-
Notifications
You must be signed in to change notification settings - Fork 0
/
SQGE.Error.tex
executable file
·597 lines (588 loc) · 27.7 KB
/
SQGE.Error.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
The main goal of this section is to develop a rigorous error analysis for the FE
discretization of the SQGE \eqref{eqn:SQGE_Psi} by using conforming FEs. In
particular, we develop error bounds for the FE discretiztion of
\eqref{eqn:SQGE_Psi} with Argyris element in \autoref{thm:Errors}. First, in
\autoref{thm:EnergyNorm} we prove error estimates in the $H^2$ norm by using an
approach similar to that used in \cite{Cayco86}. Second, in
\autoref{thm:Errors}, we prove error estimates in the $L^2$ and $H^1$ norms by
using a duality argument.
The following lemma will introduce some useful bounds for the forms introduced
in \autoref{sec:QGEStrong}.
\begin{lemma} \label{lma:ContinuousForms}
The linear form $(F,\chi)$, the bilinear forms $(\nabla \psi, \nabla \chi)$,
$(\Delta \psi, \Delta \chi)$, $(\psi_x, \chi)$ and the trilinear form $b(\psi;
\psi, \chi)$ are continuous \cite{Cayco86}: There exist $\Gamma_0,\,
\Gamma_2 > 0$ such that for all $\psi, \chi, \varphi\in X$
\begin{align}
(\nabla \psi, \nabla \chi) &\le \Gamma_0\, |\psi|_2 |\chi|_2,
\label{eqn:a0cont} \\
(\Delta \psi, \Delta \chi) &\le |\psi|_2\, |\chi|_2, \label{eqn:a1Cont} \\
b(\psi;\varphi,\chi) &\le \Gamma_1 \|\psi\|_2\, \|\varphi\|_2\, \|\chi\|_2,
\label{eqn:BH2Bounds} \\
(\psi_x,\chi) &\le \Gamma_2 \, |\psi|_2 \, |\chi|_2, \label{eqn:a3Cont} \\
(F,\chi) &\le \|F\|_{-2} \, |\chi|_2.
\label{eqn:lCont}
\end{align}
\end{lemma}
\begin{proof}
We first establish the most straightforward estimate \eqref{eqn:a1Cont}. This
follows directly from the H\"older inequality, \eqref{eqn:Holder}, i.e.
\begin{equation*}
(\Delta \psi, \Delta \chi) \le \|\Delta \psi\|_{L^p}\,\|\Delta \chi\|_{L^r},
\quad \frac{1}{p} + \frac{1}{r} = 1
\end{equation*}
with $p=r=2$. \\
The bound \eqref{eqn:lCont} can be proven by first noting that, $\forall \chi
\in X$,
\begin{equation*}
\frac{(F,\chi)}{|\chi|_2} \le \sup_{\xi \in X} \frac{(F,\xi)}{|\xi|_2} =
\|F\|_{-2}.
\end{equation*}
Multiplying both sides of the above inequality by $|\chi|_2$ gives the desired
result:
\begin{equation*}
(F,\chi) \le \|F\|_{-2}|\chi|_2.
\end{equation*}
Next, we prove \eqref{eqn:a0cont} by first applying H\"older inequality, \eqref{eqn:Holder} with
$p=r=2$. Therefore
\begin{equation*}
(\nabla \psi, \nabla \chi) \le \|\nabla \psi\|\, \|\nabla \chi\|.
\end{equation*}
Now, we apply the Poincar\'e inequality, \eqref{eqn:Poincare} to get the
desired result:
\begin{equation*}
(\nabla \psi, \nabla \chi) \le \Gamma_0 |\psi|_2, |\chi|_2,
\end{equation*}
where $\Gamma_0$ is the square of the Poincar\'e constant. \\
Next, we will obtain \eqref{eqn:a3Cont} by first applying the H\"older
inequality to get
\begin{equation*}
(\psi_x, \chi) \le \|\psi_x\|\, \|\chi\|.
\end{equation*}
Noting that $\|\psi_x\| \le \|\nabla \psi\|$ and applying the Poincar\'e
inequality once to the term involving $\psi$ and twice to the term involving
$\chi$ gives the desired result
\begin{equation*}
(\psi_x, \chi) \le \Gamma_2\,|\psi|_2\, |\chi|_2,
\end{equation*}
where $\Gamma_2$ is the cube of the Poincar\'e constant. \\
Finally, for \eqref{eqn:BH2Bounds} we start by applying the H\"older inequality, \eqref{eqn:Holder}
\begin{equation}
b(\psi;\varphi,\chi) \le \|\Delta \psi\|_{L^p} \|\nabla \varphi\|_{L^q}
\|\nabla \chi\|_{L^r},\quad \frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1,
\label{eqn:HolderB}
\end{equation}
where $1\le p,\,q,\,r\le \infty$. Thus, setting $p = 2$, and $q = r = 4$ gives
\begin{equation*}
b(\psi;\varphi,\chi) \le \|\Delta \psi\| \|\nabla \varphi\|_{L^4} \|\nabla
\chi\|_{L^4}.
\end{equation*}
Then applying the Ladyzhenskaya inequality, \eqref{eqn:Ladyzhenskaya} results in
\begin{equation}
b(\psi;\varphi,\chi) \le \Gamma \|\Delta \psi\|
\|\nabla \varphi\|^{\nicefrac{1}{2}} \|\Delta \varphi\|^{\nicefrac{1}{2}}
\|\nabla \chi\|^{\nicefrac{1}{2}} \|\Delta \chi\|^{\nicefrac{1}{2}},
\label{eqn:bLady}
\end{equation}
where $\Gamma$ is the square Ladyzhenskaya constant, from
\eqref{eqn:Ladyzhenskaya}. Using the Poincar\'e inequality,
\eqref{eqn:Poincare} gives
\begin{equation*}
b(\psi;\varphi,\chi) \le \Gamma_1 \|\Delta \psi\|\, \|\Delta \varphi\|\,
\|\Delta \chi\|,
\end{equation*}
where $\Gamma_1$ is the square of the Poincar\'e constant time $\Gamma$ from
\eqref{eqn:bLady}.
\end{proof}
\begin{thm}
\label{thm:EnergyNorm}
Let $\psi$ be the solution of \eqref{eqn:SQGEWF} and $\psi^h$ be the solution
of \eqref{eqn:SQGEFEF}.
Furthermore, assume that the following small data condition is satisfied:
\begin{equation}
Re^{-2} \, Ro \geq \Gamma_1 \, \| F \|_{-2} ,
\label{eqn:small_data_condition}
\end{equation}
where $Re$ is the Reynolds number defined in \eqref{eqn:reynolds_number}, $Ro$
is the Rossby number defined in \eqref{eqn:rossby_number}, $\Gamma_1$ is the
continuity constant of the trilinear form $b$ in \eqref{eqn:BH2Bounds}, and $F$
is the forcing term. Then the following error estimate holds:
\begin{equation}
|\psi - \psi^h|_2 \le C(Re, Ro, \Gamma_1, \Gamma_2, F) \,
\inf_{\chi^h \in X^h} |\psi - \chi^h|_2 ,
\label{eqn:EnergyNorm}
\end{equation}
where
\begin{equation}
C(Re, Ro, \Gamma_1, \Gamma_2, F)
:= \frac{ Ro^{-1} \Gamma_2 + 2 \, Re^{-1} + \Gamma_1 \, Re \, Ro^{-1} \,
\| F \|_{-2} }
{ Re^{-1} - \Gamma_1 \, Re \, Ro^{-1} \, \| F \|_{-2} }
\label{eqn:constant_definition}
\end{equation}
is a generic constant that can depend on $Re$, $Ro$, $\Gamma_1$, $\Gamma_2$, $F$, but
\emph{not} on the meshsize $h$.
\end{thm}
\begin{remark}
Note that the small data condition in \autoref{thm:EnergyNorm} involves
\emph{both} the Reynolds number and the Rossby number, the latter quantifying
the rotation effects in the QGE.
Furthermore, note that the standard small data condition $Re^{-2} \geq
\Gamma_1 \, \| F \|_{-2}$ used to prove the uniqueness for the steady-state 2D
NSE \cite{Girault79,Girault86,Layton08} is significantly more restrictive for
the QGE, since \eqref{eqn:small_data_condition} has the Rossby number (which
is small when rotation effects are significant) on the left-hand side. This
is somewhat counterintuitive, since in general rotation effects are expected
to help in proving the well-posedness of the system. We think that the
explanation for this puzzling situation is the following: Rotation effects do
make the mathematical analysis of 3D flows more amenable by giving them a 2D
character. We, however, are concerned with 2D flows (the QGE). In this case,
the small data condition \eqref{eqn:small_data_condition} (needed in proving
the uniqueness of the solution) indicates that rotation effects make the
mathematical analysis of the (2D) QGE more complicated than that of the 2D
NSE. %We emphasize that there is no contradiction, since, although the
%rotation effects do help in the three-dimensional case, they seem to
%complicate the situation if one compare the QGE with the two-dimensional (not
%the three-dimensional) NSEi.
\end{remark}
\begin{proof}
Since $X^h \subset X$, \eqref{eqn:SQGEWF} holds for all $\chi = \chi^h\in X^h$.
Subtracting \eqref{eqn:SQGEFEF} from \eqref{eqn:SQGEWF} with $\chi=\chi^h \in
X^h$ gives
\begin{equation}
\begin{split}
Re^{-1}\left(\Delta \left[\psi - \psi^h\right],\Delta \chi^h \right)
+ b(\psi;\psi,\chi^h) - b(\psi^h;\psi^h,\chi^h) \\
- Ro^{-1} \left(\left[\psi-\psi^h\right]_x,\chi^h\right) = 0 \qquad \forall \chi^h \in
X^h.
\end{split}
\label{eqn:ErrorEq}
\end{equation}
Next, adding and subtracting $b(\psi^h;\psi,\chi^h)$ to \eqref{eqn:ErrorEq},
we get:
\begin{equation}
\begin{split}
& Re^{-1} (\Delta \left[\psi - \psi^h\right], \Delta \chi^h)
+ b(\psi;\psi,\chi^h) - b(\psi^h;\psi,\chi^h) %\\
+ b(\psi^h;\psi,\chi^h) - b(\psi^h;\psi^h,\chi^h) \\
& \hspace*{3.0cm} - Ro^{-1} (\left[\psi-\psi^h\right]_x,\chi^h) = 0
\qquad \forall \chi^h \in X^h.
\end{split}
\label{eqn:interError}
\end{equation}
The error $e$ can be decomposed as
\begin{equation}
e:= \psi-\psi^h = (\psi-\lambda^h)+(\lambda^h-\psi^h):= \eta + \Phi^h,
\label{eqn:ErrorTrick}
\end{equation}
where $\lambda^h\in X^h$ is arbitrary.
Thus, equation \eqref{eqn:interError} can be
rewritten as
\begin{equation}
\begin{split}
Re^{-1}(\Delta \eta + \Delta \Phi^h, \Delta \chi^h)
+ b(\eta+\Phi^h,\psi,\chi^h) + b(\psi^h;\eta+\Phi^h,\chi^h) \\
+ Ro^{-1} (\eta_x+\Phi^h_x,\chi^h) = 0 \qquad \forall \chi^h \in X^h.
\end{split}
\label{eqn:ErrorEta}
\end{equation}
Letting $\chi^h := \Phi^h$ in \eqref{eqn:ErrorEta}, we obtain
\begin{equation}
\begin{split}
Re^{-1} (\Delta \Phi^h, \Delta \Phi^h) - Ro^{-1} (\Phi^h_x,\Phi^h)
= -Re^{-1} (\Delta \eta, \Delta \Phi^h)
- b(\eta;\psi,\Phi^h) - b(\psi^h;\psi,\Phi^h) \\
- b(\psi^h;\eta,\Phi^h) - b(\psi^h;\Phi^h,\Phi^h)
+ Ro^{-1} (\eta,\Phi^h).
\end{split}
\label{eqn:ErrorVarphi}
\end{equation}
Note that, since $(\Phi^h_x,\Phi^h)=-(\Phi^h,\Phi^h_x)\; \forall
\Phi^h \in X^h \subset X = H^2_0$, it follows that
\begin{equation}
(\Phi^h_x,\Phi^h)=0 .
\label{eqn:a30}
\end{equation}
Also, it follows immediately from \eqref{eqn:b} that
\begin{equation}
b(\psi^h;\Phi^h,\Phi^h)=0 .
\label{eqn:b0}
\end{equation}
Combining \eqref{eqn:b0}, \eqref{eqn:a30}, and \eqref{eqn:ErrorVarphi}, we get:
\begin{equation}
\begin{split}
Re^{-1} (\Delta \Phi^h, \Delta \Phi^h) = -Re^{-1} (\Delta \eta, \Delta \Phi^h)
- b(\Phi^h;\psi,\Phi^h) - b(\eta;\psi,\Phi^h) \\
- b(\psi^h;\eta,\Phi^h) + Ro^{-1} (\eta_x,\Phi^h).
\end{split}
\label{eqn:ErrorZeroed}
\end{equation}
Using
\begin{equation*}
(\Delta \Phi^h, \Delta \Phi^h) = |\Phi^h|^2_2
\end{equation*}
and inequalities \eqref{eqn:a1Cont} -- \eqref{eqn:a3Cont} in equation
\eqref{eqn:ErrorZeroed} gives
\begin{equation}
\begin{split}
Re^{-1} \, |\Phi^h|^2_2 \le Re^{-1} \, |\eta|_2 \, |\Phi^h|_2 + \Gamma_1
\biggl( |\eta|_2 \, |\psi|_2 \, |\Phi^h|_2 + |\psi^h|_2 \, |\eta|_2 \,
|\Phi^h|_2 \biggr) \\
+ \Gamma_1 \, |\Phi^h|^2_2 \, |\psi|_2 + Ro^{-1}\, \Gamma_2 \, |\eta|_2 \, |\Phi^h|_2 .
\end{split}
\label{eqn:varphiIneq}
\end{equation}
Simplifying and rearranging terms in \eqref{eqn:varphiIneq} gives
\begin{equation}
|\Phi^h|_2 \le \left( Re^{-1} - \Gamma_1 \, | \psi |_2 \right)^{-1} \,
\left( Re^{-1} + \Gamma_1 \, |\psi|_2 + \Gamma_1 \, |\psi^h|_2 +
Ro^{-1}\, \Gamma_2 \right) \, |\eta|_2 .
\label{eqn:phihIneq}
\end{equation}
Using \eqref{eqn:phihIneq} and the triangle inequality along with the
stability estimates \eqref{eqn:stability_sqge} and
\eqref{eqn:stability_fem_sqge} gives
\begin{align}
|e|_2 &\le |\eta|_2 + |\Phi^h|_2 \nonumber \\[0.2cm]
&\le \left[ 1 + \frac{Re^{-1} + \Gamma_1 \, |\psi|_2 + \Gamma_1 \,
|\psi^h|_2 + Ro^{-1}\, \Gamma_2} {Re^{-1} - \Gamma_1 \, |\psi|_2} \right] \, |\eta|_2
\nonumber \\[0.2cm]
&\le \left[ 1 + \frac{Re^{-1} + \Gamma_1 \, \left( Re \, Ro^{-1} \, \| F
\|_{-2} \right) + \Gamma_1 \, \left( Re \, Ro^{-1} \, \| F \|_{-2} \right)
+ Ro^{-1}\, \Gamma_2} {Re^{-1} - \Gamma_1 \, \left( Re \, Ro^{-1} \, \| F \|_{-2}
\right) } \right] \, |\eta|_2 \nonumber \\
&= \left[ \frac{ Ro^{-1}\, \Gamma_2 + 2 \, Re^{-1} + \Gamma_1 \, Re \, Ro^{-1} \,
\| F \|_{-2} } { Re^{-1} - \Gamma_1 \, Re \, Ro^{-1} \, \| F \|_{-2} }
\right] \, | \psi-\lambda^h |_2 ,
\label{eqn:EnergyError}
\end{align}
where $\lambda^h \in X^h$ is arbitrary. Taking the infimum over $\lambda^h \in
X^h$ in \eqref{eqn:EnergyError} proves the error estimate
\eqref{eqn:EnergyNorm}.
\end{proof}
In \autoref{thm:EnergyNorm}, we proved an error estimate in the $H^2$ norm.
In \autoref{thm:Errors}, we will prove error estimates in the $L^2$ and $H^1$
norms by using a duality argument. To this end, we first notice that the QGE
\eqref{eqn:QGE_psi} can be written as
\begin{equation}
\mathcal{N} \, \psi = Ro^{-1} \, F ,
\label{eqn:qge_operator_formulation}
\end{equation}
where the nonlinear operator $\mathcal{N}$ is defined as
\begin{equation}
\mathcal{N} \, \psi := Re^{-1} \, \Delta^2 \psi + J(\psi , \Delta \psi)
- Ro^{-1} \, \frac{\partial \psi}{\partial x} .
\label{eqn:nonlinear_operator}
\end{equation}
The linearization of $\mathcal{N}$ around $\psi$, a solution of
\eqref{eqn:QGE_psi}, yields the following \emph{linear} operator:
\begin{equation}
\mathcal{L} \, \chi := Re^{-1} \, \Delta^2 \chi + J(\chi , \Delta \psi) +
J(\psi, \Delta \chi) - Ro^{-1} \, \frac{\partial \chi}{\partial x} .
\label{eqn:linear_operator}
\end{equation}
To find the dual problem associated with the QGE
\eqref{eqn:qge_operator_formulation}, we first define the \emph{dual operator}
$\mathcal{L}^*$ of $\mathcal{L}$:
\begin{equation}
(\mathcal{L} \, \chi , \psi^*) = ( \chi , \mathcal{L}^* \, \psi^*)
\qquad \forall \, \psi^* \in X .
\label{eqn:dual_operator}
\end{equation}
To find $\mathcal{L}^*$, we use the standard procedure:
In \eqref{eqn:dual_operator}, we use the definition of $\mathcal{L}$ given in \eqref{eqn:linear_operator} and we ``integrate by parts" (i.e., use Green's theorem):
\begin{align}
(\mathcal{L} \, \chi , \psi^*) =& \left( Re^{-1} \, \Delta^2 \chi
+ J(\chi , \Delta \psi) + J(\psi, \Delta \chi)
- Ro^{-1} \, \frac{\partial \chi}{\partial x} \, , \, \psi^* \right) \nonumber \\
=& \left( \chi \, , \, Re^{-1} \, \Delta^2 \, \psi^* - J(\psi , \Delta \psi^* )
+ Ro^{-1} \, \frac{\partial \psi^*}{\partial x} \right)
+ \biggl( J(\chi , \Delta \psi) , \psi^* \biggr) ,
\label{eqn:dual_operator_1}
\end{align}
where to get the first term on the right-hand side of
\eqref{eqn:dual_operator_1} we used the skew-symmetry of the trilinear form
$b$ in the last two variables and Green's theorem (just as we did in the proof
of \autoref{thm:stability_sqge}).
Next, we apply Green's theorem to the second term on the right-hand side of
\eqref{eqn:dual_operator_1}:
\begin{align}
\biggl( J(\chi , \Delta \psi) , \psi^* \biggr) =& \int_{\Omega}\! \chi_x \,
\Delta \psi_y \, \psi^* - \chi_y \, \Delta \psi_x \, \psi^* \nonumber\,
d\mathbf{x} \\
\stackrel{Green}{=}& \cancelto{0}{\int_{\partial \Omega}\!
\left(\chi \, \Delta \psi_{x y} \, \psi^* - \chi \, \Delta \psi_{y x} \,
\psi^* \right) \cdot \mathbf{n} \, dS}
+ \int_{\Omega}\! \chi \, \Delta \psi_x \, \psi^*_y
- \chi \, \Delta \psi_y \, \psi^*_x\, d\mathbf{x} \nonumber \\[1em]
=& \biggl( \chi , J(\Delta \psi , \psi^*) \biggr) .
\label{eqn:dual_operator_2}
\end{align}
Equations \eqref{eqn:dual_operator_1}-\eqref{eqn:dual_operator_2} imply:
\begin{align}
(\mathcal{L} \, \chi , \psi^*) =& \left( \chi \, , \, Re^{-1} \, \Delta^2 \, \psi^*
- J(\psi , \Delta \psi^* ) + Ro^{-1} \, \frac{\partial \psi^*}{\partial x} \right)
+ \biggl( \chi , J(\Delta \psi , \psi^*) \biggr) \nonumber \\
=& ( \chi , \mathcal{L}^* \, \psi^*) .
\label{eqn:dual_operator_3}
\end{align}
Thus, the \emph{dual operator} $\mathcal{L}^*$ is given by
\begin{equation}
\mathcal{L}^* \, \psi^* = Re^{-1} \, \Delta^2 \, \psi^* - J(\psi , \Delta \psi^* )
+ J(\Delta \psi , \psi^* ) + Ro^{-1} \, \frac{\partial \psi^*}{\partial x} .
\label{eqn:dual_operator_4}
\end{equation}
For any given $g \in L^2(\Omega)$, the weak formulation of the \emph{dual
problem} is:
\begin{equation}
( \mathcal{L}^* \, \psi^* , \chi ) = (g , \chi)
\qquad \forall \, \chi \in X = H_0^2(\Omega) .
\label{eqn:dual_operator_5}
\end{equation}
We assume that $\psi^*$, the solution of \eqref{eqn:dual_operator_5}, satisfies
the following elliptic regularity estimates:
\begin{align}
& \psi^* \in H^4(\Omega) \cap H^2_0(\Omega), \label{eqn:dual_operator_6a} \\[0.2cm]
& \| \psi^* \|_4 \le C \, \|g\|_{0}, \label{eqn:dual_operator_6b} \\[0.2cm]
& \| \psi^* \|_3 \le C \, \|g\|_{-1}, \label{eqn:dual_operator_6c}
\end{align}
where $C$ is a generic constant that can depend on the data, but not on the
mesh size $h$.
\begin{remark}
We note that this type of elliptic regularity was also assumed in \cite{Cayco86}
for the streamfunction formulation of the 2D NSE. In that report, it was also
noted that, for a polygonal domain with maximum interior vertex angle $\theta <
126^{\circ}$, the assumed elliptic regularity was actually proved by Blum and
Rannacher \cite{Blum1980}. We note that the theory developed in
\cite{Blum1980} carries over to our case as well. In Section 5 in
\cite{Blum1980} it is proved that, for weakly nonlinear problems that
involve the biharmonic operator as linear main part and that satisfy certain
growth restrictions, each weak solution satisfies elliptic regularity results of
the form \eqref{eqn:dual_operator_6a}-\eqref{eqn:dual_operator_6c}. Assuming
that $\Omega$ is a bounded polygonal domain with inner angle $\omega$ at each
boundary corner satisfying $\omega < 126.283696\ldots^{\circ}$, Theorem 7 in
\cite{Blum1980} with $k = 0$ and $k = 1$ implies
\eqref{eqn:dual_operator_6a}-\eqref{eqn:dual_operator_6c}. Using an argument
similar to that used in Section 6(b) in \cite{Blum1980} to prove that
the streamfunction formulation of the 2D NSE satisfies the restrictions in
Theorem 7, we can prove that $\psi^*$, the solution of our dual problem
\eqref{eqn:dual_operator_5}, satisfies the elliptic regularity results in
\eqref{eqn:dual_operator_6a}-\eqref{eqn:dual_operator_6c}. Indeed, the main
point in Section 6(b) in \cite{Blum1980} is that the corner
singularities arising in flows around sharp corners are essentially determined
by the linear main part $\Delta^2$ in the streamfunction formulation of the 2D
NSE, which is the linear main part of our dual problem
\eqref{eqn:dual_operator_5} as well.
\end{remark}
We emphasize that although, the error estimates in the $L^2$ and $H^1$ norms
proven in \autoref{thm:Errors} are derived for the particular space $X^h\subset
H^2_0(\Omega)$ consisting of Argyris elements, the same results can be derived
for other conforming $C^1$ finite element spaces.
\begin{thm} \label{thm:Errors}
Let $\psi$ be the solution of \eqref{eqn:SQGEWF} and $\psi^h$ be the solution
of \eqref{eqn:SQGEFEF}. Assume that the same small data condition as in
\autoref{thm:EnergyNorm} is satisfied:
\begin{equation}
Re^{-2} \, Ro \geq \Gamma_1 \, \| F \|_{-2} .
\label{eqn:small_data_condition_dual}
\end{equation}
Furthermore, assume that $\psi\in H^6(\Omega) \cap H^2_0(\Omega)$. Then there
exist positive constants $C_0, \, C_1 \text{ and } C_2$ that can depend on
$Re$, $Ro$, $\Gamma_1$, $\Gamma_2$, $F$, but \emph{not} on the meshsize $h$, such that
\begin{align}
|\psi - \psi^h|_2 &\le C_2 \, h^4\, |\psi|_6, \label{eqn:H2Error} \\
|\psi - \psi^h|_1 &\le C_1 \, h^5\, |\psi|_6, \label{eqn:H1Error} \\
\|\psi - \psi^h\|_0 &\le C_0 \, h^6\, |\psi|_6. \label{eqn:L2Error}
\end{align}
\end{thm}
\begin{proof}
Estimate \eqref{eqn:H2Error} follows immediately from
\eqref{eqn:argyris_approximation_0} and \autoref{thm:EnergyNorm}.
Estimates \eqref{eqn:L2Error} and \eqref{eqn:H1Error} follow from a duality
argument.
The error in the primal problem \eqref{eqn:SQGEWF} and the interpolation error
in the dual problem \eqref{eqn:dual_operator_5} are denoted as
\begin{equation}
e := \psi - \psi^h \qquad e^* : = \psi^* - {\psi^*}^h ,
\label{eqn:theorem_dual_1}
\end{equation}
respectively.
We start by proving the $L^2$ norm estimate \eqref{eqn:L2Error}.
\begin{align}
|e|^2 = (e, e) &= (e , \mathcal{L}^* \, \psi^*)
= (\mathcal{L} \, e , \psi^*) \nonumber \\
&= (e , \mathcal{L}^* \, e^*) + (e , \mathcal{L}^* \, {\psi^*}^h)
= (\mathcal{L} \, e , e^*) + (\mathcal{L} \, e , {\psi^*}^h) .
\label{eqn:theorem_dual_2}
\end{align}
The last term on the right-hand side of \eqref{eqn:theorem_dual_2} is given by
\begin{equation}
(\mathcal{L} \, e , {\psi^*}^h) = \left( Re^{-1} \, \Delta^2 e
+ J(e , \Delta \, \psi) + J(\psi , \Delta \, e)
- Ro^{-1} \, \frac{\partial e}{\partial x} \, , \, {\psi^*}^h \right) .
\label{eqn:theorem_dual_3}
\end{equation}
To estimate this term, we consider the error equation obtained by subtracting
\eqref{eqn:SQGEFEF} (with $\psi^h= {\psi^*}^h$) from \eqref{eqn:SQGEWF} (with
$\chi = {\psi^*}^h$):
\begin{equation}
\left( Re^{-1} \, \Delta^2 e - Ro^{-1} \, \frac{\partial e}{\partial x} \, ,
\, {\psi^*}^h \right) + \left( J(\psi , \Delta \, \psi)
- J(\psi^h , \Delta \, \psi^h) \, , \, {\psi^*}^h \right) = 0 .
\label{eqn:theorem_dual_4}
\end{equation}
Using \eqref{eqn:theorem_dual_4}, equation \eqref{eqn:theorem_dual_3} can be
written as follows:
\begin{equation}
(\mathcal{L} \, e , {\psi^*}^h) = \left( J(e , \Delta \, \psi)
+ J(\psi , \Delta \, e) - J(\psi , \Delta \, \psi)
+ J(\psi^h , \Delta \, \psi^h) \, , \, {\psi^*}^h \right) .
\label{eqn:theorem_dual_5}
\end{equation}
Thus, by using \eqref{eqn:theorem_dual_5} equation \eqref{eqn:theorem_dual_2}
becomes:
\begin{align}
|e|^2 =& (\mathcal{L} \, e , e^*) + (\mathcal{L} \, e , {\psi^*}^h) \nonumber \\
=& Re^{-1} \, (\Delta e , \Delta e^*)
- Ro^{-1} \, \left( \frac{\partial e}{\partial x} , e^* \right)
+ \left( J(e , \Delta \psi) + J(\psi , \Delta e) , e^* \right) \nonumber \\
& + \left( J(e , \Delta \, \psi) + J(\psi , \Delta \, e)
- J(\psi , \Delta \, \psi) + J(\psi^h , \Delta \, \psi^h)
\, , \, {\psi^*}^h \right) \nonumber \\
=& Re^{-1} (\Delta e ,\Delta e^*) - Ro^{-1}(e_x , e^*)
+ b(e , \psi , e^*) + b(\psi , e, e^*) + b(e , \psi , {\psi^*}^h) \nonumber \\
& - b(\psi , \psi , e^*) + b(\psi^h , \psi^h , e^*) \nonumber \\
=& Re^{-1} (\Delta , \Delta e^*) - Ro^{-1}(e_x , e^*)
+ b(e , \psi , e^*) + b(\psi , e, e^*) \nonumber \\
& - b(e , \psi , e^*) + b(e , \psi^h , e^*) + b(e , e , \psi^*).
\label{eqn:theorem_dual_6}
\end{align}
Using the bounds in \eqref{eqn:a1Cont}-\eqref{eqn:a3Cont},
\eqref{eqn:theorem_dual_6} yields:
\begin{align}
|e|^2 =& Re^{-1} (\Delta e ,\Delta e^*) - Ro^{-1} (e_x , e^*)
+ b(e , \psi , e^*) + b(\psi , e, e^*) \nonumber \\
& - b(e , \psi , e^*) + b(e , \psi^h , e^*) + b(e , e , \psi^*) \nonumber \\
\leq& Re^{-1} \, | e |_2 \, |e^* |_2 + Ro^{-1} \, \Gamma_2 | e |_2 \, |e^* |_2
+ \Gamma_1 \, | e |_2 \, | \psi |_2 \, | e^* |_2
+ \Gamma_1 \, | \psi |_2 \, | e |_2 \, | e^* |_2 \nonumber \\
& + \Gamma_1 \, | e |_2 \, | \psi |_2 \, | e^* |_2
+ \Gamma_1 \, | e |_2 \, | \psi^h |_2 \, | e^* |_2
+ \Gamma_1 \, | e |_2 \, | e |_2 \, | \psi^* |_2 \nonumber \\
=& | e |_2 \, |e^* |_2 \, \left( Re^{-1} + Ro^{-1}\, \Gamma_2 + \Gamma_1 \, | \psi |_2
+ \Gamma_1 \, | \psi |_2
+ \Gamma_1 \, | \psi |_2
+ \Gamma_1 \, | \psi^h |_2 \right) \nonumber \\
& + | e |_2^2 \, \left( \Gamma_1 \, | \psi^* |_2 \right) .
\label{eqn:theorem_dual_7}
\end{align}
We start bounding the terms on the right-hand side of
\eqref{eqn:theorem_dual_7}. First, we note that using the stability estimates
\eqref{eqn:stability_sqge} for $\psi$ and \eqref{eqn:stability_fem_sqge} for
$\psi^h$, the right-hand side of \eqref{eqn:theorem_dual_7} can be bounded as
follows:
\begin{equation}
|e|^2 \leq C \, | e |_2 \, |e^* |_2 + | e |_2^2 \,
\left( \Gamma_1 \, | \psi^* |_2 \right) ,
\label{eqn:theorem_dual_8}
\end{equation}
where $C$ is a generic constant that can depend on $Re$, $Ro$, $\Gamma_1$,
$\Gamma_2$, $F$, but \emph{not} on the mesh size $h$. By using the
approximation results \eqref{eqn:argyris_approximation_1}, we get:
\begin{equation}
|e^* |_2 \leq C \, h^2 \, | \psi^* |_4 .
\label{eqn:theorem_dual_9}
\end{equation}
By using \eqref{eqn:dual_operator_6a} and \eqref{eqn:dual_operator_6b}, the
elliptic regularity results of the dual problem \eqref{eqn:dual_operator_5}
with $g := e$, we also get:
\begin{equation}
| \psi^* |_4 \leq C \, | e | ,
\label{eqn:theorem_dual_10}
\end{equation}
which obviously implies
\begin{equation}
| \psi^* |_2 \leq C \, | e | .
\label{eqn:theorem_dual_11}
\end{equation}
Inequalities \eqref{eqn:theorem_dual_9}-\eqref{eqn:theorem_dual_10} imply:
\begin{equation}
|e^* |_2 \leq C \, h^2 \, | e | .
\label{eqn:theorem_dual_12}
\end{equation}
Inserting \eqref{eqn:theorem_dual_11} and \eqref{eqn:theorem_dual_12} in
\eqref{eqn:theorem_dual_8}, we get:
\begin{equation}
|e|^2 \leq C \, h^2 \, | e |_2 \, | e | + C \, | e |_2^2 \, | e | .
\label{eqn:theorem_dual_13}
\end{equation}
Using the obvious simplifications and the $H^2$ error estimate
\eqref{eqn:H2Error} in \eqref{eqn:theorem_dual_13} yields:
\begin{equation}
|e| \leq C \, h^2 \, | e |_2 + C \, | e |_2^2 \leq C \, h^6 |\psi|_6 + C \,
h^8 |\psi|_6^2 = C_0 \, h^6\, |\psi|_6 ,
\label{eqn:theorem_dual_14}
\end{equation}
which proves the $L^2$ error estimate \eqref{eqn:L2Error}.
Next, we prove the $H^1$ norm estimate \eqref{eqn:H1Error}. Since the duality
approach we use is similar to that we used in proving the $L^2$ norm estimate
\eqref{eqn:L2Error}, we only highlight the main differences. We start again
by writing the $H^1$ norm of the error in terms of the dual operator
$\mathcal{L}^*$:
\begin{align}
|e|_1^2 =& (\nabla e , \nabla e) = ( e , - \Delta e) =
(e , \mathcal{L}^* \, \psi^*) = (\mathcal{L} \, e , \psi^*) \nonumber \\
=& (e , \mathcal{L}^* \, e^*) + (e , \mathcal{L}^* \, {\psi^*}^h)
= (\mathcal{L} \, e , e^*) + (\mathcal{L} \, e , {\psi^*}^h) .
\label{eqn:theorem_dual_15}
\end{align}
Thus, the second and fourth equalities in \eqref{eqn:theorem_dual_15} clearly
indicate that in the dual problem \eqref{eqn:dual_operator_5}, one should
choose $g = - \Delta e$, and not $g = e$, as we did in
\eqref{eqn:theorem_dual_10}, when we proved the $L^2$ error estimate
\eqref{eqn:L2Error}. Using \eqref{eqn:dual_operator_6a} and
\eqref{eqn:dual_operator_6c}, the elliptic regularity results of the dual
problem \eqref{eqn:dual_operator_5} with $g := - \Delta e$, we also get:
\begin{equation}
| \psi^* |_3 \leq C \, | - \Delta e |_{-1} \leq C \, | e |_1 ,
\label{eqn:theorem_dual_16}
\end{equation}
where in the last inequality we used the fact that $e \in H_0^2(\Omega)$.
Inequality \eqref{eqn:theorem_dual_16} obviously implies
\begin{equation}
| \psi^* |_2 \leq C \, | e |_1 .
\label{eqn:theorem_dual_17}
\end{equation}
All the results in \eqref{eqn:theorem_dual_3}-\eqref{eqn:theorem_dual_7} carry
over to our setting. Thus, we get:
\begin{equation}
|e|_1^2 \leq C \, | e |_2 \, |e^* |_2 + C \, | e |_2^2 \, | \psi^* |_2 ,
\label{eqn:theorem_dual_18}
\end{equation}
where $C$ is a generic constant that can depend on $Re$, $Ro$, $\Gamma_1$,
$\Gamma_2$, $F$, but \emph{not} on the mesh size $h$. By using the
approximation result \eqref{eqn:argyris_approximation_2}, we get:
\begin{equation}
|e^* |_2 \leq C \, h \, | \psi^* |_3 .
\label{eqn:theorem_dual_19}
\end{equation}
Inequalities \eqref{eqn:theorem_dual_19}-\eqref{eqn:theorem_dual_16} imply:
\begin{equation}
|e^* |_2 \leq C \, h \, | e |_1 .
\label{eqn:theorem_dual_20}
\end{equation}
Inserting \eqref{eqn:theorem_dual_17} and \eqref{eqn:theorem_dual_20} in
\eqref{eqn:theorem_dual_18}, we get:
\begin{equation}
|e|_1^2 \leq C \, h \, | e |_2 \, | e |_1 + C \, | e |_2^2 \, | e |_1 .
\label{eqn:theorem_dual_21}
\end{equation}
Using the obvious simplifications and the $H^2$ error estimate
\eqref{eqn:H2Error} in \eqref{eqn:theorem_dual_21} yields:
\begin{equation}
|e|_1 \leq C \, h \, | e |_2 + C \, | e |_2^2 \leq C \, h^5\, |\psi|_6 + C
\, h^8\, |\psi|_6 = C_1 \, h^5 |\psi|_6,
\label{eqn:theorem_dual_22}
\end{equation}
which proves the $H^1$ error estimate \eqref{eqn:H1Error}.
\end{proof}