diff --git a/codes/classical/bits/easy/hamming/hamming.yml b/codes/classical/bits/easy/hamming/hamming.yml index 931e6c94b..46ee87cd3 100644 --- a/codes/classical/bits/easy/hamming/hamming.yml +++ b/codes/classical/bits/easy/hamming/hamming.yml @@ -37,7 +37,7 @@ relations: - code_id: perfect_binary - code_id: q-ary_hamming - code_id: bch - detail: 'Binary Hamming codes are binary primitive narrow-sense BCH codes \cite[Corr. 5.1.5]{doi:10.1017/CBO9780511807077}. Binary Hamming codes are cyclic \cite[Thm. 12.22]{preset:Hill}.' + detail: 'Binary Hamming codes are binary primitive narrow-sense BCH codes \cite[Corr. 5.1.5]{doi:10.1017/CBO9780511807077}. Binary Hamming codes can be written in cyclic form \cite[Thm. 12.22]{preset:Hill}.' - code_id: univ_opt_q-ary detail: 'Binary Hamming codes and several of their extended, punctured, and shortened versions are LP universally optimal codes \cite{arxiv:1212.1913}.' cousins: diff --git a/codes/classical/groups/rank_modulation.yml b/codes/classical/groups/rank_modulation.yml index c31d40af7..7e2ad3693 100644 --- a/codes/classical/groups/rank_modulation.yml +++ b/codes/classical/groups/rank_modulation.yml @@ -16,7 +16,7 @@ alternative_names: description: | A family of codes that encode a finite set of size \(M\) into a group \(S_n\) of permutations of \([n]=(1,2,...,n)\). - They can be derived from Lee-metric codes, Reed-Solomon codes \cite{doi:10.1109/ISIT.2011.6034261}, quadratic residue codes and most binary codes. + They can be derived from Lee-metric codes, Reed-Solomon codes \cite{arxiv:1110.2557}, quadratic residue codes and most binary codes. protection: | Protects against errors in the Kendall tau distance on the space of permutations. @@ -37,7 +37,7 @@ relations: - code_id: gray detail: 'The rank-modulation Gray code is an extension of the original binary Gray code to a code on the permutation group \cite{doi:10.1109/TIT.2009.2018336}.' - code_id: reed_solomon - detail: 'RS codes can be used to design rank modulation codes \cite{doi:10.1109/ISIT.2011.6034261}.' + detail: 'RS codes can be used to design rank modulation codes \cite{arxiv:1110.2557}.' - code_id: binary_permutation detail: 'Binary permutation-based codes also encode messages into permutations but protect against errors with the Hamming distance.'