
# concatenate available observation frames together and render video
wide_frames = []
L = max(len(rgb_frames), len(rgb_frames), len(seg_frames))
for l in range(L):
rgb = rgb_frames[l]
f = [rgb * 255]
if use_depth:
depth = depth_frames[l]
f.append(depth * 255)
if use_seg:
seg = seg_frames[l]
f.append(seg)
wide = np.concatenate(f, axis=1)
wide_frames.append(wide)
vr = VideoRecorder()
vr._frames = wide_frames
vr.save_video('observations.mp4')
if __name__ == '__main__':
args = argsparser()
main(args)