From 3f458b64511a04d829affceedab49d93a439c2d3 Mon Sep 17 00:00:00 2001 From: "Victor V. Albert" Date: Sat, 27 Jan 2024 23:06:25 -0500 Subject: [PATCH] 2d + 3d stabilizer --- .../groups/topological/quantum_double.yml | 2 - .../topological/topological_abelian.yml | 2 - .../properties/hamiltonian/self_correct.yml | 2 +- .../translationally_invariant_stabilizer.yml | 82 ------------------- .../topological_stabilizer/2d_stabilizer.yml | 39 +++++++++ .../topological_stabilizer/3d_stabilizer.yml | 36 ++++++++ .../topological_stabilizer}/fracton.yml | 10 +-- .../translationally_invariant_stabilizer.yml | 61 ++++++++++++++ codes/quantum/qubits/dynamic_gen/da/da.yml | 2 + codes/quantum/qubits/mbqc/rbh.yml | 1 + .../stabilizer/qldpc/sc_qldpc/sc_qldpc.yml | 2 +- .../qubits/stabilizer/quantum_parity.yml | 3 +- .../stabilizer/topological/color/3d_color.yml | 1 + .../convolutional/quantum_convolutional.yml | 3 +- .../3d_fermionic_surface.yml | 1 + .../surface/higher_dim_surface/3d_surface.yml | 1 + .../surface/higher_dimensional_surface.yml | 8 +- .../surface/two_dim/surface/surface.yml | 2 +- .../stabilizer/topological/three_fermion.yml | 3 +- .../topological/quantum_double_abelian.yml | 2 +- .../qudits/topological/tqd_abelian.yml | 3 + .../qldpc/galois_topological.yml | 4 +- 22 files changed, 166 insertions(+), 104 deletions(-) rename codes/quantum/{qudits/subsystem => properties/block}/topological/topological_abelian.yml (99%) delete mode 100644 codes/quantum/properties/stabilizer/qldpc/translationally_invariant_stabilizer.yml create mode 100644 codes/quantum/properties/stabilizer/topological_stabilizer/2d_stabilizer.yml create mode 100644 codes/quantum/properties/stabilizer/topological_stabilizer/3d_stabilizer.yml rename codes/quantum/properties/{block/topological => stabilizer/topological_stabilizer}/fracton.yml (66%) create mode 100644 codes/quantum/properties/stabilizer/topological_stabilizer/translationally_invariant_stabilizer.yml diff --git a/codes/quantum/groups/topological/quantum_double.yml b/codes/quantum/groups/topological/quantum_double.yml index 1ba40f090..209e7d206 100644 --- a/codes/quantum/groups/topological/quantum_double.yml +++ b/codes/quantum/groups/topological/quantum_double.yml @@ -44,8 +44,6 @@ relations: detail: 'Quantum-double Hamiltonians can be expressed in terms of \(X\)- and \(Z\)-type operators of group-GKP codes; see \cite[Sec. 3.3]{arxiv:2111.12096}.' - code_id: tqd detail: 'The anyon theory corresponding to a quantum-double code is a TQD with trivial cocycle. These models realize local topological order (LTO) \cite{arxiv:2309.13440}.' - - code_id: string_net - detail: 'String-net model reduces to the quantum-double model for group categories.' # Begin Entry Meta Information diff --git a/codes/quantum/qudits/subsystem/topological/topological_abelian.yml b/codes/quantum/properties/block/topological/topological_abelian.yml similarity index 99% rename from codes/quantum/qudits/subsystem/topological/topological_abelian.yml rename to codes/quantum/properties/block/topological/topological_abelian.yml index a1008efed..b4e4c0d3b 100644 --- a/codes/quantum/qudits/subsystem/topological/topological_abelian.yml +++ b/codes/quantum/properties/block/topological/topological_abelian.yml @@ -4,8 +4,6 @@ ####################################################### code_id: topological_abelian -physical: qudits -logical: qudits name: 'Abelian topological code' #introduced: '' diff --git a/codes/quantum/properties/hamiltonian/self_correct.yml b/codes/quantum/properties/hamiltonian/self_correct.yml index 3dec78322..f11c95d47 100644 --- a/codes/quantum/properties/hamiltonian/self_correct.yml +++ b/codes/quantum/properties/hamiltonian/self_correct.yml @@ -37,7 +37,7 @@ relations: - code_id: symmetry_protected_self_correct detail: 'A self-correcting quantum memory does not require symmetry for self correction.' cousins: - - code_id: translationally_invariant_stabilizer + - code_id: 3d_stabilizer detail: '3D translationally-invariant qubit stabilizer code families with constant \(k\) support logical string operators and thus cannot be self-correcting \cite{arXiv:1103.1885}. For non-constant \(k\), such families can support at most a logarithmic energy barrier \cite{arXiv:1101.1962}.' - code_id: higher_dimensional_surface detail: 'The 4D toric code is a self-correcting quantum memory \cite{arXiv:quant-ph/0110143,arXiv:0811.0033}.' diff --git a/codes/quantum/properties/stabilizer/qldpc/translationally_invariant_stabilizer.yml b/codes/quantum/properties/stabilizer/qldpc/translationally_invariant_stabilizer.yml deleted file mode 100644 index 5ceab6b71..000000000 --- a/codes/quantum/properties/stabilizer/qldpc/translationally_invariant_stabilizer.yml +++ /dev/null @@ -1,82 +0,0 @@ -####################################################### -## This is a code entry in the error correction zoo. ## -## https://github.com/errorcorrectionzoo ## -####################################################### - -code_id: translationally_invariant_stabilizer -# includes both Galois and modular - -name: 'Translationally invariant stabilizer code' -introduced: '\cite{arXiv:1101.1962,arXiv:1204.1063,doi:10.7907/GCYW-ZE58}' - -alternative_names: - - 'Topological stabilizer code' - -description: | - A geometrically local qubit, modular-qudit, or Galois-qudit stabilizer code with qudits organized on a lattice modeled by the additive group \(\mathbb{Z}^D\) for spatial dimension \(D\) such that each lattice point, referred to as a site, - contains \(m\) qudits of dimension \(q\). - The stabilizer group of the translationally invariant code is generated by site-local Pauli operators and their translations. - Boundary conditions have to be imposed on the lattice in order to obtain finite-dimensional codes. - Infinite dimensional formulations are also possible, with the 1D lattice version reducing to quantum convolutional codes. - - \begin{defterm}{Pauli-to-polynomial mapping} - \label{topic:quantum-polynomial-mapping} - A single-qudit Pauli operator can be specified by the lattice coordinate of the site and the symplectic vector - representation of the Pauli operator within the site. - In an extension of the sympletic representation, each lattice coordinate can be represented by a Laurent monomial of \(D\) formal variables. For example, when \(D=2\) and \(m=1\), the product of an \(X\) acting on the qubit at lattice coordinate \((-1,2)\) and a \(Z\) acting on the qubit at \((1,0)\) can be represented by the vector \( (x^{-1} y^2 | x) \). The multiplicative group of finitely supported Pauli operators modulo phase factors on the lattice of dimension \(D\) with \(m\) prime-dimensional qubits per site is isomorphic to the additive group of Laurent polynomial column vectors of length \(2m\) in \(D\) formal variables (see Ref. \cite{arXiv:1607.01387} and Sec. IV of Ref. \cite{arXiv:1812.01625}). - \end{defterm} - - Translationally-invariant prime-qudit (\(q=p\)) stabilizer codes have been classified in dimensions \(D\in\{1,2\}\), up to equivalence under local constant-depth Clifford circuits. Any 1D (2D) code can be converted to several copies of the 1D repetition code (prime-qudit 2D surface code) along with some trivial codes \cite{arXiv:1607.01387} (\cite{arXiv:1812.11193}). Three-dimensional qubit codes can be characterized by four - coarse classes \cite{arXiv:1908.08049}: - - 1. \textit{Abelian topological phase}: Excitations are mobile in all 3 dimensions, as is typical in a topological code. Such codes are conjectured to be equivalent to a \(\mathbb{Z}_2\) gauge theory, i.e., multiple copies of the 3D surface code or its variant where the charge excitation is a fermion. - - 2. \textit{Foliated type-I fracton phase}: Excitations are mobile in less than 3 dimensions, but codes can be grown by \textit{foliation}, i.e., stacking copies of the 2D surface code. - - 3. \textit{Fractal type-I fracton phase}: Excitations are mobile in less than 3 dimensions, and codes are not foliated. - - 4. \textit{Type-II fracton phase}: Excitations are not mobile in any dimension and there are no string operators. - -#The code is specified by a stabilizer group that is generated by site-local Pauli operators and is translationally invariant with respect to the lattice. -#As an example with \(p = 2\) and \(D = 3\), \(P(1, 2, 3; e_1)P(-1, 2, 4; e_{q+2})\) is the Pauli operator that applies \(X\) to -# qubit \(1\) of lattice point \((1, 2, 3)\) and applies \(Z\) to qubit \(2\) of lattice point \((-1, 2, 4)\). This operator can be -# equivalently expressed by the Laurent polynomial \(x_1x_2^2x_3^3e_1 + x_1^{-1}x_2^2x_3^4e_{q+2}\). - -features: - decoders: - - 'Standard stabilizer-based error correction can be performed for translationally invariant stabilizer codes even in the presence of perturbations to the codespace \cite{arxiv:2401.06300}.' - - 'Clustering decoder \cite{doi:10.7907/AHMQ-EG82,arXiv:1112.3252}.' - - 'Tensor-network based decoder for 2D codes subject to correlated noise \cite{arxiv:1809.10704}.' - - 'Quantum neural-network (QNN) decoder \cite{arxiv:2401.06300}.' - -relations: - parents: - - code_id: qldpc - detail: 'Translationally-invariant stabilizer codes are geometrically local.' - - code_id: quantum_quasi_cyclic - detail: 'Translationally-invariant stabilizer codes are invariant under translations by a unit cell.' - cousins: - - code_id: qudit_stabilizer - detail: 'Modular-qudit stabilizer codes can be thought of as translationally-invariant stabilizer codes for dimension \(D = 0\), with the lattice consisting of a single site with some number of qudits.' - - code_id: surface - detail: 'Translation-invariant 2D qubit topological stabilizer codes are equivalent to several copies of the Kitaev surface code via a local constant-depth Clifford circuit \cite{arXiv:1103.4606,arXiv:1107.2707,arXiv:1607.01387}. - There exists an algorithm with which one can determine the fusion and braiding rules of a 2D translationally invariant qubit code, and decompose the given code into copies of the surface code \cite{arxiv:2312.11170}.' - - code_id: quantum_double_abelian - detail: 'Translation-invariant 2D prime-qudit topological stabilizer codes are equivalent to several copies of the prime-qudit surface code via a local constant-depth Clifford circuit \cite{arxiv:1812.11193}.' - - code_id: tqd_abelian - detail: 'Translationally-invariant stabilizer codes can realize 2D modular gapped Abelian bosonic topological orders \cite{arxiv:2211.03798}. - Conversely, Abelian TQD codes need not be translationally invariant, and can realize multiple topological phases on one lattice.' - - code_id: fracton - detail: 'Translationally-invariant stabilizer codes can realize fracton orders. Conversely, fracton codes need not be translationally invariant, and can realize multiple phases on one lattice.' - - code_id: holographic - detail: '2D topological stabilizer codes admit a bulk-boundary correspondence similar to that of holographic codes, namely, the boundary Hilbert space of the former cannot be realized via local degrees of freedom \cite{arxiv:2312.04617}.' - - -# Begin Entry Meta Information -_meta: - # Change log - most recent first - changelog: - - user_id: VictorVAlbert - date: '2022-05-15' - - user_id: TonyLau - date: '2022-04-02' diff --git a/codes/quantum/properties/stabilizer/topological_stabilizer/2d_stabilizer.yml b/codes/quantum/properties/stabilizer/topological_stabilizer/2d_stabilizer.yml new file mode 100644 index 000000000..5e8d9271c --- /dev/null +++ b/codes/quantum/properties/stabilizer/topological_stabilizer/2d_stabilizer.yml @@ -0,0 +1,39 @@ +####################################################### +## This is a code entry in the error correction zoo. ## +## https://github.com/errorcorrectionzoo ## +####################################################### + +code_id: 2d_stabilizer +# includes both Galois and modular + +name: '2D topological stabilizer code' + +description: | + Translationally invariant stabilizer code in two spatial dimensions. + + Any prime-qudit code can be converted to several copies of the prime-qudit 2D surface code along with some trivial codes \cite{arXiv:1812.11193}. + +features: + decoders: + - 'Tensor-network based decoder for 2D codes subject to correlated noise \cite{arxiv:1809.10704}.' + - 'Standard stabilizer-based error correction can be performed even in the presence of perturbations to the codespace \cite{arxiv:2401.06300}.' + +relations: + parents: + - code_id: translationally_invariant_stabilizer + cousins: + - code_id: surface + detail: 'Translation-invariant 2D qubit topological stabilizer codes are equivalent to several copies of the Kitaev surface code via a local constant-depth Clifford circuit \cite{arXiv:1103.4606,arXiv:1107.2707,arXiv:1607.01387}. + There exists an algorithm with which one can determine the fusion and braiding rules of a 2D translationally invariant qubit code, and decompose the given code into copies of the surface code \cite{arxiv:2312.11170}.' + - code_id: quantum_double_abelian + detail: 'Translation-invariant 2D prime-qudit topological stabilizer codes are equivalent to several copies of the prime-qudit surface code via a local constant-depth Clifford circuit \cite{arxiv:1812.11193}.' + - code_id: holographic + detail: '2D topological stabilizer codes admit a bulk-boundary correspondence similar to that of holographic codes, namely, the boundary Hilbert space of the former cannot be realized via local degrees of freedom \cite{arxiv:2312.04617}.' + + +# Begin Entry Meta Information +_meta: + # Change log - most recent first + changelog: + - user_id: VictorVAlbert + date: '2024-01-27' diff --git a/codes/quantum/properties/stabilizer/topological_stabilizer/3d_stabilizer.yml b/codes/quantum/properties/stabilizer/topological_stabilizer/3d_stabilizer.yml new file mode 100644 index 000000000..c7c0a43c0 --- /dev/null +++ b/codes/quantum/properties/stabilizer/topological_stabilizer/3d_stabilizer.yml @@ -0,0 +1,36 @@ +####################################################### +## This is a code entry in the error correction zoo. ## +## https://github.com/errorcorrectionzoo ## +####################################################### + +code_id: 3d_stabilizer +# includes both Galois and modular + +name: '3D topological stabilizer code' + +description: | + Translationally invariant stabilizer code in three spatial dimensions. + + Three-dimensional qubit codes can be characterized by four + coarse classes \cite{arXiv:1908.08049}: + + 1. \textit{Abelian topological phase}: Excitations are mobile in all 3 dimensions, as is typical in a topological code. Such codes are conjectured to be equivalent to a \(\mathbb{Z}_2\) gauge theory, i.e., multiple copies of the 3D surface code or its variant where the charge excitation is a fermion. + + 2. \textit{Foliated type-I fracton phase}: Excitations are mobile in less than 3 dimensions, but codes can be grown by \textit{foliation}, i.e., stacking copies of the 2D surface code. + + 3. \textit{Fractal type-I fracton phase}: Excitations are mobile in less than 3 dimensions, and codes are not foliated. + + 4. \textit{Type-II fracton phase}: Excitations are not mobile in any dimension and there are no string operators. + + +relations: + parents: + - code_id: translationally_invariant_stabilizer + + +# Begin Entry Meta Information +_meta: + # Change log - most recent first + changelog: + - user_id: VictorVAlbert + date: '2024-01-27' diff --git a/codes/quantum/properties/block/topological/fracton.yml b/codes/quantum/properties/stabilizer/topological_stabilizer/fracton.yml similarity index 66% rename from codes/quantum/properties/block/topological/fracton.yml rename to codes/quantum/properties/stabilizer/topological_stabilizer/fracton.yml index b9852c28f..d5dfca005 100644 --- a/codes/quantum/properties/block/topological/fracton.yml +++ b/codes/quantum/properties/stabilizer/topological_stabilizer/fracton.yml @@ -6,18 +6,16 @@ code_id: fracton # includes Galois and modular -name: 'Fracton code' +name: 'Fracton stabilizer code' #introduced: '\cite{arXiv:quant-ph/9705052}' -description: 'A code whose codewords make up the ground-state space of a fracton-phase Hamiltonian.' +description: 'A 3D translationally invariant stabilizer code whose codewords make up the ground-state space of a Hamiltonian in a fracton phase.' -protection: '' -# Can expound on normalizer etc relations: parents: - - code_id: qldpc - detail: 'Fracton codes admit geometrically local stabilizer generators on a cubic lattice.' + - code_id: 3d_stabilizer + detail: '3D stabilizer codes can realize fracton orders. Conversely, fracton codes need not be translationally invariant, and can realize multiple phases on one lattice.' cousins: - code_id: topological detail: 'Fracton phases can be understood as topological defect networks, meaning that they can be described in the language of topological quantum field theory with defects \cite{arXiv:2002.05166,arxiv:2112.14717}.' diff --git a/codes/quantum/properties/stabilizer/topological_stabilizer/translationally_invariant_stabilizer.yml b/codes/quantum/properties/stabilizer/topological_stabilizer/translationally_invariant_stabilizer.yml new file mode 100644 index 000000000..a5c7ef1f7 --- /dev/null +++ b/codes/quantum/properties/stabilizer/topological_stabilizer/translationally_invariant_stabilizer.yml @@ -0,0 +1,61 @@ +####################################################### +## This is a code entry in the error correction zoo. ## +## https://github.com/errorcorrectionzoo ## +####################################################### + +code_id: translationally_invariant_stabilizer +# includes both Galois and modular + +name: 'Lattice stabilizer code' +introduced: '\cite{arXiv:1101.1962,arXiv:1204.1063,doi:10.7907/GCYW-ZE58}' +# geometrically local would also cover hyperbolic, Euclidean overlaps with CSS + +description: | + A geometrically local qubit, modular-qudit, or Galois-qudit stabilizer code with qudits organized on a lattice modeled by the additive group \(\mathbb{Z}^D\) for spatial dimension \(D\). + If the stabilizer group is generated by site-local Pauli operators and their translations, then the code is called \textit{translationally invariant stabilizer code}. + Boundary conditions have to be imposed on the lattice in order to obtain finite-dimensional codes. + Lattice defects and boundaries between different codes can also be introduced. + It is possible to formulate a thermodynamic limit for lattice codes, with the 1D lattice version reducing to quantum convolutional codes. + + Translationally-invariant prime-qudit (\(q=p\)) stabilizer codes with \(m\) qudits per unit cell have been classified in dimensions \(D\in\{1,2\}\) in the thermodynamic limit, up to equivalence under local constant-depth Clifford circuits. + Any 1D (2D) code can be converted to several copies of the 1D repetition code (prime-qudit 2D surface code) along with some trivial codes \cite{arXiv:1607.01387} (\cite{arXiv:1812.11193}). + See 3D topological stabilizer code entry for the 3D classification. + + \begin{defterm}{Pauli-to-polynomial mapping} + \label{topic:quantum-polynomial-mapping} + A single-qudit Pauli operator can be specified by the lattice coordinate of the site and the symplectic vector + representation of the Pauli operator within the site. + In an extension of the sympletic representation, each lattice coordinate can be represented by a Laurent monomial of \(D\) formal variables. For example, when \(D=2\) and \(m=1\), the product of an \(X\) acting on the qubit at lattice coordinate \((-1,2)\) and a \(Z\) acting on the qubit at \((1,0)\) can be represented by the vector \( (x^{-1} y^2 | x) \). The multiplicative group of finitely supported Pauli operators modulo phase factors on the lattice of dimension \(D\) with \(m\) prime-dimensional qubits per site is isomorphic to the additive group of Laurent polynomial column vectors of length \(2m\) in \(D\) formal variables (see Ref. \cite{arXiv:1607.01387} and Sec. IV of Ref. \cite{arXiv:1812.01625}). + \end{defterm} + + +#The code is specified by a stabilizer group that is generated by site-local Pauli operators and is translationally invariant with respect to the lattice. +#As an example with \(p = 2\) and \(D = 3\), \(P(1, 2, 3; e_1)P(-1, 2, 4; e_{q+2})\) is the Pauli operator that applies \(X\) to +# qubit \(1\) of lattice point \((1, 2, 3)\) and applies \(Z\) to qubit \(2\) of lattice point \((-1, 2, 4)\). This operator can be +# equivalently expressed by the Laurent polynomial \(x_1x_2^2x_3^3e_1 + x_1^{-1}x_2^2x_3^4e_{q+2}\). + +features: + decoders: + - 'Clustering decoder \cite{doi:10.7907/AHMQ-EG82,arXiv:1112.3252}.' + - 'Quantum neural-network (QNN) decoder \cite{arxiv:2401.06300}.' + +relations: + parents: + - code_id: qldpc + detail: 'Lattice stabilizer codes are geometrically local.' + - code_id: quantum_quasi_cyclic + detail: 'Lattice stabilizer codes are invariant under translations by a lattice unit cell.' + + + # - code_id: qudit_stabilizer + # detail: 'Modular-qudit stabilizer codes can be thought of as lattice stabilizer codes for dimension \(D = 0\), with the lattice consisting of a single site with some number of qudits.' + + +# Begin Entry Meta Information +_meta: + # Change log - most recent first + changelog: + - user_id: VictorVAlbert + date: '2022-05-15' + - user_id: TonyLau + date: '2022-04-02' diff --git a/codes/quantum/qubits/dynamic_gen/da/da.yml b/codes/quantum/qubits/dynamic_gen/da/da.yml index a7c97bb67..48f787712 100644 --- a/codes/quantum/qubits/dynamic_gen/da/da.yml +++ b/codes/quantum/qubits/dynamic_gen/da/da.yml @@ -45,6 +45,8 @@ relations: detail: 'One of the instantaneous stabilizer codes of the 2D DA color code are stacks of toric/surface codes' - code_id: topological_abelian detail: 'Useful measurement sequences of DA Floquet codes can be extracted from topological quantum field theory \cite{arXiv:2307.10353}.' + - code_id: translationally_invariant_stabilizer + detail: 'DA codes are defined on 2D and 3D lattices, but they are not conventional stabilizer codes in that they use code switching for error correction and gates.' # Begin Entry Meta Information diff --git a/codes/quantum/qubits/mbqc/rbh.yml b/codes/quantum/qubits/mbqc/rbh.yml index cfa7de0c9..37f867004 100644 --- a/codes/quantum/qubits/mbqc/rbh.yml +++ b/codes/quantum/qubits/mbqc/rbh.yml @@ -41,6 +41,7 @@ features: relations: parents: - code_id: cluster_state + - code_id: 3d_stabilizer - code_id: walker_wang detail: 'The Walker-Wang model code reduces to the RBH cluster-state code when the input category \(\mathcal{C}\) is that of the surface code \cite[Sec. V.A]{arxiv:2011.04693}.' cousins: diff --git a/codes/quantum/qubits/stabilizer/qldpc/sc_qldpc/sc_qldpc.yml b/codes/quantum/qubits/stabilizer/qldpc/sc_qldpc/sc_qldpc.yml index 3ba2c604c..4b61831cf 100644 --- a/codes/quantum/qubits/stabilizer/qldpc/sc_qldpc/sc_qldpc.yml +++ b/codes/quantum/qubits/stabilizer/qldpc/sc_qldpc/sc_qldpc.yml @@ -174,7 +174,7 @@ relations: parents: - code_id: qubit_stabilizer - code_id: translationally_invariant_stabilizer - detail: 'Stabilizer generator matrices of SC-QLDPC codes on infinite-length chains or grids define a class of translationally-invariant stabilizer codes.' + detail: 'Stabilizer generator matrices of SC-QLDPC codes on infinite-length chains or grids define a class of lattice stabilizer codes.' cousins: - code_id: sc_ldpc detail: 'SC-QLDPC code stabilizer-generator matrices have similar block form as the parity-check matrices of SC-LDPC codes.' diff --git a/codes/quantum/qubits/stabilizer/quantum_parity.yml b/codes/quantum/qubits/stabilizer/quantum_parity.yml index 6c06d674e..773b79619 100644 --- a/codes/quantum/qubits/stabilizer/quantum_parity.yml +++ b/codes/quantum/qubits/stabilizer/quantum_parity.yml @@ -36,7 +36,6 @@ notes: relations: parents: - code_id: generalized_shor - - code_id: translationally_invariant_stabilizer - code_id: quantum_concatenated detail: 'A QPC is a concatenation of a phase-flip repetition code with a bit-flip repetition code.' cousins: @@ -45,6 +44,8 @@ relations: - code_id: majorana_stab detail: 'QPCs for \(m_1=m_2\) can be conveniantly expressed in terms of mutually commuting Majorana operators \cite{arxiv:quant-ph/0003137}.' +# - code_id: translationally_invariant_stabilizer +# Doesn't seem to be since stab gens can be arbitrarily large # Begin Entry Meta Information _meta: diff --git a/codes/quantum/qubits/stabilizer/topological/color/3d_color.yml b/codes/quantum/qubits/stabilizer/topological/color/3d_color.yml index 43b808a55..c9d41be47 100644 --- a/codes/quantum/qubits/stabilizer/topological/color/3d_color.yml +++ b/codes/quantum/qubits/stabilizer/topological/color/3d_color.yml @@ -25,6 +25,7 @@ features: relations: parents: - code_id: color + - code_id: 3d_stabilizer - code_id: topological_abelian - code_id: quantum_triorthogonal cousins: diff --git a/codes/quantum/qubits/stabilizer/topological/convolutional/quantum_convolutional.yml b/codes/quantum/qubits/stabilizer/topological/convolutional/quantum_convolutional.yml index f14b8259f..5393c7dfb 100644 --- a/codes/quantum/qubits/stabilizer/topological/convolutional/quantum_convolutional.yml +++ b/codes/quantum/qubits/stabilizer/topological/convolutional/quantum_convolutional.yml @@ -32,7 +32,8 @@ relations: parents: - code_id: qubit_stabilizer - code_id: translationally_invariant_stabilizer - detail: 'Quantum convolutional codes are translationally-invariant stabilizer codes on an semi-infinite or infinite lattice in one dimension \cite{arxiv:1305.6973}. Some notions may be extendable to non-stabilizer codes \cite[Sec. 4]{arxiv:quant-ph/0401134}.' + detail: 'Quantum convolutional codes are lattice stabilizer codes on an semi-infinite or infinite lattice in one dimension \cite{arxiv:1305.6973}. Some notions may be extendable to non-stabilizer codes \cite[Sec. 4]{arxiv:quant-ph/0401134}. + Any prime-qudit code can be converted using a constant-depth Clifford circuit to several copies of the 1D repetition code along with some trivial codes \cite{arXiv:1607.01387}.' # Begin Entry Meta Information diff --git a/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_fermionic_surface.yml b/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_fermionic_surface.yml index 164a26f23..0c25e68d5 100644 --- a/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_fermionic_surface.yml +++ b/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_fermionic_surface.yml @@ -29,6 +29,7 @@ features: relations: parents: - code_id: higher_dimensional_surface + - code_id: 3d_stabilizer - code_id: topological_abelian detail: 'The 3D Kitaev surface code realizes 3D \(\mathbb{Z}_2\) gauge theory with an emergent fermion.' diff --git a/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_surface.yml b/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_surface.yml index 54c25a9ea..b2285990e 100644 --- a/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_surface.yml +++ b/codes/quantum/qubits/stabilizer/topological/surface/higher_dim_surface/3d_surface.yml @@ -43,6 +43,7 @@ features: relations: parents: - code_id: higher_dimensional_surface + - code_id: 3d_stabilizer - code_id: topological_abelian detail: 'The 3D Kitaev surface code realizes 3D \(\mathbb{Z}_2\) gauge theory.' cousins: diff --git a/codes/quantum/qubits/stabilizer/topological/surface/higher_dimensional_surface.yml b/codes/quantum/qubits/stabilizer/topological/surface/higher_dimensional_surface.yml index 2aa8e5146..d6cdfacb6 100644 --- a/codes/quantum/qubits/stabilizer/topological/surface/higher_dimensional_surface.yml +++ b/codes/quantum/qubits/stabilizer/topological/surface/higher_dimensional_surface.yml @@ -11,13 +11,15 @@ name: 'Generalized surface code' introduced: '\cite{arxiv:quant-ph/0110143,doi:10.1201/9781420035377-13,doi:10.1007/978-3-642-01877-0_21}' description: | - Also called the \(D\)\textit{-dimensional surface} or \(D\)\textit{-dimensional toric} code. - CSS-type extenstion of the Kitaev surface code to arbitrary \(D\)-dimensional manifolds. - The 4D surface code serves as a self-correcting quantum memory, while surface codes in higher dimensions can have distances not possible in lower dimensions. + CSS-type extenstion of the Kitaev surface code to arbitrary manifolds. + The version on a Euclidean manifold of some fixed dimension is called the \(D\)\textit{-dimensional surface} or \(D\)\textit{-dimensional toric} code. Given a cellulation of a manifold, qubits are put on \(i\)-dimensional faces, \(X\)-type stabilizers are associated with \((i-1)\)-faces, while \(Z\)-type stabilizers are associated with \((i+1)\)-faces. + The 4D surface code serves as a self-correcting quantum memory, while surface codes in higher dimensions can have distances not possible in lower dimensions. + + features: rate: | diff --git a/codes/quantum/qubits/stabilizer/topological/surface/two_dim/surface/surface.yml b/codes/quantum/qubits/stabilizer/topological/surface/two_dim/surface/surface.yml index 0009f6a38..57c70698c 100644 --- a/codes/quantum/qubits/stabilizer/topological/surface/two_dim/surface/surface.yml +++ b/codes/quantum/qubits/stabilizer/topological/surface/two_dim/surface/surface.yml @@ -176,7 +176,7 @@ relations: - code_id: qudit_surface detail: 'The modular-qudit surface code for \(q=2\) reduces to the surface code.' - code_id: galois_topological - detail: 'The surface code has been extended to Galois qudits.' + detail: 'The Galois-qudit surface code for \(q=2\) reduces to the surface code.' cousins: - code_id: majorana_stab detail: 'The Majorana mapping can be used to construct efficient algorithms for simulating rounds of error correction for the surface code \cite{arxiv:1710.02270}.' diff --git a/codes/quantum/qubits/stabilizer/topological/three_fermion.yml b/codes/quantum/qubits/stabilizer/topological/three_fermion.yml index 665aa1bb6..49584bd7b 100644 --- a/codes/quantum/qubits/stabilizer/topological/three_fermion.yml +++ b/codes/quantum/qubits/stabilizer/topological/three_fermion.yml @@ -12,7 +12,7 @@ short_name: '3F model' introduced: '\cite{arxiv:2011.04693}' description: | - A 3D topological code whose low-energy excitations realize the three-fermion anyon theory \cite{arxiv:0712.1377,arxiv:0811.0911,arxiv:1103.4606} and that can be used as a resource state for fault-tolerant MBQC \cite{arxiv:2011.04693}. + A 3D topological stabilizer code whose low-energy excitations realize the three-fermion anyon theory \cite{arxiv:0712.1377,arxiv:0811.0911,arxiv:1103.4606} and that can be used as a resource state for fault-tolerant MBQC \cite{arxiv:2011.04693}. features: general_gates: @@ -23,6 +23,7 @@ features: relations: parents: - code_id: qubit_stabilizer + - code_id: 3d_stabilizer - code_id: walker_wang detail: 'The Walker-Wang model code reduces to the 3F model code when the input category \(\mathcal{C}=3F\) \cite{arxiv:2011.04693}.' - code_id: topological_abelian diff --git a/codes/quantum/qudits/topological/quantum_double_abelian.yml b/codes/quantum/qudits/topological/quantum_double_abelian.yml index b4c737a67..2e185d5ee 100644 --- a/codes/quantum/qudits/topological/quantum_double_abelian.yml +++ b/codes/quantum/qudits/topological/quantum_double_abelian.yml @@ -7,7 +7,7 @@ code_id: quantum_double_abelian physical: qudits logical: qudits -name: 'Abelian quantum double stabilizer code' +name: 'Abelian quantum-double stabilizer code' introduced: '\cite{arXiv:quant-ph/9707021}' description: | diff --git a/codes/quantum/qudits/topological/tqd_abelian.yml b/codes/quantum/qudits/topological/tqd_abelian.yml index b34a259b5..bc7c33bef 100644 --- a/codes/quantum/qudits/topological/tqd_abelian.yml +++ b/codes/quantum/qudits/topological/tqd_abelian.yml @@ -19,6 +19,9 @@ relations: parents: - code_id: qudit_stabilizer detail: 'All Abelian TQD codes can be realized as modular-qudit stabilizer codes by starting with an Abelian quantum double model along with a family of Abelian TQDs that generalize the double semion anyon theory and \hyperref[topic:code-switching]{condensing} certain bosonic anyons \cite{arxiv:2211.03798}.' + - code_id: 2d_stabilizer + detail: 'All Abelian TQD codes can be realized as modular-qudit stabilizer codes by starting with an Abelian quantum double model along with a family of Abelian TQDs that generalize the double semion anyon theory and \hyperref[topic:code-switching]{condensing} certain bosonic anyons \cite{arxiv:2211.03798}. + Abelian TQD codes need not be translationally invariant and can realize multiple topological phases on one lattice.' - code_id: topological_abelian detail: 'Abelian TQDs realize all modular gapped Abelian topological orders \cite{arxiv:2112.11394}. Conversely, every Abelian anyon theory is a subtheory of some TQD \cite[Sec. 6.2]{arxiv:2211.03798}. diff --git a/codes/quantum/qudits_galois/qldpc/galois_topological.yml b/codes/quantum/qudits_galois/qldpc/galois_topological.yml index b1c3ba544..05e09a6fe 100644 --- a/codes/quantum/qudits_galois/qldpc/galois_topological.yml +++ b/codes/quantum/qudits_galois/qldpc/galois_topological.yml @@ -16,8 +16,8 @@ description: | relations: parents: - code_id: galois_css - - code_id: topological -# topological_abelian is modular qudit based, so cousin + - code_id: 2d_stabilizer + - code_id: topological_abelian cousins: - code_id: quantum_double_abelian detail: 'A Galois qudit for \(q=p^m\) can be decomposed into a Kronecker product of \(m\) modular qudits \cite{doi:10.1109/18.959288}; see Sec. 5.3 of Ref. \cite{arxiv:quant-ph/0501074}.