diff --git a/codes/classical_into_quantum/classical_into_quantum.yml b/codes/classical_into_quantum/classical_into_quantum.yml index db71c716f..33a947cbc 100644 --- a/codes/classical_into_quantum/classical_into_quantum.yml +++ b/codes/classical_into_quantum/classical_into_quantum.yml @@ -28,6 +28,11 @@ features: Ideal decoding error scales is suppressed exponentially with the number of subsystems \(n\) (for c-q block codes), and the exponent has been studied in Ref. \cite{arxiv:2310.09014}. + Unambiguous state discrimination (USD) can be used to achieve Holevo capacity on a general pure-state c-q channel \cite{doi:10.1109/ISIT.2013.6620209}. + + decoders: + - 'Unambiguous state discrimination (USD) \cite{doi:10.1109/ISIT.2013.6620209}.' + relations: parents: - code_id: oaecc diff --git a/codes/classical_into_quantum/concatenated_c-q.yml b/codes/classical_into_quantum/concatenated_c-q.yml index 98517dbff..4745eac53 100644 --- a/codes/classical_into_quantum/concatenated_c-q.yml +++ b/codes/classical_into_quantum/concatenated_c-q.yml @@ -9,6 +9,8 @@ name: 'Concatenated c-q code' description: 'A c-q code constructed out of two classical or quantum codes for the purposes of transmission of classical information over quantum channels.' +features: + rate: 'Concatenated codes can achieve Holevo capacity \cite{arxiv:1102.1963}.' relations: parents: diff --git a/codes/quantum/oscillators/stabilizer/lattice/gkp.yml b/codes/quantum/oscillators/stabilizer/lattice/gkp.yml index bc3a5af5f..67199af91 100644 --- a/codes/quantum/oscillators/stabilizer/lattice/gkp.yml +++ b/codes/quantum/oscillators/stabilizer/lattice/gkp.yml @@ -33,6 +33,7 @@ features: - 'Two Josephson junctions coupled by a gyrator \cite{arxiv:2002.07718}.' - 'Periodic driving (a.k.a. Floquet engineering) \cite{arxiv:2303.03541}.' - 'Approximate GKP states can be prepared using Gaussian operations and photon detectors \cite{arxiv:1902.02323}.' + - 'An optimal-size circuit using ancillary qubits can be used to prepare an approximate GKP state \cite{arxiv:2410.19610}. The size of the circuit is linear in the logarithm of the approximation parameters of the GKP codes.' general_gates: - 'By applying square-lattice GKP error correction to Gaussian input states, universality can be achieved without non-Gaussian elements \cite{arxiv:1903.00012}.'