-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathnumpy-to-h5py.py
67 lines (61 loc) · 2.86 KB
/
numpy-to-h5py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import glob
import numpy as np
import h5py
import tqdm
import sys
os.environ['HDF5_USE_FILE_LOCKING'] = 'FALSE'
batch_size = 100000
counter = 0
if os.path.isdir('/bigdata/shared/BumbleB'):
save_path = '/bigdata/shared/BumbleB/convert_20181121_ak8_80x_deepDoubleB_db_pf_cpf_sv_dl4jets_test/'
elif os.path.isdir('/eos/user/w/woodson/IN'):
save_path = '/eos/user/w/woodson/IN/convert_20181121_ak8_80x_deepDoubleB_db_pf_cpf_sv_dl4jets_test/'
train_0_arrays = []
train_1_arrays = []
train_2_arrays = []
train_3_arrays = []
truth_0_arrays = []
spec_0_arrays = []
weights_0_arrays = []
for i in range(len(glob.glob(save_path + 'train_val_*_features_0.npy'))):
train_file = save_path + 'train_val_%i_features_0.npy'%i
print("loading %s"%train_file)
train_0 = np.load(train_file, mmap_mode='r')
train_file = save_path + 'train_val_%i_features_1.npy'%i
print("loading %s"%train_file)
train_1 = np.load(train_file, mmap_mode='r')
train_file = save_path + 'train_val_%i_features_2.npy'%i
print("loading %s"%train_file)
train_2 = np.load(train_file, mmap_mode='r')
train_file = save_path + 'train_val_%i_features_3.npy'%i
print("loading %s"%train_file)
train_3 = np.load(train_file, mmap_mode='r')
train_file = save_path + 'train_val_%i_truth_0.npy'%i
print("loading %s"%train_file)
truth_0 = np.load(train_file, mmap_mode='r')
train_file = save_path + 'train_val_%i_weights_0.npy'%i
print("loading %s"%train_file)
weights_0 = np.load(train_file, mmap_mode='r')
print("loading %s"%train_file)
train_file = save_path + 'train_val_%i_spectators_0.npy'%i
spec_0 = np.load(train_file, mmap_mode='r')
train_0 = np.swapaxes(train_0, 1, 2)
train_1 = np.swapaxes(train_1, 1, 2)
train_2 = np.swapaxes(train_2, 1, 2)
train_3 = np.swapaxes(train_3, 1, 2)
for j in tqdm.tqdm(range(0, train_0.shape[0], batch_size)):
h5 = h5py.File(save_path + "/newdata_" + str(counter) + ".h5", "w") #change this to change output location
training_data = h5.create_group("training_subgroup")
target_data = h5.create_group("target_subgroup")
weight_data = h5.create_group("weight_subgroup")
spec_data = h5.create_group("spectator_subgroup")
training_data.create_dataset("training_0", data = train_0[j : j + batch_size])
training_data.create_dataset("training_1", data = train_1[j : j + batch_size])
training_data.create_dataset("training_2", data = train_2[j : j + batch_size])
training_data.create_dataset("training_3", data = train_3[j : j + batch_size])
target_data.create_dataset("target", data = truth_0[j : j + batch_size])
weight_data.create_dataset("weights", data = weights_0[j : j + batch_size])
spec_data.create_dataset("spectators", data = spec_0[j : j + batch_size])
h5.close()
counter += 1