diff --git a/code_extra/bib_preset.yml b/code_extra/bib_preset.yml index 3ee71aefe..4f94ec2ec 100644 --- a/code_extra/bib_preset.yml +++ b/code_extra/bib_preset.yml @@ -120,10 +120,10 @@ EricZin: flm: >- T. Ericson, and V. Zinoviev, eds. \emph{Codes on Euclidean spheres}. Elsevier, 2001. -splag: - _ready_formatted: - flm: >- - 10.1007/978-1-4757-6568-7 +# splag: +# _ready_formatted: +# flm: >- +# 10.1007/978-1-4757-6568-7 coxeter: _ready_formatted: diff --git a/codes/classical/bits/combinatorial_design.yml b/codes/classical/bits/combinatorial_design.yml index 0250106a5..686ce65b7 100644 --- a/codes/classical/bits/combinatorial_design.yml +++ b/codes/classical/bits/combinatorial_design.yml @@ -44,13 +44,13 @@ relations: - code_id: hamming743 detail: 'Weight-three and weight-four codewords of the \([7,4,3]\) Hamming code support combinatorial \(2\)-\((7,3,1)\) and \(2\)-\((7,4,2)\) designs, respectively \cite[Ex. 5.2.5]{preset:HKSdesigns}.' - code_id: hamming - detail: 'Weight-three codewords of the \([2^r-1,2^r-r-1, 3]\) Hamming code support the Steiner system \(S(2,3,2^r-1)\) \cite[pg. 89]{preset:splag}.' + detail: 'Weight-three codewords of the \([2^r-1,2^r-r-1, 3]\) Hamming code support the Steiner system \(S(2,3,2^r-1)\) \cite[pg. 89]{doi:10.1007/978-1-4757-6568-7}.' - code_id: extended_hamming - detail: 'Weight-four codewords of the \([2^r,2^r-r-1, 4]\) extended Hamming code support the Steiner system \(S(3,4,2^r)\) \cite[pg. 89]{preset:splag}.' + detail: 'Weight-four codewords of the \([2^r,2^r-r-1, 4]\) extended Hamming code support the Steiner system \(S(3,4,2^r)\) \cite[pg. 89]{doi:10.1007/978-1-4757-6568-7}.' - code_id: golay - detail: 'The supports of the weight-seven (weight-eight) codewords of the (extended) Golay code support the Steiner system \(S(4,7,23)\) (\(S(5,6,12)\)) \cite[pg. 89]{preset:splag}. Its blocks are called octads.' + detail: 'The supports of the weight-seven (weight-eight) codewords of the (extended) Golay code support the Steiner system \(S(4,7,23)\) (\(S(5,6,12)\)) \cite[pg. 89]{doi:10.1007/978-1-4757-6568-7}. Its blocks are called octads.' - code_id: ternary_golay - detail: 'The supports of the weight-five (weight-six) codewords of the (extended) ternary Golay code support the Steiner system \(S(4,5,11)\) (\(S(5,6,12)\)) \cite[pg. 89]{preset:splag}. Its blocks are called hexads.' + detail: 'The supports of the weight-five (weight-six) codewords of the (extended) ternary Golay code support the Steiner system \(S(4,5,11)\) (\(S(5,6,12)\)) \cite[pg. 89]{doi:10.1007/978-1-4757-6568-7}. Its blocks are called hexads.' - code_id: perfect detail: 'Perfect codes and combinatorial designs are related \cite{doi:10.1137/1016056}.' - code_id: dual diff --git a/codes/quantum/qubits/small_distance/small/stab_15_1_3.yml b/codes/quantum/qubits/small_distance/small/stab_15_1_3.yml index f5e902993..8bd48d34e 100644 --- a/codes/quantum/qubits/small_distance/small/stab_15_1_3.yml +++ b/codes/quantum/qubits/small_distance/small/stab_15_1_3.yml @@ -22,7 +22,7 @@ description: | features: magic_scaling_exponent: 'Magic-state distillation scaling exponent \( \gamma= \log_d (n/k)\approx 2.464\) \cite[Box 2]{arxiv:1612.07330}\cite{arXiv:1703.07847}.' - transversal_gates: 'This code is the smallest qubit stabilizer code with a transversal gate outside of the Clifford group \cite{arxiv:2210.14066}. + transversal_gates: 'This code is the smallest qubit stabilizer code with a (strongly) transversal gate outside of the Clifford group \cite{arxiv:2210.14066}. A transversal logical \(T^\dagger\) is implemented by applying a \(T\) gate on every qubit \cite{arXiv:quant-ph/9610011,arXiv:1403.2734,arXiv:1612.07330}. A subsystem version yields a transversal \(CCZ\) gate \cite{arxiv:1304.3709}. The code fails to have a transversal Hadamard gate; otherwise, it would violate the Eastin-Knill theorem.' diff --git a/codes/quantum/qubits/small_distance/small/stab_8_3_2.yml b/codes/quantum/qubits/small_distance/small/stab_8_3_2.yml index 3dc472e62..7861bda4f 100644 --- a/codes/quantum/qubits/small_distance/small/stab_8_3_2.yml +++ b/codes/quantum/qubits/small_distance/small/stab_8_3_2.yml @@ -14,10 +14,10 @@ alternative_names: - 'Smallest interesting color code' description: | - Smallest 3D color code whose physical qubits lie on vertices of a cube and which admits a transversal CCZ gate. + Smallest 3D color code whose physical qubits lie on vertices of a cube and which admits a (weakly) transversal CCZ gate. features: - transversal_gates: 'CZ gates between any two logical qubits \cite{arxiv:1912.10063} and CCZ gate \cite{arxiv:1503.02065,manual:{E. Campbell, “The smallest interesting colour code,” Online available at https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/ (2016), accessed on 2019-12-09.},arxiv:1912.10063}.' + transversal_gates: 'CZ gates between any two logical qubits \cite{arxiv:1912.10063} and (weakly) transversal CCZ gate \cite{arxiv:1503.02065,manual:{E. Campbell, “The smallest interesting colour code,” Online available at https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/ (2016), accessed on 2019-12-09.},arxiv:1912.10063}.' fault_tolerance: - 'CCZ gate can be distilled in a fault-tolerant manner \cite{arxiv:2007.07929}.'