From 8b87e4020931ac815e30f3311d98006f1d0dcd5a Mon Sep 17 00:00:00 2001 From: "Victor V. Albert" Date: Thu, 24 Oct 2024 11:32:28 -0400 Subject: [PATCH] refs --- codes/classical/q-ary_digits/easy/ternary_golay.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/codes/classical/q-ary_digits/easy/ternary_golay.yml b/codes/classical/q-ary_digits/easy/ternary_golay.yml index 2bcfb0fd5..fa9cc331f 100644 --- a/codes/classical/q-ary_digits/easy/ternary_golay.yml +++ b/codes/classical/q-ary_digits/easy/ternary_golay.yml @@ -8,7 +8,7 @@ physical: q-ary_digits logical: q-ary_digits name: 'Ternary Golay code' -introduced: '\cite{manual:{M. J. E. Golay, \emph{Notes on digital coding}, Proc. IEEE, 37 (1949) 657.}}' +introduced: '\cite{manual:{Veikkaus-Lotto (Veikkaaja) magazine, issues 27, 28, and 33, August-September 1947.},manual:{M. J. E. Golay, \emph{Notes on digital coding}, Proc. IEEE, 37 (1949) 657.}}' description: | A \([11,6,5]_3\) perfect ternary linear code with connections to various areas of mathematics, e.g., lattices \cite{doi:10.1007/978-1-4757-6568-7} and sporadic simple groups \cite{preset:MacSlo}. @@ -46,7 +46,7 @@ features: - 'Decoder for the extended ternary Golay code using the tetracode \cite{doi:10.1109/TIT.1986.1057197}.' realizations: - - 'Code used in football pools with at least one good bet \cite{doi:10.1016/0097-3165(91)90024-B,doi:10.1007/BF03025254}. In fact, the code was originally constructed by Juhani Virtakallio and published in the Finnish football pool magazine Veikkaaja \cite{doi:10.1007/BF03025254,doi:10.5948/UPO9781614440215}.' + - 'Code used in football pools with at least one good bet \cite{doi:10.1016/0097-3165(91)90024-B,doi:10.1007/BF03025254}. In fact, the code was originally constructed by Juhani Virtakallio and published in the Finnish football pool magazine Veikkaaja \cite{manual:{Veikkaus-Lotto (Veikkaaja) magazine, issues 27, 28, and 33, August-September 1947.},doi:10.1007/BF03025254,doi:10.5948/UPO9781614440215}.' - 'Proofs of the quantum mechanical Kochen-Specker theorem \cite{arxiv:2206.04209}.' relations: