diff --git a/codes/quantum/qubits/ea_stabilizer/eastab.yml b/codes/quantum/qubits/ea_stabilizer/eastab.yml index c4af26129..8af0ab16a 100644 --- a/codes/quantum/qubits/ea_stabilizer/eastab.yml +++ b/codes/quantum/qubits/ea_stabilizer/eastab.yml @@ -19,6 +19,9 @@ description: | An \([[n,k+e;e]]\) EA stabilizer code can be constructed from an ordinary \([[n,k]]\) stabilizer code with check matrix \(H=(A|B)\), where the required number of ebits is \(e = \text{rank}(AB^T+BA^T)\) \cite{arxiv:0804.1404}. +protection: | + There are quantum Griesmer \cite{doi:10.1007/s11128-015-1143-5} and Plotkin \cite{doi:10.1103/PhysRevA.87.032309} bounds for EA qubit stabilizer codes. + features: rate: 'Asymptotically good EA qubit stabilizer codes exist \cite{doi:10.1007/s10623-014-9997-6}.' encoders: @@ -50,6 +53,11 @@ relations: detail: 'As opposed to CSS codes, EA qubit stabilizer codes can be constructed from any linear binary code.' - code_id: hybrid_qudit_oscillator detail: 'A minimal EA qubit stabilizer code has been realized in using hyper-entangled states \cite{arxiv:0807.4906}.' + - code_id: qubit_concatenated + detail: 'There exist concatenated EA qubit stabilizer codes that saturate the EA quantum Griesmer and Plotkin bounds \cite{arxiv:2412.16082}.' + - code_id: ea_mds + detail: 'There exist concatenated EA qubit stabilizer codes that saturate the EA quantum Singleton bound \cite{arxiv:2412.16082}.' + # Begin Entry Meta Information diff --git a/codes/quantum/qubits/subsystem/topological/heavy_hex.yml b/codes/quantum/qubits/subsystem/topological/heavy_hex.yml index cbaa5c8bf..611d115eb 100644 --- a/codes/quantum/qubits/subsystem/topological/heavy_hex.yml +++ b/codes/quantum/qubits/subsystem/topological/heavy_hex.yml @@ -33,12 +33,14 @@ features: general_gates: - 'Universal gate set achieved with magic state injection and lattice surgery.' + - 'Magic-state injection with and without flag qubits \cite{arxiv:2412.15751}.' decoders: - 'Any graph-based decoder can be used, such as MWPM and Union Find. However, edge weights must be dynamically renormalized using flag-qubit measurement outcomes after each syndrome measurement round.' - 'Machine-learning \cite{arxiv:2210.09730} and neural-network \cite{arxiv:2311.15146} decoders.' + fault_tolerance: - 'All logical gates can be fault-tolerantly implemented using lattice surgery and magic state injection.' - 'Stabilizer measurements are measured fault-tolerantly using one-flag circuits since some single-fault events can result in weight-two data qubit errors which are parallel to the code''s logical operators. Hence, using information from the flag-qubit measurements is crucial to fault-tolerantly measure the code stabilizers.'