forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_checkpoint.py
354 lines (304 loc) · 13.8 KB
/
convert_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import argparse
import json
import os
import time
from concurrent.futures import ThreadPoolExecutor, wait
import safetensors
import torch
from transformers import AutoModelForCausalLM
import tensorrt_llm
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default=None)
parser.add_argument('--world_size',
type=int,
default=1,
help='world size, only support tensor parallelism now')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument('--use_prompt_tuning',
action="store_true",
default=False)
parser.add_argument('--output_dir',
type=str,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers for converting checkpoint in parallel')
args = parser.parse_args()
return args
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return torch.chunk(v, tp_size)[idx].contiguous()
else:
return torch.chunk(v, tp_size, dim=dim)[idx].contiguous()
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV matrix according to tensor parallelism
"""
v = v.reshape(3, n_hidden, n_hidden)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
return split_v.contiguous()
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV bias according to tensor parallelism
"""
v = v.reshape(3, n_hidden)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
return split_v.contiguous()
def split_matrix_tp(v, tensor_parallel, rank, dim):
return split(v, tensor_parallel, rank, dim=dim)
def get_weight(config, prefix, dtype):
return config[prefix + '.weight'].to(dtype).detach()
def get_bias(config, prefix, dtype):
return config[prefix + '.bias'].to(dtype).detach()
def get_weight_and_bias(config, prefix, dtype):
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
def get_tllm_linear_weight(weight,
prefix,
bias=None,
use_weight_only=False,
plugin_weight_only_quant_type=torch.int8):
results = {}
if use_weight_only:
v = weight.t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[prefix + 'weight'] = processed_torch_weights
results[prefix + 'per_channel_scale'] = torch_weight_scales
else:
results[prefix + 'weight'] = weight.contiguous()
if bias is not None:
results[prefix + 'bias'] = bias
return results
def convert_hf_opt(hf_model,
rank=0,
tensor_parallel=1,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False,
use_weight_only=False,
plugin_weight_only_quant_type=torch.int8):
weights = {}
tik = time.time()
model_params = dict(hf_model.named_parameters())
dtype = getattr(torch, dtype)
do_layer_norm_before = hf_model.config.do_layer_norm_before
num_attention_heads = hf_model.config.num_attention_heads
hidden_size = hf_model.config.hidden_size
for l in range(hf_model.config.num_hidden_layers):
prefix = f'model.decoder.layers.{l}.'
tllm_prex = f'transformer.layers.{l}.'
q_weight, q_bias = get_weight_and_bias(model_params,
prefix + 'self_attn.q_proj',
dtype)
k_weight, k_bias = get_weight_and_bias(model_params,
prefix + 'self_attn.k_proj',
dtype)
v_weight, v_bias = get_weight_and_bias(model_params,
prefix + 'self_attn.v_proj',
dtype)
qkv_weight = torch.cat([q_weight, k_weight, v_weight], dim=0)
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
tensor_parallel, rank)
qkv_bias = torch.cat([q_bias, k_bias, v_bias], dim=0)
bias = split_qkv_bias_tp(qkv_bias, num_attention_heads, hidden_size,
tensor_parallel, rank)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.', bias,
use_weight_only,
plugin_weight_only_quant_type))
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, prefix + 'self_attn.out_proj', dtype)
split_v = split_matrix_tp(attn_dense_weight,
tensor_parallel,
rank,
dim=1)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
attn_dense_bias, use_weight_only,
plugin_weight_only_quant_type))
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, prefix + 'fc1', dtype)
split_v = split_matrix_tp(mlp_fc_weight, tensor_parallel, rank, dim=0)
bias = split_matrix_tp(mlp_fc_bias, tensor_parallel, rank, dim=0)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', bias,
use_weight_only,
plugin_weight_only_quant_type))
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, prefix + 'fc2', dtype)
split_v = split_matrix_tp(mlp_proj_weight, tensor_parallel, rank, dim=1)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
# Layer norms do not use tensor parallelism
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, prefix + 'self_attn_layer_norm', dtype)
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
weights[tllm_prex + 'input_layernorm.bias'] = input_ln_bias
post_ln_weight, post_ln_bias = get_weight_and_bias(
model_params, prefix + 'final_layer_norm', dtype)
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
weights[tllm_prex + 'post_layernorm.bias'] = post_ln_bias
embed_w = get_weight(model_params, 'model.decoder.embed_tokens', dtype)
if 'model.decoder.project_in.weight' in model_params.keys():
project_in = get_weight(model_params, 'model.decoder.project_in', dtype)
project_out = get_weight(model_params, 'model.decoder.project_out',
dtype)
lm_head_w = torch.matmul(embed_w.float(), project_out.float()).to(dtype)
embed_w = torch.matmul(embed_w.float(),
project_in.t().float()).to(dtype)
else:
lm_head_w = embed_w.clone()
if not share_embedding_table:
weights['lm_head.weight'] = split_matrix_tp(lm_head_w,
tensor_parallel,
rank,
dim=0)
if not use_parallel_embedding:
weights['transformer.embedding.vocab_embedding.weight'] = embed_w
else:
assert hf_model.config.vocab_size % tensor_parallel == 0
weights[
'transformer.embedding.vocab_embedding.weight'] = split_matrix_tp(
embed_w, tensor_parallel, rank, dim=sharding_dim)
embed_p = get_weight(model_params, 'model.decoder.embed_positions', dtype)
weights['transformer.embedding.position_embedding.weight'] = embed_p[2:, :]
if do_layer_norm_before:
ln_f_w, ln_f_b = get_weight_and_bias(model_params,
'model.decoder.final_layer_norm',
dtype)
weights['transformer.ln_f.weight'] = ln_f_w
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
if __name__ == '__main__':
# TODO(qijun): Currently, the convert script depends on a torch op:
# torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix,
# which is included in tensorrt_llm Python package. Otherwise, the convert
# script does not need to import tensorrt_llm. Will remove it after reimplementing
# the op with PyTorch.
print(tensorrt_llm.__version__)
args = parse_arguments()
tik = time.time()
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
hf_model = AutoModelForCausalLM.from_pretrained(args.model_dir,
torch_dtype="auto")
hf_config = hf_model.config
if hf_config.hidden_size != hf_config.word_embed_proj_dim:
args.use_embedding_sharing = False
args.use_parallel_embedding = False
config = {
'architecture': hf_config.architectures[0],
'dtype': args.dtype,
'logits_dtype': 'float32',
'num_hidden_layers': hf_config.num_hidden_layers,
'num_attention_heads': hf_config.num_attention_heads,
'hidden_size': hf_config.hidden_size,
'vocab_size': hf_config.vocab_size,
'position_embedding_type': 'learned_absolute',
'max_position_embeddings': hf_config.max_position_embeddings,
'hidden_act': hf_config.activation_function,
'quantization': {
'use_weight_only': args.use_weight_only,
'weight_only_precision': args.weight_only_precision,
},
'mapping': {
'world_size': args.world_size,
'tp_size': args.world_size,
},
'use_parallel_embedding': args.use_parallel_embedding,
'embedding_sharding_dim': args.embedding_sharding_dim,
'share_embedding_table': args.use_embedding_sharing,
'do_layer_norm_before': hf_config.do_layer_norm_before,
'use_prompt_tuning': args.use_prompt_tuning,
}
with open(os.path.join(args.output_dir, 'config.json'), 'w') as f:
json.dump(config, f, indent=4)
if args.weight_only_precision == 'int8':
plugin_weight_only_quant_type = torch.int8
elif args.weight_only_precision == 'int4':
plugin_weight_only_quant_type = torch.quint4x2
def covert_and_save(rank):
weights = convert_hf_opt(
hf_model,
rank,
args.world_size,
dtype=args.dtype,
use_weight_only=args.use_weight_only,
plugin_weight_only_quant_type=plugin_weight_only_quant_type,
use_parallel_embedding=args.use_parallel_embedding,
sharding_dim=args.embedding_sharding_dim,
share_embedding_table=args.use_embedding_sharing)
safetensors.torch.save_file(
weights, os.path.join(args.output_dir, f'rank{rank}.safetensors'))
if args.workers == 1:
for rank in range(args.world_size):
covert_and_save(rank)
else:
with ThreadPoolExecutor(max_workers=args.workers) as p:
futures = [
p.submit(covert_and_save, rank)
for rank in range(args.world_size)
]
wait(futures)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Total time of converting checkpoints: {t}')