From e6a87819e3d08f4fa414e5bf8281c239ac331f22 Mon Sep 17 00:00:00 2001 From: Peter Verveer Date: Thu, 19 Dec 2024 14:32:42 +0000 Subject: [PATCH] EverestRunModel: minor refactoring --- src/ert/run_models/everest_run_model.py | 70 +++++++++++++------------ 1 file changed, 37 insertions(+), 33 deletions(-) diff --git a/src/ert/run_models/everest_run_model.py b/src/ert/run_models/everest_run_model.py index 3da33cdfc97..39adca4c59d 100644 --- a/src/ert/run_models/everest_run_model.py +++ b/src/ert/run_models/everest_run_model.py @@ -346,28 +346,30 @@ def _on_before_forward_model_evaluation( optimizer.abort_optimization() def _forward_model_evaluator( - self, control_values: NDArray[np.float64], metadata: EvaluatorContext + self, control_values: NDArray[np.float64], evaluator_context: EvaluatorContext ) -> EvaluatorResult: # Reset the current run status: self._status = None # Get cached_results: - cached_results = self._get_cached_results(control_values, metadata) + cached_results = self._get_cached_results(control_values, evaluator_context) # Create the batch to run: - case_data = self._init_case_data(control_values, metadata, cached_results) + batch_data = self._init_batch_data( + control_values, evaluator_context, cached_results + ) - # Initialize a new experiment in storage: + # Initialize a new ensemble in storage: assert self._experiment is not None ensemble = self._experiment.create_ensemble( name=f"batch_{self._batch_id}", - ensemble_size=len(case_data), + ensemble_size=len(batch_data), ) - for sim_id, controls in enumerate(case_data.values()): + for sim_id, controls in enumerate(batch_data.values()): self._setup_sim(sim_id, controls, ensemble) # Evaluate the batch: - run_args = self._get_run_args(ensemble, metadata, case_data) + run_args = self._get_run_args(ensemble, evaluator_context, batch_data) self._context_env.update( { "_ERT_EXPERIMENT_ID": str(ensemble.experiment_id), @@ -384,14 +386,14 @@ def _forward_model_evaluator( # Gather the results and create the result for ropt: results = self._gather_simulation_results(ensemble) evaluator_result = self._make_evaluator_result( - control_values, metadata, case_data, results, cached_results + control_values, evaluator_context, batch_data, results, cached_results ) # Add the results from the evaluations to the cache: self._add_results_to_cache( control_values, - metadata, - case_data, + evaluator_context, + batch_data, evaluator_result.objectives, evaluator_result.constraints, ) @@ -417,7 +419,7 @@ def _get_cached_results( return cached_results @staticmethod - def _init_case_data( + def _init_batch_data( control_values: NDArray[np.float64], evaluator_context: EvaluatorContext, cached_results: dict[int, Any], @@ -440,7 +442,7 @@ def add_control( group[variable_name] = control_value controls[group_name] = group - case_data = {} + batch_data = {} for control_idx in range(control_values.shape[0]): if control_idx not in cached_results and ( evaluator_context.active is None @@ -454,8 +456,8 @@ def add_control( strict=False, ): add_control(controls, control_name, control_value) - case_data[control_idx] = controls - return case_data + batch_data[control_idx] = controls + return batch_data def _setup_sim( self, @@ -514,17 +516,17 @@ def _check_suffix( def _get_run_args( self, ensemble: Ensemble, - metadata: EvaluatorContext, - case_data: dict[int, Any], + evaluator_context: EvaluatorContext, + batch_data: dict[int, Any], ) -> list[RunArg]: substitutions = self.ert_config.substitutions substitutions[""] = ensemble.name - self.active_realizations = [True] * len(case_data) - assert metadata.config.realizations.names is not None - for sim_id, control_idx in enumerate(case_data.keys()): - realization = metadata.realizations[control_idx] + self.active_realizations = [True] * len(batch_data) + assert evaluator_context.config.realizations.names is not None + for sim_id, control_idx in enumerate(batch_data.keys()): + realization = evaluator_context.realizations[control_idx] substitutions[f""] = str( - metadata.config.realizations.names[realization] + evaluator_context.config.realizations.names[realization] ) run_paths = Runpaths( jobname_format=self.ert_config.model_config.jobname_format_string, @@ -584,26 +586,28 @@ def _gather_simulation_results( def _make_evaluator_result( self, control_values: NDArray[np.float64], - metadata: EvaluatorContext, - case_data: dict[int, Any], + evaluator_context: EvaluatorContext, + batch_data: dict[int, Any], results: list[dict[str, NDArray[np.float64]]], cached_results: dict[int, Any], ) -> EvaluatorResult: # We minimize the negative of the objectives: + assert evaluator_context.config.objectives.names is not None objectives = -self._get_simulation_results( results, - metadata.config.objectives.names, # type: ignore + evaluator_context.config.objectives.names, control_values, - case_data, + batch_data, ) constraints = None - if metadata.config.nonlinear_constraints is not None: + if evaluator_context.config.nonlinear_constraints is not None: + assert evaluator_context.config.nonlinear_constraints.names is not None constraints = self._get_simulation_results( results, - metadata.config.nonlinear_constraints.names, # type: ignore + evaluator_context.config.nonlinear_constraints.names, control_values, - case_data, + batch_data, ) if self._simulator_cache is not None: @@ -617,7 +621,7 @@ def _make_evaluator_result( constraints[control_idx, ...] = cached_constraints sim_ids = np.full(control_values.shape[0], -1, dtype=np.intc) - sim_ids[list(case_data.keys())] = np.arange(len(case_data), dtype=np.intc) + sim_ids[list(batch_data.keys())] = np.arange(len(batch_data), dtype=np.intc) return EvaluatorResult( objectives=objectives, constraints=constraints, @@ -630,9 +634,9 @@ def _get_simulation_results( results: list[dict[str, NDArray[np.float64]]], names: tuple[str], controls: NDArray[np.float64], - case_data: dict[int, Any], + batch_data: dict[int, Any], ) -> NDArray[np.float64]: - control_indices = list(case_data.keys()) + control_indices = list(batch_data.keys()) values = np.zeros((controls.shape[0], len(names)), dtype=float64) for func_idx, name in enumerate(names): values[control_indices, func_idx] = np.fromiter( @@ -645,13 +649,13 @@ def _add_results_to_cache( self, control_values: NDArray[np.float64], evaluator_context: EvaluatorContext, - case_data: dict[int, Any], + batch_data: dict[int, Any], objectives: NDArray[np.float64], constraints: NDArray[np.float64] | None, ) -> None: if self._simulator_cache is not None: assert evaluator_context.config.realizations.names is not None - for control_idx in case_data: + for control_idx in batch_data: realization = evaluator_context.realizations[control_idx] self._simulator_cache.add( evaluator_context.config.realizations.names[realization],