forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hf_gpt_convert.py
301 lines (268 loc) · 12.1 KB
/
hf_gpt_convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# SPDX-FileCopyrightText: Copyright (c) 2022-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
'''
Convert huggingface GPT model. Use https://huggingface.co/gpt2 as demo.
'''
import argparse
import configparser
import dataclasses
import os
import platform
from pathlib import Path
import torch
import torch.multiprocessing as multiprocessing
from smoothquant import capture_activation_range, smooth_gemm
from tqdm import tqdm
from transformers import AutoModelForCausalLM # transformers-4.10.0-py3
from transformers import AutoTokenizer
from transformers.models.gpt2.modeling_gpt2 import GPT2Block
from utils.convert import split_and_save_weight
from tensorrt_llm._utils import str_dtype_to_torch, torch_to_numpy
@dataclasses.dataclass(frozen=True)
class ProgArgs:
out_dir: str
in_file: str
tensor_parallelism: int = 1
processes: int = 4
calibrate_kv_cache: bool = False
smoothquant: float = None
model: str = "gpt"
storage_type: str = "fp32"
dataset_cache_dir: str = None
load_model_on_cpu: bool = False
convert_model_on_cpu: bool = False
@staticmethod
def parse(args=None) -> 'ProgArgs':
parser = argparse.ArgumentParser(
formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--out-dir',
'-o',
type=str,
help='file name of output directory',
required=True)
parser.add_argument('--in-file',
'-i',
type=str,
help='file name of input checkpoint file',
required=True)
parser.add_argument('--tensor-parallelism',
'-tp',
type=int,
help='Requested tensor parallelism for inference',
default=1)
parser.add_argument(
"--processes",
"-p",
type=int,
help=
"How many processes to spawn for conversion (default: 4). Set it to a lower value to reduce RAM usage.",
default=4)
parser.add_argument(
"--calibrate-kv-cache",
"-kv",
action="store_true",
help=
"Generate scaling factors for KV cache. Used for storing KV cache in int8."
)
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
"--model",
default="gpt2",
type=str,
help="Specify GPT variants to convert checkpoints correctly",
choices=["gpt2", "santacoder", "starcoder"])
parser.add_argument("--storage-type",
"-t",
type=str,
default="float32",
choices=["float32", "float16", "bfloat16"])
parser.add_argument("--dataset-cache-dir",
type=str,
default=None,
help="cache dir to load the hugging face dataset")
parser.add_argument("--load-model-on-cpu", action="store_true")
parser.add_argument("--convert-model-on-cpu", action="store_true")
return ProgArgs(**vars(parser.parse_args(args)))
@torch.no_grad()
def smooth_gpt_model(model, scales, alpha):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, GPT2Block):
continue
# qkv_proj
layer_name = name + ".attn.c_attn"
smoother = smooth_gemm(module.attn.c_attn.weight.T,
scales[layer_name]["x"], module.ln_1.weight,
module.ln_1.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.attn.c_attn.weight.abs().max(dim=0)[0]
# fc1
layer_name = name + ".mlp.c_fc"
smoother = smooth_gemm(module.mlp.c_fc.weight.T,
scales[layer_name]["x"], module.ln_2.weight,
module.ln_2.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.c_fc.weight.abs().max(dim=0)[0]
# SantaCoder separates Q projection from KV projection
def concat_qkv_weight_bias(q, hf_key, hf_model):
kv = hf_model.state_dict()[hf_key.replace("q_attn", "kv_attn")]
return torch.cat([q, kv], dim=-1)
# StarCoder uses nn.Linear for these following ops whose weight matrix is transposed compared to transformer.Conv1D
def transpose_weights(hf_name, param):
weight_to_transpose = ["c_attn", "c_proj", "c_fc"]
if any([k in hf_name for k in weight_to_transpose]):
if len(param.shape) == 2:
param = param.transpose(0, 1)
return param
def gpt_to_ft_name(orig_name):
global_weights = {
"transformer.wpe.weight": "model.wpe",
"transformer.wte.weight": "model.wte",
"transformer.ln_f.bias": "model.final_layernorm.bias",
"transformer.ln_f.weight": "model.final_layernorm.weight",
"lm_head.weight": "model.lm_head.weight"
}
if orig_name in global_weights:
return global_weights[orig_name]
_, _, layer_id, *weight_name = orig_name.split(".")
layer_id = int(layer_id)
weight_name = "transformer." + ".".join(weight_name)
per_layer_weights = {
"transformer.ln_1.bias": "input_layernorm.bias",
"transformer.ln_1.weight": "input_layernorm.weight",
"transformer.attn.c_attn.bias": "attention.query_key_value.bias",
"transformer.attn.c_attn.weight": "attention.query_key_value.weight",
"transformer.attn.q_attn.weight": "attention.query.weight",
"transformer.attn.q_attn.bias": "attention.query.bias",
"transformer.attn.kv_attn.weight": "attention.key_value.weight",
"transformer.attn.kv_attn.bias": "attention.key_value.bias",
"transformer.attn.c_proj.bias": "attention.dense.bias",
"transformer.attn.c_proj.weight": "attention.dense.weight",
"transformer.ln_2.bias": "post_attention_layernorm.bias",
"transformer.ln_2.weight": "post_attention_layernorm.weight",
"transformer.mlp.c_fc.bias": "mlp.dense_h_to_4h.bias",
"transformer.mlp.c_fc.weight": "mlp.dense_h_to_4h.weight",
"transformer.mlp.c_proj.bias": "mlp.dense_4h_to_h.bias",
"transformer.mlp.c_proj.weight": "mlp.dense_4h_to_h.weight",
}
return f"layers.{layer_id}.{per_layer_weights[weight_name]}"
@torch.no_grad()
def hf_gpt_converter(args: ProgArgs):
infer_tp = args.tensor_parallelism
multi_query_mode = True if args.model in ["santacoder", "starcoder"
] else False
saved_dir = Path(args.out_dir) / f"{infer_tp}-gpu"
saved_dir.mkdir(parents=True, exist_ok=True)
# load position_embedding from rank 0
model = AutoModelForCausalLM.from_pretrained(args.in_file,
torch_dtype="auto",
device_map="auto",
trust_remote_code=True)
if args.load_model_on_cpu:
model = model.cpu()
torch.cuda.empty_cache()
act_range = {}
if args.smoothquant is not None or args.calibrate_kv_cache:
os.environ["TOKENIZERS_PARALLELISM"] = os.environ.get(
"TOKENIZERS_PARALLELISM", "false")
from datasets import load_dataset
dataset = load_dataset("lambada",
split="validation",
cache_dir=args.dataset_cache_dir)
act_range = capture_activation_range(
model, AutoTokenizer.from_pretrained(args.in_file), dataset)
if args.smoothquant is not None:
smooth_gpt_model(model, act_range, args.smoothquant)
config = configparser.ConfigParser()
config["gpt"] = {}
for key in vars(args):
config["gpt"][key] = f"{vars(args)[key]}"
for k, v in vars(model.config).items():
config["gpt"][k] = f"{v}"
config["gpt"]["storage_dtype"] = args.storage_type
config["gpt"]["multi_query_mode"] = str(multi_query_mode)
with open(saved_dir / "config.ini", 'w') as configfile:
config.write(configfile)
storage_type = str_dtype_to_torch(args.storage_type)
global_ft_weights = [
"model.wpe", "model.wte", "model.final_layernorm.bias",
"model.final_layernorm.weight", "model.lm_head.weight"
]
int8_outputs = None
if args.calibrate_kv_cache:
int8_outputs = "kv_cache_only"
if args.smoothquant is not None:
int8_outputs = "all"
starmap_args = []
for name, param in model.named_parameters():
if "weight" not in name and "bias" not in name:
continue
ft_name = gpt_to_ft_name(name)
if args.convert_model_on_cpu:
param = param.cpu()
if args.model == "starcoder":
param = transpose_weights(name, param)
if ft_name in global_ft_weights:
torch_to_numpy(param.to(storage_type).cpu()).tofile(
saved_dir / f"{ft_name}.bin")
else:
if 'q_attn' in name:
param = concat_qkv_weight_bias(param, name, model)
ft_name = ft_name.replace("query", "query_key_value")
# Needed by QKV projection weight split. With multi_query_mode one does not simply take
# out_dim and divide it by 3 to get local_dim because out_dim = local_dim + 2 * head_size
local_dim = model.transformer.h[
0].attn.embed_dim if multi_query_mode else None
if args.processes == 1:
split_and_save_weight(
0, saved_dir, infer_tp, ft_name, param.to(storage_type),
storage_type, act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": multi_query_mode,
"local_dim": local_dim
})
else:
starmap_args.append(
(0, saved_dir, infer_tp, ft_name, param.to(storage_type),
storage_type, act_range.get(name.replace(".weight", "")), {
"int8_outputs": int8_outputs,
"multi_query_mode": multi_query_mode,
"local_dim": local_dim
}))
starmap_args = tqdm(starmap_args, desc="saving weights")
if args.processes > 1:
with multiprocessing.Pool(args.processes) as pool:
pool.starmap(split_and_save_weight, starmap_args)
def run_conversion(args: ProgArgs):
if args.processes > 1 and platform.system() == "Windows":
print(
"Resetting processes to 1 because multi-process on Windows is not implemented."
)
args = dataclasses.replace(args, processes=1)
print("\n=============== Arguments ===============")
for key, value in vars(args).items():
print(f"{key}: {value}")
print("========================================")
hf_gpt_converter(args)
if __name__ == "__main__":
torch.multiprocessing.set_start_method("spawn")
run_conversion(ProgArgs.parse())