forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
weight.py
907 lines (802 loc) · 40.1 KB
/
weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import configparser
import time
from operator import attrgetter
from pathlib import Path
from typing import Dict, List, Optional, Union
import numpy as np
import torch
import tensorrt_llm
import tensorrt_llm.logger as logger
from tensorrt_llm._utils import pad_vocab_size, str_dtype_to_np
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import GPTJForCausalLM
from tensorrt_llm.models.quantized.quant import get_dummy_quant_scales
from tensorrt_llm.quantization import QuantMode
def get_scaling_factors(
model_path: Union[str, Path],
num_layers: int,
quant_mode: Optional[QuantMode] = None,
) -> Optional[Dict[str, List[int]]]:
""" Get the scaling factors for GPT-J model
Returns a dictionary of scaling factors for the selected layers of the
GPT-J model.
Args:
model_path (str): Path to the quantized GPT-J model
layers (list): List of layers to get the scaling factors for. If None,
all layers are selected.
Returns:
dict: Dictionary of scaling factors for the selected layers of the
GPT-J model.
example:
{
'qkv_act': qkv_act_scale,
'qkv_weights': qkv_weights_scale,
'qkv_output' : qkv_outputs_scale,
'dense_act': dense_act_scale,
'dense_weights': dense_weights_scale,
'fc_act': fc_act_scale,
'fc_weights': fc_weights_scale,
'proj_act': proj_act_scale,
'proj_weights': proj_weights_scale,
}
"""
if model_path is None:
logger.warning(f"--quantized_fp8_model_path not specified. "
f"Initialize quantization scales automatically.")
return get_dummy_quant_scales(num_layers)
weight_dict = np.load(model_path)
# yapf: disable
scaling_factor = {
'qkv_act': [],
'qkv_weights': [],
'qkv_output': [],
'dense_act': [],
'dense_weights': [],
'fc_act': [],
'fc_weights': [],
'proj_act': [],
'proj_weights': [],
}
for layer in range(num_layers):
scaling_factor['qkv_act'].append(max(
weight_dict[f'_np:layers:{layer}:attention:qkv:q:activation_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:k:activation_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:v:activation_scaling_factor'].item()
))
scaling_factor['qkv_weights'].append(max(
weight_dict[f'_np:layers:{layer}:attention:qkv:q:weights_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:k:weights_scaling_factor'].item(),
weight_dict[f'_np:layers:{layer}:attention:qkv:v:weights_scaling_factor'].item()
))
if quant_mode is not None and quant_mode.has_fp8_kv_cache():
# Not calibrarting KV cache.
scaling_factor['qkv_output'].append(1.0)
scaling_factor['dense_act'].append(weight_dict[f'_np:layers:{layer}:attention:dense:activation_scaling_factor'].item())
scaling_factor['dense_weights'].append(weight_dict[f'_np:layers:{layer}:attention:dense:weights_scaling_factor'].item())
scaling_factor['fc_act'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:activation_scaling_factor'].item())
scaling_factor['fc_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:fc:weights_scaling_factor'].item())
scaling_factor['proj_act'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:activation_scaling_factor'].item())
scaling_factor['proj_weights'].append(weight_dict[f'_np:layers:{layer}:mlp:proj:weights_scaling_factor'].item())
# yapf: enable
for k, v in scaling_factor.items():
assert len(v) == num_layers, \
f'Expect scaling factor {k} of length {num_layers}, got {len(v)}'
return scaling_factor
def gen_suffix(rank, use_smooth_quant, quant_per_channel):
suffix = f"{rank}.bin"
if use_smooth_quant:
sq_prefix = "int8."
if quant_per_channel:
sq_prefix += "col."
suffix = sq_prefix + suffix
return suffix
def extract_layer_idx(name):
ss = name.split('.')
for s in ss:
if s.isdigit():
return s
return None
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return np.ascontiguousarray(np.split(v, tp_size)[idx])
elif len(v.shape) == 2:
return np.ascontiguousarray(np.split(v, tp_size, axis=dim)[idx])
return None
def parse_config(ini_file):
gpt_config = configparser.ConfigParser()
gpt_config.read(ini_file)
n_embd = gpt_config.getint('gpt', 'n_embd')
n_head = gpt_config.getint('gpt', 'n_head')
n_layer = gpt_config.getint('gpt', 'n_layer')
n_positions = gpt_config.getint('gpt', 'n_positions')
vocab_size = gpt_config.getint('gpt', 'vocab_size')
do_layer_norm_before = gpt_config.getboolean('gpt',
'do_layer_norm_before',
fallback=True)
rotary_pct = gpt_config.getfloat('gpt', 'rotary_pct', fallback=0.0)
hidden_act = gpt_config.get('gpt', 'activation_function')
bias = gpt_config.getboolean('gpt', 'bias', fallback=True)
inter_size = gpt_config.getint('gpt', 'intermediate_size', fallback=None)
dtype = gpt_config.get('gpt', 'storage_dtype', fallback='float32')
if inter_size is None:
inter_size = 4 * n_embd
multi_query_mode = gpt_config.getboolean('gpt',
'multi_query_mode',
fallback=False)
prompt_num_tasks = gpt_config.getint('gpt', 'prompt_num_tasks', fallback=0)
prompt_max_vocab_size = gpt_config.getint('gpt',
'prompt_max_vocab_size',
fallback=0)
return n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before, hidden_act, rotary_pct, bias, inter_size, multi_query_mode, dtype, prompt_num_tasks, prompt_max_vocab_size
def load_from_bin_gpt_j(tensorrt_llm_gpt_j: GPTJForCausalLM,
dir_path,
rank=0,
tensor_parallel=1,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False,
scaling_factors=None):
tensorrt_llm.logger.info('Loading weights from bin...')
tik = time.time()
quant_mode = getattr(tensorrt_llm_gpt_j, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
n_embd, n_head, n_layer, n_positions, vocab_size, do_layer_norm_before, hidden_act, rotary_pct, bias, inter_size, multi_query_mode, *_ = parse_config(
Path(dir_path) / 'config.ini')
np_dtype = str_dtype_to_np(dtype)
def fromfile(dir_path, name, shape=None, dtype=None):
dtype = np_dtype if dtype is None else dtype
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
def set_smoothquant_scale_factors(module,
pre_scale_weight,
dir_path,
basename,
shape,
per_tok_dyn,
per_channel,
is_qkv=False,
rank=None):
suffix = "bin"
if per_channel:
if rank is not None:
suffix = f"{rank}." + suffix
suffix = "col." + suffix
col_shape = shape if (per_channel or is_qkv) else [1, 1]
if per_tok_dyn:
if pre_scale_weight is not None:
pre_scale_weight.value = np.array([1.0], dtype=np.float32)
t = fromfile(dir_path, f"{basename}scale_w_quant_orig.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
else:
t = fromfile(dir_path, f"{basename}scale_x_orig_quant.bin", [1],
np.float32)
pre_scale_weight.value = t
t = fromfile(dir_path, f"{basename}scale_y_accum_quant.{suffix}",
col_shape, np.float32)
module.per_channel_scale.value = t
t = fromfile(dir_path, f"{basename}scale_y_quant_orig.bin", [1, 1],
np.float32)
module.act_scale.value = t
# Do we use SmoothQuant?
use_smooth_quant = quant_mode.has_act_and_weight_quant()
# Do we use quantization per token?
quant_per_token_dyn = quant_mode.has_per_token_dynamic_scaling()
# Do we use quantization per channel?
quant_per_channel = quant_mode.has_per_channel_scaling()
# Do we use INT4/INT8 weight-only?
use_weight_only = quant_mode.is_weight_only()
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
#Enable FP8 Gemm
enable_fp8_qdq = quant_mode.has_fp8_qdq()
def sq_trick(x):
return x.view(np.float32) if use_smooth_quant else x
# Debug
suffix = gen_suffix(rank, use_smooth_quant, quant_per_channel)
# The type of weights.
w_type = np_dtype if not use_smooth_quant else np.int8
# pe = fromfile(dir_path, 'model.wpe.bin', [n_positions, n_embd])
# if pe is not None:
# tensorrt_llm_gpt_j.embedding.position_embedding.weight.value = (pe)
vocab_embedding_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if not use_parallel_embedding:
tensorrt_llm_gpt_j.embedding.weight.value = vocab_embedding_weight
else:
if sharding_dim == 0:
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = pad_vocab_size(
tensorrt_llm_gpt_j.embedding.num_embeddings,
tensor_parallel)
pad_width = vocab_size_padded - vocab_size
vocab_embedding_weight = np.pad(vocab_embedding_weight,
((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt_j.embedding.weight.value = np.ascontiguousarray(
split(vocab_embedding_weight,
tensor_parallel,
rank,
dim=sharding_dim))
if do_layer_norm_before:
tensorrt_llm_gpt_j.ln_f.bias.value = (fromfile(
dir_path, 'model.final_layernorm.bias.bin'))
tensorrt_llm_gpt_j.ln_f.weight.value = (fromfile(
dir_path, 'model.final_layernorm.weight.bin'))
# share input embedding
if not share_embedding_table:
lm_head_weight = fromfile(dir_path, 'model.lm_head.weight.bin',
[vocab_size, n_embd])
lm_head_bias = fromfile(dir_path, 'model.lm_head.bias.bin',
[vocab_size])
if lm_head_weight is None:
lm_head_weight = fromfile(dir_path, 'model.wte.bin',
[vocab_size, n_embd])
if vocab_size % tensor_parallel != 0:
# padding
vocab_size_padded = tensorrt_llm_gpt_j.lm_head.out_features * tensor_parallel
pad_width = vocab_size_padded - vocab_size
lm_head_weight = np.pad(lm_head_weight, ((0, pad_width), (0, 0)),
'constant',
constant_values=0)
tensorrt_llm_gpt_j.lm_head.weight.value = np.ascontiguousarray(
split(lm_head_weight, tensor_parallel, rank))
tensorrt_llm_gpt_j.lm_head.bias.value = np.ascontiguousarray(
split(lm_head_bias, tensor_parallel, rank))
fake_fp8_sf_dt = np.float32
for i in range(n_layer):
c_attn_out_dim = (3 * n_embd //
tensor_parallel) if not multi_query_mode else (
n_embd // tensor_parallel +
(n_embd // n_head) * 2)
tensorrt_llm_gpt_j.layers[i].input_layernorm.weight.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.weight.bin'))
tensorrt_llm_gpt_j.layers[i].input_layernorm.bias.value = (fromfile(
dir_path, 'model.layers.' + str(i) + '.input_layernorm.bias.bin'))
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.weight.' + suffix,
[n_embd, c_attn_out_dim], w_type)
if t is not None:
dst = tensorrt_llm_gpt_j.layers[i].attention.qkv.weight
if use_smooth_quant:
dst.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_gpt_j.layers[i].attention.qkv,
tensorrt_llm_gpt_j.layers[i].input_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.attention.query_key_value.',
[1, c_attn_out_dim],
quant_per_token_dyn,
quant_per_channel,
rank=rank,
is_qkv=True)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_gpt_j.layers[
i].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
if enable_fp8_qdq:
tensorrt_llm_gpt_j.layers[
i].attention.qkv.activation_scaling_factor.value = np.array(
[scaling_factors['qkv_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt_j.layers[
i].attention.qkv.weights_scaling_factor.value = np.array(
[scaling_factors['qkv_weights'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt_j.layers[
i].attention.kv_orig_quant_scale.value = np.array(
[scaling_factors['qkv_output'][i]], dtype=np.float32)
tensorrt_llm_gpt_j.layers[
i].attention.kv_quant_orig_scale.value = np.array(
[1.0 / scaling_factors['qkv_output'][i]], dtype=np.float32)
dst = tensorrt_llm_gpt_j.layers[i].attention.dense.weight
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.attention.dense.weight.' + suffix,
[n_embd // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
dst.value = sq_trick(np.ascontiguousarray(np.transpose(t, [1, 0])))
dense_scale = getattr(tensorrt_llm_gpt_j.layers[i].attention,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_gpt_j.layers[i].attention.dense, dense_scale,
dir_path, 'model.layers.' + str(i) + '.attention.dense.',
[1, n_embd], quant_per_token_dyn, quant_per_channel)
# change it to the real smoother if dense layer is applied smooth quant
tensorrt_llm_gpt_j.layers[
i].attention.dense.smoother.value = np.ones(
[1, n_embd // tensor_parallel], dtype=np.float32)
elif use_weight_only:
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_gpt_j.layers[
i].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
dst.value = np.ascontiguousarray(np.transpose(t, [1, 0]))
if enable_fp8_qdq:
tensorrt_llm_gpt_j.layers[
i].attention.dense.activation_scaling_factor.value = np.array(
[scaling_factors['dense_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt_j.layers[
i].attention.dense.weights_scaling_factor.value = np.array(
[scaling_factors['dense_weights'][i]], dtype=fake_fp8_sf_dt)
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.weight.' + suffix,
[n_embd, inter_size // tensor_parallel], w_type)
if use_smooth_quant:
tensorrt_llm_gpt_j.layers[i].mlp.fc.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
set_smoothquant_scale_factors(
tensorrt_llm_gpt_j.layers[i].mlp.fc,
tensorrt_llm_gpt_j.layers[i].post_layernorm.scale_to_int,
dir_path,
'model.layers.' + str(i) + '.mlp.dense_h_to_4h.',
[1, inter_size // tensor_parallel],
quant_per_token_dyn,
quant_per_channel,
rank=rank)
elif use_weight_only:
dst = tensorrt_llm_gpt_j.layers[i].mlp.fc.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_gpt_j.layers[i].mlp.fc.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_gpt_j.layers[
i].mlp.fc.weight.value = np.ascontiguousarray(
np.transpose(t, [1, 0]))
if bias:
tensorrt_llm_gpt_j.layers[i].mlp.fc.bias.value = fromfile(
dir_path, 'model.layers.' + str(i) +
'.mlp.dense_h_to_4h.bias.' + str(rank) + '.bin')
if enable_fp8_qdq:
tensorrt_llm_gpt_j.layers[
i].mlp.fc.activation_scaling_factor.value = np.array(
[scaling_factors['fc_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt_j.layers[
i].mlp.fc.weights_scaling_factor.value = np.array(
[scaling_factors['fc_weights'][i]], dtype=fake_fp8_sf_dt)
t = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.weight.' + suffix,
[inter_size // tensor_parallel, n_embd], w_type)
if use_smooth_quant:
tensorrt_llm_gpt_j.layers[i].mlp.proj.weight.value = sq_trick(
np.ascontiguousarray(np.transpose(t, [1, 0])))
proj_scale = getattr(tensorrt_llm_gpt_j.layers[i].mlp,
"quantization_scaling_factor", None)
set_smoothquant_scale_factors(
tensorrt_llm_gpt_j.layers[i].mlp.proj, proj_scale, dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.', [1, n_embd],
quant_per_token_dyn, quant_per_channel)
# change it to the real smoother if proj layer is applied smooth quant
tensorrt_llm_gpt_j.layers[i].mlp.proj.smoother.value = np.ones(
[1, inter_size // tensor_parallel], dtype=np.float32)
elif use_weight_only:
dst = tensorrt_llm_gpt_j.layers[i].mlp.proj.weight
processed_torch_weights, torch_weight_scales = torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
torch.tensor(t), plugin_weight_only_quant_type)
dst.value = processed_torch_weights.numpy()
scales = tensorrt_llm_gpt_j.layers[i].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
tensorrt_llm_gpt_j.layers[i].mlp.proj.weight.value = (
np.ascontiguousarray(np.transpose(t, [1, 0])))
if bias:
tensorrt_llm_gpt_j.layers[i].mlp.proj.bias.value = fromfile(
dir_path,
'model.layers.' + str(i) + '.mlp.dense_4h_to_h.bias.bin')
if use_int8_kv_cache:
t = fromfile(
dir_path, 'model.layers.' + str(i) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
tensorrt_llm_gpt_j.layers[
i].attention.kv_orig_quant_scale.value = 1.0 / t
tensorrt_llm_gpt_j.layers[i].attention.kv_quant_orig_scale.value = t
if enable_fp8_qdq:
tensorrt_llm_gpt_j.layers[
i].mlp.proj.activation_scaling_factor.value = np.array(
[scaling_factors['proj_act'][i]], dtype=fake_fp8_sf_dt)
tensorrt_llm_gpt_j.layers[
i].mlp.proj.weights_scaling_factor.value = np.array(
[scaling_factors['proj_weights'][i]], dtype=fake_fp8_sf_dt)
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def load_from_hf_gpt_j(tensorrt_llm_gpt_j: GPTJForCausalLM,
hf_gpt_j,
fp16=False,
scaling_factors=None):
hf_model_gptj_block_names = [
"ln_1.weight",
"ln_1.bias",
"mlp.fc_in.weight",
"mlp.fc_in.bias",
"mlp.fc_out.weight",
"mlp.fc_out.bias",
]
tensorrt_llm_model_gptj_block_names = [
"input_layernorm.weight",
"input_layernorm.bias",
"mlp.fc.weight",
"mlp.fc.bias",
"mlp.proj.weight",
"mlp.proj.bias",
]
quant_mode = getattr(tensorrt_llm_gpt_j, 'quant_mode', QuantMode(0))
if quant_mode.is_int8_weight_only():
plugin_weight_only_quant_type = torch.int8
elif quant_mode.is_int4_weight_only():
plugin_weight_only_quant_type = torch.quint4x2
# Do we use INT4/INT8 weight-only?
use_weight_only = quant_mode.is_weight_only()
tensorrt_llm.logger.info('Loading weights from HF GPT-J...')
tik = time.time()
torch_dtype = torch.float16 if fp16 else torch.float32
hf_gpt_j_state_dict = hf_gpt_j.state_dict()
v = hf_gpt_j_state_dict.get('transformer.wte.weight')
tensorrt_llm_gpt_j.embedding.weight.value = v.to(torch_dtype).cpu().numpy()
n_layer = hf_gpt_j.config.n_layer
for layer_idx in range(n_layer):
prefix = "transformer.h." + str(layer_idx) + "."
for idx, hf_attr in enumerate(hf_model_gptj_block_names):
v = hf_gpt_j_state_dict.get(prefix + hf_attr)
layer = attrgetter(tensorrt_llm_model_gptj_block_names[idx])(
tensorrt_llm_gpt_j.layers[layer_idx])
if idx == 2 and scaling_factors:
tensorrt_llm_gpt_j.layers[
layer_idx].mlp.fc.activation_scaling_factor.value = np.array(
[scaling_factors['fc_act'][layer_idx]],
dtype=np.float32)
tensorrt_llm_gpt_j.layers[
layer_idx].mlp.fc.weights_scaling_factor.value = np.array(
[scaling_factors['fc_weights'][layer_idx]],
dtype=np.float32)
elif idx == 4 and scaling_factors:
tensorrt_llm_gpt_j.layers[
layer_idx].mlp.proj.activation_scaling_factor.value = np.array(
[scaling_factors['proj_act'][layer_idx]],
dtype=np.float32)
tensorrt_llm_gpt_j.layers[
layer_idx].mlp.proj.weights_scaling_factor.value = np.array(
[scaling_factors['proj_weights'][layer_idx]],
dtype=np.float32)
if use_weight_only and (idx == 2 or idx == 4):
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
v.transpose(0, 1).contiguous(), plugin_weight_only_quant_type
)
layer.value = processed_torch_weights.numpy()
if idx == 2:
scales = tensorrt_llm_gpt_j.layers[
layer_idx].mlp.fc.per_channel_scale
elif idx == 4:
scales = tensorrt_llm_gpt_j.layers[
layer_idx].mlp.proj.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
setattr(layer, 'value', v.to(torch_dtype).cpu().numpy())
# Attention QKV Linear
# concatenate the Q, K, V layers weights.
q_weights = hf_gpt_j_state_dict.get(prefix + "attn.q_proj.weight")
k_weights = hf_gpt_j_state_dict.get(prefix + "attn.k_proj.weight")
v_weights = hf_gpt_j_state_dict.get(prefix + "attn.v_proj.weight")
qkv_weights = torch.cat((q_weights, k_weights, v_weights))
layer = attrgetter("attention.qkv.weight")(
tensorrt_llm_gpt_j.layers[layer_idx])
if use_weight_only:
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
qkv_weights.transpose(0, 1).contiguous(), plugin_weight_only_quant_type)
layer.value = processed_torch_weights.numpy()
scales = tensorrt_llm_gpt_j.layers[
layer_idx].attention.qkv.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
setattr(layer, "value", qkv_weights.to(torch_dtype).cpu().numpy())
if scaling_factors:
tensorrt_llm_gpt_j.layers[
layer_idx].attention.qkv.activation_scaling_factor.value = np.array(
[scaling_factors['qkv_act'][layer_idx]], dtype=np.float32)
tensorrt_llm_gpt_j.layers[
layer_idx].attention.qkv.weights_scaling_factor.value = np.array(
[scaling_factors['qkv_weights'][layer_idx]],
dtype=np.float32)
if quant_mode.has_fp8_kv_cache():
if scaling_factors:
tensorrt_llm_gpt_j.layers[
layer_idx].attention.kv_orig_quant_scale.value = np.array(
[scaling_factors['qkv_output'][layer_idx]],
dtype=np.float32)
tensorrt_llm_gpt_j.layers[
layer_idx].attention.kv_quant_orig_scale.value = np.array(
[1.0 / scaling_factors['qkv_output'][layer_idx]],
dtype=np.float32)
# Attention Dense (out_proj) Linear
v = hf_gpt_j_state_dict.get(prefix + "attn.out_proj.weight")
layer = attrgetter("attention.dense.weight")(
tensorrt_llm_gpt_j.layers[layer_idx])
if use_weight_only:
processed_torch_weights, torch_weight_scales = \
torch.ops.fastertransformer.symmetric_quantize_last_axis_of_batched_matrix(
v.transpose(0, 1).contiguous(), plugin_weight_only_quant_type)
layer.value = processed_torch_weights.numpy()
scales = tensorrt_llm_gpt_j.layers[
layer_idx].attention.dense.per_channel_scale
scales.value = torch_weight_scales.numpy()
else:
setattr(layer, "value", v.to(torch_dtype).cpu().numpy())
if scaling_factors:
tensorrt_llm_gpt_j.layers[
layer_idx].attention.dense.activation_scaling_factor.value = np.array(
[scaling_factors['dense_act'][layer_idx]], dtype=np.float32)
tensorrt_llm_gpt_j.layers[
layer_idx].attention.dense.weights_scaling_factor.value = np.array(
[scaling_factors['dense_weights'][layer_idx]],
dtype=np.float32)
v = hf_gpt_j_state_dict.get('transformer.ln_f.weight')
tensorrt_llm_gpt_j.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
v = hf_gpt_j_state_dict.get('transformer.ln_f.bias')
tensorrt_llm_gpt_j.ln_f.bias.value = v.to(torch_dtype).cpu().numpy()
v = hf_gpt_j_state_dict.get('lm_head.weight')
tensorrt_llm_gpt_j.lm_head.weight.value = v.to(torch_dtype).cpu().numpy()
v = hf_gpt_j_state_dict.get('lm_head.bias')
tensorrt_llm_gpt_j.lm_head.bias.value = v.to(torch_dtype).cpu().numpy()
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')
def load_from_awq_gpt_j(tensorrt_llm_gpt_j: GPTJForCausalLM,
awq_gpt_j,
config,
mapping=Mapping(),
fp16=False,
group_size=128,
ft_model_dir=None):
awq_gptj_block_names = [
"ln_1.weight",
"ln_1.bias",
"mlp.fc_in.bias",
"mlp.fc_out.bias",
]
tensorrt_llm_model_gptj_block_names = [
"input_layernorm.weight",
"input_layernorm.bias",
"mlp.fc.bias",
"mlp.proj.bias",
]
def fromfile(dir_path, name, shape=None, dtype=None):
p = dir_path + '/' + name
if Path(p).exists():
t = np.fromfile(p, dtype=dtype)
if shape is not None:
t = t.reshape(shape)
return t
return None
quant_mode = getattr(tensorrt_llm_gpt_j, 'quant_mode', QuantMode(0))
# Int8 KV cache
use_int8_kv_cache = quant_mode.has_int8_kv_cache()
packer = torch.ops.fastertransformer.pack_int8_tensor_to_packed_int4
preprocessor = torch.ops.fastertransformer.preprocess_weights_for_mixed_gemm
tensorrt_llm.logger.info('Loading weights from AWQ GPT-J...')
tik = time.time()
torch_dtype = torch.float16 if fp16 else torch.float32
def AWQ_quantize_pack_preprocess(weight, scale):
scale = scale.repeat_interleave(group_size, dim=0)
weight = weight / scale
qweight_int8 = torch.clamp(torch.round(weight.cuda()).char(), -8, 7)
int4_weight = packer(qweight_int8.cpu())
int4_weight = preprocessor(int4_weight, torch.quint4x2)
return int4_weight.view(torch.int8).cpu().numpy()
def process_and_assign_weight(awq_gpt_j, mPrefix, mOp, tp_dim=0):
weight = awq_gpt_j[mPrefix + ".weight"].T.contiguous()
[k, n] = weight.shape
weight = weight.split(weight.shape[tp_dim] // mapping.tp_size,
dim=tp_dim)[mapping.tp_rank]
amax = awq_gpt_j[mPrefix + ".weight_quantizer._amax"].reshape(
(n, int(k / group_size))).T.contiguous()
amax = amax.split(amax.shape[tp_dim] // mapping.tp_size,
dim=tp_dim)[mapping.tp_rank]
pre_quant_scale = awq_gpt_j[
mPrefix + ".input_quantizer._pre_quant_scale"].reshape((1, k))
if tp_dim == 0:
pre_quant_scale = pre_quant_scale.split(k // mapping.tp_size,
dim=1)[mapping.tp_rank]
scale = amax / 8.0
mOp.qweight.value = AWQ_quantize_pack_preprocess(weight, scale)
mOp.scale.value = scale.to(torch_dtype).cpu().numpy()
mOp.pre_quant_scale.value = pre_quant_scale.to(
torch_dtype).cpu().numpy()
def deSmooth(weight, pre_quant_scale):
[k, n] = weight.shape
pre_quant_scale = pre_quant_scale.repeat(
(n, 1)).transpose(1, 0).contiguous()
weight = weight * pre_quant_scale
return weight
def reSmooth(weight, pre_quant_scale):
[k, n] = weight.shape
pre_quant_scale = pre_quant_scale.repeat(
(n, 1)).transpose(1, 0).contiguous()
weight = weight / pre_quant_scale
return weight
def get_scale(weight):
weight = weight.T.contiguous()
[n, k] = weight.shape
weight = weight.reshape(n, int(k / group_size), group_size)
weight = torch.abs(weight.reshape(-1, group_size))
amax, idx = weight.max(1)
amax = amax.reshape(n, int(k / group_size)).T.contiguous()
return amax / 8
def reSmooth_and_get_scale(weight, pre_quant_scale, avg_pre_quant_scale):
weight = deSmooth(weight, pre_quant_scale)
weight = reSmooth(weight, avg_pre_quant_scale)
scale = get_scale(weight)
return weight, scale
def process_and_assign_qkv_weight(awq_gpt_j, prefix, mOp):
q_weight = awq_gpt_j[prefix + "attn.q_proj.weight"].T.contiguous()
k_weight = awq_gpt_j[prefix + "attn.k_proj.weight"].T.contiguous()
v_weight = awq_gpt_j[prefix + "attn.v_proj.weight"].T.contiguous()
k = q_weight.shape[0]
q_weight = q_weight.split(q_weight.shape[1] // mapping.tp_size,
dim=1)[mapping.tp_rank]
k_weight = k_weight.split(k_weight.shape[1] // mapping.tp_size,
dim=1)[mapping.tp_rank]
v_weight = v_weight.split(v_weight.shape[1] // mapping.tp_size,
dim=1)[mapping.tp_rank]
q_pre_quant_scale = awq_gpt_j[
prefix + "attn.q_proj.input_quantizer._pre_quant_scale"].reshape(
(1, k))
k_pre_quant_scale = awq_gpt_j[
prefix + "attn.k_proj.input_quantizer._pre_quant_scale"].reshape(
(1, k))
v_pre_quant_scale = awq_gpt_j[
prefix + "attn.v_proj.input_quantizer._pre_quant_scale"].reshape(
(1, k))
qkv_pre_quant_scale = (q_pre_quant_scale + k_pre_quant_scale +
v_pre_quant_scale) / 3.0
q_weight, q_scale = reSmooth_and_get_scale(q_weight, q_pre_quant_scale,
qkv_pre_quant_scale)
k_weight, k_scale = reSmooth_and_get_scale(k_weight, k_pre_quant_scale,
qkv_pre_quant_scale)
v_weight, v_scale = reSmooth_and_get_scale(v_weight, v_pre_quant_scale,
qkv_pre_quant_scale)
qkv_weights = torch.cat((q_weight, k_weight, v_weight), dim=1)
qkv_scale = torch.cat((q_scale, k_scale, v_scale), dim=1)
mOp.pre_quant_scale.value = qkv_pre_quant_scale.to(
torch_dtype).cpu().numpy()
mOp.qweight.value = AWQ_quantize_pack_preprocess(qkv_weights, qkv_scale)
mOp.scale.value = qkv_scale.to(torch_dtype).cpu().numpy()
#check if we need to pad vocab
v = awq_gpt_j.get('transformer.wte.weight')
[vocab_size, k] = v.shape
pad_vocab = False
pad_vocab_size = vocab_size
if vocab_size % 64 != 0:
pad_vocab = True
pad_vocab_size = int((vocab_size + 63) / 64) * 64
if pad_vocab:
new_v = torch.zeros([pad_vocab_size, k])
new_v[:vocab_size, :] = v
v = new_v
tensorrt_llm_gpt_j.embedding.weight.value = v.to(torch_dtype).cpu().numpy()
n_layer = config["n_layer"]
for layer_idx in range(n_layer):
prefix = "transformer.h." + str(layer_idx) + "."
tensorrt_llm.logger.info(f'Process weights in layer: {layer_idx}')
for idx, awq_attr in enumerate(awq_gptj_block_names):
v = awq_gpt_j[prefix + awq_attr]
if awq_attr == "mlp.fc_in.bias":
v = v.split(v.shape[0] // mapping.tp_size, dim=0)[mapping.rank]
elif awq_attr == "mlp.fc_out.bias":
v = torch.zeros_like(v) if mapping.rank != 0 else v
layer = attrgetter(tensorrt_llm_model_gptj_block_names[idx])(
tensorrt_llm_gpt_j.layers[layer_idx])
setattr(layer, 'value', v.to(torch_dtype).cpu().numpy())
# Attention QKV Linear
# concatenate the Q, K, V layers weights.
process_and_assign_qkv_weight(
awq_gpt_j, prefix,
tensorrt_llm_gpt_j.layers[layer_idx].attention.qkv)
# Attention Dense (out_proj) Linear
mPrefix = prefix + "attn.out_proj"
mOp = tensorrt_llm_gpt_j.layers[layer_idx].attention.dense
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 0)
# MLP Dense (mlp.fc) Linear
mPrefix = prefix + "mlp.fc_in"
mOp = tensorrt_llm_gpt_j.layers[layer_idx].mlp.fc
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 1)
# MLP Dense (mlp.proj) Linear
mPrefix = prefix + "mlp.fc_out"
mOp = tensorrt_llm_gpt_j.layers[layer_idx].mlp.proj
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 0)
if use_int8_kv_cache:
assert ft_model_dir, "You must pass --ft_model_dir to tell TRT-LLM where to look for scales of INT8 kv cache."
t = fromfile(
ft_model_dir, 'model.layers.' + str(layer_idx) +
'.attention.query_key_value.scale_y_quant_orig.bin', [1],
np.float32)
assert t is not None, f"{ft_model_dir} does not contain model.layers.{layer_idx}.attention.query_key_value.scale_y_quant_orig.bin"
tensorrt_llm_gpt_j.layers[
layer_idx].attention.kv_orig_quant_scale.value = 1.0 / t
tensorrt_llm_gpt_j.layers[
layer_idx].attention.kv_quant_orig_scale.value = t
v = awq_gpt_j['transformer.ln_f.weight']
tensorrt_llm_gpt_j.ln_f.weight.value = v.to(torch_dtype).cpu().numpy()
v = awq_gpt_j['transformer.ln_f.bias']
tensorrt_llm_gpt_j.ln_f.bias.value = v.to(torch_dtype).cpu().numpy()
#lm_head
if pad_vocab:
weight = awq_gpt_j['lm_head.weight']
[vocab_size, k] = weight.shape
new_weight = torch.zeros([pad_vocab_size, k])
new_weight[:vocab_size, :] = weight
new_weight = new_weight.T.contiguous()
new_weight = new_weight.split(new_weight.shape[1] // mapping.tp_size,
dim=1)[mapping.tp_rank]
amax = awq_gpt_j['lm_head.weight_quantizer._amax'].reshape(
[vocab_size, int(k / group_size)])
new_amax = torch.ones([pad_vocab_size, int(k / group_size)])
new_amax[:vocab_size, :] = amax
new_amax = new_amax.T.contiguous()
new_amax = new_amax.split(new_amax.shape[1] // mapping.tp_size,
dim=1)[mapping.tp_rank]
new_scale = new_amax / 8
tensorrt_llm_gpt_j.lm_head.qweight.value = AWQ_quantize_pack_preprocess(
new_weight, new_scale)
tensorrt_llm_gpt_j.lm_head.scale.value = new_scale.to(
torch_dtype).cpu().numpy()
tensorrt_llm_gpt_j.lm_head.pre_quant_scale.value = awq_gpt_j[
'lm_head.input_quantizer._pre_quant_scale'].to(
torch_dtype).cpu().numpy()
bias = awq_gpt_j['lm_head.bias']
new_bias = torch.zeros([pad_vocab_size])
new_bias[:vocab_size] = bias
new_bias = new_bias.split(pad_vocab_size // mapping.tp_size,
dim=0)[mapping.tp_rank]
tensorrt_llm_gpt_j.lm_head.bias.value = new_bias.to(
torch_dtype).cpu().numpy()
else:
mPrefix = "lm_head"
mOp = tensorrt_llm_gpt_j.lm_head
process_and_assign_weight(awq_gpt_j, mPrefix, mOp, 1)
v = awq_gpt_j['lm_head.bias']
tensorrt_llm_gpt_j.lm_head.bias.value = v.to(torch_dtype).cpu().numpy()
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
tensorrt_llm.logger.info(f'Weights loaded. Total time: {t}')