From 65861bde6455536e30bdfaeac39d52b815a6b40e Mon Sep 17 00:00:00 2001 From: "Victor V. Albert" Date: Wed, 3 Jul 2024 12:51:26 -0400 Subject: [PATCH] ~ --- .../properties/block/universally_optimal/t-designs.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/codes/classical/properties/block/universally_optimal/t-designs.yml b/codes/classical/properties/block/universally_optimal/t-designs.yml index 074954002..5c46f0c03 100644 --- a/codes/classical/properties/block/universally_optimal/t-designs.yml +++ b/codes/classical/properties/block/universally_optimal/t-designs.yml @@ -36,7 +36,7 @@ description: | Designs also exist on groups. Designs on the unitary (projective unitary) group are called strong unitary (unitary) designs \cite{arXiv:quant-ph/0611002}, while \(t\)-designs on the permutation group are called permutation \(t\)-designs \cite{doi:10.1017/S0963548300001917} (a.k.a. \(t\)-wise independent permutations). - Other notable designs include torus designs \cite{arXiv:math/0405366,arxiv:2311.13479}, simplex designs \cite{doi:10.2307/2002483,doi:10.2307/2002484,doi:10.4036/iis.2018.S.02,doi:10.18434/M32189}, Grassmanian designs \cite{doi:10.1016/S0012-365X(03)00151-1,arxiv:0712.1939,arxiv:1705.02978}, and designs on vertex operator algebras (a.k.a. conformal designs) \cite{arxiv:arXiv:math/0701626}. + Other notable designs include torus designs \cite{arXiv:math/0405366,arxiv:2311.13479}, simplex designs \cite{doi:10.2307/2002483,doi:10.2307/2002484,doi:10.4036/iis.2018.S.02,doi:10.18434/M32189}, Grassmanian designs \cite{doi:10.1016/S0012-365X(03)00151-1,arxiv:0712.1939,arxiv:1705.02978}, and designs on vertex operator algebras (a.k.a. conformal designs) \cite{arXiv:math/0701626}. Existence has been proven for combinatorial designs \cite{doi:10.1016/0012-365X(87)90061-6}, subspace designs \cite{doi:10.1016/j.jcta.2014.06.001,arxiv:2212.00870}, as well as designs on continuous topological spaces \cite{doi:10.1016/0001-8708(84)90022-7,arxiv:1111.5900,arxiv:1112.4900}. # when restricted to act on distinct \(t\)-tuples; see \cite[Remarks 6-7]{arXiv:2404.14648}