forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nemo_lora_convert.py
128 lines (105 loc) · 4.66 KB
/
nemo_lora_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#! /usr/bin/env python3
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import logging
import tempfile
from pathlib import Path
import torch
import yaml
from utils.convert import cpu_map_location
from utils.nemo import unpack_nemo_ckpt
from tensorrt_llm._utils import to_json_file, torch_to_numpy
log_format = "%(asctime)s %(name)s [%(levelname)s] %(message)s"
logging.basicConfig(format=log_format)
LOGGER = logging.getLogger(__name__)
def get_lora_keys(layer_id):
in_key = f'model.language_model.encoder.layers.{layer_id}.self_attention.adapter_layer.lora_kqv_adapter.linear_in.weight'
out_key = f'model.language_model.encoder.layers.{layer_id}.self_attention.adapter_layer.lora_kqv_adapter.linear_out.weight'
return in_key, out_key
def save_val(val, dir, key, tp_num=None):
suffix = "bin" if tp_num is None else f"{tp_num}.bin"
val.tofile(dir / f"model.{key}.{suffix}")
def lora_convert(out_dir, lora_config, lora_weights, customization_id):
saved_dir = Path(out_dir)
saved_dir.mkdir(parents=True, exist_ok=True)
num_layers = int(lora_config["num_layers"])
config = {"lora_config": {"lora_kqv_adapter": {}}}
for layer_id in range(num_layers):
in_key, out_key = get_lora_keys(layer_id)
config["lora_config"]["lora_kqv_adapter"]["0"] = {
"key": f"{customization_id}",
"low_rank": f"{lora_weights[in_key].shape[0]}",
}
linear_in_weight = lora_weights[in_key]
linear_out_weight = lora_weights[out_key]
save_val(torch_to_numpy(linear_in_weight.transpose(1, 0).contiguous()),
saved_dir,
in_key.replace("lora_kqv_adapter", f"lora_kqv_adapter.{0}"))
save_val(torch_to_numpy(linear_out_weight.transpose(1, 0).contiguous()),
saved_dir,
out_key.replace("lora_kqv_adapter", f"lora_kqv_adapter.{0}"))
to_json_file(config, saved_dir / "lora_weights.json")
def main(args):
start_time = datetime.datetime.now()
with tempfile.TemporaryDirectory() as prompt_out_dir:
prompt_out_dir = Path(prompt_out_dir)
unpack_nemo_ckpt(args.in_file, prompt_out_dir)
LOGGER.info("Spent %s (h:m:s) to unpack NeMo prompt archive",
datetime.datetime.now() - start_time)
model_weights_ckpt = "model_weights.ckpt"
with open(prompt_out_dir / "model_config.yaml") as f:
prompt_config = yaml.full_load(f)
LOGGER.debug(prompt_config)
start_time = datetime.datetime.now()
weight_path = prompt_out_dir / model_weights_ckpt
prompt_weights = torch.load(
weight_path,
map_location=cpu_map_location,
)
lora_convert(args.out_dir, prompt_config, prompt_weights,
args.customization_id)
LOGGER.info("Spent %s (h:m:s) to convert the prompt model",
datetime.datetime.now() - start_time)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'--out-dir',
'-o',
type=Path,
help='path to output embedding table file in the .npy format',
required=True)
parser.add_argument('--in-file',
'-i',
type=Path,
help='path to input prompt-tuning checkpoint file',
required=True)
parser.add_argument("--storage-type",
"-t",
type=str,
default="fp32",
choices=["fp32", "fp16", "bf16"])
parser.add_argument("--verbose",
action="store_true",
help="Provide verbose messages")
parser.add_argument("--customization-id", type=str, default="lora")
args = parser.parse_args()
LOGGER.setLevel(logging.DEBUG if args.verbose else logging.INFO)
print("\n=============== Argument ===============")
for key in vars(args):
print(f"{key}: {vars(args)[key]}")
print("========================================")
main(args)