forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
723 lines (665 loc) · 30.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import tensorrt as trt
from ..._common import default_net
from ..._utils import pad_vocab_size, str_dtype_to_trt
from ...functional import (RotaryScalingType, Tensor, gather_last_token_logits,
recv, send)
from ...layers import (MOE, Attention, AttentionMaskType, AttentionParams,
ColumnLinear, Embedding, FusedGatedMLP, GatedMLP,
KeyValueCacheParams, LoraParams, MoeConfig,
PositionEmbeddingType, PromptTuningEmbedding, RmsNorm)
from ...mapping import Mapping
from ...module import Module, ModuleList, TopLevelModuleMixin
from ...parameter import Parameter
from ...quantization import QuantMode
from ...quantization.layers import FP8Linear, FP8RowLinear
from ..generation_mixin import GenerationMixin
from ..modeling_utils import PretrainedConfig
class LLaMADecoderLayer(Module):
def __init__(self,
layer_id,
hidden_size,
num_attention_heads,
num_kv_heads=None,
max_position_embeddings=2048,
dtype=None,
attention_mask_type=AttentionMaskType.causal,
hidden_act='silu',
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_base=10000.0,
rotary_scaling=None,
mlp_hidden_size=None,
tp_group=None,
tp_size=1,
tp_rank=0,
use_auto_parallel=False,
quant_mode=QuantMode(0),
rms_norm_eps=1e-06,
attn_bias=False,
mlp_bias=False,
use_fused_mlp=False,
moe_config: MoeConfig = MoeConfig()):
super().__init__()
self._layer_id = layer_id # useful for debugging
# used for quantizing model
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
self.num_kv_heads = num_kv_heads
self.max_position_embeddings = max_position_embeddings
self.dtype = dtype
self.hidden_act = hidden_act
self.tp_group = tp_group
self.tp_size = tp_size
self.mlp_hidden_size = mlp_hidden_size
self.attention_mask_type = attention_mask_type
self.position_embedding_type = position_embedding_type
self.input_layernorm = RmsNorm(normalized_shape=hidden_size,
eps=rms_norm_eps,
dtype=dtype)
self.mlp_bias = mlp_bias
self.attention = Attention(
hidden_size,
num_attention_heads,
num_kv_heads,
max_position_embeddings,
dtype=dtype,
attention_mask_type=AttentionMaskType.causal,
bias=attn_bias,
position_embedding_type=position_embedding_type,
rotary_embedding_base=rotary_base,
rotary_embedding_scaling=rotary_scaling,
tp_group=tp_group,
tp_size=tp_size,
use_auto_parallel=use_auto_parallel,
quant_mode=quant_mode,
instance_id=2 * layer_id,
)
if not mlp_hidden_size:
self.mlp_hidden_size = hidden_size * 4
ClsMLP = GatedMLP
mlp_kwargs = {}
if moe_config.has_moe():
ClsMLP = MOE
mlp_kwargs = {
"moe_config": moe_config,
"tp_rank": tp_rank,
}
elif use_fused_mlp:
ClsMLP = FusedGatedMLP
self.mlp = ClsMLP(hidden_size=hidden_size,
ffn_hidden_size=self.mlp_hidden_size,
hidden_act=hidden_act,
dtype=dtype,
bias=mlp_bias,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=quant_mode,
instance_id=2 * layer_id + 1,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=hidden_size,
eps=rms_norm_eps,
dtype=dtype)
def forward(self,
hidden_states,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None,
all_reduce_workspace=None,
lora_layer_params=None):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
if self._layer_id == 0:
self.register_network_output(f"norm0", hidden_states)
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
workspace=all_reduce_workspace,
lora_layer_params=lora_layer_params)
if use_cache:
attention_output, presents = attention_output
if self._layer_id == 0:
self.register_network_output(f"attn", attention_output)
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
if self._layer_id == 0:
self.register_network_output(f"norm1", hidden_states)
hidden_states = self.mlp(hidden_states,
all_reduce_workspace,
lora_layer_params=lora_layer_params)
if self._layer_id == 0:
self.register_network_output(f"mlp", hidden_states)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class LLaMAModel(Module):
def __init__(self,
num_layers,
num_heads,
num_kv_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype,
mlp_hidden_size=None,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_base=10000.0,
rotary_scaling=None,
mapping=Mapping(),
use_auto_parallel=False,
quant_mode=QuantMode(0),
use_parallel_embedding=False,
embedding_sharding_dim=0,
rms_norm_eps=1e-06,
use_fused_mlp=False,
attn_bias=False,
mlp_bias=False,
moe_config: MoeConfig = MoeConfig(),
use_prompt_tuning: bool = False):
super().__init__()
self.mapping = mapping
self.use_prompt_tuning = use_prompt_tuning
EmbeddingCls = PromptTuningEmbedding if use_prompt_tuning else Embedding
if self.mapping.is_first_pp_rank():
self.vocab_embedding = EmbeddingCls(
num_embeddings=vocab_size,
embedding_dim=hidden_size,
dtype=dtype,
tp_size=mapping.tp_size if use_parallel_embedding else 1,
tp_group=mapping.tp_group if use_parallel_embedding else None,
sharding_dim=embedding_sharding_dim,
tp_rank=mapping.tp_rank,
instance_id=2 *
num_layers, # ids in [0, 2 * (num_layers - 1) + 1] already used
)
self.layers = ModuleList([
LLaMADecoderLayer(
layer_id=i,
hidden_size=hidden_size,
num_attention_heads=num_heads,
num_kv_heads=num_kv_heads,
max_position_embeddings=max_position_embeddings,
dtype=dtype,
hidden_act=hidden_act,
mlp_hidden_size=mlp_hidden_size,
position_embedding_type=position_embedding_type,
rotary_base=rotary_base,
rotary_scaling=rotary_scaling,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
tp_rank=mapping.tp_rank,
use_auto_parallel=use_auto_parallel,
quant_mode=quant_mode,
rms_norm_eps=rms_norm_eps,
attn_bias=attn_bias,
mlp_bias=mlp_bias,
use_fused_mlp=use_fused_mlp,
moe_config=moe_config,
) for i in self.mapping.pp_layers(num_layers)
])
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=hidden_size,
eps=rms_norm_eps,
dtype=dtype)
def forward(self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
all_reduce_workspace=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
kv_cache_params.fill_none_tensor_list(len(self.layers))
if use_cache:
presents = []
ptuning_args = []
if self.use_prompt_tuning:
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
]
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args,
all_reduce_workspace)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
self.register_network_output(f"embd", hidden_states)
for layer_idx, (
layer, past, pointer, host_pointer,
max_attention_window_size) in enumerate(
zip(self.layers, kv_cache_params.past_key_value,
kv_cache_params.kv_cache_block_pointers,
kv_cache_params.host_kv_cache_block_pointers,
kv_cache_params.host_max_attention_window_sizes)):
lora_layer_params = None
if lora_params.lora_ranks is not None:
lora_layer_params = lora_params.get_layer_params(layer_idx)
hidden_states = layer(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=KeyValueCacheParams(
past_key_value=[past],
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=max_attention_window_size,
kv_cache_block_pointers=[pointer],
host_kv_cache_block_pointers=[host_pointer],
cache_indirection=kv_cache_params.cache_indirection),
attention_params=attention_params,
all_reduce_workspace=all_reduce_workspace,
lora_layer_params=lora_layer_params)
if use_cache:
presents.append(hidden_states[1])
hidden_states = hidden_states[0]
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class LLaMAForCausalLM(LLaMAModel, GenerationMixin, TopLevelModuleMixin):
def __init__(self,
num_layers,
num_heads,
num_kv_heads,
hidden_size,
vocab_size,
hidden_act,
max_position_embeddings,
dtype,
logits_dtype="float32",
mlp_hidden_size=None,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_base=10000.0,
rotary_scaling=None,
mapping=Mapping(),
use_auto_parallel=False,
quant_mode=QuantMode(0),
use_parallel_embedding=False,
embedding_sharding_dim=0,
rms_norm_eps=1e-06,
use_fused_mlp=False,
attn_bias=False,
mlp_bias=False,
moe_config=MoeConfig(),
use_prompt_tuning: bool = False):
config = PretrainedConfig(
architecture="LLaMAForCausalLM",
dtype=dtype,
logits_dtype=logits_dtype,
vocab_size=vocab_size,
max_position_embeddings=max_position_embeddings,
hidden_size=hidden_size,
num_hidden_layers=num_layers,
num_attention_heads=num_heads,
num_key_value_heads=num_kv_heads,
hidden_act=hidden_act,
intermediate_size=mlp_hidden_size,
norm_epsilon=rms_norm_eps,
position_embedding_type=str(position_embedding_type),
world_size=mapping.world_size,
tp_size=mapping.tp_size,
pp_size=mapping.pp_size,
quant_mode=quant_mode,
quant_kwargs={},
use_prompt_tuning=use_prompt_tuning)
self.config = config
# TODO: there is an issue of PretrainedConfig that it does not hold the info of "current rank"
# it internally constructs a mapping object from the world_size/tp_size/pp_size
# thus override the config.mapping here to the user provided one, which shall include current rank
self.config.mapping = mapping
if isinstance(dtype, str):
self.dtype = str_dtype_to_trt(dtype)
else:
assert isinstance(dtype, trt.DataType)
self.dtype = dtype
if isinstance(logits_dtype, str):
self.logits_dtype = str_dtype_to_trt(logits_dtype)
else:
assert isinstance(logits_dtype, trt.DataType)
self.logits_dtype = logits_dtype
self.num_layers = num_layers
self.num_heads = num_heads
if num_kv_heads is None or num_kv_heads <= 0:
num_kv_heads = num_heads
self.num_kv_heads = num_kv_heads
self.hidden_size = hidden_size
self.vocab_size = vocab_size
self.tp_size = mapping.tp_size
self.kv_dtype = self.dtype
if quant_mode.has_int8_kv_cache():
self.kv_dtype = str_dtype_to_trt('int8')
elif quant_mode.has_fp8_kv_cache():
self.kv_dtype = str_dtype_to_trt('fp8')
self.quant_mode = quant_mode
self.use_parallel_embedding = use_parallel_embedding
self.embedding_sharding_dim = embedding_sharding_dim
self.moe_config = moe_config
self.use_fused_mlp = use_fused_mlp
super().__init__(num_layers, num_heads, num_kv_heads, hidden_size,
vocab_size, hidden_act, max_position_embeddings, dtype,
mlp_hidden_size, position_embedding_type, rotary_base,
rotary_scaling, mapping, use_auto_parallel, quant_mode,
use_parallel_embedding, embedding_sharding_dim,
rms_norm_eps, use_fused_mlp, attn_bias, mlp_bias,
moe_config, use_prompt_tuning)
vocab_size_padded = pad_vocab_size(vocab_size, mapping.tp_size)
if self.mapping.is_last_pp_rank():
self.lm_head = ColumnLinear(hidden_size,
vocab_size_padded,
bias=False,
dtype=dtype,
tp_group=mapping.tp_group,
tp_size=mapping.tp_size,
gather_output=True)
def forward(self,
input_ids,
position_ids=None,
use_cache=False,
last_token_ids=None,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
all_reduce_workspace=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
hidden_states = super().forward(input_ids, position_ids, use_cache,
attention_mask, kv_cache_params,
attention_params, hidden_states,
all_reduce_workspace,
prompt_embedding_table, prompt_tasks,
prompt_vocab_size, lora_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = gather_last_token_logits(
hidden_states, last_token_ids,
default_net().plugin_config.remove_input_padding)
# [batch_size, hidden_size] -> [batch_size, vocab_size]
lm_logits = self.lm_head(hidden_states)
lm_logits.mark_output('logits', self.logits_dtype)
else:
hidden_states.mark_output('hidden_states_output', self.dtype)
if use_cache and default_net().plugin_config.paged_kv_cache == False:
for i, present in zip(self.mapping.pp_layers(self.num_layers),
presents):
present.mark_output(f'present_key_value_{i}', self.kv_dtype)
if self.mapping.is_last_pp_rank():
return (lm_logits, presents)
return (hidden_states, presents)
else:
if self.mapping.is_last_pp_rank():
return lm_logits
return hidden_states
def prepare_inputs(self,
max_batch_size,
max_input_len,
max_new_tokens,
use_cache,
max_beam_width,
max_num_tokens: int = None,
prompt_embedding_table_size: int = 0,
gather_all_token_logits: bool = False,
lora_target_modules: List[str] = None):
'''@brief: Prepare inputs Tensors for the model, the given sizes are used to determine the
ranges of the dimensions of when using TRT dynamic shapes.
@return: a list contains values which can be fed into the self.forward()
'''
# Prepare inputs
head_size = self.hidden_size // self.num_heads
remove_input_padding = default_net().plugin_config.remove_input_padding
use_gpt_attention_plugin = default_net(
).plugin_config.gpt_attention_plugin
use_gemm_plugin = default_net().plugin_config.gemm_plugin
paged_kv_cache = default_net().plugin_config.paged_kv_cache
tokens_per_block = default_net().plugin_config.tokens_per_block
use_custom_all_reduce = default_net(
).plugin_config.use_custom_all_reduce
use_lora_plugin = default_net().plugin_config.lora_plugin
model_inputs = self.prepare_basic_inputs(
max_batch_size,
max_beam_width,
max_input_len,
max_new_tokens,
self.num_kv_heads,
head_size,
self.num_layers,
self.kv_dtype,
remove_input_padding=remove_input_padding,
use_gpt_attention_plugin=use_gpt_attention_plugin,
use_gemm_plugin=use_gemm_plugin,
use_custom_all_reduce=use_custom_all_reduce,
paged_kv_cache=paged_kv_cache,
tokens_per_block=tokens_per_block,
dtype=self.dtype,
num_heads=self.num_heads,
mapping=self.mapping,
max_num_tokens=max_num_tokens,
prompt_embedding_table_size=prompt_embedding_table_size,
gather_all_token_logits=gather_all_token_logits,
use_lora_plugin=use_lora_plugin,
lora_target_modules=lora_target_modules)
return (
model_inputs['input_ids'],
model_inputs['position_ids'],
True,
model_inputs['last_token_ids'],
model_inputs['attention_mask'],
KeyValueCacheParams(
past_key_value=model_inputs['past_key_value'],
host_past_key_value_lengths=model_inputs[
'host_past_key_value_lengths'],
host_max_attention_window_sizes=model_inputs[
'host_max_attention_window_sizes'],
kv_cache_block_pointers=model_inputs[
'kv_cache_block_pointers_list'],
host_kv_cache_block_pointers=model_inputs[
'host_kv_cache_block_pointers_list'],
cache_indirection=model_inputs['cache_indirection'],
),
AttentionParams(
sequence_length=model_inputs['sequence_length'],
context_lengths=model_inputs['context_lengths'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types']),
model_inputs['hidden_states_input'],
model_inputs['all_reduce_workspace'],
model_inputs['prompt_embedding_table'],
model_inputs['tasks'],
model_inputs['prompt_vocab_size'],
LoraParams(
model_inputs['lora_ranks'],
model_inputs['lora_weights_pointers'],
host_context_lengths=model_inputs['host_context_lengths'],
max_context_length=max_input_len,
host_request_types=model_inputs['host_request_types']),
)
@classmethod
def from_hugging_face(cls,
hf_model_dir,
dtype='float16',
mapping: Optional[Mapping] = None,
**kwargs):
# TODO: discuss this can be our own config object if needed, instead of from transformers
# but why reinvent wheels. And we already direct depends on transformers lib
import transformers
from transformers import LlamaConfig
from ... import profiler
from ...runtime.lora_manager import LoraConfig
from .weight import load_from_hf_llama
cfg = LlamaConfig.from_pretrained(hf_model_dir)
num_kv_heads = cfg.num_key_value_heads if hasattr(cfg, "num_key_value_heads") \
else cfg.num_attention_heads
if mapping is None:
mapping = Mapping()
tllm_llama = LLaMAForCausalLM(
num_layers=cfg.num_hidden_layers,
num_heads=cfg.num_attention_heads,
num_kv_heads=num_kv_heads,
hidden_size=cfg.hidden_size,
vocab_size=cfg.vocab_size,
hidden_act=cfg.hidden_act,
max_position_embeddings=cfg.max_position_embeddings,
dtype=dtype,
mlp_hidden_size=cfg.intermediate_size,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
mapping=mapping,
rotary_base=getattr(cfg, 'rotary_base', 10000.0),
rotary_scaling=getattr(cfg, 'rotary_scaling', None),
rms_norm_eps=cfg.rms_norm_eps,
# current load_from_hf_llama can read these, so need to set these here,
# ideally these attributes shall be set after the from_hugging_face returned an object to user
# since these attributes are not related to the hugging face model, they only affect the TRT-LLM module
# the weights transformation or any model optimization shall be done outside from_hugging_face
quant_mode=kwargs.get("quant_mode", QuantMode(0)),
use_parallel_embedding=kwargs.get("use_parallel_embedding", False),
embedding_sharding_dim=kwargs.get("embedding_sharding_dim", 0),
use_fused_mlp=kwargs.get("use_fused_mlp", False),
moe_config=kwargs.get("moe_config",
MoeConfig()), # load weights use this
use_prompt_tuning=kwargs.get("use_prompt_tuning", False))
# For debug purpose, skip weights loading to be faster
if kwargs.get("skip_loading_weights", False):
return tllm_llama
hf_model = transformers.LlamaForCausalLM
#TODO: support mixtral
profiler.start("Loading weights from HF")
hf_llama = hf_model.from_pretrained(
hf_model_dir,
device_map={
"model": "cpu",
"lm_head": "cpu",
"embed_tokens": "cpu",
"layers": "cpu",
"norm": "cpu",
}, # Load to CPU memory
torch_dtype='auto',
)
load_from_hf_llama(
tllm_llama,
hf_llama,
mapping=mapping,
dtype=dtype,
#TODO: these shall be outside from_hugging_face too.
use_gemm_woq_plugin=kwargs.get("use_gemm_woq_plugin", False),
lora_config=kwargs.get("lora_config", LoraConfig()),
)
profiler.stop("Loading weights from HF")
del hf_llama
return tllm_llama
def quantize(self, quant_mode: QuantMode):
'''Quantize the model, raise Exception when the quantization failed
'''
#TODO: support all quantized scheme
if quant_mode.has_int8_kv_cache():
self.kv_dtype = str_dtype_to_trt('int8')
elif quant_mode.has_fp8_kv_cache():
self.kv_dtype = str_dtype_to_trt('fp8')
for layer_idx in range(len(self.layers)):
decoder = self.layers[layer_idx]
assert isinstance(
decoder, LLaMADecoderLayer
), f"Unexpected layer type, expecting LLaMADecoderLayer, got {type(decoder)}"
attention = decoder.attention
assert isinstance(
attention, Attention
), f"Unexpected layer type, expecting Attention, got {type(attention)}"
# Code from the tensorrt_llm/layers/attention.py Attention.__init__()
# TODO: can remove the duplicate later
attention.quant_mode = quant_mode
attention.use_int8_kv_cache = self.quant_mode.has_int8_kv_cache()
if self.quant_mode.has_kv_cache_quant():
attention.kv_orig_quant_scale = Parameter(shape=(1, ),
dtype='float32')
attention.kv_quant_orig_scale = Parameter(shape=(1, ),
dtype='float32')
if self.quant_mode.has_fp8_qdq():
attention.qkv = FP8Linear(
self.hidden_size,
self.mapping.tp_size * self.num_attention_heads *
self.attention_head_size +
(2 * self.mapping.tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=attention.
bias, #WARNING: quantize does not support changing the bias/dtype after module ctor
dtype=attention.dtype,
tp_group=self.mapping.tp_group,
tp_size=self.mapping.tp_size,
gather_output=False)
attention.dense = FP8RowLinear(
self.hidden_size,
self.hidden_size,
bias=attention.bias,
dtype=attention.dtype,
tp_group=self.mapping.tp_group,
tp_size=self.mapping.tp_size,
instance_id=attention.instance_id)
mlp = decoder.mlp
assert isinstance(
mlp, (GatedMLP, MOE,
FusedGatedMLP)), f"Unexpected type, got {type(mlp)}"
mlp_kwargs = {}
if self.moe_config:
ClsMLP = MOE
mlp_kwargs = {
"moe_config": self.moe_config,
"tp_rank": self.mapping.tp_rank,
}
elif self.use_fused_mlp:
ClsMLP = FusedGatedMLP
self.mlp = ClsMLP(hidden_size=self.hidden_size,
ffn_hidden_size=decoder.mlp_hidden_size,
hidden_act=decoder.hidden_act,
dtype=self.dtype,
bias=decoder.mlp_bias,
tp_group=self.mapping.tp_group,
tp_size=self.mapping.tp_size,
quant_mode=quant_mode,
instance_id=2 * layer_idx + 1,
**mlp_kwargs)
self.quant_mode = quant_mode # to_trt may use this
return self
# llama specific setters, user shall has the chance to change the module attributes after
# from_hugging_face factory method created the model when these attributes is not included in the huggingface checkpoint
def rotary_base(self, val):
for decoder in self.layers:
decoder.attention.rotary_embedding_base = val
return self
def rotary_scaling(self, scaling_type, factor):
#TODO: what if there are some other behaviors triggered by the these changes?
# should implement these assignment as setters of the Attention Module
assert scaling_type in ("linear", "dynamic"), f"Got {scaling_type}"
assert factor > 1.0, f"Got {factor}"
for decoder in self.layers:
decoder.attention.rotary_embedding_scale_type = RotaryScalingType.linear if scaling_type == "linear" else RotaryScalingType.dynamic
decoder.attention.rotary_embedding_scale = factor
return self