-
Notifications
You must be signed in to change notification settings - Fork 33
/
models.py
166 lines (131 loc) · 6.11 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import transformers
import torch
import torch.nn as nn
import re
import logging
from utils import scr
LOG = logging.getLogger(__name__)
class CastModule(nn.Module):
def __init__(self, module: nn.Module, in_cast: torch.dtype = torch.float32, out_cast: torch.dtype = None):
super().__init__()
self.underlying = module
self.in_cast = in_cast
self.out_cast = out_cast
def cast(self, obj, dtype):
if dtype is None:
return obj
if isinstance(obj, torch.Tensor):
return obj.to(dtype)
else:
return obj
def forward(self, *args, **kwargs):
args = tuple(self.cast(a, self.in_cast) for a in args)
kwargs = {k: self.cast(v, self.in_cast) for k, v in kwargs.items()}
outputs = self.underlying(*args, **kwargs)
if isinstance(outputs, torch.Tensor):
outputs = self.cast(outputs, self.out_cast)
elif isinstance(outputs, tuple):
outputs = tuple(self.cast(o, self.out_cast) for o in outputs)
else:
raise RuntimeError(f"Not sure how to cast type {type(outputs)}")
return outputs
def extra_repr(self):
return f"in_cast: {self.in_cast}\nout_cast: {self.out_cast}"
class BertClassifier(torch.nn.Module):
def __init__(self, model_name, hidden_dim=768):
super().__init__()
self.model = transformers.BertModel.from_pretrained(model_name, cache_dir=scr())
self.classifier = torch.nn.Linear(hidden_dim, 1)
@property
def config(self):
return self.model.config
def forward(self, *args, **kwargs):
filtered_kwargs = {k: v for k, v in kwargs.items() if k != "labels"}
return self.classifier(self.model(*args, **filtered_kwargs)[1])
def get_model(config):
if config.model.class_name == "BertClassifier":
model = BertClassifier(config.model.name)
else:
ModelClass = getattr(transformers, config.model.class_name)
LOG.info(f"Loading model class {ModelClass} with name {config.model.name} from cache dir {scr()}")
model = ModelClass.from_pretrained(config.model.name, cache_dir=scr())
if config.model.pt is not None:
LOG.info(f"Loading model initialization from {config.model.pt}")
state_dict = torch.load(config.model.pt, map_location="cpu")
try:
model.load_state_dict(state_dict)
except RuntimeError:
LOG.info("Default load failed; stripping prefix and trying again.")
state_dict = {re.sub("^model.", "", k): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
LOG.info("Loaded model initialization")
if config.dropout is not None:
n_reset = 0
for m in model.modules():
if isinstance(m, nn.Dropout):
m.p = config.dropout
n_reset += 1
if hasattr(m, "dropout"): # Requires for BART, which uses F.dropout
if isinstance(m.dropout, float):
m.dropout = config.dropout
n_reset += 1
if hasattr(m, "activation_dropout"): # Requires for BART, which uses F.dropout
if isinstance(m.activation_dropout, float):
m.activation_dropout = config.dropout
n_reset += 1
LOG.info(f"Set {n_reset} dropout modules to p={config.dropout}")
param_names = [n for n, _ in model.named_parameters()]
bad_inner_params = [p for p in config.model.inner_params if p not in param_names]
if len(bad_inner_params) != 0:
raise ValueError(f"Params {bad_inner_params} do not exist in model of type {type(model)}.")
if config.no_grad_layers is not None:
if config.half:
model.bfloat16()
def upcast(mod):
modlist = None
for child in mod.children():
if isinstance(child, nn.ModuleList):
assert modlist is None, f"Found multiple modlists for {mod}"
modlist = child
if modlist is None:
raise RuntimeError("Couldn't find a ModuleList child")
LOG.info(f"Setting {len(modlist) - config.no_grad_layers} modules to full precision, with autocasting")
modlist[config.no_grad_layers:].to(torch.float32)
modlist[config.no_grad_layers] = CastModule(modlist[config.no_grad_layers])
modlist[-1] = CastModule(modlist[-1], in_cast=torch.float32, out_cast=torch.bfloat16)
parents = []
if hasattr(model, "transformer"):
parents.append(model.transformer)
if hasattr(model, "encoder"):
parents.append(model.encoder)
if hasattr(model, "decoder"):
parents.append(model.decoder)
if hasattr(model, "model"):
parents.extend([model.model.encoder, model.model.decoder])
for t in parents:
t.no_grad_layers = config.no_grad_layers
if config.half:
upcast(t)
if config.half:
idxs = []
for p in config.model.inner_params:
for comp in p.split('.'):
if comp.isdigit():
idxs.append(int(comp))
max_idx, min_idx = str(max(idxs)), str(config.no_grad_layers)
for pidx, p in enumerate(config.model.inner_params):
comps = p.split('.')
if max_idx in comps or min_idx in comps:
index = comps.index(max_idx) if max_idx in comps else comps.index(min_idx)
comps.insert(index + 1, 'underlying')
new_p = '.'.join(comps)
LOG.info(f"Replacing config.model.inner_params[{pidx}] '{p}' -> '{new_p}'")
config.model.inner_params[pidx] = new_p
return model
def get_tokenizer(config):
tok_name = config.model.tokenizer_name if config.model.tokenizer_name is not None else config.model.name
return getattr(transformers, config.model.tokenizer_class).from_pretrained(tok_name, cache_dir=scr())
if __name__ == '__main__':
m = BertClassifier("bert-base-uncased")
m(torch.arange(5)[None, :])
import pdb; pdb.set_trace()