From 4837a0fc579dd88e91c6b42ce6d1b276307973a0 Mon Sep 17 00:00:00 2001 From: VVA2024 Date: Fri, 16 Aug 2024 23:37:27 -0400 Subject: [PATCH] ~ --- codes/classical/q-ary_digits/easy/dodecacode.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/codes/classical/q-ary_digits/easy/dodecacode.yml b/codes/classical/q-ary_digits/easy/dodecacode.yml index 652966f2b..78799eac6 100644 --- a/codes/classical/q-ary_digits/easy/dodecacode.yml +++ b/codes/classical/q-ary_digits/easy/dodecacode.yml @@ -24,8 +24,6 @@ relations: parents: - code_id: self_dual_additive detail: 'The dodecacode is trace-Hermitian self-dual additive.' - - code_id: uniformly_packed - detail: 'The dodecacode code is uniformly packed \cite{doi:10.1109/ISIT.2019.8849731}.' cousins: - code_id: combinatorial_design detail: 'There exists a \(5\)-\((12, 6, 3)\) design in the dodecacode, and a \(3\)-\((11, 5, 4)\) design in the shortened dodecacode \cite{doi:10.1023/A:1025484821641}.' @@ -34,6 +32,8 @@ relations: The \([[11,1,5]]\) quantum dodecacode code corresponds to the shortened dodecacode \cite{doi:10.1007/s11128-005-0002-1}. A pure \([[10,1,4]]\) quantum code can be obtained from the doubly punctured dodecacode \cite{doi:10.1007/s11128-005-0002-1}. These codes are not obtained from the Hermitian construction since none of the classical codes are linear.' + - code_id: uniformly_packed + detail: 'The punctured dodecacode code is uniformly packed \cite{doi:10.1109/ISIT.2019.8849731}.' # - code_id: cyclic