forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
407 lines (376 loc) · 17.3 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
from pathlib import Path
import numpy as np
import torch
from utils import (DEFAULT_HF_MODEL_DIRS, DEFAULT_PROMPT_TEMPLATES,
load_tokenizer, read_model_name, throttle_generator)
import tensorrt_llm
from tensorrt_llm.logger import logger
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
def parse_arguments(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument(
'--max_attention_window_size',
type=int,
default=None,
help=
'The attention window size that controls the sliding window attention / cyclic kv cache behaviour'
)
parser.add_argument('--log_level', type=str, default='error')
parser.add_argument('--engine_dir', type=str, default='engine_outputs')
parser.add_argument('--use_py_session',
default=False,
action='store_true',
help="Whether or not to use Python runtime session")
parser.add_argument(
'--input_text',
type=str,
nargs='+',
default=["Born in north-east France, Soyer trained as a"])
parser.add_argument(
'--no_prompt_template',
dest='use_prompt_template',
default=True,
action='store_false',
help=
"Whether or not to use default prompt template to wrap the input text.")
parser.add_argument(
'--input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--max_input_length', type=int, default=923)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument(
'--output_logits_npy',
type=str,
help=
'Numpy file where the generation logits are stored. Use only when num_beams==1',
default=None)
parser.add_argument('--tokenizer_dir',
help="HF tokenizer config path",
default='gpt2')
parser.add_argument(
'--tokenizer_type',
help=
'Specify that argument when providing a .model file as the tokenizer_dir. '
'It allows AutoTokenizer to instantiate the correct tokenizer type.')
parser.add_argument('--vocab_file',
help="Used for sentencepiece tokenizers")
parser.add_argument('--num_beams',
type=int,
help="Use beam search if num_beams >1",
default=1)
parser.add_argument('--temperature', type=float, default=1.0)
parser.add_argument('--top_k', type=int, default=1)
parser.add_argument('--top_p', type=float, default=0.0)
parser.add_argument('--length_penalty', type=float, default=1.0)
parser.add_argument('--repetition_penalty', type=float, default=1.0)
parser.add_argument('--presence_penalty', type=float, default=0.0)
parser.add_argument('--frequency_penalty', type=float, default=0.0)
parser.add_argument('--debug_mode',
default=False,
action='store_true',
help="Whether or not to turn on the debug mode")
parser.add_argument('--no_add_special_tokens',
dest='add_special_tokens',
default=True,
action='store_false',
help="Whether or not to add special tokens")
parser.add_argument('--streaming', default=False, action='store_true')
parser.add_argument('--streaming_interval',
type=int,
help="How often to return tokens when streaming.",
default=5)
parser.add_argument(
'--prompt_table_path',
type=str,
help="Path to .npy file, exported by nemo_prompt_convert.py")
parser.add_argument(
'--prompt_tasks',
help="Comma-separated list of tasks for prompt tuning, e.g., 0,3,1,0")
parser.add_argument('--lora_dir',
type=str,
default=None,
help="The directory of LoRA weights")
parser.add_argument(
'--lora_task_uids',
type=str,
default=None,
nargs="+",
help="The list of LoRA task uids; use -1 to disable the LoRA module")
parser.add_argument('--lora_ckpt_source',
type=str,
default="hf",
choices=["hf", "nemo"],
help="The source of lora checkpoint.")
parser.add_argument(
'--num_prepend_vtokens',
nargs="+",
type=int,
help="Number of (default) virtual tokens to prepend to each sentence."
" For example, '--num_prepend_vtokens=10' will prepend the tokens"
" [vocab_size, vocab_size + 1, ..., vocab_size + 9] to the sentence.")
return parser.parse_args(args=args)
def parse_input(tokenizer,
input_text=None,
prompt_template=None,
input_file=None,
add_special_tokens=True,
max_input_length=923,
pad_id=None,
num_prepend_vtokens=[]):
if pad_id is None:
pad_id = tokenizer.pad_token_id
batch_input_ids = []
if input_file is None:
for curr_text in input_text:
if prompt_template is not None:
curr_text = prompt_template.format(input_text=curr_text)
input_ids = tokenizer.encode(curr_text,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=max_input_length)
batch_input_ids.append(input_ids)
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_ids = np.array(line, dtype='int32')
batch_input_ids.append(input_ids[-max_input_length:])
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
input_ids = row[row != pad_id]
batch_input_ids.append(input_ids[-max_input_length:])
elif input_file.endswith('.txt'):
with open(input_file, 'r', encoding='utf-8',
errors='replace') as txt_file:
input_text = txt_file.read()
input_ids = tokenizer.encode(
input_text,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=max_input_length)
batch_input_ids.append(input_ids)
else:
print('Input file format not supported.')
raise SystemExit
if num_prepend_vtokens:
assert len(num_prepend_vtokens) == len(batch_input_ids)
base_vocab_size = tokenizer.vocab_size - len(
tokenizer.special_tokens_map.get('additional_special_tokens', []))
for i, length in enumerate(num_prepend_vtokens):
batch_input_ids[i] = list(
range(base_vocab_size,
base_vocab_size + length)) + batch_input_ids[i]
batch_input_ids = [
torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
]
return batch_input_ids
def print_output(tokenizer,
output_ids,
input_lengths,
sequence_lengths,
output_csv=None,
output_npy=None,
context_logits=None,
generation_logits=None,
output_logits_npy=None):
batch_size, num_beams, _ = output_ids.size()
if output_csv is None and output_npy is None:
for batch_idx in range(batch_size):
inputs = output_ids[batch_idx][0][:input_lengths[batch_idx]].tolist(
)
input_text = tokenizer.decode(inputs)
print(f'Input [Text {batch_idx}]: \"{input_text}\"')
for beam in range(num_beams):
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[batch_idx][beam]
outputs = output_ids[batch_idx][beam][
output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(
f'Output [Text {batch_idx} Beam {beam}]: \"{output_text}\"')
output_ids = output_ids.reshape((-1, output_ids.size(2)))
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids.tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
np.save(output_file, outputs)
if generation_logits is not None and output_logits_npy is not None and num_beams == 1:
input_lengths = torch.Tensor(input_lengths)
context_logits = torch.cat(context_logits, axis=0)
generation_logits = generation_logits.squeeze(1)
last_token_ids = torch.cumsum(input_lengths, dim=0).int().cuda()
batch_size = input_lengths.size(0)
vocab_size_padded = context_logits.shape[-1]
context_logits = context_logits.reshape([1, -1, vocab_size_padded])
contex_last_token_logits = torch.index_select(context_logits, 1,
last_token_ids - 1).view(
batch_size, 1,
vocab_size_padded)
generation_logits = torch.cat(
[contex_last_token_logits, generation_logits], axis=1)
generation_logits = generation_logits.reshape(
-1, num_beams, generation_logits.shape[1], generation_logits.
shape[2]) # [batchSize, beamWidth, maxOutputLength, vocabSize]
# Save context logits
output_context_logits_npy = output_logits_npy.split(
'.npy')[0] + "_context"
output_context_logits_file = Path(output_context_logits_npy)
context_outputs = np.array(
context_logits.squeeze(0).cpu().contiguous(),
dtype='float32') # [promptLengthSum, vocabSize]
np.save(output_context_logits_file, context_outputs)
# Save generation logits
output_generation_logits_npy = output_logits_npy.split(
'.npy')[0] + "_generation"
output_generation_logits_file = Path(output_generation_logits_npy)
generation_outputs = np.array(generation_logits.cpu().contiguous(),
dtype='float32')
np.save(output_generation_logits_file, generation_outputs)
def main(args):
runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(args.log_level)
model_name = read_model_name(args.engine_dir)
if args.tokenizer_dir is None:
args.tokenizer_dir = DEFAULT_HF_MODEL_DIRS[model_name]
tokenizer, pad_id, end_id = load_tokenizer(
tokenizer_dir=args.tokenizer_dir,
vocab_file=args.vocab_file,
model_name=model_name,
tokenizer_type=args.tokenizer_type,
)
# # An example to stop generation when the model generate " London" on first sentence, " eventually became" on second sentence
# stop_words_list = [[" London"], ["eventually became"]]
# stop_words_list = tensorrt_llm.runtime.to_word_list_format(stop_words_list, tokenizer)
# stop_words_list = torch.Tensor(stop_words_list).to(torch.int32).to("cuda").contiguous()
stop_words_list = None
# # An example to prevent generating " chef" on first sentence, " eventually" and " chef before" on second sentence
# bad_words_list = [[" chef"], [" eventually, chef before"]]
# bad_words_list = tensorrt_llm.runtime.to_word_list_format(bad_words_list, tokenizer)
# bad_words_list = torch.Tensor(bad_words_list).to(torch.int32).to("cuda").contiguous()
bad_words_list = None
prompt_template = None
if args.use_prompt_template and model_name in DEFAULT_PROMPT_TEMPLATES:
prompt_template = DEFAULT_PROMPT_TEMPLATES[model_name]
batch_input_ids = parse_input(tokenizer=tokenizer,
input_text=args.input_text,
prompt_template=prompt_template,
input_file=args.input_file,
add_special_tokens=args.add_special_tokens,
max_input_length=args.max_input_length,
pad_id=pad_id,
num_prepend_vtokens=args.num_prepend_vtokens)
input_lengths = [x.size(0) for x in batch_input_ids]
if not PYTHON_BINDINGS and not args.use_py_session:
logger.warning(
"Python bindings of C++ session is unavailable, fallback to Python session."
)
args.use_py_session = True
runner_cls = ModelRunner if args.use_py_session else ModelRunnerCpp
runner_kwargs = dict(engine_dir=args.engine_dir,
lora_dir=args.lora_dir,
rank=runtime_rank,
debug_mode=args.debug_mode,
lora_ckpt_source=args.lora_ckpt_source)
if not args.use_py_session:
runner_kwargs.update(
max_batch_size=len(batch_input_ids),
max_input_len=max(input_lengths),
max_output_len=args.max_output_len,
max_beam_width=args.num_beams,
max_attention_window_size=args.max_attention_window_size)
runner = runner_cls.from_dir(**runner_kwargs)
with torch.no_grad():
outputs = runner.generate(
batch_input_ids,
max_new_tokens=args.max_output_len,
max_attention_window_size=args.max_attention_window_size,
end_id=end_id,
pad_id=pad_id,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_beams=args.num_beams,
length_penalty=args.length_penalty,
repetition_penalty=args.repetition_penalty,
presence_penalty=args.presence_penalty,
frequency_penalty=args.frequency_penalty,
stop_words_list=stop_words_list,
bad_words_list=bad_words_list,
lora_uids=args.lora_task_uids,
prompt_table_path=args.prompt_table_path,
prompt_tasks=args.prompt_tasks,
streaming=args.streaming,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
if args.streaming:
for curr_outputs in throttle_generator(outputs,
args.streaming_interval):
if runtime_rank == 0:
output_ids = curr_outputs['output_ids']
sequence_lengths = curr_outputs['sequence_lengths']
print_output(tokenizer,
output_ids,
input_lengths,
sequence_lengths,
output_csv=args.output_csv,
output_npy=args.output_npy)
else:
if runtime_rank == 0:
output_ids = outputs['output_ids']
sequence_lengths = outputs['sequence_lengths']
context_logits = None
generation_logits = None
if runner.gather_all_token_logits:
context_logits = outputs['context_logits']
generation_logits = outputs['generation_logits']
print_output(tokenizer,
output_ids,
input_lengths,
sequence_lengths,
output_csv=args.output_csv,
output_npy=args.output_npy,
context_logits=context_logits,
generation_logits=generation_logits,
output_logits_npy=args.output_logits_npy)
if __name__ == '__main__':
args = parse_arguments()
main(args)