diff --git a/src/ert/analysis/_es_update.py b/src/ert/analysis/_es_update.py
index 5c96b7c4051..ef8ab598907 100644
--- a/src/ert/analysis/_es_update.py
+++ b/src/ert/analysis/_es_update.py
@@ -5,6 +5,7 @@
import time
from collections.abc import Callable, Iterable, Sequence
from fnmatch import fnmatch
+from itertools import groupby
from typing import (
TYPE_CHECKING,
Generic,
@@ -168,6 +169,7 @@ def _load_observations_and_responses(
npt.NDArray[np.float64],
tuple[
npt.NDArray[np.float64],
+ list[str],
npt.NDArray[np.float64],
list[ObservationAndResponseSnapshot],
],
@@ -315,6 +317,7 @@ def _load_observations_and_responses(
return S[obs_mask], (
observations[obs_mask],
+ obs_keys[obs_mask],
scaled_errors[obs_mask],
update_snapshot,
)
@@ -458,6 +461,7 @@ def adaptive_localization_progress_callback(
S,
(
observation_values,
+ observation_keys,
observation_errors,
update_snapshot,
),
@@ -474,6 +478,14 @@ def adaptive_localization_progress_callback(
num_obs = len(observation_values)
smoother_snapshot.update_step_snapshots = update_snapshot
+ # Used as labels for observations in cross-correlation matrix.
+ # Say we have two observation groups "FOPR" and "WOPR" where "FOPR" has
+ # 2 responses and "WOPR" has 3.
+ # In this case we create a list [FOPR_0, FOPR_1, WOPR_0, WOPR_1, WOPR_2]
+ # as labels for observations.
+ unique_obs_names = [
+ f"{k}_{i}" for k, g in groupby(observation_keys) for i, _ in enumerate(list(g))
+ ]
if num_obs == 0:
msg = "No active observations for update step"
@@ -577,6 +589,8 @@ def correlation_callback(
cross_correlations_,
param_group,
parameter_names[: cross_correlations_.shape[0]],
+ unique_obs_names,
+ list(observation_keys),
)
logger.info(
f"Adaptive Localization of {param_group} completed in {(time.time() - start) / 60} minutes"
@@ -639,6 +653,7 @@ def analysis_IES(
S,
(
observation_values,
+ _,
observation_errors,
update_snapshot,
),
diff --git a/src/ert/resources/forward_models/template_render.py b/src/ert/resources/forward_models/template_render.py
index 935589063c5..70cdd27c568 100755
--- a/src/ert/resources/forward_models/template_render.py
+++ b/src/ert/resources/forward_models/template_render.py
@@ -2,7 +2,8 @@
import argparse
import json
import os
-from typing import Any, Sequence
+from collections.abc import Sequence
+from typing import Any
import jinja2
import yaml
diff --git a/src/ert/resources/workflows/jobs/internal-gui/scripts/csv_export.py b/src/ert/resources/workflows/jobs/internal-gui/scripts/csv_export.py
index 4d2d8b2309a..0cd80c8b67a 100644
--- a/src/ert/resources/workflows/jobs/internal-gui/scripts/csv_export.py
+++ b/src/ert/resources/workflows/jobs/internal-gui/scripts/csv_export.py
@@ -1,6 +1,6 @@
import json
import os
-from typing import Sequence
+from collections.abc import Sequence
import pandas
diff --git a/src/ert/resources/workflows/jobs/internal-gui/scripts/gen_data_rft_export.py b/src/ert/resources/workflows/jobs/internal-gui/scripts/gen_data_rft_export.py
index 2928f9d9029..0b603d9b413 100644
--- a/src/ert/resources/workflows/jobs/internal-gui/scripts/gen_data_rft_export.py
+++ b/src/ert/resources/workflows/jobs/internal-gui/scripts/gen_data_rft_export.py
@@ -1,7 +1,8 @@
import contextlib
import json
import os
-from typing import Any, Sequence
+from collections.abc import Sequence
+from typing import Any
import numpy
import pandas as pd
diff --git a/src/ert/storage/local_ensemble.py b/src/ert/storage/local_ensemble.py
index 5c10872b57f..5757e21cb03 100644
--- a/src/ert/storage/local_ensemble.py
+++ b/src/ert/storage/local_ensemble.py
@@ -12,6 +12,7 @@
import numpy as np
import pandas as pd
+import polars as pl
import xarray as xr
from pydantic import BaseModel
from typing_extensions import deprecated
@@ -560,16 +561,15 @@ def load_parameters(
return self._load_dataset(group, realizations)
- def load_cross_correlations(self) -> xr.Dataset:
- input_path = self.mount_point / "corr_XY.nc"
-
+ def load_cross_correlations(self) -> pl.DataFrame:
+ input_path = self.mount_point / "corr_XY.parquet"
if not input_path.exists():
raise FileNotFoundError(
f"No cross-correlation data available at '{input_path}'. Make sure to run the update with "
"Adaptive Localization enabled."
)
logger.info("Loading cross correlations")
- return xr.open_dataset(input_path, engine="scipy")
+ return pl.read_parquet(input_path)
@require_write
def save_observation_scaling_factors(self, dataset: polars.DataFrame) -> None:
@@ -592,17 +592,28 @@ def save_cross_correlations(
cross_correlations: npt.NDArray[np.float64],
param_group: str,
parameter_names: list[str],
+ unique_obs_names: list[str],
+ observation_keys: list[str],
) -> None:
- data_vars = {
- param_group: xr.DataArray(
- data=cross_correlations,
- dims=["parameter", "response"],
- coords={"parameter": parameter_names},
- )
- }
- dataset = xr.Dataset(data_vars)
- file_path = os.path.join(self.mount_point, "corr_XY.nc")
- self._storage._to_netcdf_transaction(file_path, dataset)
+ n_responses = cross_correlations.shape[1]
+ new_df = pl.DataFrame(
+ {
+ "param_group": [param_group]
+ * (len(parameter_names) * len(unique_obs_names)),
+ "param_name": np.repeat(parameter_names, n_responses),
+ "obs_group": observation_keys * len(parameter_names),
+ "obs_name": unique_obs_names * len(parameter_names),
+ "value": cross_correlations.ravel(),
+ }
+ )
+
+ file_path = os.path.join(self.mount_point, "corr_XY.parquet")
+ if os.path.exists(file_path):
+ existing_df = pl.read_parquet(file_path)
+ df = pl.concat([existing_df, new_df])
+ else:
+ df = new_df
+ self._storage._to_parquet_transaction(file_path, df)
def load_responses(
self, key: str, realizations: tuple[int, ...]
diff --git a/test-data/ert/heat_equation/Plot_correlations.ipynb b/test-data/ert/heat_equation/Plot_correlations.ipynb
new file mode 100644
index 00000000000..03b2e28ecf6
--- /dev/null
+++ b/test-data/ert/heat_equation/Plot_correlations.ipynb
@@ -0,0 +1,264 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e7c14853-686e-4646-aa13-af2dc0e11408",
+ "metadata": {},
+ "source": [
+ "# Get cross-correlations after running adaptive localization using the Heat Equation\n",
+ "\n",
+ "Note that you first need to run ert with ES-MDA and localization turned on."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "e4f4e841-efb7-4f5a-b984-f4c44663b9b9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import polars as pl\n",
+ "import seaborn as sns\n",
+ "\n",
+ "from ert.config import ErtConfig\n",
+ "from ert.storage import open_storage"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "952539a1-4072-47e5-9b8c-8296ca086134",
+ "metadata": {},
+ "source": [
+ "## Load data frame by using API endpoint"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "66e4e990-da5a-4a3b-9e4e-1bb17409365d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "ert_config = ErtConfig.from_file(\"config.ert\")\n",
+ "# Load data for multiple iterations\n",
+ "iterations = [0, 1, 2]\n",
+ "dfs = []\n",
+ "for iter_num in iterations:\n",
+ " with open_storage(ert_config.ens_path, mode=\"r\") as storage:\n",
+ " experiment = storage.get_experiment_by_name(\"es_mda\")\n",
+ " ensemble = experiment.get_ensemble_by_name(f\"default_{iter_num}\")\n",
+ " df = ensemble.load_cross_correlations()\n",
+ " df = df.with_columns(pl.lit(iter_num).alias(\"iteration\"))\n",
+ " dfs.append(df)\n",
+ "df = pl.concat(dfs)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9f7a20a9-979a-4cb3-9994-ec5ec7064ce0",
+ "metadata": {},
+ "source": [
+ "## Find largest correlations"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "1aae4f96-4c5a-446a-91fc-acfbaf45eee0",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "
shape: (15, 6)param_group | param_name | obs_group | obs_name | value | iteration |
---|
str | str | str | str | f64 | i32 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_10" | "MY_OBS_10_3" | 0.823223 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_10" | "MY_OBS_10_5" | 0.808215 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_10" | "MY_OBS_10_1" | 0.654016 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_10" | "MY_OBS_10_2" | 0.62915 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_71" | "MY_OBS_71_0" | 0.536513 | 0 |
… | … | … | … | … | … |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_71" | "MY_OBS_71_5" | 0.366555 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_132" | "MY_OBS_132_4" | 0.366474 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_71" | "MY_OBS_71_3" | 0.347304 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_132" | "MY_OBS_132_2" | 0.316461 | 0 |
"INIT_TEMP_SCALE" | "x" | "MY_OBS_71" | "MY_OBS_71_5" | -0.311819 | 2 |
"
+ ],
+ "text/plain": [
+ "shape: (15, 6)\n",
+ "┌─────────────────┬────────────┬────────────┬──────────────┬───────────┬───────────┐\n",
+ "│ param_group ┆ param_name ┆ obs_group ┆ obs_name ┆ value ┆ iteration │\n",
+ "│ --- ┆ --- ┆ --- ┆ --- ┆ --- ┆ --- │\n",
+ "│ str ┆ str ┆ str ┆ str ┆ f64 ┆ i32 │\n",
+ "╞═════════════════╪════════════╪════════════╪══════════════╪═══════════╪═══════════╡\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_10 ┆ MY_OBS_10_3 ┆ 0.823223 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_10 ┆ MY_OBS_10_5 ┆ 0.808215 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_10 ┆ MY_OBS_10_1 ┆ 0.654016 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_10 ┆ MY_OBS_10_2 ┆ 0.62915 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_71 ┆ MY_OBS_71_0 ┆ 0.536513 ┆ 0 │\n",
+ "│ … ┆ … ┆ … ┆ … ┆ … ┆ … │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_71 ┆ MY_OBS_71_5 ┆ 0.366555 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_132 ┆ MY_OBS_132_4 ┆ 0.366474 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_71 ┆ MY_OBS_71_3 ┆ 0.347304 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_132 ┆ MY_OBS_132_2 ┆ 0.316461 ┆ 0 │\n",
+ "│ INIT_TEMP_SCALE ┆ x ┆ MY_OBS_71 ┆ MY_OBS_71_5 ┆ -0.311819 ┆ 2 │\n",
+ "└─────────────────┴────────────┴────────────┴──────────────┴───────────┴───────────┘"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.with_columns(pl.col(\"value\").abs().alias(\"abs_value\")).sort(\n",
+ " \"abs_value\", descending=True\n",
+ ").limit(15).drop(\"abs_value\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5eaa959c-32c2-4331-820a-52625694f0a4",
+ "metadata": {},
+ "source": [
+ "## Plot heatmaps of correlation coefficients"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "793cd249-a26b-48f2-a099-01567720ef57",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABuUAAAGGCAYAAABsa4wVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAADsg0lEQVR4nOzddXgUV9sG8Hsl7i5YgGDBCW7B3d2KFCjFipUWaYOTluKUFtfi7gkaLMHdNUiIbrJx3/n+WLJks5tkk0KW9+v9u665WmZO5jkzO/7MOSMSBEEAEREREREREREREREREX0xYn1XgIiIiIiIiIiIiIiIiOj/OybliIiIiIiIiIiIiIiIiL4wJuWIiIiIiIiIiIiIiIiIvjAm5YiIiIiIiIiIiIiIiIi+MCbliIiIiIiIiIiIiIiIiL4wJuWIiIiIiIiIiIiIiIiIvjAm5YiIiIiIiIiIiIiIiIi+MCbliIiIiIiIiIiIiIiIiL4wJuWIiIiIiIiIiIiIiIiIvjAm5YiIiIjoX5s5cyZEIhEiIyP1XZVCl7nspBuRSISZM2d+1nk2adIETZo0+azz/Jx8fX1RrVo1GBsbQyQSQS6X67tK9P9cfHw8HB0dsW3bNn1X5V/ZtGkTRCIRgoKC9F2VHK1atQrFixdHSkqKvqtCRERERP8DmJQjIiKir17mQ7nMwdjYGGXLlsWYMWMQFham7+p9UQEBAZg5c6ZeHuI/fPgQAwYMQJEiRWBkZARXV1f0798fDx8+LPS66FtiYiJmzpwJf39/fVdFQ3JyMpYsWYI6derAyspKbf949uyZvqv32Tx69AgzZ878qh/OayOTydCrVy+YmJhg5cqV2Lp1K8zMzL543JcvX2LEiBEoVaoUjI2NYWlpiQYNGmDZsmVISkpSK5uWlobly5ejVq1asLCwgLm5OWrVqoXly5cjLS1NY95ubm5qx2QzMzPUrl0bW7Zs0Sjr7++vVlYikcDR0RE9evTA48eP871cmfPbu3dvruWyxsw+fP/996pygwcPhkgkQpUqVSAIgtb5jBkzRmN8bGws5s2bh5o1a8LKygpGRkYoUaIEevfujWPHjgH4lLDPa8hMKA8ePBjm5ua5LpO2umizbNkyWFhYoE+fPqpx2l6e2L59O5YuXarTPL+k+fPn4+DBg/quhoaAgAA0bNgQpqamcHZ2xg8//ID4+Hi1MoMHD0ZqaipWr16tp1oSERER0f8Sqb4rQERERKSr2bNno2TJkkhOTsalS5fw999/4/jx43jw4AFMTU31Xb0vIiAgALNmzcLgwYNhbW1daHH379+Pvn37wtbWFkOHDkXJkiURFBSE9evXY+/evdi5cye6du1aaPXRt8TERMyaNQsANFpk/fLLL5gyZYoeagVERkaiTZs2uHnzJjp06IB+/frB3NwcT58+xc6dO7FmzRqkpqbqpW6f26NHjzBr1iw0adIEbm5uatNOnjypn0rp4Pr164iLi8OcOXPQokWLQol57Ngx9OzZE0ZGRhg4cCAqVaqE1NRUXLp0CZMnT8bDhw+xZs0aAEBCQgLat2+P8+fPo0OHDhg8eDDEYjF8fX0xbtw47N+/H8eOHdNIJFarVg2TJk0CAISEhGDdunUYNGgQUlJSMHz4cI06/fDDD6hVqxbS0tJw7949rFq1Cv7+/njw4AGcnZ2/yHpo2bIlBg4cqDG+bNmyGuPu37+P/fv3o3v37nnO98WLF2jdujXevHmDrl27YuDAgTA3N8e7d+9w/PhxdOjQAVu2bEG3bt3g7u6u+rv4+HiMHDkSXbt2Rbdu3VTjnZycCriE2qWlpWHZsmWYMGECJBJJrmW3b9+OBw8eYPz48Z+1Dvk1f/589OjRA126dFEb/80336BPnz4wMjIq9DrduXMHzZs3R4UKFbB48WK8f/8eCxcuxPPnz3HixAlVOWNjYwwaNAiLFy/G2LFj2XKaiIiIiHLFpBwRERH9z2jbti1q1qwJABg2bBjs7OywePFiHDp0CH379i3wfBUKBVJTU2FsbPy5qvrVS0xMzDGR+fLlS3zzzTcoVaoULly4AAcHB9W0cePGoVGjRvjmm29w7949lCpVqrCqrBN9/JZSqRRSqX4uqwcPHozbt29j7969GsmEOXPmYPr06Z8lTkJCgtbWXYIgIDk5GSYmJp8lTkEZGhrqNX5uwsPDAeCzJtVz+j0A4PXr1+jTpw9KlCiBs2fPwsXFRTVt9OjRePHihaolFwBMnDgR58+fx4oVK9RaYY0cORIrV67EmDFj8OOPP+Lvv/9Wi1OkSBEMGDBA9e/BgwejVKlSWLJkidakXKNGjdCjRw/Vv8uVK4eRI0diy5Yt+Omnn/K/EnRQtmxZtTrmxMTEBMWKFcPs2bPRrVu3XJMq6enp6Nq1K8LCwnD+/Hk0aNBAbfqMGTNw8uRJZGRkoEqVKqhSpYpqWmRkJEaOHIkqVaroVK+COnr0KCIiItCrV68vFiM3n/M4LJFI8kwsfinTpk2DjY0N/P39YWlpCUDZSnT48OE4efIkWrVqpSrbq1cvLFiwAOfOnUOzZs30Ul8iIiIi+t/A7iuJiIjof1bmg6/Xr18DABYuXIj69evDzs4OJiYm8PT01NrFWWYXYNu2bUPFihVhZGQEX1/fAs1jz5498PDwgImJCerVq4f79+8DAFavXg13d3cYGxujSZMmWrvcu3r1Ktq0aQMrKyuYmprCy8sLly9fVk2fOXMmJk+eDAAoWbKkqquzrPP6559/4OnpCRMTE9ja2qJPnz549+6dWpwmTZqgUqVKuHnzJho3bgxTU1NMmzYtx/X6xx9/IDExEWvWrFFLyAGAvb09Vq9ejYSEBCxYsEDjbyMjI9GrVy9YWlrCzs4O48aNQ3JyslqZU6dOoWHDhrC2toa5uTnKlSunUZ+UlBTMmDED7u7uMDIyQrFixfDTTz9pfLNH22955MgR2NraYsiQIRr1i42NhbGxMX788UcAQGpqKry9veHp6QkrKyuYmZmhUaNGOHfunOpvgoKCVOth1qxZqt8h87to2r4pl56ejjlz5qB06dIwMjKCm5sbpk2bplF/Nzc3dOjQAZcuXULt2rVhbGyMUqVKae0GMLurV6/i2LFjGDp0qNbWPUZGRli4cKHauLNnz6JRo0YwMzODtbU1OnfurNGFYObyPHr0CP369YONjQ0aNmyoVl8/Pz/UrFkTJiYmqi7b5HI5xo8fj2LFisHIyAju7u74/fffoVAocl2ON2/eYNSoUShXrhxMTExgZ2eHnj17qm3nmzZtQs+ePQEATZs2Vf0Gmd2JavumXHh4OIYOHQonJycYGxujatWq2Lx5s1qZoKAgiEQiLFy4EGvWrFH9XrVq1cL169fVyoaGhmLIkCEoWrQojIyM4OLigs6dO+fanWaTJk0waNAgAECtWrUgEokwePBg1fQ9e/ao9l97e3sMGDAAwcHBavPI7NLw5cuXaNeuHSwsLNC/f/8cYy5YsADx8fFYv369WkIuk7u7O8aNGwcAeP/+PdavX49mzZpp7RZx9OjRaNq0KdatW4f379/nGBMAHBwcUL58ebx8+TLXcpkaNWoEADqX/5LEYjF++eUX3Lt3DwcOHMi17J49e/DgwQP8+uuvGgm5TK1atULbtm2/RFV1cvDgQbi5uaF06dK5lmvSpAmOHTuGN2/eqPaprK1Q/81xOD/nVJFIhISEBGzevFlVj8z9JKdvyv3111+qWK6urhg9erRGN8+Z575Hjx6hadOmMDU1RZEiRbSeu7KLjY3FqVOnMGDAAFVCDoCqVeTu3bvVynt6esLW1haHDh3Kc95ERERE9N/GlnJERET0PyvzYa6dnR0A5Td0OnXqhP79+yM1NRU7d+5Ez549cfToUbRv317tb8+ePYvdu3djzJgxsLe3Vz2IzM88Ll68iMOHD2P06NEAAB8fH3To0AE//fQT/vrrL4waNQrR0dFYsGABvv32W5w9e1Ytftu2beHp6YkZM2ZALBZj48aNaNasGS5evIjatWujW7duePbsGXbs2IElS5bA3t4eAFQJonnz5uHXX39Fr169MGzYMERERGDFihVo3Lgxbt++rdYyRyaToW3btujTpw8GDBiQa3dpR44cgZubm+qheXaNGzeGm5ubWmubTL169YKbmxt8fHxw5coVLF++HNHR0aok08OHD9GhQwdUqVIFs2fPhpGREV68eKGWjFQoFOjUqRMuXbqE7777DhUqVMD9+/exZMkSPHv2TOO7Q9l/yzJlyqBr167Yv38/Vq9erdaK6uDBg0hJSVF9Zyk2Nhbr1q1D3759MXz4cMTFxWH9+vVo3bo1rl27hmrVqsHBwQF///23RrdzWVvAZDds2DBs3rwZPXr0wKRJk3D16lX4+Pjg8ePHGg/9X7x4gR49emDo0KEYNGgQNmzYgMGDB8PT0xMVK1bMMcbhw4cBKLt308Xp06fRtm1blCpVCjNnzkRSUhJWrFiBBg0a4NatWxpdQvbs2RNlypTB/Pnz1b619fTpU/Tt2xcjRozA8OHDUa5cOSQmJsLLywvBwcEYMWIEihcvjoCAAEydOhUhISG5frPq+vXrCAgIQJ8+fVC0aFEEBQXh77//RpMmTfDo0SOYmpqicePG+OGHH7B8+XJMmzYNFSpUAADVf7NLSkpCkyZN8OLFC4wZMwYlS5bEnj17MHjwYMjlclVSKtP27dsRFxeHESNGQCQSYcGCBejWrRtevXoFAwMDAED37t3x8OFDjB07Fm5ubggPD8epU6fw9u1bjXWXafr06ShXrhzWrFmj6n43M1GyadMmDBkyBLVq1YKPjw/CwsKwbNkyXL58WWP/TU9PR+vWrdGwYUMsXLgw1+56jxw5glKlSqF+/fo5lsl04sQJZGRkaO3iMdPAgQNx7tw5+Pr6YtiwYTmWS09Px/v372FjY5NnXACqJIuu5QsiOTlZ7ftpmSwtLTVaV/br1w9z5szB7Nmz0bVr1xxbyx05cgQAvmhLN211zo+AgADUqFEjz3LTp09HTEwM3r9/jyVLlgCA6pt2//Y4nJ9z6tatWzFs2DDUrl0b3333HQDkmlCcOXMmZs2ahRYtWmDkyJF4+vQp/v77b1y/fh2XL19W7bMAEB0djTZt2qBbt27o1asX9u7di59//hmVK1fONXF6//59pKenq1rnZzI0NES1atVw+/Ztjb+pUaOG2rmMiIiIiEgrgYiIiOgrt3HjRgGAcPr0aSEiIkJ49+6dsHPnTsHOzk4wMTER3r9/LwiCICQmJqr9XWpqqlCpUiWhWbNmauMBCGKxWHj48KFGrPzMw8jISHj9+rVq3OrVqwUAgrOzsxAbG6saP3XqVAGAqqxCoRDKlCkjtG7dWlAoFGqxS5YsKbRs2VI17o8//lD720xBQUGCRCIR5s2bpzb+/v37glQqVRvv5eUlABBWrVqlsbzZyeVyAYDQuXPnXMt16tRJAKBazhkzZggAhE6dOqmVGzVqlABAuHv3riAIgrBkyRIBgBAREZHjvLdu3SqIxWLh4sWLauNXrVolABAuX76sGpfTb+nn5ycAEI4cOaI2vl27dkKpUqVU/05PTxdSUlLUykRHRwtOTk7Ct99+qxoXEREhABBmzJihUd/MZc90584dAYAwbNgwtXI//vijAEA4e/asalyJEiUEAMKFCxdU48LDwwUjIyNh0qRJGrGy6tq1qwBAiI6OzrVcpmrVqgmOjo6CTCZTjbt7964gFouFgQMHaixP3759NeaRWV9fX1+18XPmzBHMzMyEZ8+eqY2fMmWKIJFIhLdv36rGZV+P2fc5QRCEwMBAAYCwZcsW1bg9e/YIAIRz585plPfy8hK8vLxU/166dKkAQPjnn39U41JTU4V69eoJ5ubmqu329evXAgDBzs5OiIqKUpU9dOiQ2vYTHR0tABD++OMPjdh5yTx+Xb9+Xa0ujo6OQqVKlYSkpCTV+KNHjwoABG9vb9W4QYMGCQCEKVOm5BkrJiZGp/030/jx4wUAwu3bt3Msc+vWLQGAMHHiRNW4EiVKCK1atRIiIiKEiIgI4f79+8I333wjABBGjx6t9vfnzp0TAAgbNmwQIiIihA8fPgi+vr6Cu7u7IBKJhGvXrulU1+zz27NnT67lAOQ47NixQ1Vu0KBBgpmZmSAIgrB582YBgLB//361+WRdpurVqwvW1tYa8eLj41XrIyIiQoiJidEok9txJLMuudVb2/rNLi0tTRCJRFqPH5n7dtbjb/v27YUSJUpolP0cx2FB0P2camZmJgwaNEjj7zP3n8xzYHh4uGBoaCi0atVKyMjIUJX7888/VdtZpsxzX9bjSEpKiuDs7Cx0795dI1ZWmcebrMfmTD179hScnZ01xn/33XeCiYlJrvMlIiIiImL3lURERPQ/o0WLFnBwcECxYsXQp08fmJub48CBAyhSpAgAqH3XKjo6GjExMWjUqBFu3bqlMS8vLy94eHhojM/PPJo3b67WQqZOnToAlC1qLCwsNMa/evUKAHDnzh08f/4c/fr1g0wmQ2RkJCIjI5GQkIDmzZvjwoULeXb5t3//figUCvTq1Uv195GRkXB2dkaZMmXUul8ElF0ZauvOMbu4uDgAUKu/NpnTY2Nj1cZnthrMNHbsWADA8ePHAXz6rtahQ4dyXMY9e/agQoUKKF++vNqyZXZXmn3ZtP2WzZo1g729PXbt2qUaFx0djVOnTqF3796qcRKJRNViRqFQICoqStU6QttvrovMZZ04caLa+EmTJgGARgtDDw8PtVaJDg4OKFeunGp7yUnmus/rtwKAkJAQ3LlzB4MHD4atra1qfJUqVdCyZUtVnbP6/vvvtc6rZMmSaN26tdq4PXv2oFGjRrCxsVH7zVq0aIGMjAxcuHAhx7pl3efS0tIgk8ng7u4Oa2vrf/UbODs7q31r0sDAAD/88APi4+Nx/vx5tfK9e/dWa7GV+Xtk/gYmJiYwNDSEv78/oqOjC1SnrG7cuIHw8HCMGjVK7btb7du3R/ny5bW2Qh05cmSe883PNgHotr/ntK+fPHkSDg4OcHBwQOXKlbF161YMGTIEf/zxh9b5fPvtt3BwcICrqyvatGmDmJgYbN26FbVq1dKprgXRuXNnnDp1SmNo2rSp1vL9+/dHmTJlMHv2bLXWoVnFxsaqWpNlNX36dNX6cHBwQL9+/QpUZ2NjY611PnXqlE5/HxUVBUEQ/nULxM9xHAbyd07VxenTp5Gamorx48dDLP70OGP48OGwtLTU2HfMzc3VWjUaGhqidu3aeR5fk5KSACjPndkZGxurpmdlY2ODpKQkJCYm5muZiIiIiOi/hd1XEhER0f+MlStXomzZspBKpXByckK5cuXUHsodPXoUc+fOxZ07d9S+eaOtG7KSJUtqjZGfeRQvXlzt31ZWVgCAYsWKaR2f+TD/+fPnAKD61pQ2MTExuT5Uff78OQRBQJkyZbROz9p9FwAUKVJErbu2mJgYtYeKhoaGsLW1VT2Az3xYn5OcHuZnr0/p0qUhFotVXdX17t0b69atw7BhwzBlyhQ0b94c3bp1Q48ePVS/5fPnz/H48WON79llCg8PV/u3tt9SKpWie/fu2L59O1JSUmBkZIT9+/cjLS1NLSkHAJs3b8aiRYvw5MkTpKWl5TpfXbx58wZisRju7u5q452dnWFtbY03b96ojc++HQHKh7t5JX8yv3MUFxen1tVhTnUCgHLlymlMq1ChAvz8/JCQkAAzMzPV+JyWX9v458+f4969ezr/ZlklJSXBx8cHGzduRHBwsFoyJCYmJse/y82bN29QpkwZteMD8Km7y7x+g8x9L/M3MDIywu+//45JkybByckJdevWRYcOHTBw4EA4OzsXqH6A9t+jfPnyuHTpkto4qVSKokWL5jnfrNuELnTZ33Pa1+vUqYO5c+ciIyMDDx48wNy5cxEdHa3RLWQmb29vNGrUCPHx8Thw4AB27typ8ft8bkWLFkWLFi10Li+RSPDLL79g0KBBOHjwILp27apRxsLCAjKZTGP8qFGj0KFDBwD/rmtLiUSSrzrnJKekoq4+x3EYyN85VRc57TuGhoYoVaqUxr5dtGhRjVg2Nja4d+9ernEyk4nZv58HKLtFzZpszJS5zgu6bERERET038CkHBEREf3PqF27tsb3XTJdvHgRnTp1QuPGjfHXX3/BxcUFBgYG2LhxI7Zv365RXtsDtfzOQyKRaK1LTuMzH9hlthD7448/UK1aNa1ltbXEyEqhUEAkEuHEiRNa42X/++zLO27cOGzevFn1by8vL/j7+8PKygouLi55PrC8d+8eihQpokoC5CT7w0kTExNcuHAB586dw7Fjx+Dr64tdu3ahWbNmOHnyJCQSCRQKBSpXrozFixdrnWf2pKe23xIA+vTpg9WrV+PEiRPo0qULdu/ejfLly6Nq1aqqMv/88w8GDx6MLl26YPLkyXB0dIREIoGPj4/qm4UFpeuD2by2l5yUL18egPLbRzl9/+/fyGm9ahuvUCjQsmVL/PTTT1r/pmzZsjnGGTt2LDZu3Ijx48ejXr16sLKygkgkQp8+ffJsMfq56PIbjB8/Hh07dsTBgwfh5+eHX3/9FT4+Pjh79iyqV6/+RetnZGSkUwLL0tISrq6uePDggU7zzUxS3rt3L8djUeaxIHsrKHt7e1XyqHXr1ihfvjw6dOiAZcuWabQSBYDKlSurynfp0gWJiYkYPnw4GjZsqLFP61P//v1V35br0qWLxvTy5cvjzp07CA4OVrXSBpTbeOZ2nrX1Y2GztbWFSCT61y06P8dxOL/n1C+hoMdXFxcXAMpWxtmFhITA1dVVY3x0dDRMTU1zPHYSEREREQFMyhEREdH/E/v27YOxsTH8/PzUupvauHFjoc5DF6VLlwagfICeV4uInBI7pUuXhiAIKFmyZK4Jj5z89NNPaq05srbK69ChA9auXYtLly6hYcOGGn978eJFBAUFYcSIERrTnj9/rtZi4sWLF1AoFGrdfIrFYjRv3hzNmzfH4sWLMX/+fEyfPh3nzp1DixYtULp0ady9exfNmzf/Vy0OGjduDBcXF+zatQsNGzbE2bNnMX36dLUye/fuRalSpbB//361WDNmzFArl596lChRAgqFAs+fP1clPQAgLCwMcrkcJUqUKOASqevYsSN8fHzwzz//5JmUy4z59OlTjWlPnjyBvb29Wiu5/CpdujTi4+ML1MJn7969GDRoEBYtWqQal5ycDLlcrlYuv7/BvXv3oFAo1JJZT548UU0viNKlS2PSpEmYNGkSnj9/jmrVqmHRokX4559/8jWfrL9HZneAmZ4+ffqvtpEOHTpgzZo1CAwMRL169XIt27ZtW0gkEmzduhUDBw7UWmbLli2QSqVo06ZNrvNq3749vLy8MH/+fIwYMSLP7em3337DgQMHMG/ePKxatSr3hSpEma3lBg8ejEOHDmlM79ChA3bu3Ilt27blmITWJ6lUitKlS+P169c6lc/tHPNvj8P5OafqGiPrvlOqVCnV+NTUVLx+/fqztDIEgEqVKkEqleLGjRvo1auXWpw7d+6ojcv0+vVrtWM+EREREZE2/KYcERER/b8gkUggEomQkZGhGhcUFISDBw8W6jx04enpidKlS2PhwoWIj4/XmB4REaH6/8wH29kTFN26dYNEIsGsWbM03vgXBEFr92pZeXh4oEWLFqrB09NTNW3y5MkwMTHBiBEjNOYTFRWF77//Hqamppg8ebLGfFeuXKn27xUrVgBQPvzP/PvsMlvoZHYT1qtXLwQHB2Pt2rUaZZOSkpCQkJDrsmUSi8Xo0aMHjhw5gq1btyI9PV2j68rMVhRZ1+HVq1cRGBioVs7U1BSA5u+gTbt27QAAS5cuVRuf2eKkffv2OtU/L/Xq1UObNm2wbt06rdtoamoqfvzxRwDKVh/VqlXD5s2b1ZbhwYMHOHnypKrOBdWrVy8EBgbCz89PY5pcLkd6enqOfyuRSDS24RUrVqjth0DO+4I27dq1Q2hoqNo3BdPT07FixQqYm5vDy8srz3lklZiYiOTkZLVxpUuXhoWFhdbu7fJSs2ZNODo6YtWqVWp/f+LECTx+/PhfbSM//fQTzMzMMGzYMISFhWlMf/nyJZYtWwZA2dppyJAhOH36NP7++2+NsqtWrcLZs2cxdOhQnbrP/PnnnyGTybTuu9mVLl0a3bt3x6ZNmxAaGqrDkhWeAQMGwN3dHbNmzdKY1qtXL3h4eGDOnDm4cuWK1r//t11H/lv16tXDjRs3dCprZmamtZvYz3Eczs851czMTKd9u0WLFjA0NMTy5cvV1vP69esRExPz2Y6vVlZWaNGiBf755x+17l23bt2K+Ph49OzZU+Nvbt26hfr163+W+ERERET0/xdbyhEREdH/C+3bt8fixYvRpk0b9OvXD+Hh4Vi5ciXc3d3z7Irxc85DF2KxGOvWrUPbtm1RsWJFDBkyBEWKFEFwcDDOnTsHS0tLHDlyBABUybLp06ejT58+MDAwQMeOHVG6dGnMnTsXU6dORVBQELp06QILCwu8fv0aBw4cwHfffadKyORXmTJlsHnzZvTv3x+VK1fG0KFDUbJkSQQFBWH9+vWIjIzEjh07VC3+snr9+jU6deqENm3aIDAwEP/88w/69eun6jJy9uzZuHDhAtq3b48SJUogPDwcf/31F4oWLapqlffNN99g9+7d+P7773Hu3Dk0aNAAGRkZePLkCXbv3g0/P78cuzHNrnfv3lixYgVmzJiBypUra7Ri6NChA/bv34+uXbuiffv2eP36NVatWgUPDw+1hKmJiQk8PDywa9culC1bFra2tqhUqRIqVaqkEbNq1aoYNGgQ1qxZA7lcDi8vL1y7dg2bN29Gly5d0LRpU51/i7xs2bIFrVq1Qrdu3dCxY0c0b94cZmZmeP78OXbu3ImQkBAsXLgQgLK71LZt26JevXoYOnQokpKSsGLFClhZWWHmzJn/qh6TJ0/G4cOH0aFDBwwePBienp5ISEjA/fv3sXfvXgQFBcHe3l7r33bo0AFbt26FlZUVPDw8EBgYiNOnT8POzk6tXLVq1SCRSPD7778jJiYGRkZGaNasGRwdHTXm+d1332H16tUYPHgwbt68CTc3N+zduxeXL1/G0qVLNb6Plpdnz56hefPmqoSMVCrFgQMHEBYWhj59+uRrXoDym4+///47hgwZAi8vL/Tt2xdhYWFYtmwZ3NzcMGHChHzPM1Pp0qWxfft29O7dGxUqVMDAgQNRqVIlpKamIiAgAHv27MHgwYNV5ZcsWYInT55g1KhR8PX1VbWI8/Pzw6FDh+Dl5aXWijE3bdu2RaVKlbB48WKMHj1a49uW2U2ePBm7d+/G0qVL8dtvv+VrOfft26dq+ZjVoEGDVF0rPnv2TGsrRicnJ7Rs2TLHeUskEkyfPh1DhgzRmGZgYIADBw6gdevWaNiwIbp164ZGjRrBzMwMwcHBOHz4MN6+ffvZkkMF0blzZ2zduhXPnj3LsyW1p6cndu3ahYkTJ6JWrVowNzdHx44dP8txOD/nVE9PT5w+fRqLFy+Gq6srSpYsiTp16mjM08HBAVOnTsWsWbPQpk0bdOrUCU+fPsVff/2FWrVq/avv+WU3b9481K9fH15eXvjuu+/w/v17LFq0CK1atdJoOXrz5k1ERUWhc+fOny0+EREREf0/JRARERF95TZu3CgAEK5fv55rufXr1wtlypQRjIyMhPLlywsbN24UZsyYIWS/5AEgjB49+rPP4/Xr1wIA4Y8//lAbf+7cOQGAsGfPHrXxt2/fFrp16ybY2dkJRkZGQokSJYRevXoJZ86cUSs3Z84coUiRIoJYLBYACK9fv1ZN27dvn9CwYUPBzMxMMDMzE8qXLy+MHj1aePr0qaqMl5eXULFixVzXnTb37t0T+vbtK7i4uAgGBgaCs7Oz0LdvX+H+/fsaZTPX0aNHj4QePXoIFhYWgo2NjTBmzBghKSlJVe7MmTNC586dBVdXV8HQ0FBwdXUV+vbtKzx79kxtfqmpqcLvv/8uVKxYUTAyMhJsbGwET09PYdasWUJMTIyqXG6/pSAIgkKhEIoVKyYAEObOnat1+vz584USJUoIRkZGQvXq1YWjR48KgwYNEkqUKKFWNiAgQPD09BQMDQ0FAMKMGTPUlj2rtLQ0YdasWULJkiUFAwMDoVixYsLUqVOF5ORktXIlSpQQ2rdvr1EvLy8vwcvLK8flyioxMVFYuHChUKtWLcHc3FwwNDQUypQpI4wdO1Z48eKFWtnTp08LDRo0EExMTARLS0uhY8eOwqNHj9TKZC5PRESERqyc6isIghAXFydMnTpVcHd3FwwNDQV7e3uhfv36wsKFC4XU1FRVuazrThAEITo6WhgyZIhgb28vmJubC61btxaePHkilChRQhg0aJBajLVr1wqlSpUSJBKJAEA4d+5cjusrLCxMNV9DQ0OhcuXKwsaNG9XK5LTPZq9nZGSkMHr0aKF8+fKCmZmZYGVlJdSpU0fYvXu31nWRVW7Hr127dgnVq1cXjIyMBFtbW6F///7C+/fv1coMGjRIMDMzyzNOds+ePROGDx8uuLm5CYaGhoKFhYXQoEEDYcWKFRrbYUpKirBkyRLB09NTMDMzE0xNTYUaNWoIS5cuVfvtMuW2HWzatEkAoFrXOR3/MjVp0kSwtLQU5HK5TsuVOb+chosXLwqCIORaJuu2ktP6TUtLE0qXLp3jMUYulwuzZ88WqlevrtrvihUrJvTo0UM4cuSI1rpHRERobP9Z5fVb53W8y5SSkiLY29sLc+bMURuvbd+Oj48X+vXrJ1hbWwsA1I57n+M4rOs59cmTJ0Ljxo0FExMTAYBq38/cf7Ke9wRBEP7880+hfPnygoGBgeDk5CSMHDlSiI6OViuT07lP2/E9JxcvXhTq168vGBsbCw4ODsLo0aOF2NhYjXI///yzULx4cUGhUOg0XyIiIiL67xIJgp771iAiIiIiIiKiz2bOnDnYuHEjnj9/ruqml76MlJQUuLm5YcqUKRg3bpy+q0NEREREXzl+U46IiIiIiIjo/5EJEyYgPj4eO3fu1HdV/t/buHEjDAwM8P333+u7KkRERET0P4At5YiIiIiIiEivkpKSEBMTk2sZW1tbGBoaFlKNiIiIiIiIPj+pvitARERERERE/227du3CkCFDci1z7tw5NGnSpHAqRERERERE9AWwpRwRERERERHpVUhICB4+fJhrGU9PT9jY2BRSjYiIiIiIiD4/JuWIiIiIiIiIiIiIiIiIvjCxvitARERERERERERERERE9P8dk3JEREREREREREREREREX5hU3xX42r0f01Ov8S2HDNNrfH+hhV7jJ6ToL2+cniHSW2wACApO12v8AL9Heo2vT6UqFddr/OSkNL3GT0nWb/zipez0Fvvmhcd6iw0ARd2L6DV+gwYOeo2fkqq/2KHh+t3u61bWa3hs2xuh1/geVZz0FrtZ1Xi9xQYAhaDfd+TC4031Gr+q7Wu9xd54Sb/n+wruBnqN38gh9++3fWkShf6udWVSZ73FBoAS0bf0Gv9gUju9xS7tEKe32ABQOeGyXuNLkvS7/PF2JfUW2/L1Db3FBoCbJQfoNb6zcbhe4xd5fUl/weUy/cUGkF7UXa/xxU9u6zX+Gptf9Rbb3/e53mIDQEZGhl7jx0ZE6zV+g/aeeot94eAVvcUGgEtHvPQa/78sv7mUon/u+UI1+boxKUdEREREREREREREREQFJ9JvI5f/FUzKERERERERERERERERUYGJxEzK6YJJOSIiIiIiIiIiIiIiIiowkVi/n2f4X8GkHBERERERERERERERERUYW8rphkk5IiIiIiIiIiIiIiIiKjC2lNMNk3JERERERERERERERERUYGwppxumLomIiIiIiIiIiIiIiIi+MLaUIyIiIiIiIiIiIiIiogJjSzndMClHREREREREREREREREBSaSSPRdhf8JTMoRERERERERERERERFRgYnE/FqaLpiUIyIiIiIiIiIiIiIiogJj95W6YeqSiIiIiIiIiIiIiIiI6AtjSzkiIiIiIiIiIiIiIiIqOHZfqROuJSIiIiIiIiIiIiIiIiowkViUr6EgVq5cCTc3NxgbG6NOnTq4du1ajmUfPnyI7t27w83NDSKRCEuXLv3X8/wcmJQjIiIiIiIiIiIiIiKiAhOJxPka8mvXrl2YOHEiZsyYgVu3bqFq1apo3bo1wsPDtZZPTExEqVKl8Ntvv8HZ2fmzzPNzYFKOiIiIiIiIiIiIiIiICk4syt+QT4sXL8bw4cMxZMgQeHh4YNWqVTA1NcWGDRu0lq9Vqxb++OMP9OnTB0ZGRp9lnp8Dk3JERERERERERERERERUYCKxOF9DfqSmpuLmzZto0aKFapxYLEaLFi0QGBhYoPp+iXnqQvrF5kxERERERERERERERET/7+X3O3EpKSlISUlRG2dkZKS1VVtkZCQyMjLg5OSkNt7JyQlPnjzJf2W/0Dx1wZZyREREREREREREREREVGh8fHxgZWWlNvj4+Oi7Wl8cW8oRERERERERERERERFRgYkkknyVnzp1KiZOnKg2Lqdvv9nb20MikSAsLExtfFhYGJydnfNX0S84T12wpRwREREREREREREREREVnFicr8HIyAiWlpZqQ05JOUNDQ3h6euLMmTOqcQqFAmfOnEG9evUKVN0vMU9dsKUcERERERERERERERERFZhIlL9vyuXXxIkTMWjQINSsWRO1a9fG0qVLkZCQgCFDhgAABg4ciCJFiqi6wExNTcWjR49U/x8cHIw7d+7A3Nwc7u7uOs3zS2BSjoiIiIiIiIiIiIiIiApO/GU7ZuzduzciIiLg7e2N0NBQVKtWDb6+vnBycgIAvH37FuIsdfjw4QOqV6+u+vfChQuxcOFCeHl5wd/fX6d5fglMyhEREREREREREREREVGBicRftqUcAIwZMwZjxozROi0z0ZbJzc0NgiD8q3l+CfymHBEREREREREREREREdEXxpZyREREREREREREREREVHAitgHTBZNyREREREREREREREREVHCF0H3l/wdMyhEREREREREREREREVGBidhSTidMyhEREREREREREREREVHBsaWcTpiUIyIiIiIiIiIiIiIiogITSST6rsL/BLYnJCIiIiIiIiIiIiIiIvrC2FKOiIiIiIiIiIiIiIiICk7MNmC6YFKOiIiIiIiIiIiIiIiICk7Eb8rpgkk5IiIiIiIiIiIiIiIiKjARW8rphEk5IiIiIiIiIiIiIiIiKjgRk3K6YFKOiIiIiIiIiIiIiIiICk7M7it1waQcERERERERERERERERFZiILeV0wrVERERERERERERERERE9IWxpRwREREREREREREREREVHLuv1AmTckRERERERERERERERFRw7L5SJ0zKERERERERERERERERUcFJJPquwf8EJuWIiIiIiIiIiIiIiIio4NhSTidMyhEREREREREREREREVHB8ZtyOmHqkoiIiIiIiIiIiIiIiOgLY0s5IiIiIiIiIiIiIiIiKjh2X6kTJuWIiIiIiIiIiIiIiIio4ETsvlIXTMoRERERERERERERERFRwYnZUk4XTMoRERERERERERERERFRwbGlnE6YlCMiIiIiIiIiIiIiIqKC4zfldMKkHBERERERERERERERERUcu6/UCZNyREREREREREREREREVHDsvlInTMoRERERERERERERERFRwbH7Sp1wLREREREREREREREREVHBiUT5Gwpg5cqVcHNzg7GxMerUqYNr167lWn7Pnj0oX748jI2NUblyZRw/flxt+uDBgyESidSGNm3aFKhuumJSjoiIiIiIiIiIiIiIiApOLM7fkE+7du3CxIkTMWPGDNy6dQtVq1ZF69atER4errV8QEAA+vbti6FDh+L27dvo0qULunTpggcPHqiVa9OmDUJCQlTDjh07CrT4umJSjoiIiIiIiIiIiIiIiApMEInyNeTX4sWLMXz4cAwZMgQeHh5YtWoVTE1NsWHDBq3lly1bhjZt2mDy5MmoUKEC5syZgxo1auDPP/9UK2dkZARnZ2fVYGNjU6Dl1xWTckRERERERERERERERFRwInH+hnxITU3FzZs30aJFC9U4sViMFi1aIDAwUOvfBAYGqpUHgNatW2uU9/f3h6OjI8qVK4eRI0dCJpPlq275Jf2icyciIiIiIiIiIiIiIiLKIiUlBSkpKWrjjIyMYGRkpFE2MjISGRkZcHJyUhvv5OSEJ0+eaJ1/aGio1vKhoaGqf7dp0wbdunVDyZIl8fLlS0ybNg1t27ZFYGAgJBJJQRctV2wpR0RERERERERERERERAWXz5ZyPj4+sLKyUht8fHwKtcp9+vRBp06dULlyZXTp0gVHjx7F9evX4e/v/8VisqUcERERERERERERERERFVh+vxM3depUTJw4UW2ctlZyAGBvbw+JRIKwsDC18WFhYXB2dtb6N87OzvkqDwClSpWCvb09Xrx4gebNm+uyGPnGlnJERERERERERERERERUcPlsKWdkZARLS0u1IaeknKGhITw9PXHmzBnVOIVCgTNnzqBevXpa/6ZevXpq5QHg1KlTOZYHgPfv30Mmk8HFxaUAK0A3TMoRERERERERERERERFRwYlE+RvyaeLEiVi7di02b96Mx48fY+TIkUhISMCQIUMAAAMHDsTUqVNV5ceNGwdfX18sWrQIT548wcyZM3Hjxg2MGTMGABAfH4/JkyfjypUrCAoKwpkzZ9C5c2e4u7ujdevWn2edaMHuK4mIiIiIiIiIiIiIiKjABInki86/d+/eiIiIgLe3N0JDQ1GtWjX4+vrCyckJAPD27VuIxZ/aodWvXx/bt2/HL7/8gmnTpqFMmTI4ePAgKlWqBACQSCS4d+8eNm/eDLlcDldXV7Rq1Qpz5szJscXe58CkHBEREREREREREREREX3VxowZo2rplp2/v7/GuJ49e6Jnz55ay5uYmMDPz+9zVk8nTMoRERERERERERERERFRwYn4tTRdMClHREREREREREREREREBSYwKacTJuWIiIiIiIiIiIiIiIio4EQifdfgfwKTckRERERERERERERERFRgbCmnGybliIiIiIiIiIiIiIiIqODYUk4nTMoRERERERERERERERFRwbGlnE64loiIiIiIiIiIiIiIiIi+MLaUIyIiIiIiIiIiIiIiogIT2H2lTpiUIyIiIiIiIiIiIiIiogITRBJ9V+F/ApNyREREREREREREREREVGACvymnEybliIiIiIiIiIiIiIiIqOCYlNMJk3JERERERERERERERERUYPymnG6YuiQiIiIiIiIiIiIiIiL6wthSjoiIiIiIiIiIiIiIiAqM35TTDZNyREREREREREREREREVHDsvlInTMoRERERERERERERERFRgbGlnG6YlCMiIiIiIiIiIiIiIqICE8CWcrr4alOXmzdvxrFjx1T//umnn2BtbY369evjzZs3eqwZERERERERERERERERZRJE4nwN/1Vf7ZLPnz8fJiYmAIDAwECsXLkSCxYsgL29PSZMmKDn2hEREREREREREREREREA5Tfl8jP8R3213Ve+e/cO7u7uAICDBw+ie/fu+O6779CgQQM0adJEv5UjIiIiIiIiIiIiIiIiAIDw9bYB+6p8tWvJ3NwcMpkMAHDy5Em0bNkSAGBsbIykpCR9Vo2IiIiIiIiIiIiIiIg+EkSifA3/VV9tS7mWLVti2LBhqF69Op49e4Z27doBAB4+fAg3Nzf9Vo6IiIiIiIiIiIiIiIgA4D/9nbj8+GrX0sqVK1G/fn1ERERg3759sLOzAwDcvHkTffv21XPtiIiIiIiIiIiIiIiICAAEiPI1/Fd9lS3l0tPTsXz5cvz8888oWrSo2rRZs2bpqVZERERERERERERERESUHVvK6earXEtSqRQLFixAenq6vqtCRERERERERERERERE9K99lUk5AGjevDnOnz+v72oQERERERERERERERFRLgSRKF/Df9VX2X0lALRt2xZTpkzB/fv34enpCTMzM7XpnTp10lPNiIiIiIiIiIiIiIiIKNN/+Ttx+fHVJuVGjRoFAFi8eLHGNJFIhIyMjMKuEhEREREREREREREREWXDb8rp5qtdSwqFIseBCTkiIiIiIiIiIiIiIqKvgwBRvoaCWLlyJdzc3GBsbIw6derg2rVruZbfs2cPypcvD2NjY1SuXBnHjx9Xr7MgwNvbGy4uLjAxMUGLFi3w/PnzAtVNV19tUi6r5ORkfVeBiIiIiIiIiIiIiIiItFCIJPka8mvXrl2YOHEiZsyYgVu3bqFq1apo3bo1wsPDtZYPCAhA3759MXToUNy+fRtdunRBly5d8ODBA1WZBQsWYPny5Vi1ahWuXr0KMzMztG7d+ovmpL7apFxGRgbmzJmDIkWKwNzcHK9evQIA/Prrr1i/fr2ea0dERERERERERERERESFYfHixRg+fDiGDBkCDw8PrFq1CqamptiwYYPW8suWLUObNm0wefJkVKhQAXPmzEGNGjXw559/AlC2klu6dCl++eUXdO7cGVWqVMGWLVvw4cMHHDx48Istx1eblJs3bx42bdqEBQsWwNDQUDW+UqVKWLdunR5rRkRERERERERERERERJkEkThfQ36kpqbi5s2baNGihWqcWCxGixYtEBgYqPVvAgMD1coDQOvWrVXlX79+jdDQULUyVlZWqFOnTo7z/By+2qTcli1bsGbNGvTv3x8SyaemjFWrVsWTJ0/0WDMiIiIiIiIiIiIiIiLKlN9vyqWkpCA2NlZtSElJ0TrvyMhIZGRkwMnJSW28k5MTQkNDtf5NaGhoruUz/5ufeX4OX21SLjg4GO7u7hrjFQoF0tLS9FAjIiIiIiIiIiIiIiIiyk4QifI1+Pj4wMrKSm3w8fHR92J8cV9tUs7DwwMXL17UGL93715Ur15dDzUiIiIiIiIiIiIiIiKi7ARBlK9h6tSpiImJURumTp2qdd729vaQSCQICwtTGx8WFgZnZ2etf+Ps7Jxr+cz/5meen8NXm5Tz9vbGmDFj8Pvvv0OhUGD//v0YPnw45s2bB29vb31Xj4iIiIiIiIiIiIiIiAAIEOdrMDIygqWlpdpgZGSkdd6Ghobw9PTEmTNnVOMUCgXOnDmDevXqaf2bevXqqZUHgFOnTqnKlyxZEs7OzmplYmNjcfXq1Rzn+Tl8tUm5zp0748iRIzh9+jTMzMzg7e2Nx48f48iRI2jZsqW+q0dERERERERERERERETI/zfl8mvixIlYu3YtNm/ejMePH2PkyJFISEjAkCFDAAADBw5Ua2k3btw4+Pr6YtGiRXjy5AlmzpyJGzduYMyYMQAAkUiE8ePHY+7cuTh8+DDu37+PgQMHwtXVFV26dPks60Qb6Reb82fQqFEjnDp1St/VICIiIiIiIiIiIiIiIj3p3bs3IiIi4O3tjdDQUFSrVg2+vr5wcnICALx9+xZi8ad2aPXr18f27dvxyy+/YNq0aShTpgwOHjyISpUqqcr89NNPSEhIwHfffQe5XI6GDRvC19cXxsbGX2w5vtqkXKlSpXD9+nXY2dmpjZfL5ahRowZevXqlp5oRERERERERERERERFRpoK0fsuvMWPGqFq6Zefv768xrmfPnujZs2eO8xOJRJg9ezZmz579uaqYp682KRcUFISMjAyN8SkpKQgODtZDjYiIiIiIiIiIiIiIiCg7xdf7tbSvyleXlDt8+LDq//38/GBlZaX6d0ZGBs6cOQM3Nzc91IyIiIiIiIiIiIiIiIiyE4Qv31Lu/4OvLimX+QE9kUiEQYMGqU0zMDCAm5sbFi1apIeaERERERERERERERERUXaF0X3l/wdfXVJOoVAAAEqWLInr16/D3t5ezzUiIiIiIiIiIiIiIiKinDApp5uvLimX6fXr16r/T05OhrGxsR5rQ0RERERERERERERERFRwX+2X9xQKBebMmYMiRYrA3Nwcr169AgD8+uuvWL9+vZ5rR0RERERERERERERERICypVx+hv+qrzYpN3fuXGzatAkLFiyAoaGhanylSpWwbt06PdaMiIiIiIiIiIiIiIiIMgmCKF/Df9VXm5TbsmUL1qxZg/79+0MikajGV61aFU+ePNFjzYiIiIiIiIiIiIiIiCiTAqJ8Df9VX+035YKDg+Hu7q4xXqFQIC0tTQ81IiIiIiIiIiIiIiIiouz+y11S5sdXm5Tz8PDAxYsXUaJECbXxe/fuRfXq1fVUq0+kDs6w+WYMxOYWEJISEbV1JdJD36uVkdg6wPab0TAoWhLpsnCE/zZZNc2obCVYdeoPkZExAAHJD24h5vA2QBDyjP02JBwzV/2DmLgEmJmaYMb3/VG6qItGuUPnArH58GkoBAVqViyLKUN6QSqV4N6z1/ht424AQHp6BqqVK4UfB3WHoYGBzssfERqEXaumISEuGsamFug9Yh6ci5bRWvaa/z6cO7wWCkGAu0cddBvyKyRSA7x8dA3rFoyAg4ubquzYWTtgYGicZ3xZWBAOrJuCxPhoGJtYoMtQHzgW0R7/1oW9uHR8LQRBgZIV6qL9AG9IpMplDXv/FMe3zUVCrAwA0KzbeHh4tso1dlRYEA5vnILEuGgYmZij05Df4JBD7NsX9yDAVxnbrXxdtO03AxKpAe5c3ofrp7eoysXKQ1G8TC30HPVnnstuaw50qiuBqRGQkgYcvpKBiFjNclZmQKc6EjjbAPIEYK1vhtr0aqVEqO8hhghAUJiAEzcUUOS9+cHVyRCThhWDpYUUiYkZWLTuHd5+SNEo52hvgEnDiqF0cROERqZijPdzteluRY0xcoArrC2Vh6HN+0IRcFPLgnxF8R2sxRjY1hRmJiIkpwrYeiIRITKFRjlbSzG+aWuKYo4SyGIU8NkSp5pWtpgUnRsbw8hQBAjAg1dpOHQhGTqsejjaSjC0kwXMTUVIShGw4XAcPkRkaJSzsxLj204WKO4sRaRcgVlro1XTSheRYkA7CwCARAI8f5uGHX7xSNecjQYnOwlGdLeBhZkYSckKrN4nR3B4ukY5e2sJRnS3RglXA0REZ2D6nxFa5zf1Wzu4uRpgxNxQHZYesLMUoUdjKcyMgeRUYO+FdITLNdectTnQo7EBXO1EiIoT8OfBNJ2m5cbVyRCTh5eApYUECYkKLFr3Fm+CkzXKOdkbYtKw4nAvYYLQiFSM8n6qNt2tqDFGDSgKGyvldrdpbwgu34zJM76+f/uo8CAc2zwFSfHK4167gb/BwVX7ce/u5T246qc87hUvVxet+s6ARGKAewH7cPPcp+NeXHQoipWpha4j8j7uRYcH4eS2KUhKiIaRsTla9f8Ndi7a4z8I3IMbp5Xxi5Wti6Y9lfEFhQIXDv2ON48vQiyWwNjMGi36zIW1Qwmt88lkawF0bSCBqbEIKakCDlzOQISWn8zaDOjSQAIXWxGi44FVR9X3jRruIjSsJIFIBLwOFXD0SoZOx9yIkDfY9tc0JMTJYWxqjn4j58GlmOZLSwBw5ew+nD68HoJCgTKV6qDnt79AIjXA84fXsOa3kXBwdVOVHT9nGwx1ON/qe7+3MQc61hHD5OM57+hVBSK1nfNMgQ51xHCyBmISgPUn1Y/NVUuKUK+CCCKR8pznd1PIc/2HfniLtUtnIS5ODlNTcwwb542ixUtrLXv+1CEc27cFCkEBj8o1MfD7nyGVSvHiyT1sXvU7ACA9PR1lPaphwPBJMDAw1Dqf7PHXLZuJ+Dg5TEzNMeyHGSiSQ/wLpw7i2P7NEBQKVKhSC9+MmKKKv2XVbwCAjIx0lKlQFf2HT9YpfmRoEHatnobEOOW1Vs88rvX8j6yFIAgo7VEHXQd/utbb8If6td7omXlf6wUHB2Ph4sWIjYmFqZkZJk2cALcSmvuqr58fdu/ZC0GhQNWqVTFm9ChIpdI8p+XF1gLo1lAKUyMRUtIE7L+cgQht5xszoGtD6cf9XsDfR7Lv92I0qqzc71+FKHTe7/V5nfv+wwf8vuRPxMTGwtzUFD+NHwO3EsU1yh0/eRo79x6AQhBQvUpljBs5HFKpFKFh4Viw9E+8ePUazk6OWLN8Ud4LrBY/BD5L/0JMXBzMTE0wZdwolCxeTKPcsVNnsX3fIQiCgOqVK2LC90MhlUoREhaO35b/rYq/fumCfMX/EPwefy6ej9jYGJiamWHMhKkoXqKk1rKn/Y7hwN5tEBQCKletjuGjJkIqlSI8LAR/LvkNr18+h6OTCxb9qdv30N+GRmDm6u2QxyXA3MQYM0b01XqPd9D/CjYfOQOFIKCWRxlMGdwDUumnnmUEQcBIn7/wJOg9/Nf45Gv59X2fo8/j3tvQcMxctU25/k2NMWOE9nvsg/6Z99gCanmUxZQhPZX32M9f47cNewAA6RkZqFquFCYP7A5Dg7yPO2/CIuG9YR/k8YkwNzHG7CHdULqIk0a5AxdvYOOJixAEBWqVL4Wp/TvBQCrBjSevMGbZFpRwtleV3Tx1BIwNdbu/f/chFPOXr4I8Ng7mZqaYNnYEShYvqlHu6Gl/bNt/GAqFgBqVPTBpxBBIpVLcvPcQq7fuRGJyMkQiEep5VsP33/SBWKxbx0xvIqLx6w4/RCckwcLYCLP7toJ7lmXJtP/KA2w8ex0KQUBt92KY1qMZDD72qvT8QyR+O3AOsrhEAMCYdvXRoor2bTe7sA9vsW75DMTHymFiZo6hY2fmvN2dPojj+zcpt7vKtTBgxBRIpQZ48eQetq5W7m/K7a4a+g3T7XwbHByMxYsWISY2Fmamppg4aZLGc7BMfn5+2LN7NxQKBapWq4bRo0erzm25TcvJm/Ao/Lr58Kd1P7Aj3F0dNMrtv3wHG08GKNd9OTdM69MGBhIJrj97g9Erd8LNyVZVdsuPg3Xe9t5EyvHr3nOITkiGhbEhZvdoCvcs81LFv/EYG8/fhkIAapdyxbTOjWAgkeDgzSfYHnBfVS4sJgE13FywZEDrPGO/DY3AjDU7Vfv8zOF9ULqos0a5g+evYtPRc8p9voI7pgzqBoNsx9zvf1uFJ2+CcX7VXJ2WGwDeRMXC+0gg5EkpMDcywOwO9VDawVqj3IE7L7Ax8BEEQUAtNydMbV0bBhIxFIKAxWduIeDlB0jFYliZGOHXdnVQ3NZC5zrII4JwdtcUJCdEw9DYAs16+8DWWft+8/jaXtw+txaCQoEi7nXRqJu36h4r8NgfePv0EgRFOpzdaqBxtxmQSPPe9l0cDDBukDMszCRITFZg+ZZQvAtJ1SjnaCvFDwOdUbKYEcIj0zDB561qWqUyJvh1dBF8CPv0dz8vfIfUtNwvuFwcDTBhsCsszSVITFJg6aYPeKsttp0Bxg9yQanixgiLTMO4ua8/xS5ripljiyE4S+zJvwflGRsAirgYY9pYd1hZGiAhMQM+K54j6F2SRjlnByNMGeuOMiXNEBKegmGT7qqmtW3miO7tP52nHOwMce9RLH5d8FRjPtnp89lKURcTTJ9QDtaWBohPTMf8pU/x+m2i5rI7GmH6+PIoU8ocIWHJGDLupmpau+ZO6Nnp03nKwd4Idx/IMd3nkU51oC/rv9wlZX58td1Xent7Y8yYMfj999+hUCiwf/9+DB8+HPPmzYO3t7dO84iIiICzszPmz5+vGhcQEABDQ0OcOXPmX9XPus8IJFw+jbDZ4xB36hBsvxmtUUaRnISYIzsRtWmZ5rTEeMg2LkHYvAkI+/1nGJYqB9PaXjrF9lm/C12bNcC+xb9iUMfmmLVqm0aZ4HAZVu05hjUzxuHAEm9ExcRh/9nLAICyJYpgy5wfsd3nZ+z8fQqiY+Ox99SlfC3/vvWzUKdpT/y86ASadhiKXaunay0XFf4efnuWY6T3VkxZ7Iv4WBmunN2jmu7g4oaJPgdUgy4JOQA4snkGPL164QcfPzRoNwwH10/VWi464j3OHliGIVP/wQ+/nUR8bCRunlcmJFNTkrBj+Wg06zoeY+Ydx6g5R1CiTM08Yx/b6o3qjXph1Dw/1G87HIc3Tskh9jucP7QMg37ahtHzTiEhNhK3LypjV2vQHcNnHFIN5pYOqFSno07L3q62GLdeKvDXsQwEPFagU12J1nIpaYD/vQwcCNRMGlmbAU0qi7H5dAZWHs2AubHygbEuxg4qihPnozB8ylPsOR6BScM0H5QAQGKSAlv2heL31W81phkZiuD9Qwls2ReKEdOeYeT0Z3j4LOGrj9+3lQku30vF7A1xOHUtBd+0NdVaLjlVwNFLSdh4THOeiSkCNhxNxNyNcfhtaxxKuUpRp2LeF6wAMLCdOS7cSsL0v6JxIiAR33bSfsGdnCLggH8C1h6I05j2Liwdc9dHY9baaMxYFQ1LMzGa1jTRKf63na1x7noCJi8Jx5EL8RjR3VpruaQUBfacjsNfu6O1TgeAtg3MEB6l+WA/N10aSHH9aQYW703DhXsZ6NFY+01mSipw6mY6dvlrzj+3abkZN7gYjvvLMPTnJ9h9LAyThmk+oASAxKQMbN4Xgt9WvdGYZmQowsxxJbF5XwiGT32CEdOe4MGzeJ3i6/u399vmjWoNe+G7WX6o02o4jm/RftyTR77DpSPL0G/SNnw3+xQSYyNx9+Nxr0r97hgy/ZBqMLN0gEct3Y57Z3Z7o1L9Xhj8ix9qthiOk9u0x4+RvUPg8WXoOW4bBv96ColxkXgQoIz/8sFZfHh9C/1/PoQBU46gWNl6uHx0cZ6xO9aV4OZzBVYcTMelBwp0bZDzMffsHQX2XtTMclqbA02rSbDBNx3LDqTDzBioWVa3S7Dd62ahXvOemL70GJp3Gortf2s/38rC3+P4nj/xw8wt+GXZCcTFyBBwZq9quoOrG376fZ9q0CUhB+h/v29bU4zbLwWsPq7AlccKdKijfb2lpAPn7ytw6IrmOc/KDGhcWYStZxX4+5gCZsYiVC+d9zlv018+aNK6Kxb8vQ/tuw3EumWztZaLCAvG/m2rMc1nNf5YtR8x8ij4+x0AABQrWRYzFm7GnKXbMG/5DsTKo3Dm+F6t88lu89/z0aRVV/z213606zYQ65bPyjH+ge2rMG3+Wvy+6iBi5TKcP7lfFd974RbMXrodc5btRFxMNM6e2KN1Ptnt36C81pu88AS8Og7Fnlyu9U7uXY6Rv27FT4t8ER8jw9Vz6td64+cfUA26XOstX/En2rZpg/Xr1qJXzx5YtHiJRpnQ0FBs2foPFi74HRvWr0O0PBrHT/jmOU0XnepJceOZAssPpuHigwx0y2W/P3M7A3svaG7X1uZAs+oSrD+RhqX702BuItJ5v9fnde6SlavRvnULbFn9J3r36IoFSzUTKSGhYdi0bSeW/j4XW9esRLRcjqN+pwAApqYmGDKgL6b9OF6nZc1u0V9r0aF1c/zz91L07dYZvy37SzN+WDg2bNuN5T6zsG3VMkTLY3DET3lvZ2ZqiqH9e+OXST8UKP7qPxeiRZuO+HPtNnTt0Q9/LtGe1AoLDcHOf9Zj7u8rsHLddsijo3HK9wgAwMTUDH2/GYrxk3/NV+z5G3aja9N62L9wGgZ2bIZZq3dolAkOl2HV3hNY++tYHFw0HbKYOOw/F6hWZtuJ8yjqqJnQ0IW+73P0edybv343ujatj/2LfsHADi0wa3VO99jHsdZ7HA4u/hWy2DjsPxsAAChbvAi2zJmE7T4/YedvPyM6Ng57Tl/UabnnbT2E7o1r4dC8CRjcphG8N+7XjB0Rhb8OnsGGn4fh8PyJkMUmYP+F66rpJZztsWvGGNWga1IEABb+vR4dWzXFjr8WoV/XDpi/YrVGmQ9h4Vi3fQ/+nOeNnX8vRnRMLA6fPAsAsDA3w8xJY/HPij+wbuFcPHjyHL7+ui07AMzZcwbd61bGkalDMKRZTXjvOKlR5r0sBn/5BmDjmF44Om0IZPGJ2BeoTMYkpaZh3IZDGN22Pg5OGYR9P32DGqWK6Bx/89/z4NWqK3z+OoB2XQdh/YqZWsspt7u/MXXeOvz29yHExkTh/MnM830Z/PrHFsxasgOzl+5CbEwUzul4vl2xYgXatG2LdevWoWfPnli8SPvLDKGhodi6ZQsW/PEH1m/YAHl0NE6cOJHntNzM2X4c3RtWx5GZIzGkVT14bzmiUeZ9pBx/HT2PjRMH4uisUZDFJmDfpduq6W5Ottg9bbhqyM+2N+fgBXSvVQFHJvXFkMbV4L33nGb8qFj8deo6Nn7XBUcn9YUsPgn7rj0GAHTxLI/dY3uqBjtzE7Svplsydt7GvejatC4O/DEFg9o3xcy1OzXKBEfI8Pc+P6ybPgqH/piCqNg4HPC/olZmm++FAh1z5524hu7V3XHo+04YXLcivI8GapQJlsfjrwv3sOGbljg8shNkCcnYf1v5svH5Z+9x930Edg1rj93D26O2mxP+9L+Trzqc3zcDHnV6od/PfqjedBjO7tJ+vREb9R7X/Jahy8h/0G/KSSTGR+LxFeUx//H1vYgIfoSe4/ehz+TjEInEuHdpq07xR/ZzwslLMRg9Kwj7T0bhh4GaSVEASExWYNuRSCzeqP2lvg9hqZjg81Y16JIUG93fBX4X5fje+xX2+skwfrCr9thJGfjnUAQWrvugdXpwWCrGzX2tGnSJDQA/fl8aR06FYcCY29h+IBhTx2rfbhOSMrB++1vMWfpcY9qJs+EYNumuaoiSp+HUBe0vRmanz2crk0eXwWG/EPT9/jq27X2HaePLaS2XkJiBtf+8xqyFjzWmHT8ThiHjbqqGqOhUnDwfnq960JcjQJSv4b/qq03Kde7cGUeOHMHp06dhZmYGb29vPH78GEeOHEHLli11moeDgwM2bNiAmTNn4saNG4iLi8M333yDMWPGoHnz5gWum9jcEobFSyHx+gUAQNKdK5DY2ENir34CERLjkfrqCYRUzdYUae+DkCH7eMBIT0Pa+yBI7TTfSMouKiYOj1+/RduGypvqZrWrIUwWjXeh6gfes1fvoLFnZdhbW0IkEqF78wY4GXALAGBsZKh6mzItPQPJqanIzz4QHyPD+1cPUKOh8uaqcu1WkMtCEBmq+RD63jU/eNRoCktrB4hEItRt3gt3Ao/rHkxb/FgZPgQ9QJV6nQAAHp6tERMVClmYZvxHN/xQrnozWFgp49ds0gf3rx4DANy/ehRFS1dFibKeAACxWAIzS823srJKiJUh5M0DVK6rjF2+RmvERociKlwz9pNbfihbtRnMP8b29OqLB9eOapQLfnUXCXEylK3aLM9lNzUCXG1FuB+kPNE/fifA0lTZkiC75FTgXSSQpuX8WKGYCM+CBSR83DRvvhBQsUTehwMrCwnKljTB2QDlQ9dLN2Jgb2cAF0fNpFJ8QgYePk9EcormA9ImdW3w5GUiHj5Xvg2jEICYuLyb6+gzvrmpCMWdpLj2SPkW1O1nabCxEMPBWnO9JSYLeBmcgVQtLwq9D8+ALEZZp/QM4H1EBmyt8l73FqYiuLlKEXhf2Srw5uNU2FpK4Gij+bcJyQJevEtHipYLwtR0IOPjKpFIAAOpSJcGurA0E6NUEQNcvqt8e+v6w2TYWkngZKv5oDIhScCzN6lISdU+4yKOUnhWMMaRC7olpADAzBgoYi/CnRfKyj8IUsDKTARtLwImpQJvwgStF8S5TcuJlYUUZUqa4kxAFADldudgawBXLdtdXEIGHj5P0LrdNa2Xud0pk7W6bvf6/u0TYmUIffsAFWsrj3vlqrdGXHQoorUc957e8oN7lU/HvWqN++LRDc3j3ofXd5EYJ4O7Dse9xDgZwt8+QIWayvjuVVsjTh4KeYRm/Od3/FCqUjOYWSrjV67fF09vKuOLREBGeioy0lIgCAJSk+Nhbq39xi+TmTHgaifCvVfKFfXorQDLXLa7t+GC1mNuxRJiPH2nQPzHY+6NZwpUKpn3iTcuRoa3rx6iZqMOAICqdVpCLgtFRKjmywZ3r55EJc8msLS2h0gkQoMWvXAr4N+db/W935saAS62wIM3ynk+eQ9YmuR8znufwzmvfFERnmc5591+qYBH8dzXf6w8Cq9fPEH9Jm0AADXrN0NUZBjCQt5plL1++Syq124Eaxvlum/WphuuXFQ+UDQyMla9pZ6enoa01BSIRHn/9rHyKAS9eIx6Tdoq49drnmP8GwFnUK12Y1h9jN+kdXdcveinET8jPQ2pqSkQ6XDRl3mtV73Bx2u9Wq0gj9J+rXf/47WeRZZrvbv/4lpPLpfj+fPnaN5MeXxo2KABIiMj8OGD+sOQi5cuo26dOrC1tYVIJEL7du3gf/58ntPy8mm/Vx4wH73Je79P1WG/v/40A5VL5n2+1+d1brQ8Bs+ev0TLpsoXBRvXr4vwSBmCP4SolbsQEIh6tWvB1sYGIpEIHdu2wrnzyhf8LC0sULliBRgbG+W5rNriP33xCi2bNAIAeNWvg/BIGd6HqD+EO3/5CurX9oSdjTVEIhE6tWmJMxcvf4xvjioe5WFslP/4MfJovHz+FF7NlPeadRt4QRYRgZAP7zXKBl72R606DWBjaweRSIRW7Trj0nllYtDCwhIVKlaBkbFuLz8AH+/xXr1D2wbK36t5raoIi5Jr3OOduXYXjWtUzHKPVx9+gbdU01++D8H5m/cxuGP+73X1fZ+jz+Oecv1/usduXrsqwmTa1v8dNK5RKdv6V765n/0eOyU1TafjbVRsPB4FfUC7ulUBAC08KyIsKgZvw2Rq5U7ffAivauVhb2UBkUiEHl614HvtXp7zz0u0PAZPXr5CK6+GAIAm9Wpr3e/8A66hYa0aqv2uc+vmOH1RmUQoW8oNrs6OAAAjQ0OUKVkCoeGROsWXxSXi0bswtPesAABoUaUMQuVxeBshVyt3+u5zeFUsBXtLM4hEIvSsVwUnbitbg5y49QRVSrioEnESsRi25tpfnswuVh6FoJePUc+rHQDAM4/trnotr2zbnfKFDyMjE0g/tlLO+Hi+hw7ne7lcjufPnqHZx3Neg4YNERkZqXHOA4BLly6hTt26qnNbu3btcN7fP89pOZHFJeDR2xC0r10ZANCienmEymPxNjxKrdzp24/hVbkM7K3Mleu+UQ2cuPEwz2XLiyw+CY+CI9C+Wlll/EqlEBoTj7cy9S4pTj94Ba8KbrC3MFXGr+OBE/deaMzv3rswRCUkwatC7r1gAEBUbBwev36PdvVrAACa16qCsKgYvAtT327PXLsHr+oen/b5ZvXgG/gpIfnyfSj8bz3A4A5N87XsUQnJeBQiQ7tKypbYLcoXQ1hsIt5Gqb9YefrJW3iVKQJ7cxPlfl+9DHwffTwmi4DUdAVS0zMgCAISUtPgaKnbdg8AifEyRLx/gLI1lMf8UpVbI14eiphIzWP+y3t+cPNoBtOP91gV6/bB8zvK6w3ZhycoWqYeJFJDiEQiFC/fCM9uHsozvpW5BO7FjeB/TdkFRuDteNhbS+HsoJnUjU9U4PHLZKRouccuCCsLCcqUMMa5q8ptLeBWHOxtDOCSQ+xHL5OQnPp5YgOAtZUBypU2w6nzynPM+UAZHOwMUcRZ87ohLj4d95/EITk59+cGFcqYw8bKAJev5/yCZCZ9PluxtjJA+TIWOHkuDADgHxAJR3tjFHHRvuz3HsXmueweZS1gY2WAS1dluZajwiMIonwN/1VfbfeVANCoUSOcOnXqX82jXbt2GD58OPr374+aNWvCzMwMPj7568YjO4mNPTJi5YDi00E5IyoSUlt7ZETq1h1TVmILa5hUr4vIVXnXK0wWDTtrK0g/dtMgEongbGeDUFk0ijl/SuqFyqLhbG+j+reLgy1CZZ8Ozh8iZPhx0Vq8D4tEg+oV0bNlI53rK48KhaWNAyQSqaoONnaukMtCYO+sfgEkl4XAxv7TGye29kUgl326wIwKf4el07tDJJagVuOuqN+yb57xY6NCYGGlHt/KzgUxUSGwc1KPHxP1AdZ2n+Jb2xVBTJTywULEhxeQSg2xbekIxEaHwaloObTu/XOuDyxio0NgbuUAcdbYti6IkX2ArWO22LIQWNl9ekPPyq4IYqPUH2oAwJ1Le1G5bmdVV0O5sTQF4pPUezmNSQSszJTdJunK0kyEmMRP5eUJAqx0uH5zsDVElDw966aPCFkaHO0MEBKu2dQ/J8VdjZCWLmDmeDfY2xrg9btkrNv5Ic8EhT7j21iIEZug3sVnVKwCNhZiRMgLdoFmaSpC9bIG+Ht/3q30bC0liIlXjy+LyYCtlQTh0fmLb2clxtjeVnCwkeDe8xScu6HZTYJGfCsJ5HEKtXUvi8mAnbUEYVE69H/4kUQMDO1ijXUH5GrzyouVmQhxierdzckTBFibK7tK+JIc7AwQJU9T3+6iUuFgZ4gP+drujJGWrsDsCSVhb2OI1++TsGZHcJ7bvb5/+7joEJhbqh/3LG1cEBv1ATbZjnux0SGwtM37uHcvYC8q1ukMiSTv416cPARm2Y67FjYuiIv+oNH1ZFx0CCyyxLe0K4K4aGX8UhWb4d3zq1jza0MYGpnB3MoJPX7I/S3OzGNu1nUfkyDAyix/252VmbJLxUzyeOU88iKXhcLSOtv51t4F0ZEhcHBWb60ZHRmqfr51KILoyE/rXhb2Dgun9IRILEadJl3RsFWfPOPre7/Xds6LTVSOj9Y9t6dc/1l6RIlJUM4jN7LIMFjb2Kmte1sHZ8giQuHkUixb2VDYOX7qOsbe0QWyiE/XgxFhH7Bs/o8IDw1GVc8GaN62R551jtIS387BSXv8iFDYOWSJ7+SqFj8y7AOW+0xCeOh7VPFsiGZte+YZXx4VCots2561jtd6Ng5FEJ3lWk8W/g7LpneHWCxBzcZdUS+Pa72IiAjY2NpCkuVa18HBEeHhEXB1dc1SLhyOjo6qfzs5OSEiIiLPaXmxNBV9pv1eBHmWazNd93t9XudGREbC1tZGbd07OtgjPCISRVw/bWPhEZFwcvx03+Hk6IjwCN0ewOcmPFIGOxtrtfscp4/xi7p8eokiLDISzllaJTg7OnyW+JER4bCxVd/v7B0dERkRDhdX9a78IsPD4OD4qXtBRydnREaEFTh2WJQcdtaW6stuZ4NQmVzjHs/F/tNv6JrlHi89PQPz1u/Gr8N07zYwK33f5+jzuBcWJYedjZWW9a95j622/u3tNO6xJy1eh/dhkWhYrSJ6tmyY53KHRsXA3spC/f7e1gqhUXIUd7JTlQuJioGLnXWW2DYIjfqUvHgfHoW+s1dCLBajc4Ma6NW0Tp6xASBcFgU7Gxv1Zbe3Q1iELNt+J4OT2n5nj7BIzQegsmg5/AOv4ffpP+oUP0weB3tLM0gl4k/Lb22BEHksimfpyi9EHgdXG8tPy29ridBoZQLjZVgUDKQSjFl3EOHyeJRxtcekTo11SsxFycJgZWOvvt3ZOyMqIkRju4uKDIWd46d1Yufoiqgsz38iwz9guc9ERGRud23yPt9GRETAVuOc54Dw8HC1cx4ARITnct7LZVpOwqJjYW9prr7ubSwREh2L4o6ftvOQqFi42lqp/u1qZ4XQqE99ib+LkKO3zzpIRGJ0rlcFvb3ybpUNAGEx8bC3MM3225sjRB6P4naf4oXI4+Fq/emNLFdrC4TKNS8ED954gg7Vy6q6NM01tiwG9tmOuc521giRRaOY06ftPFQmV3uu5mqvPC4DyuT73A174D20FyT5POaGxibA3twEUnGWZbc0Q2hsglr3kyExCXCxMvsU38ocobHKmwqvMkVx400YWizfBzNDAzhamGLdgBY61yFBHgJTSy33WPIQWNmrH/Pj5R9gYfNpe7SwLYJ4ufKY71C0Ih5e2Y3KDQZAYmCEl3d9ERcdnGd8exspomMz1O+xo9PhYCNFaIRu3SBmcnYwxKIpxaEQgLOBMThxIffPQ9jbGCAqJttzpag0ONgaICTfsQ2wdHpJKBQCTgfE4Pj5vJNijnaGkEWnqV6YBYDwyBQ42hsiOFSzUYcu2jd3xMnzEcjIyPtaVZ/PVpzsjSCLSlVb9rCIZDg5GCM4pGDL3qGlM/zOhem07FQ4/sut3/Ljq20pl1V8fDxiY2PVhvxYuHAh0tPTsWfPHmzbtg1GObw5mZKSohEnJUP3h04FITI2gf33PyPu9CGkvX31RWNl5epgh+2/TYHv3/OQlpaOc9fu5v1Hn1kRNw9MX3EO4+ftw6DxyxF4ZhfuXsm7i4XPRZGRgVePAtFx0Gx8P/MALG0ccXTrzEKLDwCpKYl4eP0YqjXM+wHd/ycSiQjVPcyxYtN7jPF+Dll0GsYM1L2Lkf/1+ABgbAh8380Mp66l4G3Ylz3OZCeLUWDmmmhMXBwJA6kInhXy/zZ5QXVtZoEbj5LwISJ/XRz8fyARi1DdwwLLNr3HKO+niIxOw9hB2rtf/VL0+dtnSk1JxOMbx1ClQeEe98LePYAs5DmGzbqA4bMvoljZuji7a0ah1kFfipX0wMy/zuDH3/Zg6KRluHx6F24H6t6V37/1X97vAcDByRVzl23H8k0nkJ6eihuBml0zfUn2Tq6YvXQHlm70Q3paKm5eOVtosYu4eWDa8nMYN28fvhm/HFfOFu613n/Z13CdS4VrzQE/NK1ZBSW1fItMH/R5n6Ov456rgx12+PwMv7/mIjU9HWev//uWbLooX8IVvn/8hB3eo7F4VD/s9b+Gk9fv5/2Hn1lCYiKmzF+Evl06oLx7qUKLm5GhwNXnb/FrjxbYNak/HC3NMW/vv/tcSUHYO7pi9pKdWLLhZKGfb/WlQjFnnJw/FrumDsOSET2w5+Jt+N0s/G86JaamwffeC3T1LF9oMdcePImmNSvr7Zj7KESGFxExODm2G07+0A213Zww78S1Qq9HuZrdULxcQxz6+xsc+vsbWDm4QSwuvPYfL9+lYOi0V5j021v8tvoDWjeyRoMaWrrV+BKx3yZjyM8vMH7ea8z7+z3aNLZGQ0/dv+n3uRgbidGsoT2OnS74y0H/q4yNxGje2BFHT+W/gQx9OWwpp5uvtqXc69evMWbMGPj7+yM5+VO2XBAEiEQiZOQjWfby5Ut8+PABCoUCQUFBqFy5stZyPj4+mDVLvd/6CbUqYGLtimrjMqIjIbG0BsRiVWs5ia090qPy94amyMgY9qOmI+nedcSf1ezuQxsnOxvI5DFIz8iAVCKBIAjKVnF2NmrlnO1s8D5LlxEhEVEaZQDA1NgIrerVwInLN9CqvmeOcW9cPIQLxzcBAKrXb4/Y6AhkZKRDIpFCEAREyz7A2k7zQ9jWdi6QhX3q+iEqMlj1Rq+xqXmWcs6oXq8dXj+9iap122rM587lgwg8qYxfuU57xMWox4+RhcDKVjO+la0roiI+dfMllwWrylnZucCtfB1Y2igvoqrU64Sti4dpzONewEFcPbURAFCxdnvEx0RAkZEOcWbsqBBY2blq/J2VnQuiwz/FjpEFwzJbHR/f8IWDaxk4uLpr/H2mKm4i1CmvzJ8/fKOAuYmyJ4zMlgNWpso3uPMjNkGAjbkIgPLvrM1Eaq0Ismpe3xpd2yjfED1/RQ5ba2nWTR8OdgYIl+XvbaIIWSruPkmATK58QHs2IBrzfiz51cWv7WGA5jWVzehvPEmFpZkYYtGnt+dtLcWIjst/KzkjA2B0d3Pce5GGszdTcixXr4oRWtVRvuF57WEyrMzV49tZSRAVU/CEXkoacO1hCupUMsK1h5r1aFjNBG0bKvfTwLtJsLYQq617OysJZPL8xa9Q0hB2VhK0rGsGiVgEEyMRlvzoCO+/IhGXqL4uq7uL0aCS8u3Fe68UsDAVqS2/dbZWCJ9TiwY26NZa+bap/5Vo2FobqG93toaIkOneSg5Qtq67+yQesmjl9qrc7rQ/sND3b//gykFcP6M87lWo2R7xserHPWWLOM3jnqWNC+SRuR/3nt7yhb1LGdi75Hzce3TtIG75K+OXq9EeCdmOu3HRIWpva2aysHFBTJb4sbJgWNgo4z++fhDFytSFsanyLWuP2l2x/+9vNeZRtZQI9TyU292D18pjbtZ1b2UmyvcxNyZBvctFa/Oc53HtwiH4H9sCAKhRvx1i5dnOt5EhsLHXPN/Z2DsjMuv5NiJYVS77+bZG/XZ49eQWqtdrozEffe/3ldxEqFNWeWH+8K2gcc6zNFW2lsuP7Ovfykz7PC6dPQa/w9sBAHUbtYI8Wqa27qMiQmHnoNnlqZ29M8JDP3VvFxkeorWcsYkp6jRshcALvqjbuJXG9MvnjsLvkDJ+ncaa8WURYdrjO2SLH/Yh5/iNWiHwvC/qNGqtMf3mxUO4eGITAKBavfaIy7btyXO71gv/tO1FRwTDJodrvWr12iEoh2u9TA4ODoiOikJGRgYkH691lS3fHLKVc0RIyKeWOWFhYXBwcMhzmjZVS4lRv6LyWuv+Z9vvBdhafLrJzG2/1+d1blYO9vaIiopWW/fhEZFwdFD/Vo6jgz0+hHx68BMWHq5RpiAc7e0gi5ar3eeEaYnvZG+P4NBP8UPDIwoc3/+ML44cUH73qaFXc0RHqe93keHhsHdw1Pg7e0cnhIV8ahEaHhYKe4eCP5h1srWGTB6rvuyyaDhnaRkFaN7jfchyj3fr8QuEyuTYfeoiMjIUSEhKQcfxs7Fl9kTYWGp/QKnv+xx9H/cyOdlaQxYdo2X9a7nHztK93YdIWa732L6Xb6B1vRo5xgUAZ1srRMbEqd/fR8XA2dZarZyLrRXeRXzqVvBDZDScP7ZeMjf51O2Xk60VWtepglvP36BVLe3PPbJytLOFLDpafdkjZXBysFMr52Rvhw9q+10knOw/lUlMSsKPsxegYe0a6NO5XZ5xVfO1tkBkbALSMxSQSsTK5ZfHwcXaUq2ci7UF3n1soQQAH6Ji4WyjfPjtYmOBWu7F4PSxNVX7muUxcvWBHGNePncUJw8rvxlYp1FrxERHqm93kaGwddA85traOyMiy3YnC/8AW3vt213thq1x5cIJrdvdmdOnceCAsn5eXl6I0jjnRai1esvk4JjLeS+XaTlxsrFEZGy8+rqPjoWLTbZ1b2uJdxFZWoTKYuBsqyxjbmKkNr+2NT1w68U7tPb0yDU2ADhZmSMyLjHbbx8PF2v145WLtTneZWmZ90EeB+dsZU7df4nSjrYo7ZR7N82q2HZWiMx2zA2VyeGisc9b4334pxahHyI/HZdvPnmFUFk0dp++rDrmdpg4D1tnjsvxmKuar6UZIuOTkK5QQCr+uOyxCXC2NFMr52JlhnfRn7q0/BATrypz9P5r1C7hBAtj5ScVOlYuhZE7ck8EP71xEHcvbAIAlKneHomxWu6xrDW3fXNrV8TKPh3z46KCYf6xnEgkQq1WY1Gr1VgAwPM7x2DjrP2436SOBTo3U67jCzfiYGMpUb/HtpEiIjp/L/ElJX+6l5DJ03HxRiw83E1w+ZZ6a8qmda3QpYVy+7hwPRa2VtmeK9kaICIqf8+Vsse+cD0WHmVMcemm5vfdWzdxQM+OyvPpmUuRsLMxgET86fMSjvZGCI/M3/OFTE3q2yHoXRLevM+5Fxx9Pltp09QJvbsoexw4fSEcdraGasvu5GCMsIiCtZJr2tABr98mIuhdPm8Q6Yv6fJ29/v/21baUGzBgAKKjo7FhwwacOXMGZ8+exdmzZ3Hu3DmcPav7G0epqakYMGAAevfujTlz5mDYsGEID9f+8cepU6ciJiZGbRit5U0bRXws0t6/hmmtxgAAk2p1kSGX5avrSpGhMiGX/OgO4vw0P+ScE1srC5RzK4YTl24AAM5euwMnW2u1bjUAoGntqrhw8z4i5bEQBAH7zlxGq483BO9CI5CernyglpaejnM37qFM8dxbCdVs1BkTfQ5gos8BNO04DEVKeuDWJeVHgO9fOwlrW2eN7owA5ffmHt06h1h5BARBwJUzu1GtnvJBTGx0BBQfz4DJSQl4dPs8XEtU0Bq/WoMuGDnrIEbOOoiG7YbDpYQH7gUeBgA8uukHSxsnjS59AKCCZys8vX0WcTHK+Df8d6JSHeVNQsVabfEh6D6Sk5Qn6+f3LsC5mObvXaV+F9WHyuu3/Q7OxSvi/hVl7Ce3lLGzd+kCKL/D8OzuWcR/jH3z/A5UrNVercydS3vzfHv0XpCAtb4ZWOubgYDHAkKigMpuyoc8FYqJEJuYv268AOW36MoWEcHs4/2bp7sID99oP2yeCZBjjPdzjPF+jj3HI/DiTRKa1VdeSDWsaYXIqLR8dR0JABeuxaBsSROYGisPQbWqWuLVO+0nYX3Gv/YoDT5b4uCzJQ6nrqXgXXgGansoL3qrlzVAdJwi311XGhkAo3uY41FQGnyv5JyQA4DAeymYtTYas9ZG40RAEt6EpKNeZeWNj2cFQ0THZuS7+0JHGzE+9hACiRioXs4Q78O1X/heupOE6X9GYPqfETh6MR5BH9LQoKoJAKBWRWNExWbkqws7AJizVobxC8MxYWE4Zq+JRFKKgAkLwzUezAPA7RcK/HkwDX8eVH58+INMQDV3ZeUruYkRkyAgSvN697M4fTkao7yfYpT3U+w+Ho4XQUloXl95Ed+wphUio9Py1XUlAJy/KkfZkqaftrsqFnj1VvuFs75/+0p1u2DI9EMYMv0Q6rb+Dk7FKuLhNeVx7+ltP1hYO2l0XQkovzf34t6n496dCztQoab6ce/e5b2oUj/3455H7S4Y8NMhDPjpEGq1+A4OxSri8Q1l/Bd3/WBu7aTRdSUAlKnaGq8enEVCrDL+/YAdKFtDGd/KrhjePb+CjHTl7/bq4TnYuZTVmMfdVwJWHU3HqqPpuPRQgZAoAVVKKY+5HsVFiC3AdvfojQLliolh/vGYW7OsGA9ea7/pqd24M376fR9++n0fWnQeiqJuFXDjovLFnbtXT8Hazkmj60oAqFK7JR7c9EesPBKCIODy6d2o8fF8G5P9fHvrPIq4aX+TWN/7/YMgAetPKrD+pAJXnggIjQYqlVCu//JFgbik/J/znr4XUCbLOa96aTEevdVc/w2btcecpdswZ+k2tO8+CG6lyyHAX9mi8EbAWdjYOWp0ZQUovzd3+9pFyKOV6/6s737UaaT8JlVYyDukpyv3s/S0NNy84o9iJbQ/qGjQtANmL92O2Uu3o323wShRqhwC/ZWtym4EnoFtDvE96zXDnWsXEPMxvr/fPtRu2Crn+G7a43s26ozx8w9g/PwDaNJxGIq4eeD25Y/XetdPwiqHa71KH6/14rJc62Um3bJe66UkJeDx7fNwddN+rZfJ2toapd3dcebj9f6ly5dhb2ev0Y1Xwwb1ceXqVURFRUEQBBw7fhxNvBrnOU2bu68U+PtIOv4+ko5LDzL3e+UB06PE59nva5WT4H6Q9uO2Pq9zs7KxtkKZ0qVw6pzy+3sXAq7Awd5OretKAGhUvy4Cr11HVHQ0BEHAkRMn0bRxA91XTq7xS+KU/0UAwPmAq3Cws1PrQg8AGtevg4BrNyGLlkMQBBz2PYVmjeoXKGaT5m2w6M/1WPTnenTt2Q+l3Mvi/Fnl5xOuXD4PO3sHja4rAaBufS9cv3oZ0VEyCIKAk8cPoUHjvL+blhPlPV5RnLis/D7Zmet34WhrpXGP16x2FVy49TDLPV4AWtWtDgBY5/0Dji7zxpGl3ljn/QPMTIxwZKl3rg+H9X2fo+/jXiZbKwuUK/npHvvMtbtw1HKP3ax2VVy49UB9/edwj+1//R7ci2smNDViW5qjfHEXHL+i7Lnm9M2HcLSxVOu6EgCae1bE+TtPEBkTB0EQsPf8dbSuXQUAECGPUx1rE5JTcPHuU5QvrvlgXRsbayuULVUSJz9+F9I/8Boc7Gw19rsm9Wrj0vVbqv3ukN8ZNG9UDwCQmJSMSbN/R+3qVTCoZ1ed4mayszBFhaKOOHbzsXL57z2Hk5W5WteVANCiqjvOP3yFyNgECIKAPYH30KZaOQBAq2pl8fBtGOKTlfdWlx4FoZxrzgmpBk07YNaSHZi1ZAfadRuMEqXKI/C88luoNwPP5Hi+96zXDLevn1fb7jKTbsrtTvlAPz0tDbeunkPREmW0xm/eogX+XLkSf65ciZ69esHd3V31jOvypUuws9c85wFAgwYNcPXKFdW57fjx4/Dy8spzWk7sLMxQoZgzjl1Ttqo8ffsJnKwt1LquBJTfmjt//zkiY+KV6/7iLbT5mHSLiImD4uNT/YTkFFx48ALli+n2goKduQkquNrj2J1nyvgPXil/+yxdVwLKb82dfxyEyLhEZfyrj9Cmivo+feDGE3StqXsrOVtLC5R3K4LjAcpvcp65fg+ONlZqXVcCQLNaVXD+9qNP+/zZQLSuWw0AsP6X0Ti25BccXTwd638ZDTMTIxxdPD3PhBwA2JoZo7yzLY4/eK1c9ifv4GhhqtZ1JQA0L1cM558HIzI+Sbnf336O1h7KY3IRa3NcexOGtI8NFi68CIZ7tv0mu3I1u6DXxIPoNfEgqjcdDociHnh2S3nMf3VfeY+VvetKAChduRWCHp1F4sd7rIdXdsK9mvJ6Iz0tBSmJyu4ikxKicfvsWlRvMlRrfP+rcZjg8xYTfN7iwKlovHqXgia1lQneetXNIZOn57vrShtLierzjcZGItSsZI5X7zSfs5y7EoNxc19j3NzX2Ocnw8u3yWhaR7mt1a9hgUh5Wr67rrSxlKpimxiJUauyOV691f5cy88/AsMm3cWwSXex40Awnr1KQEsv5XHKq54dImSp/6LrSiccO5N7Kzl9PlvxPReGIeNuYsi4m9i27x2evYxHq6bK40ST+vaIiEz5F11XuuDoKc3us0m/2FJONyJBEL5MKvxfMjc3x82bN1GuXLl/NZ/Jkydj7969uHv3LszNzeHl5QUrKyscPapby7T3Y7T3Ay51dIXNN6MhNjOHkJyEqH/+QvqHt7Dp9z2S7t9A8v0bEBkYwsl7OURSA4hNTJERF4PE6xcQe3g7LFp3g2W7nkgL+fSmVdLtQI0EneUQzTdagz6EYfaqbYiJT4CZiTG8R/SHe3FXzF2zHY08K8PLU/lG3IGzAdh8WHlT6elRBlO/7Q2pVIL9Zy5jl98FSMQipGcoULtSWYzt2xlGhpp9/fsL2vukDv/wGrtWT0NivBzGJubo9d08uBRXPtzcs/ZXeNRoioqeyhvTq2f34OyRdQCA0hVqofu3MyCRGuDyyW0IPL0TYokUiox0VKnTGi27jYYoyweRE1K0540jQ17h4IapSIyXw8jYHF2GzodTUeW2cmjjLyhXrRnKV1fGv3l+Ny4dXwsAcCtXGx0GzlR91+BuwCFcOrFO+Y0kayd0HDxb9YZxeob2A4Ms9BUOb5yKpHg5jEzM0HGwDxw/xj66eTrKVm2GstWUH1e/dWE3AnzXAABKlK2NdgNmqWLLQl9h/dzuGLfwIoyMNS/cgoK1Pyy3swA61ZXAxFDZ2uXI1QyEf+wyu0NtMZ4FC3gWLEAqAUZ3kEAiBowNgIQU4H6QgLN3lTds1UuLUL+Ccv2+CRdw/Lr6N6sC/LR3O1HE2QiThhWFhbkUiUkZWLL+PYLeK0+g44YUxZXbsbh6JxZGhiKs+60cDKRimJqKERObjjMBcmzaq0xeN6tvjZ7tHJVvIUenYfmmYETq8GZSYcQvVUnzgTegTGp809YUZsYiJKcK+Mc3ER8ileuzXysT3H+Zhvsv02EgBWYMtYRUApgYKfvrvvYoFYcvJqN1HSO0r2+MENmnB3O3nqbC7+qnC8fkJO3rwclOgqGdLGBmIkJyioANR+IQHK68CB/UwRx3nqXi7rNUGEqBeaNtYSARwcRYhNgEBQLvp2D/2QQ0rm6MFrVNoBCUjX0fv07FntMJSM/yjD0lWXt8F3sJvutuA3NTMZJSFFizT473YcrtdFhXK9x6nIxbT1JgaCDCwgmOkEoBUyPlt/gu3UnE7pPqV3n21hLMG+OAEXPVX2goXkr9IYSqvJUIPRpLYWoEJKcC+y6mIyxaudF2bSjF47cKPHmrgIEEmNjTEFIxYGQIJCQDt19k4OSNjFynAcDNC4+1xi7qbIRJw4vD0lyCxCQFFq17q9ruxn9bDFdux+DKbeV2t/73CjCQimFmKoY8Nh1nAqKxcY/yQrF5fRv0au8IhQDIotOwbOM7tTfyirprf0GisH77Bg20P8CQhb7C8S1TkZQgh5GxGdoN9IFDEeVx78TW6XCv0gxlqiqPe3cu7cZVP+Vxr1jZ2mjdb5bq23Gy0FfY8lt3jPpN+3EvJYc8Z1TYK5zcPhXJCXIYGpuhVT8f2Lsq45/aMR2lKjVD6crK+PcDduPG6TUf12dtNOutjJ+engr/vbMR/OomJGIpTC0d0LzXLFjZKx+6hIZr3+7tLIGuDSQwMRIhJVXAwYAMhMuV0zrVk+DpOwWevhdgIAHGdpFCKlEm3xOSlW8hnr6t3Nc9y4jQ8OPbiUGhAo5cyVA75tbN4WX2sA+vsf3vX5AYJ4exqRn6fj8Xrh/PtztXe6OSZ1NUqqn8uHzgmb04fUh5vnX3qIVew7whkRrgou92XD69C2KxBApFBqrWaYU2PUapnW+37dX+3ZHC2u89qmh/gGNroTy3mRgBqWnA0WsKRHw857WrJcLzYAHPPwBSCfB9O7Fy3/54znsQJMD/vnIlVyslQr0KyuV9Ey7A98an7yg0q6o9yxfy/g3WLp+F+LgYmJiYYdgP3qoHu+tXzEX12o1Ro44y0eN/8iCO7tsMAKhQqQYGjZwKqVSKc34HcOroLojFYmRkZKBilVroNXgsDA0/vVmuELRf64QEB2F9lvjfjp2hir/hzzmoXrsxqtdWPnA7f/IAju3bBAAoX8kTA0dOg1Qqhb/ffpw+thNisQQZGRnwqFILvQb9AIMs8cPjtX9zJ+LDa+xeo7zWMzIxR8/v5sGlmHLb2/vxWs8j81rv3B74f7zWK1WhFroNUV7rBZzchsAzOyGRSJGRkY4qtVujRbZrvaq2rzViv3v/HosWL0FcbCxMTU0xccIElCzphiVLl6Fu3TqoV7cuAOCEry9271a2cqpcpTJ+GDMGUqk0z2mZNl7Sfr63swS6NZAq9/s0AQcuZyBcrtxgOteT4Ml7BZ6+U+73P3Q1UNvv775S4PQt5YHVs4wYjSor9/vXoQocCVTf7yu4a//OVmFc5wJAI4eHWtZ9MH5f+idi4+JgZmqKyeNGo5RbCSxc/hfq16mF+nVqAQCO+Z3Cjr3Klh5VK1fEhFEjIJVKkZycgkHfj0FaWjoSEhNhbWWJlk29MGzQAI1YEoXmte7b9x/w2/K/EBsXD1MTE0z5YSRKuRXHghWr0KB2TTSoo/xW0dGTZ7B93yEAQLVKHpg4cpgyfkoKBowcj7S0tI/xrdCqSSN8N7CfWhyZVLN1CwAEv3+LP5f4fNz2zDB6ws8o4VYaAPDXsgWoVacBatVVJiBP+R7BgT3KVl4VK1fDiDGTIJVKkZKcjDHfDUB6WioSExNgaWUDr2atMGDwd6o4JaJvacQO+hCOWWu2IyY+EWYmRpjxXV+4F3PFnLU70bhGJXh5VgIAHDgXiE1HlF3zeVZwx7QhPSGVqn9D6UNEFPpN/wP+a7R/s/xgkvaWTIVxn1PaIeenfoVx3KuccFlr7KAPYZi1ervqHnvGd/3gXtwVc9bu+Lj+P91jbzpyGsDH9Z95j302ADv9zkMiFiMjQ4FaFcvih76dNO6xJUmayx8UGgHvDfsRk5AIM2MjzBrSDWWKOmPWpgPwqlYeTaopX2bYf+E6Np64oIxdriSmD+gMA6kEO89ewR7/a8rYCgVaelbEiE7N1I61meLtNHsHeRv8AfOXr0ZMXDzMTE0wdex3KF2iOH5buRYNa9VAw9rKHnUOnzyLbfuVL2tUr1QBP37/LaRSKbbsOYgNu/ajZLFP17FN69fBwJ5d1OJYvr6hfd2HR+HXHSchT0yCuZEhZvdpjTKu9pi56xSaVCyFJpWU++C+wPvYcPY6AKBm6aL4pWdz1ffDjtx4hI1nb0AsEsHRyhzePVuoWtJlullS8zgEKLe7DctnIj4uBsamZhg6doYqobZx5WxUq+WVZbvbj+P7NwEAylWqiYHfT4VUagD/k/tx5uhOiCRiKDIyUKFKLfQaOE7tfOtsrP3l8Pfv32PxokWIjYuDqakpJkyYgJIllb/T0qVLUbduXdT9eN7zPXECu3fvBgBUqVIFY8aOVZ3bcpsGAEVeX9Jc92Ey/LrlCOQJSTA3NsTsbzqiTBFHzPznKJpUKYsmVZTn/X2XbmPDyQDlui9TAr/0awsDiQQ7/K9j98VbkIrFSFco0Kp6BXzfvpHmtifX/P4gAARFyPHr3nOQJyYr43dvgjLOdpi53x9NKrihSQU3Zfzrj7Dh/B1l/JKu+KVLI9VvHxQhR9+V+3B66jcwMzLUGie9qGZiPigkHDPX7Pq0zw/vjTLFXDB7/W54Va8IrxrKHrP2n7uCTceUXY/XLF8aUwd3h4GWY27fXxfj/Kq5WuOLn9zWjC+LhffRQMQkpcDM0ACzOtRFGUcbzDp2BV5liqJJWeULIftvv8DGQOX52rOEE6a3qQ0DiRip6Rn47eR13HkXAalYDDtzY0xvUxtFs233ALDG5let9YoOf4Vzu6YiOVEOQ2NzNO01H3YuymP+uT2/wM2jGUpWVF5vPLq6G7fPKq83XEvXRuPuMyGRGCAxLhKHVg2ESCSGIChQpeFAVKz36dvV/r7PtcYGAFdHA/ww0BkWZhIkJSuwYmso3nxQ3hCO7u+Ea/ficf1+AgwNRPhrphsMpCKYmkgQE5cO/2tx+OdQJNp5WaNNIytkKJQvngbcjsfOY5+2t5x6WSviZIjxg11gYSZBYrICyzaF4M0H5TOZsd+44OrdOFy7Fw8jAxFWzSmtFvvclRhsORiB9k1s0M7LBhkZAiQSES7djMWOo+o9qMVmaWWaVTFXY0wdWwaWFlIkJGbg9z9f4NVbZWuvyaNK4/L1KARcj4aRoRj/rKwOQ6kYZqYSRMem4aR/BNZue6uaz5o/qqLb0OtqLfcyNWivvUe0wni2cuHgFe3LXsQE08eXh9XHZZ+/7ClevVF+K/HnsWVx6aoMl6/JYGQkxo5VtWFgIIK5qRTRMWnwOxeG1Vteq+azfnENdB58BUlJmr/zpSO5v5hAX07A4/xleOtXKPxuX78GX21SrmnTppg+fTpatND9Q6XZ+fv7o2XLljh37hwaNlR+ZDkoKAhVq1bFb7/9hpEjR+Y5j5yScoVFW1KuMOWUlCssOSXlCkNOSbnCklNSrrDklJT7L8gpKVdYckrKFZacknKFJaekXGHIKSlXWHJKyhWWnJJyhSWnpFxhyCkpV1hySsoVlpyScoUlp6RcYcgpKVdYckrKFZacknKFRVtSrrDklJQrLDkl5QqLtqRcYdKWlCssOSXlCou2pFxhyikpVxhyS8oVhpyScoVFW1KuMGlLyhWWnJJyhSWnpFxhySkpV1i0JeUKTQ5JucKiLSlXmLQl5QpTTkm5wpBbUq4w5OfTR19CTkm5wpJTUq4w5JSUKyxMyukPk3K6+Wq/Kbdu3Tp8//33CA4ORqVKlWBgoH7TWqVKlTzn0aRJE6SlqT9kc3NzQ0xMzGetKxERERERERERERER0X/Vf7lLyvz4apNyERERePnyJYYMGaIaJxKJIAgCRCKR3t92ICIiIiIiIiIiIiIiIkAAk3K6+GqTct9++y2qV6+OHTt2wMnJSWt/6ERERERERERERERERKRfiq/yQ2lfn682KffmzRscPnwY7u767fuZiIiIiIiIiIiIiIiIcqbvb6b/r/hq11KzZs1w9+5dfVeDiIiIiIiIiIiIiIiIciEI+Rv+q77alnIdO3bEhAkTcP/+fVSuXBkGBgZq0zt16qSnmhERERERERERERERERHlz1eblPv+++8BALNnz9aYJhKJkJGRUdhVIiIiIiIiIiIiIiIiomwUEOm7Cv8TvtqknEKh0HcViIiIiIiIiIiIiIiIKA+CwKScLr7apBwRERERERERERERERF9/f7L34nLj686KZeQkIDz58/j7du3SE1NVZv2ww8/6KlWRERERERERERERERElElg95U6+WqTcrdv30a7du2QmJiIhIQE2NraIjIyEqampnB0dGRSjoiIiIiIiIiIiIiI6CugYEs5nYj1XYGcTJgwAR07dkR0dDRMTExw5coVvHnzBp6enli4cKG+q0dERERERERERERERERQflMuP8OXEhUVhf79+8PS0hLW1tYYOnQo4uPjc/2b5ORkjB49GnZ2djA3N0f37t0RFhamVkYkEmkMO3fuzHf9vtqk3J07dzBp0iSIxWJIJBKkpKSgWLFiWLBgAaZNm6bv6hEREREREREREREREdFXpH///nj48CFOnTqFo0eP4sKFC/juu+9y/ZsJEybgyJEj2LNnD86fP48PHz6gW7duGuU2btyIkJAQ1dClS5d81++r7b7SwMAAYrEyZ+jo6Ii3b9+iQoUKsLKywrt37/RcOyIiIiIiIiIiIiIiIgIA4SvovvLx48fw9fXF9evXUbNmTQDAihUr0K5dOyxcuBCurq4afxMTE4P169dj+/btaNasGQBl8q1ChQq4cuUK6tatqyprbW0NZ2fnf1XHr7alXPXq1XH9+nUAgJeXF7y9vbFt2zaMHz8elSpV0nPtiIiIiIiIiIiIiIiICAAyBFG+hpSUFMTGxqoNKSkp/6oOgYGBsLa2ViXkAKBFixYQi8W4evWq1r+5efMm0tLS0KJFC9W48uXLo3jx4ggMDFQrO3r0aNjb26N27drYsGEDhAJkIr/apNz8+fPh4uICAJg3bx5sbGwwcuRIREREYM2aNXquHREREREREREREREREQH5/6acj48PrKys1AYfH59/VYfQ0FA4OjqqjZNKpbC1tUVoaGiOf2NoaAhra2u18U5OTmp/M3v2bOzevRunTp1C9+7dMWrUKKxYsSLfdfwqu68UBAGOjo6qFnGOjo7w9fXVc62IiIiIiIiIiOj/2rvv8Ciq9v/j94YSigQMIJEgNRB6hxCpSksCKIIoPoiCCjwqIMWCIo9YEBULqNQvVUMvUkRpUkWaIIp0BKQX6RASkuz9+4NfxmxoyWZ3J+G8X9eV60pmy2funNmzO+fszAAAAKTkTONBY2+++ab06dPHZZm/v/9N79uvXz/5+OOPb/t8O3fuTNsKpNGAAQOs36tVqyZXrlyRIUOGSM+ePdP0PBl2Ui4kJES2b98upUuXtnt1AAAAAAAAAAAAcAtpPZOjv7//LSfhUurbt6906tTptvcpWbKkBAUFyalTp1yWJyQkyNmzZ295LbigoCC5du2anD9/3uVouZMnT972+nFhYWHy/vvvS1xcXKrrEMmgk3J+fn5SunRpOXPmDJNyAAAAAAAAAAAAhipYsKAULFjwjvcLDw+X8+fPy+bNm6VGjRoiIrJ8+XJxOp0SFhZ208fUqFFDsmXLJj/99JO0bdtWRER2794thw4dkvDw8Ftmbd26Ve699940TciJZOBryn300Ufy2muvyZ9//mn3qgAAAAAAAAAAAOAWVBxp+vGGcuXKSUREhHTp0kU2btwoa9eule7du0v79u2lcOHCIiJy9OhRKVu2rGzcuFFERPLmzSvPP/+89OnTR1asWCGbN2+Wzp07S3h4uNSpU0dERBYsWCBjx46VP//8U/bt2ycjR46UDz/8UHr06JHmdcyQR8qJiDzzzDMSExMjVapUkezZs0vOnDldbj979qxNawYAAAAAAAAAAIAkab2mnLdMnjxZunfvLo0bNxY/Pz9p27atfPnll9bt8fHxsnv3bomJibGWffHFF9Z94+LipHnz5jJixAjr9mzZssnw4cOld+/e1uXXPv/8c+nSpUua1y/DTsoNHTrU7lUAAAAAAAAAAADAHaT1mnLeEhgYKFOmTLnl7cWLFxdNsbI5cuSQ4cOHy/Dhw2/6mIiICImIiPDI+mXYSblnn33W7lUAAAAAAAAAAADAHWSUSbmMLsNOyiUXGxsr165dc1kWEBBg09oAAAAAAAAAAAAgiVO9c524u42f3StwK1euXJHu3bvLfffdJ7lz55Z7773X5QcAAAAAAAAAAAD2U03bj6ky7KTc66+/LsuXL5eRI0eKv7+/jB07Vt59910pXLiwfPPNN3avHgAAAAAAAAAAAIRJudTKsKevXLBggXzzzTfSqFEj6dy5s9SvX19CQkKkWLFiMnnyZOnQoYPdqwgAAAAAAAAAAGA8p8ETbWmRYY+UO3v2rJQsWVJErl8/7uzZsyIiUq9ePVm9erWdqwYAAAAAAAAAAID/T9WRph9TZdhJuZIlS8qBAwdERKRs2bIyY8YMEbl+BF2+fPlsXDMAAAAAAAAAAAAk4fSVqZNhJ+U6d+4sv//+u4iI9OvXT4YPHy45cuSQ3r17y2uvvWbz2gEAAAAAAAAAAEDk+ukr0/Jjqgx3TTmn0ylDhgyR+fPny7Vr1+TYsWPyzjvvyK5du2Tz5s0SEhIilStXtns1AQAAAAAAAAAAIGYf/ZYWGW5SbtCgQTJw4EBp0qSJ5MyZU4YNGyanTp2S8ePHS7FixexePQAAAAAAAAAAACDNMtzpK7/55hsZMWKELF68WObOnSsLFiyQyZMni9PptHvVAAAAAAAAAAAAkALXlEudDDcpd+jQIYmKirL+btKkiTgcDjl27JiNawUAAAAAAAAAAICb4ZpyqZPhTl+ZkJAgOXLkcFmWLVs2iY+Pt2mNAAAAAAAAAAAAcCsmH/2WFhluUk5VpVOnTuLv728ti42Nlf/+97+SO3dua9mcOXPsWD0AAAAAAAAAAAAkk5ho9xpkDhluUu7ZZ5+9YdnTTz9tw5oAAAAAAAAAAADgTjhSLnUy3KTchAkT7F4FAAAAAAAAAAAAwKMy3KQcAAAAAAAAAAAAMg8nR8qlCpNyAAAAAAAAAAAAcJum+fyVDq+sR0bHpBwAAAAAAAAAAADcxjXlUodJOQAAAAAAAAAAALjN6bR7DTIHJuUAAAAAAAAAAADgNo6USx0/u1cAAAAAAAAAAAAAuNtxpBwAAAAAAAAAAADc5uRIuVRhUg4AAAAAAAAAAABucyamdVbO4ZX1yOiYlAMAAAAAAAAAAIDbOFIudZiUAwAAAAAAAAAAgNuUSblUYVIOAAAAAAAAAAAAbnNyqFyq+Nm9AgAAAAAAAAAAAMDdjkk5AAAAAAAAAAAAuE01bT/ecvbsWenQoYMEBARIvnz55Pnnn5fLly/f9jFjxoyRRo0aSUBAgDgcDjl//rxHnvdmmJQDAAAAAAAAAACA2zLKpFyHDh1k+/btsnTpUvn+++9l9erV0rVr19s+JiYmRiIiIuStt97y6PPeDNeUAwAAAAAAAAAAgNuc3pxpS6WdO3fKokWLZNOmTVKzZk0REfnqq68kKipKPv30UylcuPBNH9erVy8REVm5cqVHn/dmOFIOAAAAAAAAAAAAblNn2n7i4uLk4sWLLj9xcXHpWod169ZJvnz5rIkzEZEmTZqIn5+fbNiwIUM8L5NyAAAAAAAAAAAAcJuqpuln8ODBkjdvXpefwYMHp2sdTpw4Iffdd5/LsqxZs0pgYKCcOHEiQzwvk3IAAAAAAAAAAABwm9OZtp8333xTLly44PLz5ptv3vS5+/XrJw6H47Y/u3bt8nHF7uGacgAAAAAAAAAAAHCbpvGacv7+/uLv75+q+/bt21c6dep02/uULFlSgoKC5NSpUy7LExIS5OzZsxIUFJSm9UvOk8/LpBwAAAAAAAAAAADc5kzbnFyaFCxYUAoWLHjH+4WHh8v58+dl8+bNUqNGDRERWb58uTidTgkLC3M735PPy+krAQAAAAAAAAAA4DZ1app+vKFcuXISEREhXbp0kY0bN8ratWule/fu0r59eylcuLCIiBw9elTKli0rGzdutB534sQJ2bp1q+zbt09ERLZt2yZbt26Vs2fPpvp5U4tJOQAAAAAAAAAAALhNNW0/3jJ58mQpW7asNG7cWKKioqRevXoyZswY6/b4+HjZvXu3xMTEWMtGjRol1apVky5duoiISIMGDaRatWoyf/78VD9vanH6SgAAAAAAAAAAALjN6c3zV6ZBYGCgTJky5Za3Fy9e/Ibr3w0cOFAGDhyYrudNLSblAAAAAAAAAAAA4LaUE124OU5fCQAAAAAAAAAAAHgZR8oBAAAAAAAAAADAbeq0ew0yByblAAAAAAAAAAAA4DYnp69MFSblAAAAAAAAAAAA4DauKZc6TMoBAAAAAAAAAADAbYmJTMqlBpNyAAAAAAAAAAAAcJs6mZRLDT+7VwAAAAAAAAAAAAC423GkHAAAAAAAAAAAANzm5JpyqcKkHAAAAAAAAAAAANzG6StTh0k5AAAAAAAAAAAAuI1JudRhUg4AAAAAAAAAAABuY04udZiUAwAAAAAAAAAAgNs4Ui51mJQDAAAAAAAAAACA21SZlEsNP7tXAAAAAAAAAAAAALjbcaQcAAAAAAAAAAAA3Obk9JWpwqQcAAAAAAAAAAAA3OZMdNq9CpkCk3IAAAAAAAAAAABwm3KkXKowKQcAAAAAAAAAAAC3OZVJudRgUg4AAAAAAAAAAABu40i51PGzewUAAAAAAAAAAACAux1HygEAAAAAAAAAAMBtyukrU4VJOQAAAAAAAAAAALjNyekrU4VJOQAAAAAAAAAAALiNa8qlDpNyAAAAAAAAAAAAcBunr0wdJuUAAAAAAAAAAADgNnU67V6FTIFJOQAAAAAAAAAAALiNa8qlDpNyAAAAAAAAAAAAcBunr0wdP7tXAAAAAAAAAAAAAJmXOjVNP95y9uxZ6dChgwQEBEi+fPnk+eefl8uXL9/2MWPGjJFGjRpJQECAOBwOOX/+/A33KV68uDgcDpefjz76KM3rx6QcAAAAAAAAAAAA3JZRJuU6dOgg27dvl6VLl8r3338vq1evlq5du972MTExMRIRESFvvfXWbe/33nvvyfHjx62fHj16pHn9OH0lAAAAAAAAAAAA3OZUp92rIDt37pRFixbJpk2bpGbNmiIi8tVXX0lUVJR8+umnUrhw4Zs+rlevXiIisnLlyts+f548eSQoKChd68iRcgAAAAAAAAAAAHBbWo+Ui4uLk4sXL7r8xMXFpWsd1q1bJ/ny5bMm5EREmjRpIn5+frJhw4b0ligfffSR5M+fX6pVqyZDhgyRhISEND8Hk3IAAAAAAAAAAABwW1on5QYPHix58+Z1+Rk8eHC61uHEiRNy3333uSzLmjWrBAYGyokTJ9L13D179pRp06bJihUrpFu3bvLhhx/K66+/nubn4fSVAAAAAAAAAAAA8Jk333xT+vTp47LM39//pvft16+ffPzxx7d9vp07d3ps3W4m+bpWrlxZsmfPLt26dZPBgwffcr1vhkk5AAAAAAAAAAAAuE1V03R/f3//VE9m9e3bVzp16nTb+5QsWVKCgoLk1KlTLssTEhLk7Nmz6b4WXEphYWGSkJAgBw8elNDQ0FQ/jkk5AAAAAAAAAAAAuM3pdHrtuQsWLCgFCxa84/3Cw8Pl/PnzsnnzZqlRo4aIiCxfvlycTqeEhYV5dJ22bt0qfn5+N5wu806YlAMAAAAAAAAAAIDb1Jm2I+W8oVy5chIRESFdunSRUaNGSXx8vHTv3l3at28vhQsXFhGRo0ePSuPGjeWbb76R2rVri8j1a9GdOHFC9u3bJyIi27Ztkzx58kjRokUlMDBQ1q1bJxs2bJCHHnpI8uTJI+vWrZPevXvL008/Lffee2+a1pFJOQAAAAAAAAAAALjNmZho9yqIiMjkyZOle/fu0rhxY/Hz85O2bdvKl19+ad0eHx8vu3fvlpiYGGvZqFGj5N1337X+btCggYiITJgwQTp16iT+/v4ybdo0GThwoMTFxUmJEiWkd+/eN1wTLzWYlAMAAAAAAAAAAIDbMsKRciIigYGBMmXKlFveXrx48Ruufzdw4EAZOHDgLR9TvXp1Wb9+vUfWz88jzwIAAAAAAAAAAADgljhSDgAAAAAAAAAAAG5zqtPuVcgUmJQDAAAAAAAAAACA2zLK6SszOiblAAAAAAAAAAAA4DZ1cqRcajApBwAAAAAAAAAAALdxpFzqMCkHAAAAAAAAAAAAtynXlEsVJuUAAAAAAAAAAADgNidHyqWKn90rAAAAAAAAAAAAANztOFIOAAAAAAAAAAAAbnMmJNq9CpkCk3IAAAAAAAAAAABwG9eUSx0m5QAAAAAAAAAAAOA25ZpyqcKkHAAAAAAAAAAAANymTo6USw0/u1cAAAAAAAAAAAAAuOspvCY2NlbfeecdjY2NJd+wfJNrNz3f5Nrtzje5dtPzTa7d9HyTazc93+TaTc83uXbT802u3fR8k2s3Pd/k2k3PN7l20/Ptrh3wBYeqcqJPL7l48aLkzZtXLly4IAEBAeQblG9y7abnm1y73fkm1256vsm1m55vcu2m55tcu+n5Jtduer7JtZueb3LtpuebXLvp+SbXbnq+3bUDvsDpKwEAAAAAAAAAAAAvY1IOAAAAAAAAAAAA8DIm5QAAAAAAAAAAAAAvY1LOi/z9/eWdd94Rf39/8g3LN7l20/NNrt3ufJNrNz3f5NpNzze5dtPzTa7d9HyTazc93+TaTc83uXbT802u3fR8k2s3Pd/u2gFfcKiq2r0SAAAAAAAAAAAAwN2MI+UAAAAAAAAAAAAAL2NSDgAAAAAAAAAAAPAyJuUAAAAAAAAAAAAAL2NSDgAAAAAAAAAAAPAyJuUAAAAAAAAAAAAAL2NSDkgjVbU1PzEx0Zbc5HU7nU5b1sEuyWs3tf3Bdm8n0/PtkJHa39fsrt3ufFxHn28f0/N9LSO1vR3srt/ufJOxf3vj73Zg/xbwLV7zQMbApJwbTPvAlpEkJCRIXFycLdm7d++WS5cuicPhsOVN7Pvvv5cTJ05IlixZfJ4tIhITEyPXrl0TERE/P993HXa+7uLj4618h8Ph83U5f/68nD59WkTElvbfvHmz7Nu3z+e5IiJz5syRb775xpZsEZFz587JuXPnROTf7d7uD7G+cvXqVYmJiRGR69u9r508eVIOHjwo165dsyV/zZo1snr1ahERW/r96Oho+fjjj32amVx8fLz1ux3//4SEBJ9nJkne1nb0+TExMS6vPV/n79ixw8r3tUWLFsmyZctsyRahz6fPN7PPt7u/F6HPt6vPt7O/F7G/z7d7/1bEvn1c9m/t278VsX8flzFN+zCmad+YJpDRMCmXBnPmzJGXX35ZIiMjZezYsfL777/7NH/79u1y5MgRn2Ymt2TJEnn33XflqaeeksWLF7vswPnCd999J127dpW6devK0KFD5eTJkz7LnjdvntSpU0c+/fRTuXDhgs/fxMaMGSOPPPKIbR8cp0yZIi1atJDw8HBp2rSprFmzRi5evCgi3h+sWrx4sfz999/i5+dny4fHuXPnSufOnaVp06bSqVMnEbm+0+ar9p82bZo8+uijEh4eLmFhYXLs2DGf5CZZvHix1KpVSz744AM5ePCgT7NHjRoljz/+uDzwwAMuy331v//mm2+kSZMmEhYWJlWqVJFJkybJ8ePHffb6//HHH2XlypVez7mZWbNmyRNPPCHh4eESERFh9be++t9PnjxZWrVqJQ0bNpQKFSrI+vXrfZKbZN26ddKwYUMZOnSoyyCtr4wePVqeeeYZqVKlistyX/WBM2bMkHbt2kmzZs3k2WeflSNHjvjsG40rVqyQixcvStasWW35FuXChQule/fu8uSTT8r//vc/EfFtn5/02mvYsKG0atXKyveVOXPmSMWKFeX999/3+YDBqFGjJCoqSnLnzu3T3CR29vl29vci9Pkm9/l29vci9Pl29vl29vci9vf5du7fiti7j8v+rX37tyL27uMypsmYpqljmkCGpEiVSZMmac6cOfWFF17Qtm3barFixfThhx/WadOm+ST/22+/VYfDoT179tSTJ0/6JDO5cePG6X333adt2rTRBg0aaJYsWXTmzJmqqpqYmOiT/Lx58+qrr76qL7zwgubMmdPK9zan06n9+/fX3Llza/PmzfWDDz7QCxcuqKpqQkKC1/NHjRqlfn5+OmPGDK9n3czMmTPV399fP/jgA/3yyy+1cePGWrx4cX3//ff1+PHjXs2ePn26OhwOLVSokB44cEBVfbO9JRk/frwGBARov3799JVXXtHSpUtrVFSUT/PvueceHTJkiE6bNk0rV66srVu3tm73xf9i2rRpev/992vu3Lm1TZs2evDgQZdcp9PpldzRo0dr9uzZdfr06V7NuZV58+Zpjhw59LPPPtO5c+dqhw4dtFKlSvrcc8/pvn37vL5OM2bMUIfDoQEBAbpixQqv5dzMxIkTNSAgQN9//3399NNPtUaNGlqjRg2f5U+YMEHvuece/frrr/WXX37RRo0aaXh4uM/yVVWXLl2qefPm1bJly2pkZKSuWbPGpb292fYpt31fvM8kN3XqVPX399c333xTe/XqpZUrV9b7779fv/32W7148aJXs6dNm6YOh0MrVKig58+fV1Xf1p/0WaN79+7atm1bLVeunHbt2tWn+Xny5NF3331XhwwZokWLFtWXXnrJut0X/eCIESP0vvvu05w5c2qPHj00Li7OJ+81Kbf7lLy9Dnb2+Xb296r0+arm9vl29veq9Pl29/l29feq9vf5du7fqtq7j8v+rX37t6r27uMypsmYpqljmkBGxaRcKpw9e1YbNWqkX331lbVs1apV+uyzz2r58uU1Ojraq/nr1q3TcuXKabt27TR79uw+fxNbvHixFipUyKUDffXVV7VMmTIaExPj9fwFCxZogQIFdM6cOdaytm3b6ogRI3ySr6r63XffaceOHbV3795atWpVfe+993ySmzRQs2zZMlVVPXDggE6ZMkUHDBigy5Yt06NHj3ot2+l06rVr17Rdu3bat29fl9tef/11rVSpkg4YMED/+ecfr+T/8ccfWrt2be3Vq5c2adJECxcurPv371dV33xoWrNmjZYsWVKnTJliLfvhhx+0bNmyunPnTq/nL1myRIsVK+byIfmLL77QN998U48fP64JCQk++T9s2LBBX375Zd23b5/mzp1b27Zta32AO3jwoFcyv/vuO3U4HDp27FhVVd27d68OHDhQn332WX3xxRf18OHDXslVvb7dO51O7datm3br1s3lti+//FIffPBBffrpp/Xvv//22jrs2rVL69atq2+//bY+9dRTmi9fPl2+fLnX8pJbv369hoaG6jfffGMt27lzpz7wwAO6atUqr+evXr1aS5Ys6fK+Onv2bH3ppZd0586devbsWb18+bLX1+Po0aP63HPP6e7du7VixYoaGRmpf/zxh6qq7t6922u5ixYtUofDocOHD1fV69tCr169tEWLFvroo4/qmjVrvFa/0+nUmJgYbd68ub7zzjsut3Xo0EGLFSum48eP16tXr3olf9OmTVqtWjXt3LmzPvjgg1qlShVrkDY+Pt4rmcktX75cH3jgAavPvXbtmg4fPlzDwsL01KlTXs+fP3++FilSxOWzVq9evXTIkCF65coVr+cnDQrNmTNHn3vuOf3555/V399fe/bsad1+7Ngxr2RPmTJFHQ6H1e/89ddf+uWXX+qrr76qH3zwgVcyk9jd59vZ36vS5ycxrc+3u79Xpc+3s8+3s79Xtb/Pt3P/VtXefVz2b6+zY/9W1d59XMY0GdM0cUwTyOg4fWUq+Pn5yV9//eVyrvsGDRpI3759pU6dOjJ8+HBZtWqVV7ITEhLk0KFDUqdOHZk0aZLMnj1bvvrqKxk0aJCcOnXKK5nJXblyRebOnSvt27eX1q1bW6dWaNq0qaiq10/tcvnyZdm4caO88cYb0rJlS2v5sWPHZPbs2VKhQgV58cUXZdGiRV5bB70+eS3//POPfPbZZ9KgQQNZuHChfPDBB1KkSBGZPXu2V3IvXLggCxYskAIFCki+fPnk5MmT0qpVKxkyZIhMnTpV2rRpIwMGDPDaKQccDodky5ZNrl27Zp3KI+nw/o8//lgeeeQRmT59uqxYsUJEPH+KndOnT0utWrWkU6dOMnHiRClfvrzUr19fDhw4IH5+fl49xY2qym+//SZly5aVqKgoa3n16tXl7Nmz1vnvvWn//v3y1FNPySOPPGItW7BggXzzzTcSFhYmFSpUkAkTJnj9dDMhISGybNkyKV68uCxbtkx+/PFHef7556VSpUoybNgwr2T++uuvUrRoUYmLi5PVq1dLVFSUbN68WU6fPi2rVq2SOnXqyM8//ywinj/Nh8PhEIfDYfW9iYmJVkaPHj2kY8eOsnv3bpk2bZrLbZ4UExMj9evXl8cee8w6tU6bNm2s15o37dixQwoWLCiRkZHWsqJFi4qfn591nSVvOnXqlHTu3Nllux81apTMmjVLmjZtKuHh4fLhhx96fV3y588vP//8s+TIkUOmTJkiR44ckX79+knRokVl4MCBIuKdU8zs379fKlWqJHv37pWlS5fKI488IocPH5b7779fzp49K0899ZTMmTNHVNXjfa7D4RB/f3+5fPmyZMuWTUTE6l+io6OlUaNG0r9/f9mxY4eIeL7P//vvv6VKlSrSp08fGTJkiOTIkUMaNmwoFy5ckKxZs3r1ekMJCQmybt06efDBB6VVq1aiqpItWzZp0qSJ7N271yenltm2bZu0adNGHn30UWvZ1q1bZcyYMVKjRg2pWbOm9VnTG9te0ue56tWry59//inh4eEyceJEGTVqlLzyyitSr149+fbbb72SvXTpUsmbN6/cf//9smHDBomIiJDvv/9eVq5cKSNHjpSKFSvK0aNHReTu6/Pt7O9F6POTmNbn293fi9Dn29nn29nfi9jf59u5fyti3z4u+7f/smP/VsTefVzGNBnTNHFME8jwfDX7l5nFxMToY489pj179tRLly653LZ+/XoNCwvT119/XVW9c/j54cOH9ffff7f+TvqGTc+ePfXEiRPW8ri4OI9nq14/rc24ceNclu3Zs0cLFSqkhw8f9vrhzjt37rROHaSq2qxZMy1evLhOnDhRhw0bpo0bN9Y2bdro2bNnvbYO586d02bNmum1a9dUVbV79+6aJ08eLVKkiO7du1dVvfPNti1btmi3bt20ePHimi9fPn3zzTetb2vPmDFDQ0JCdMCAAarqvVMfvPTSS1q2bFnrW6uxsbHWbU888YSWL1/eK7mq6vKNvQMHDmjjxo21cOHC+tdff1nLY2NjvfJN3t27d+v8+fOtv69du6ZXrlzRkiVL6po1azyedzNJ35pUVe3cubMWKVJEFyxYoPv379fnn39eg4ODvfpN1oSEBL1y5YpWrVrV+sb8pk2bNEuWLFqgQAHdsmWL17L79++v5cuX14IFC+qrr77q8k3xJk2aaLVq1byWrao6ePBgLVWqlNX3JP/Wdu/evfWBBx7w6jeZk39LMyEhQf/zn/9ovnz59KeffrKWX7lyxfpWuafExMTovHnzrL+T3leqVavmslzVe33OoUOHrN+7dOmiwcHBunz5cj158qS+9957WrRoUf3tt9+8kq36b1tHRETo3LlzVfX6t5pz5MihBQsWdOkXvGHUqFEaFham99xzj/bp08elf3v66ae1WLFiXj164dFHH9UHH3zQ+jt5n9+gQQOtX7++17K3bt1q/b5q1SoNCwvTKlWq6Llz51T1+vtsfHy8V95vly1bpt9//731d3x8vB4/flyDgoJ027ZtN9zfG+uQ9HlC9XpbFylSRKdNm6br1q3TyMhIDQkJ8WrbJx0dUaJECf3zzz9VVXXWrFmaJUsWLVSokFffbzp27KhFixbV4OBgff311/XcuXN67do1PXz4sFatWlUbN27stWxVe/t8u/p7Vfp8VbP7fDv7e1X6fDv7fDv7e1X7+3w7929V7dvHZf/W3v1bVfv2cRnTZEzT5DFNIKNiUi6Vvv76a82RI8dNz4H78ccfa/78+a0dCG9K+uA4d+5c603s9OnT+s8//+irr76qv/76q9fXQVV13759WrBgQesc6KrXz83t7UPQT506pd27d3f5wDpp0iTNli2bV08vc+7cOQ0JCbF2WipVqqTBwcFarVo1/eijjzw+UJL8zei3337Tzp076wsvvKCnT592ud9bb72lQUFBXrnuQ9I6nDt3TosWLaqPPvqodVvSDsKff/6pgYGBHt/ubvVmfPDgQW3cuLEGBwfrwYMHNSYmRjt06OCyU+0NydcnNDTUynM6ndqvXz+Pn+YmZf2nT5/W0aNHuwxcXbx4Uf39/V1OgeAtzz77rC5cuFBVVatWrarVq1fX3Llza/v27V1ei56Q/APx22+/rR07dtQjR46o6r//l59++knvuecelw/23lClShWtW7eutb0n9b/nzp3TgIAAXbx4scczU7Z90t+JiYnWQO3KlSv11KlT+vjjj+vo0aO9nq16fYB2woQJ1vJXXnnF4zutKfOvXLmi8+fPdzmVy7Vr1zQgIOCGnSpv6N27t3VKsSpVqmjNmjW1bNmy+sgjj1in3/Ck5DtBI0eO1O7du1sDF0mvi3379mnWrFl19erVXsv/448/NDg4WF988UXrtqTJiO+//16LFi3qMqDiyezknE6nrl692hqkvXDhgl67dk1feOEFrwzQJ+2gJmUnLStZsqRu2LDBWj5w4ECPZ6fc9g8dOqT/+9//XCZr9u3bp/7+/j45teEjjzyi27dvV9Xrn3cqVqyo/v7+2rdvX48PliTv8zt37qyPPvroDZ91xo8fr0WKFPHqKaVUfd/n29nf3y5flT7/bu/z7ezvk+cnR59vT5/vy/5e1f4+38792+T5Kdmxj8v+re/2b1Uzxj4uY5quGNO8+8c0gYyOSbk7SN6RvPTSS5onTx797rvvXL5NNXv2bA0PD7/hGyfeXqd58+apn5+fdu3aVatVq6aVKlXy2cWx9+zZo8WKFbO+2dOoUSOtVq2aT84BnpSRVOuPP/6o9erV89qbZ1Jet27ddOnSpVqzZk196KGH9OTJk9qnTx8tWrSoTpo0ySvZSXbs2KGbN2+2/k6q/cMPP9QmTZp4LTdpW1uwYIEGBQXpY4895nL75s2btXTp0rpjxw6vrUNKf//9tzZr1kyDg4O1evXqGhwc7JNrTyQJCQnRJUuWqKpqVFSUBgYG+uR1l/K1tWnTJq1Zs6ZXJ6aS2v+1117TZ599VmvXrq316tVT1esDOQ6HQ/v37+/x3OT/z+T1Ja3P7NmztXr16i7fqvNG/p9//qklSpTQ+vXru2Tt2bNHy5Qpoxs3bvRK/q04nU7t2LGjBgYGamhoqBYrVszr237S/7xKlSo6efJkVb2+3d93330+ed2l3IHfsWOHhoWF6c8//+z1zE8//VRbtmypNWvWtI4W2LNnjxYsWPCG65B4SvLXefKdsuQ765UrV3bZefS0q1ev6pdffqmhoaHao0cPl9uWL1+uoaGhLgMo3pB8cmLNmjX64IMPaqVKlbROnTpaqFAhn/X5V69e1QceeMCajIiKitK8efP6pM9PqjHpf7FixQqtWbOmVwaKUnruuee0X79+WqtWLa1fv75evnxZFyxYoA6HQ4cOHerxvOT/z02bNlm/J70exo4dq3Xq1LGu9+Kt/IzU59vR3yflqtLnm9LnZ4T+XpU+X9W+Pt/X/b2q/X1+Rty/VbV3H5f9W+/v36rat4/LmObNMaZpxpgmkJExKZcKyTvlrl27qr+/vw4ePFhXrVqlhw4d0iZNmmhkZKTPDrVNuii96vVvVDgcDq1Vq5b1jT9fvIns3r1bixcvrocPH9bIyEgtW7asle/t/0Py54+Li9OWLVvqk08+6fXcHj16qMPh0IYNG+rx48et5V988YXPPjgkFxcXp5GRkS7fbvWWq1ev6pw5czQ4OFhr1aqlU6ZM0YULF2pUVJQ++OCDPtnmkvv111/V4XBo3bp1re3O221w7do1vXz5soaGhupPP/2kTzzxhMt27+385Nv3tWvXtFWrVtqiRQuv/u+TMn/88UfNlSuXNm/e3OVbk3v27PHazuKt6oqLi9MWLVpo+/btfdLnbtmyRcuVK6dly5bVwYMH67fffqsRERFas2ZNW173R48e1Rw5cmi9evV8su1du3ZNExMTNTw8XGfOnKlPPPGEhoaG2rLdx8bG6iOPPKLNmjXzSZ/zxx9/aGBgoDZr1sxluz948KBX677Vdh0bG6stW7bU1q1be73+f/75Rz/77DMtVqyYRkVF6bp16/SXX37RFi1a6MMPP+yT/3/y/8O8efPU4XDogw8+6LNtLyEhQU+cOKFFihTRzZs3a7t27Vz6fG//D1J+1mnVqpU+9thjXs1Neu4RI0Zo1qxZtXnz5i7fZl29erXP+/zY2FiNjIzUzp07G9fn+7q/V6XPN7HPzwj9vSp9vq/7fDv7++T5Kfmyz89o+7eqvt/HZf/Wt/u3qvbt4zKmeSPGNM0a0wQyIibl3PD+++9rjRo1NFeuXFq5cmWtWbOmzzrv5I4fP6716tXT6tWrWx8cfPVtqgMHDmjhwoU1NDRUS5UqZdXvq/zLly/rli1btEWLFlqpUqUbvl3oDTt37tQvvvjCevNK+ablqzexy5cv6+bNmzUqKkorV67sk9pVr9e3b98+jYiI0DJlymj58uW1efPmPv3gpKp64cIFDQ8P19DQUJ9v906nUytUqKDZsmVz+dDmy2/wzp49W1u0aKEVK1b02f/+xIkTOnHiRJcdluTbuy/qv3r1qs6cOVMjIyO1UqVKPt3urly5op07d9awsDCtVq2aPvbYYz7bWU3u/PnzGh4eriEhIT7f9sPCwtThcGj58uV9vt3HxMTohAkTtGXLlj5t+4sXL+rChQtdBqmSZ/qq7WNiYnTs2LEaGRnp09f9xYsXddmyZVqjRg0NCgrS0NBQbdCggc/7/IsXL+qDDz6oFSpU8Pl2f/nyZQ0JCdH8+fNrmTJlbOnzly5dqlFRUT7d9vfv369Dhgy55bd1fdXnL1682OrzffVZRzVj9Pl29veq9PlJTOnzM0p/n7Qu9Pm+6/MzQn+val+fn1H2b1Xt28dl/9a+/VtV+/ZxGdNkTFPVvDFNIKPJKkg1VRWHwyFvv/22dOzYUU6fPi1Op1Nq1qwpfn5+kpCQIFmz+u5fumXLFomLi5P169dL1qxZfZofExMjx48fl6JFi8qaNWt8nr9161YZMGCA5MyZUzZv3ixZs2aVxMREyZIli9cyy5YtK2XKlBE/Pz8RkRuyvJmd3ObNm+X111+XPHnyyK+//uqT2kWu11eqVCn58ccf5dixY+Ln5yeFChUSh8Ph07bfvn27lCtXTkaNGuXz7c7pdErWrFmlbNmysmXLFp/nnz17VtauXSs5cuSQ3377zSf5qiqFChWSZ555RhwOh7U8+fbmi/rPnDkjK1asED8/P5/+751Op+TKlUvGjx8vly9flsTERAkICPD5di8icurUKWnQoIG8//77Pt/27rnnHgkNDZXff//d59lZs2aVvXv3Sp48eXza9nny5JGoqCiXZUn9v4jv+vwsWbLIjh07PPq6T/o8czt58uSRxo0by6+//irbt2+XnDlzSvHixdP9eSc12cmtXLlSChQoICtXrvRZ7cnvGxsbKw888IBs2rTJ5/l79+6VuXPnip+fn2zevFmyZcvm9XxVlRIlSkifPn1ctvfkfNH2e/bskenTp0tiYqL1OS89tTudzlvWk/J+nu7zU5udnCf7e3fyPdnnpzXf031+avO91eentX5P9vlnzpyR/Pnz3/F+3urvU5ufnCf7/LTme7rPT2u+J/v81GR7s79Pa+2e7vNTK6Ps34rYt4/L/q19+7civt/HZUzzX4xpmjemCWQ0DlVVu1cio7ldZ3CrAQVPdiCpfa6rV69Kjhw5PP6hMbX5EydOlA4dOnhkkMid/C1btkjVqlU9+uHB7jeC1OZv3LhRatSoIVmyZEl37WkZLLjZfd0Z7PHEY0XEp7Unvfa3bt0qlSpV8vn/PsnFixclT5484nA40r29pvf/nx7uZJ8/f17y5s2b7j7v4sWLkpiYKLlz55bs2bPf8f436/fT879La/7NuFu/u7WfPn1aAgMD073du1t70keV9G73nvjfp4e7+U6nUxwOR7q3/aVLl0qZMmWkWLFiqc71VJ+f1uzkkrZDX9Yucv11tmTJEmnevHm6t3138uPj4+XkyZNSuHDhdH/WSc//P73crf3o0aNStGjRdNe+YMECiYmJkcjISAkICLjj/T3Z56c1+2bsqN1Tfb679Xuqz/fE/z893M33RJ8/e/Zs+fHHH2XkyJGSNWvWO06Ie/ozflrzk/NEn+9Ovif7fHfyPdXnp+d/7wnu1u6pPv/MmTMiIpIrVy7JmTPnHe/v6W0/rfk3k57J2LRke3r/1t3aPbV/64n/fXq4m++pfdzUfvnJW2Oaaf3inYhnxzTdyffkmKY7+Z4a03Qn25PcyffkmCaQaXn7ULyMbtGiRfr+++/rm2++qXPnzrWW3+mwXU8dVuuJ/PSsizv5KQ+lTzrM21f5Ket19xDrzNj2nqpdVfWHH37Q119/XVu1aqVTpkzRq1evpupxnlgHd7M9dXi9u/l3Wh9v56d87fk6386291TtU6dO1RYtWmjRokW1S5cuunHjxlQ9LmXt7p7Wwt38lPW6k+9udsr/va9rT5nn63y7295T9Y8cOVLvuece3bBhQ5oel7J+d06n4252ylrdPZWPu/kpmZZvZ9un5G7tY8eO1Vy5cunQoUP1zJkzLrfd7vOcJ1737mZ7or9PT76n+nx38z3V59nZ9unJ90T9Y8aMUYfDoQ6HI9XvNTdbL3dfd+7me6rPdzc/pcyYn1nbPiV38ydPnqyNGzfW4OBg7dSpk9uf9dzdz3A33xP7uO5m32ldvJ3vqX28zNr2nqj/8OHDGhcXp6ppG6vy1LiWJ/LTsy7u5HtyTNOdfE9td5mx7T05pglkdkZPyo0fP15z5syp7dq109KlS2v58uW1cePGd7xuRPJO5ODBg7bm//333+TblJ3Z275gwYL6n//8R1u1aqUOh0NHjRp1Q8bt8pcsWeLWQIEnspcuXer2IImdtZuenxFqv+eee3TIkCH6ySefaGhoqA4cOPCWWTdb9t1337n9od3OfJNrJ1911KhRmiVLFp0+ffptM2532y+//OLWTpOd2enJT76zvnbtWp/n213/3dD2y5cv1wIFClj5CQkJGhcXp7GxsdZ9bjbw64nXnZ3Z5Judn/S6mzBhgj722GP67LPPakxMzB0f5+k+J7Ple7rPt6P+zPq/91T+pEmTNFeuXDps2DAdOnSoli1bVj/88MNbZt1sWXr2MzyR7+4+7t1QO/nu5UdHR2ulSpV0ypQpaZoc8dS4lify0zOuZXK+6W0P3A2MnZQ7duyYli1b1hoQvnr1qs6bN08rVKiglStXtj5ApvxQmLwDGTZsmBYqVMi6SCb5mSPf5NpVr3/YL1y4sE6bNs1a9sknn2iRIkVu+CbvrfJHjRqlOXPm1PXr12eabPLNbvslS5ZooUKFdMaMGdayt956S/v3768nT57UixcvWsuTD8wkzx89erQ6HA5dsWJFpso3uXbyVadPn64Oh0N//PFHVb2+8zVjxgz9+OOPdcWKFXr58uWbPi55/siRI/WBBx7Q33//PdNkk29226uqjhgxQv/zn/+oquq2bdv02Wef1erVq+vjjz+uX3/9tXU/b7zu7Mwm39z8r7/+WnPkyGGdgePtt9/WwoUL66lTp27ISM5Trzvy7cs3uXbV6+8x1apV0+joaGtZ//79deDAgXr8+HE9f/68tfxWr7v07GfYmW9y7abnL168WIODg7Vw4cIaFhamM2fOTNXkiKfGlci3L9/k2oG7ibGTcn/99ZcWLlzY5bDyhIQE3bJli1aoUEHr1Klzw2NSvnEGBgbq1KlTyc9k+SbXfvXqVe3Vq5d269ZNY2Njreddu3atlihRQs+dO3fTx6XMDwgI0FmzZmWabPLNbvu4uDgdN26cfvzxx3rp0iVrecOGDbVy5coaGBiozZo106FDh942P2/evDp79uxMlW9y7eSrnj17ViMjIzUkJES3bt2qf//9t1apUkWrVKmiISEh6nA4tGfPnrp///7b5ufJkyfNrz07s8k3u+2TPPPMM9qhQwdNSEjQkiVL6osvvqgDBw7Ubt26aXBw8G2PVk3P687ubPLNy09MTNQdO3aow+Fwec3ExsZq8eLFtUePHrd8rCded+Tbl29y7ckdOnRIS5Uq5fK6qV+/vlatWlXz5s2rTZs21S+//PK2+e7uZ9idb3LtJufHxMTo22+/rV26dNGDBw9qZGSkVqtW7Y6TI54aVyLfvnyTawfuNsZOysXGxmpoaKi+/fbbLsudTqeuWLFCy5Ur53LIuSffuMm3N9/E2pM/x3fffadjx451uf3IkSN6//336759+257Dn938u3MJt/stk/u2LFjLqdHaNKkiZYoUUIXLVqkCxYs0F69emn16tV127ZtN6x7Zs83uXZT85M/x9q1a7V9+/Zao0YNvffee/X111/XAwcOqKrqjBkzNE+ePDp48GDrcTfLT8vgsJ3Z5Jvd9ilNmTJFGzVqpO+88462b9/eOjrvzJkz+sknn2iNGjV0165dN6y7J173dmaTb25+8onuxMREjY+P1759+2qdOnX05MmTN9zf06878u3LN7l2p9Ope/fu1cqVK2unTp30//7v/zQiIkJLlSqlK1as0O+//1779OmjderU0a1bt1rrmDLf3dednfkm1256flxcnG7ZskVXr16tqteviRYREXHD5EhyyU+JnN7aybcv3+TagbuNkZNyTqdT4+Pj9dVXX9UGDRpYp9ZJkpiYqB06dNBHHnnkhseOHj1a8+bNm64OhHz78k2u/XaOHTumBQoU0D///NNaNmHCBD18+LD191dffaX33nuvx/PtzCbfrLZPPgDw8ccf619//WX9vXr1as2WLZuuXLnS5TFffvmlBgYGZvp8k2s3MX/nzp0uf//yyy/aqlUr7dq1q549e9bltn79+ukDDzygly5dchko+PrrrzVfvnxpzrczm3yz217V9bW2fv16LV++vBYvXlyfeuopl/tt2rRJ77nnHmtAIUl6Xnd2ZpNvbv7cuXNv+KJfcn/88Ydmz55dx4wZc8v7pOd1R759+SbXfjNTp07VyMhIff7557V48eK6ZcsW67ZffvlFc+fOrYsWLXJ5jCf3M+zMN7l20/LnzJljfd5KutxJ0vtPXFycy+RIfHy8XrhwQUeOHOnyHOkZVyLfvnyTawfuVsZMyl24cMH6Panj2L9/v9auXVsjIiJ06dKlLvf/7LPPtGHDhnr16lVr2dy5c9XhcLj1LS7y7cs3uXZV1R9++EH79u2rXbp00XHjxt30PocPH9ZixYpZ5/1/+OGHtUKFCtZA2ebNmzUoKMjlemAZPZt8s9v+xx9/1EGDBukbb7yhkydPtpanvIB2UtaWLVv0wQcf1O3bt1u37dq1S4ODg906rYKd+SbXTr7q8OHD1eFw6MGDB10mO/744w/95Zdfbsjv37+/RkREuDzHypUrtWDBgjp9+vRMk02+2W1/+PBh65u5yfMnTZqkDodDg4ODde3atdbyEydOaJ06dXTDhg3WMndfd3Zmk292/pgxY9ThcGilSpVuesqopPV5+eWXNTw8XI8dO3bDc6TndUe+ffkm166qumzZMh08eLD269fPZV86NjZWjxw5oqGhoS5f+jt48KBWr15dly9fbi379ddf3d7PsDPf5NpNz//222/V4XDoI488ojExMS63JU2SxMbGamRkpNaoUUPHjh2r4eHhWrt2bes1mZ5xJfLtyze5duBuZsSk3PTp07Vp06bWN1acTqfVcWzfvl2rVq2qzZo10+HDh2t8fLweP35cH374YX3mmWdcnufIkSM3fJOd/Iydb3Ltqqpjx47VfPnyaZcuXaw3xZ9++sm6PWnnKelc6Pv27dMWLVpouXLlXA4xP3LkyA3fgM/I2eSb3fbjxo3Te+65R//73/9q/fr1tXLlylq/fn3rSI2Up0qLjY3Vli1balRUlMuA2pUrV/TgwYOZKt/k2sm/fjqQ7Nmz64wZM256e8rz+yftPPXq1ctl+bZt23Tz5s2ZJpt8s9s+OjpaK1WqpFOmTLEGh5M+a6mqjh8/XnPnzq1NmjTRESNG6Jo1a7R58+YaHh6e7tedndnkm50/evRozZYtmw4ZMkTz5s1726ORZs6cqYGBgfrzzz/fcJu7rzvy7cs3uXbV65+1AgMDtV27dlqsWDGtX7++7t69W1X/PZ1gcHCwTpkyRU+cOKFnzpzRFi1aaN26dV1ed+nZz7Ar3+TaTc8fOXKkZsmSRSMjI7VChQrWmWWSP2/SFwDj4+O1SZMm6nA4tHLlyjfsX7szrkS+ffkm1w7c7e76SbmFCxdq7ty5tWTJkvrYY4+5TI4kdRx79uzRDh06aEhIiN57771auXJlrVq1qtWBpBxMID9z5Jtcu6rqrFmzNH/+/NY3Uc6dO6chISG6YMGCG+574sQJDQ4O1mLFimmpUqWs/ORvopklm3yz23779u0aEhJiffPw2rVrOnbsWHU4HFqnTh09ceKEdd/Lly/rmjVrNDIyUitVqmTl3u76dhk53+Tayb9+6tcsWbLoDz/8oKqqJ0+e1O3bt+uSJUv0n3/+cbnv5cuXdfPmzdqyZUutVKmS9Z7kbr6d2eSb3faLFy/W4OBgLVy4sIaFhblcyyL50anfffedPvnkk5onTx6tXbu2Nm7c2HrdJZ9EySzZ5JudnzRAlvRZ6+mnn9aIiAg9c+bMLR9TsWJF7dy5s1t55GecfJNrV73+hdd8+fJZ+cePH9e8efPecDrYN998U7NkyaKlS5fWqlWralhYmEde93bmm1y76fkjR47UbNmyWafALFasmL700ks3vW9iYqLGxMRo3bp1tU6dOi6TJe4i3758k2sHTHBXT8qdPn1ao6KitHfv3jphwgRt3LixtmrV6qaTIxcuXNADBw7oN998o4sXL7beMNPTgZBvX77Jtatenwjp1q2bDho0yGV5vXr19Mknn9THH39c+/btay3fs2ePOhwOrVWrVrrfPO3MJt/stldVXbp0qYaGhrpcVH7fvn1ao0YNLVmypNaqVctavm3bNu3YsaO2a9fO2lnKzPkm1256/pEjR7RcuXIaGhqqqtdPlVOjRg0tW7asNSn4ySefWPf/+eeftXr16tqoUaN0DxTYmU2+2W0fExOjb7/9tnbp0kUPHjyokZGRN1xkPvnrKjY2Vo8dO6YnTpywvvTk7uvOzmzyzc5ftGiR5sqVS+fMmWMtmzJliubKlUvXrVunqq4T3Um/r1q1Kl2vN/Ltzze5dtXrX+Z76qmn9NNPP3VZXq9ePe3Zs6d27dpVv/jiC2v5rFmz9KuvvtLo6GiP7F/bmW9y7abnz5s3Tx0Oh/W6S0xM1AEDBmj16tX10KFDN33Ma6+9pgUKFPDIPgb59uWbXDtgirt6Uk5VdcaMGbp48WJVvX76hJSTI6q3/oauJz48km9fvsm1x8fH6+bNm/XAgQPWslatWmnhwoV10KBB2qdPHy1Xrpz+5z//sW6fO3euR9487cwm3+y2V1VdsWKFhoSEuJzjPzo6WqtWrarfffedlihRQseOHWvdlvz6R5k93+TaTc+PiYnRGTNmaJkyZbRu3bparlw5fe2113TDhg164MABfeGFF7RGjRou5/Bfv369RwYq7Mwm3+y2dzqdumXLFutb6teuXXO5yPzNrnOUXHqO0LMzm3yz8//++++bToA0b95co6KiNDY29raPT+8+Bvn25Ztcu+r195wlS5a4nOo1KipKg4KC9PXXX9d27dpppUqVtF+/fnddvsm1m54/a9Ys670m6T1l69atmi1bNpf9iuTOnTvnsc9a5NuXb3LtgCnu+km5lJJPjvz222+qev1UO+5cR4D8zJVvSu1Jb5jJd5a2bNmitWrV0r1791rLBg0apOXKldOjR4+6PD49b552ZpNvdtsnOXHihNatW1ejoqK0b9+++sEHH6jD4bBOKdiwYUOXo/WSpHeALiPkm1w7+dcHDGbNmqXly5fXjh07akxMjPXcly5d0ooVK+p///vfGx7niS+h2JlNvtltn/J033FxcS6TI/Hx8XrhwgUdMWKER/IySjb55Kc0dOhQLVWqlO7Zs0dVPffeQn7Gzzep9uT7C6tWrdLQ0FDrml6qql27dtV69erppUuX7rp8k2sn/19Jr6+XX35Za9asqUeOHLnjfcm/O/JNrh24WxkzKZd853/GjBnauHFjffTRR3XZsmVao0YNDQsLI/8uzTel9gsXLqjqjd/KTfr76tWrqvrvG+SoUaO0QYMGeuXKlUydTT5tn5SX9FrbtWuXdurUScPDwzU8PFznz59v3b9Nmzbao0cPj2TbnW9y7eSr/vXXX7phwwbdtWuXtS6XL1/WpUuX6qZNm6z7JQ0itG3bVp9//vlMn02+2W2/adMmnT59uk6dOtUaDEh6v0l6HcbGxmpkZKTWqFFDx44dq+Hh4Vq7du10DxDYmU2+2fnJs5O+1JTyc1dsbKwWKVLkltd6IT9z5ptcu+r165Z269bN+jvll/iS9ieSXoMffvihNmvWzGNf9rMz3+Tayb+z2bNna1BQkP70008u6+Er5NuXb3LtwN3GmEk5VdcPkLNnz9ZGjRqpw+HQatWqWacZIf/uzL/ba58+fbo2bdrU5dSYt1uHmJgYjYqKcvmgmRmzyaftk+cnnxxJmgw8f/68df8LFy5o7dq1dejQoZk+3+Tayb8+UFC+fHktXLiwhoSE6IsvvqinTp1S1X+P3kju0qVLWrduXZfre2XGbPLNbvtx48ZpsWLFtGLFilq2bFlt0aKFnjlzxuU+ya9P2qRJE3U4HFq5cuUbjmrKTNnkm52fmuyk958hQ4ZolSpVdOfOnW5lkZ+x8k2u3el06tmzZzVXrlzqcDj02WeftW5LPumRfML7ypUrGhERob17987U+SbXTn7aNGvWTOvVq+fTTPIzRr7JtQN3E6Mm5VT/3SG6ePGilihRQsPCwlx2osi/e/Pv1toXLlyouXPn1pIlS+pjjz122wmSuLg43bt3r0ZFRWnVqlWtXHcHCuzMJp+2v1m+0+nUxMREl+eOi4vTdevWaWRkpFapUsUjr3c7802unXzVadOmaUBAgE6aNEl37dqln332mdaoUUNXrFhxw33j4uL0yJEjGhkZqbVq1Up3vp3Z5Jvd9pMnT9aAgACdMWOGnjlzRqOjozU0NFSPHTtm3SdpgCwxMVFjYmK0bt26WqdOnXR/1rIzm3yz89OSrar622+/qcPh0MmTJ7uVR37GyTe5dtV/v+xUv359feedd7RMmTLaoUMH6/bkr6mk95yoqCitXr26R/Yz7Mw3uXbyUyfptTdz5kwNDAzUn3/+2at55GecfJNrB+5Gxk3Kqf77TZbSpUtb31705UUoybcv/26r/fTp0xoVFaW9e/fWCRMmWNesu9kEidPp1GnTpmnbtm21YcOGVr67h5vbmU0+bZ/afFXVI0eOaJ8+fbRBgwaZPt/k2slX3b9/vzZo0EA///xzl+W1a9e+4bRRTqdTR48erQ899JCGhYWlO9/ObPLNbvu9e/dq1apVddSoUdayCxcuaKNGjfTLL7/UESNG6K5du1RVrYnx1157TQsUKJDuz1p2ZpNvdn5ashMSEqxB4HHjxnlk34Z8+/JNrj2ljh076ogRI3Tq1KkaFBRknQ7566+/1qNHj6rT6dSxY8dqZGSk1q1b1yPvORkl3+TayU+dEydO6H/+8x/bTh9Ivn35JtcO3E0y/aRc0mlz0mrBggUe2Vkj3758k2tPbsaMGbp48WJVvf6NldsNEp84cUJ/+OEH680zvfl2ZpNP26c2Pz4+Xk+cOGF9syuz55tcu+n5f/75pz7//PPWtbuSnq937976wgsvqKrrN9cPHTqkY8eO9chrz85s8s1u+/Pnz+uMGTP0r7/+spa1bNlSCxYsqHXr1tX69eurw+HQrVu3WrefO3fOI/l2ZpNvdn5as1MemeHr2sn3XL7JtSdJeg29/PLLOnjwYFVVnT9/vgYHB2uOHDk0IiLCuu/x48d18uTJHt3PsDPf5NpNzXdnXCnlZEh6JkfIty/f5NoBZPJJuTlz5mjTpk01Ojo61Y/x5IdG8u3LN7n2O0k+SPzbb7+p6vVJkf3797vczxMXvc9I2eTT9inzT548qQcOHLjr802u3cT8zZs33/CcgwYN0s6dO7vc7+TJky5/e2KHyc5s8s1u+6RrNSblVq5cWXft2qVXr17Vixcv6kMPPaTt27fXa9euubzWPPG6szObfLPzU5sdHx/vlfc48u3LN7n25L777jvt1KmTql6f8C5atKjmypVLH3/88Zve39ODw3bmm1y7SfnujCsll95TZZJvX77JtQO4zk8yqXHjxkmXLl2kXr16cu+997r1HLGxsZI1a1byM1m+ybXfTmJiooiIPP7449KtWzeJiYmRgQMHyk8//SQtWrSQp556SkREVFVERPz8PPfytzObfNr+VvlRUVHSvn37uzbf5NpNzE96nurVq1t/Jz3n2bNn5fTp09Z9W7duLQMHDnR5XJYsWTJlNvlmt32SHDlyWL+/+OKLsmzZMgkNDZUcOXJIrly5JCAgQPLmzSvZsmVzea154nVvZzb5ZuenNjtr1qwef48j3958k2tPLmvWrHLgwAE5d+6cPPzww1K0aFH5/PPPZdOmTdKiRYsb7u+p95yMkG9y7abkuzuulPQZS0QkLi4uzbnk259vcu0AkvHunJ93zJs3TwMDA3XmzJm3vV/Kb20ln8n/9ttv9ZNPPtG4uDjyM1G+ybWnRvKc2bNna6NGjdThcGi1atW8kpdRssmn7U3NN7l28v/11ltv6ZNPPqmqqhERERoSEmKdJvluzibfvLa/2REZFy5c0KZNm95wzbu7KZt8s/NNrt30fJNrV71+esCHH35Yg4ODtUGDBnrhwgWNjY3VsWPH6qOPPurVo/Tszje5dhPy7R5XIp8xzYw6pgmYJNNNyjmdTn3ppZe0T58+Lp3Ejh07NDo6Wj/66CNduXLlDYePJ+9ARo0apVmzZtWFCxeSn4nyTa49reupqnrx4kUtUaKEhoWFWafK9NYpMzNCNvm0van5JtdO/nVffPGFduzYUaOiolwmRnyRb2c2+Wa3fWJiop44cUJbtmypNWvW9Fmu3dnkm51vcu2m55tYu9Pp1IYNG2rTpk1dTo+c/PSa3pycsTPf5Nrv9ny7x5XIZ0wzo49pAqbIdJNycXFxWqtWLe3atau1bNCgQdq0aVPNnz+/FihQQENDQ/Xbb7+1bk/ZgeTNm1dnz55NfibLN7n2tLpy5YpGRERo6dKlfT5IZmc2+bS9qfkm106+6v/+9z91OBxapUoVn+fbmU2+uW0fFxenM2fO1GbNmmmtWrWsfF9cbN7ObPLNzje5dtPzTaw9acDY6XTq+fPnvZaTEfNNrt2EfLvHlchnTDMzjGkCJsh0k3KqqkOGDNH7779f+/btq3Xr1tVSpUrpe++9p3/99ZeqqjZo0EBbtWp1w4UnR40apQEBATpr1izyM2m+ibWfOnXKrXVdsGBBugfJ7Mwmn7Y3Nd/k2sl3L3/KlCn6xBNPpPsIPTuzyaft0+rHH3/UYcOG2VK7p7LJNzvf5NpNzze59rTke+tIKDvzTa6d/H+ZOK5Fvv3ZGSEfwL8yxaTc/v379ddff9UzZ85Yfw8YMEDr16+vrVu31p07d+rly5et+7/xxhsaFRXlcl2LMWPGaO7cud3qQMi3L9/k2lVV58yZo02bNtXo6OhUPyblm6e7O0x2ZpNP25uab3Lt5LuXn7QOSevh7jW97Mwmn7Z3Jz85X/a5nsom3+x8k2s3Pd/k2j2Vnx525ptcu+n5do8rkc+Ypl35AG4tw0/KTZo0ScuWLatBQUFapEgRXbRokXXbzT4MXrlyRZs0aaKvvfaaql4fMLh48aK2bdtW58yZQ34myje5dlXVsWPHav78+fXdd99N0/makw8QJz/neWbJJp+2NzXf5NrJdz8/+fvRlStXMl02+bS9O/nJT5kWExOT6bLJNzvf5NpNzze59vTk2/1Zi8/55Kcn3+5xJfIZ07QrH8DtZehJuVGjRqm/v7+OGTNGd+3apc2bN9dKlSq53CfpA2JsbKweOnRIIyIitHr16lYHk3TYefKZf/Izfr7Jtauqzps3TwMDA3XmzJm3vV/K0yok/9D47bff6ieffKJxcXGZJpt82t7UfJNrJ59tj3za3tf5JtdOPtse+bQ9+b7NN7l20/PtHlcinzFNu/IB3FmGnZQbN26cZsuWTX/88Udr2YoVK7RVq1Y6d+5cXbJkiR46dEhVVc+dO6f9+/fXhg0bar169Txy4WHy7cs3uXbV6x/+XnrpJe3Tp4/LB8MdO3ZodHS0fvTRR7py5cobMlJegDVr1qxp+haY3dnk0/am5ptcO/lse+TT9tROvin5Jtduer7JtZueb3LtpufbPa5EPmOaduUDSJ0MOSn3999/a7FixbRmzZouyxs3bqz33XeflihRQgsXLqxVq1bVPXv26PHjx/Xrr7/WoUOHWh1Hes5zTr59+SbXniQuLk5r1aqlXbt2tZYNGjRImzZtqvnz59cCBQpoaGiofvvtt9btKT805s2bV2fPnp2pssmn7U3NN7l28tn2yKftfZ1vcu3ks+2RT9uT79t8k2s3Od/ucSXyGdO0c0wTQOpkyEm5ixcv6sSJE7Vo0aL63HPPqarqk08+qeXKldOtW7fqlStXdPLkyVqkSBHt37+/qrqe3zm9M/rk25dvcu3JDRkyRO+//37t27ev1q1bV0uVKqXvvfee/vXXX6qq2qBBA23VqpXLB0bV6x8aAwIC0nUBVjuzyaftTc03uXby2fbIp+2pnXxT8k2u3fR8k2s3Pd/k2k3Nt3tciXzGNO0e0wRwZxlyUk71ekcSHR2tQUFBWqBAAa1ataqePHnS5T7Vq1fXLl26kH+X5ZtY+/79+/XXX3/VM2fOWH8PGDBA69evr61bt9adO3e6nMf5jTfe0KioKOvQclXVMWPGaO7cudP8odHObPJpe1PzTa6dfLY98ml7aifflHyTazc93+TaTc83uXby/2XiuBb59mdnhHwAqZNhJuXOnz+vhw4d0oMHD+qFCxdU9frFJqOjozUkJERbt25t3TcxMVEvXLig9erV048//pj8TJ5vcu2qqpMmTdKyZctqUFCQFilSRBctWmTddrPDxq9cuaJNmjTR1157TVWvn17h4sWL2rZtW50zZ06mySaftjc13+TayWfbI5+2p3byTck3uXbT802u3fR8k2s3Pd/ucSXyGdO0Kx+AezLEpNy0adO0adOmWqhQIc2fP78GBwfrqFGj9PTp05qQkKDR0dF6//3369NPP209JjIyUqtWreqRc92Sb1++ybWrXj8lgr+/v44ZM0Z37dqlzZs310qVKrncJ+nw8djYWD106JBGRERo9erVrfykCxYn/7ZXRs8mn7Y3Nd/k2sln2yOftqd28k3JN7l20/NNrt30fJNrNz3f7nEl8hnTtCsfgPtsn5QbN26c5s6dWz/66COdP3++Tpo0Sdu1a6cOh0P/+9//6rFjxzQ+Pl6jo6M1ODhYO3XqpK1bt9YyZcpYh5en55y35NuXb3LtSfnZsmXTH3/80Vq2YsUKbdWqlc6dO1eXLFmihw4dUlXVc+fOaf/+/bVhw4Zar149j/zv7comn7Y3Nd/k2sln2yOftvd1vsm1k8+2Rz5tT75v802u3fT8jDCuRD5jmnbkA0gfWyflNm3apMWKFdOpU6fecNs777yjDodD33vvPVVVvXDhgk6ePFnz5MmjoaGhVgeSnpl98u3LN7l2VdW///5bixUrpjVr1nRZ3rhxY73vvvu0RIkSWrhwYa1ataru2bNHjx8/rl9//bUOHTrUetN0N9/ObPJpe1PzTa6dfLY98ml7X+ebXDv5bHvk0/bk+zbf5NpNz7d7XIl8xjTtygeQfrZOyo0fP17Dw8P13Llz1jKn02n93r17d82dO7f1jZaLFy/q4sWLPfLGTb69+SbXnvR8EydO1KJFi+pzzz2nqqpPPvmklitXTrdu3apXrlzRyZMna5EiRbR///6qqnr16lXr8en5Noud2eTT9qbmm1w7+Wx75NP21E6+Kfkm1256vsm1m55vcu2m59s9rkQ+Y5p25QNIP1sm5ZI6il69emm1atVcliX97nQ6dePGjRoQEKDz5s274TnS88ZJvn35Jtee0sWLFzU6OlqDgoK0QIECWrVqVT158qTLfapXr65dunTxSF5GySaftjc13+TayWfbI5+2p3byTck3uXbT802u3fR8k2s3Md/ucSXyGdPMCGOaANInq9jA4XCIiEipUqVk5MiRsnPnTilXrpyoqjgcDuv2kJAQiY+Pl0uXLt3wHFmyZCE/E+abXPuFCxfk4sWL4nQ65d5775WAgAB5/PHHRURk4MCBUrx4cbnvvvtERMTpdMrly5clV65cEhIS4lZeRskmn7Y3Nd/k2sln2yOftqd28k3JN7l20/NNrt30fJNrJ9/scS3T802uHYCH2TMXeN3GjRu1ePHi2rZtWz1y5Iiquh5C+8cff2itWrV08+bN5N9l+abVPm3aNG3atKkWKlRI8+fPr8HBwTpq1Cg9ffq0JiQkaHR0tN5///369NNPW4+JjIzUqlWrpvuwcjuzyaftTc03uXby2fbIp+2pnXxT8k2u3fR8k2s3Pd/k2sl3Zdq4FvkZIzsj5ANIP1sn5VRV+/btq/nz59eOHTta57pVVb1y5Yq2bNlSH3roIU1MTCT/Lsw3pfZx48Zp7ty59aOPPtL58+frpEmTtF27dupwOPS///2vHjt2TOPj4zU6OlqDg4O1U6dO2rp1ay1Tpox1AVZ3Dy+3M5t82t7UfJNrJ59tj3zantrJNyXf5NpNzze5dtPzTa6d/JszZVyL/IyVnRHyAaSPbZNyyTuGl19+WQsVKqRBQUHaq1cv7dy5szZu3FgrVapkvXF6uiMh3758k2rftGmTFitWTKdOnXrDbe+88446HA597733VFX1woULOnnyZM2TJ4+GhoZa+e5+m8vObPJpe1PzTa6dfLY98ml7X+ebXDv5bHvk0/bk+zbf5NrJv5FJ41rkZ5zsjJAPwDNsPVIu+TdUZs2apV26dNGqVavqY489pu+++671hunpQ8zJtz/flNrHjx+v4eHheu7cOWtZ8ouwdu/eXXPnzm19q+XixYu6ePFia/3Sk29nNvm0van5JtdOPtse+bS9r/NNrp18tj3yaXvyfZtvcu3k35wp41rkZ6zsjJAPIP28Oik3c+ZM/e233257n5Qz9jExMS5/p+fQcvLtyze5dtV/Pxz26tVLq1Wr5rIs6Xen06kbN27UgIAAnTdv3g3P4W6+ndnk0/am5ptcO/lse+TT9tROvin5Jtduer7JtZueb3LtpufbPa5EPmOaduUD8D4/8ZKYmBgZNGiQrFmzRkREnE7nTe/n5+e6CtmzZ7d+V1XJkiUL+Zks3+TakzgcDhERKVWqlOzYsUN27twpDodDVNW63eFwSEhIiMTHx8ulS5dueA538+3MJp+2NzXf5NrJZ9sjn7andvJNyTe5dtPzTa7d9HyTazc53+5xJfIZ07RzTBOA93ltUi5nzpwSGBgo27dvvx7kd+eolJ1G0psv+Zkr3+TaUwoLC5P7779fBgwYIEePHhWHwyEJCQnW7UeOHJGKFStKuXLlPJKXUbLJp+1NzTe5dvLZ9sin7amdfFPyTa7d9HyTazc93+TaTcy3e1yJfMY0M8KYJgAv8swBd9clHUKedM7azz77TFu0aKGqdz5sNvnh5xs2bNAjR46Qn4nyTa79Tvr27av58+fXjh07Wuc3V1W9cuWKtmzZUh966CGvXXjVzmzyaXtT802unXy2PfJpe2on35R8k2s3Pd/k2k3PN7l2E/LtHlcinzHNjDimCcA7HKr//5hvDzhz5ozkz5/f+nvevHny3HPPyc6dO+W+++673cSgNYs/fPhw+fzzz2X+/PlSoUIF8jNJvsm134rT6bS+0dK9e3eZNWuWOBwOad++vVy4cEEOHTokp06dks2bN0u2bNlc7p+Zs8mn7U3NN7l28tn2yKftqZ18U/JNrt30fJNrNz3f5NpNyrd7XIl8xjTtygfgex6blPv+++/lzTfflOLFi0vJkiWlRYsWcvz4cRk3bpxER0dL0aJFJTEx8YZz2ibvQEaPHi39+vWT0aNHyxNPPEF+Jsk3ufY7SZ47e/ZsWbx4sWzatElKlCghVatWlbfeekuyZs0qCQkJkjVrVo/l2p1NPm1var7JtZPPtkc+bU/t5JuSb3LtpuebXLvp+SbXbkK+3eNK5DOmmRHHNAF4kScOt1u1apU+99xzOnv2bO3Vq5c+/PDDWrlyZS1YsKA6HA7t0aOHdd/kh90mP8R21KhRGhAQoLNmzSI/E+WbXLuq6syZM/W333677X1Snj4hJibG5e87HYqeEbPJp+1NzTe5dvLZ9si3J5/a7ckm3+x8k2s3Pd/k2k3PN7l20/PtHlcinzFNu/IB2Cfdk3Jr1qxRh8OhYWFhunDhQmv56dOnde/evfrRRx9p1apVtWfPntZtKd8oR44c6XYHQr59+SbXrnr9vOVVq1bVL7/8UlVv/IB4K7d6I80s2eTT9qbmm1w7+Wx75NP2vs43uXby2fbIp+3Jp+3J902+3eNK5DOmaVc+AHul+yTPZ86cERGRHDlyyOjRo2XChAkiIlKgQAEJCQmRrl27ylNPPSUrVqyQPn36iIi4HHK7dOlSeeedd2TcuHHStm1b8jNRvsm1i4jkzJlTAgMDZfv27SIiqTpnuaq6rEPSoeaZKZt82t7UfJNrJ59tj3za3tf5JtdOPtse+bQ9+bQ9+b7Jt3tciXzGNO3KB2CvdE/KPfroo/L000+LiEjWrFnl22+/lcmTJ1u333vvvfLCCy/Is88+K9HR0TJs2DCXx1euXFnmz58vjz/+OPmZLN/E2vX/X4IxISFBHA6HtGjRQo4cOSIi189xfqfHJn1Q3Lhxoxw9ejTVuXZnk0/bm5pvcu3ks+2RT9tTO/mm5Jtcu+n5Jtduer7JtZP/LxPHtci3Pzsj5AOw2c0PoEud2NhYVVWNjo7WLl266Pr167VNmzbaoEEDjY6Odrnv6dOndfLkyS6H2qb2kHTyM16+qbX/888/Ln/PnTtXAwMD9eTJk7d9XPJTKXz99ddasmRJ/fPPPzNNNvm0van5JtdOPtse+fbkU7s92eSbnW9y7abnm1y76fkm107+daaOa5Fvdu0AMoY0T8otX75cx44d67Ls2LFjGhwcrOPHj9fjx49rmzZttFGjRjd0JEnSc/FX8u3LN7l2VdUFCxZoxYoVtWXLltqzZ09dvHixTpw4UevXr69///33LZ8/5QVY8+XLp9OnT8802eTT9qbmm1w7+Wx75NP21E6+Kfkm1256vsm1m55vcu2m59s9rkQ+Y5p25QPIWNI0Kbd8+XJ1OBzqcDi0efPmOnLkSN22bZuqqk6dOlVbtWqlly5d0u3bt2vbtm21cePGOmbMGI+tLPn25Ztcu6rqqlWr9LnnntPZs2drr1699OGHH9bKlStrwYIF1eFwaI8ePaz73upiw6NGjXLrAqx2ZpNP25uab3Lt5LPtkU/bUzv5puSbXLvp+SbXbnq+ybWbnm/3uBL5jGnalQ8g40nTpNzevXu1QYMG+vDDD2ujRo20R48emj9/fh06dKh+/vnn+vDDD+uaNWtUVXX79u3aqFEj7d69u8dWlnz78k2ufc2aNepwODQsLEwXLlxoLT99+rTu3btXP/roI61atar27NnTui3lt1dGjhzp1odGO7PJp+1NzTe5dvLZ9sin7amdfFPyTa7d9HyTazc93+TayTd7XMv0fJNrB5Axpfn0lbt379Y2bdpoq1atdOnSpbpo0SJt06aNRkZGqsPh0NatW1tvmgcOHPD4eW7Jty/f1Nrnzp2rDodDGzZsqI888oiOHz/e5fazZ8/qxx9/rJUqVdLevXvf8PglS5bofffdpzNnzsxU2eTT9qbmm1w7+Wx75NP21E6+Kfkm1256vsm1m55vcu3kX2fquBb5ZtcOIONJ86ScququXbs0IiJCmzVrpjt37tSEhATdvn27Pv/887p161ZVdT203NMdCfn25Ztae8eOHbVhw4bapk0bfeihh244v/OZM2f0008/1YIFC+rQoUNdbjtx4oSuX78+U2aTT9ubmm9y7eSz7ZFP21M7+abkm1y76fkm1256vsm1k3+dqeNa5JtdO4CMxa1JOVXVPXv2aLNmzbRZs2a6evVql9t80WmQb1++SbXHxsaqqmp0dLR26dJF169fr23atNEGDRrc8OHx9OnTOnnyZJfTK6RnfezMJp+2NzXf5NrJZ9sjn7andvJNyTe5dtPzTa7d9HyTayf/RiaNa5GfcbIzQj6AjMHtSTnV6x1JRESERkREWOe+9SXy7cu/m2tfvny5jh071mXZsWPHNDg4WMePH6/Hjx/XNm3aaKNGjW748Jgk5XnPM0M2+bS9qfkm104+2x75tL2v802unXy2PfJpe/J9m29y7eTf2d08rkV+xs3OCPkA7JeuSTnV6x1JixYttGbNmvr77797Yp3IzyT5d2Pty5cvV4fDoQ6HQ5s3b64jR47Ubdu2qarq1KlTtVWrVnrp0iXdvn27tm3bVhs3bqxjxozJ9Nnk0/am5ptcO/lse+TT9tROvin5Jtduer7JtZueb3Lt5Kfe3TiuRX7Gz84I+QDs5SfpVLp0aRkyZIg0aNBAKlasmN6nIz8T5d+NtT/wwANSv359eeihhyQuLk527NghjRo1kmHDhsnx48flypUrsnXrVilfvry89957kpiYKH/88Uemzyaftjc13+TayWfbI5+2p3byTck3uXbT802u3fR8k2snP/XuxnEt8jN+dkbIB2AzT8/y2X3+W/Lty79bat+9e7e2adNGW7VqpUuXLtVFixZpmzZtNDIyUh0Oh7Zu3do6hcKBAwc8Wred2eTT9qbmm1w7+Wx75NP21E6+Kfkm1256vsm1m55vcu3ku8fudSCfMU0AZvD4pBxwN9i1a5dGRERos2bNdOfOnZqQkKDbt2/X559/Xrdu3aqqqk6n07q/J9887cwmn7Y3Nd/k2sln2yOftqd28k3JN7l20/NNrt30fJNrJx8AgIyJSTngFvbs2aPNmjXTZs2a6erVq11u8/YHRTuzyaftTc03uXby2fbIp+2pnXxT8k2u3fR8k2s3Pd/k2skHACDjYVIOuI09e/ZoRESERkRE6Jo1a4zJJp+2NzXf5NrJZ9sjn7andvJNyTe5dtPzTa7d9HyTaycfAICMhUk54A727NmjLVq00Jo1a+rvv/9uTDb5tL2p+SbXTj7bHvm0PbWTb0q+ybWbnm9y7abnm1w7+QAAZBxMygGpsGPHDu3Tp48tp1awM5t82t7UfJNrJ59tj3za3qRs8s3ON7l20/NNrt30fJNrJx8AgIzBoaoqAFLN6XSKn5+fcdnk0/am5ptcO/lse+TT9iZlk292vsm1m55vcu2m55tcO/kAANiHSTkAAAAAAAAAAADAy/hKCgAAAAAAAAAAAOBlTMoBAAAAAAAAAAAAXsakHAAAAAAAAAAAAOBlTMoBAAAAAAAAAAAAXsakHAAAAAAAAAAAAOBlTMoBAAAAAAAAAAAAXsakHAAAAACfKV68uAwdOtTu1fCYlStXisPhkPPnz9u9KgAAAACADI5JOQAAAAAecfjwYXnuueekcOHCkj17dilWrJi88sorcubMGbtXzSMaNWokvXr1cln24IMPyvHjxyVv3rz2rBQAAAAAINNgUg4AAABAuu3fv19q1qwpe/fulalTp8q+fftk1KhR8tNPP0l4eLicPXvWlvVKTEwUp9PptefPnj27BAUFicPh8FoGAAAAAODuwKQcAAAAgHR7+eWXJXv27LJkyRJp2LChFC1aVCIjI2XZsmVy9OhR6d+/v3XfS5cuyVNPPSW5c+eW4OBgGT58uHWbqsrAgQOlaNGi4u/vL4ULF5aePXtat8fFxcmrr74qwcHBkjt3bgkLC5OVK1dat0+cOFHy5csn8+fPl/Lly4u/v7+MHTtWcuTIccMpJl955RV5+OGHRUTkzJkz8tRTT0lwcLDkypVLKlWqJFOnTrXu26lTJ1m1apUMGzZMHA6HOBwOOXjw4E1PXzl79mypUKGC+Pv7S/HixeWzzz5zyS1evLh8+OGH8txzz0mePHmkaNGiMmbMGOv2a9euSffu3eX++++XHDlySLFixWTw4MFutQsAAAAAIONgUg4AAABAupw9e1YWL14sL730kuTMmdPltqCgIOnQoYNMnz5dVFVERIYMGSJVqlSR3377Tfr16yevvPKKLF26VESuT2h98cUXMnr0aNm7d6/MnTtXKlWqZD1f9+7dZd26dTJt2jT5448/pF27dhIRESF79+617hMTEyMff/yxjB07VrZv3y4dOnSQfPnyyezZs637JCYmyvTp06VDhw4iIhIbGys1atSQhQsXyp9//ildu3aVjh07ysaNG0VEZNiwYRIeHi5dunSR48ePy/Hjx+WBBx644X+xefNmeeKJJ6R9+/aybds2GThwoAwYMEAmTpzocr/PPvtMatasKb/99pu89NJL8uKLL8ru3btFROTLL7+U+fPny4wZM2T37t0yefJkKV68uJutAwAAAADIKLLavQIAAAAAMre9e/eKqkq5cuVuenu5cuXk3Llzcvr0aRERqVu3rvTr109ERMqUKSNr166VL774Qpo2bSqHDh2SoKAgadKkiWTLlk2KFi0qtWvXFhGRQ4cOyYQJE+TQoUNSuHBhERF59dVXZdGiRTJhwgT58MMPRUQkPj5eRowYIVWqVLHWoX379jJlyhR5/vnnRUTkp59+kvPnz0vbtm1FRCQ4OFheffVV6/49evSQxYsXy4wZM6R27dqSN29eyZ49u+TKlUuCgoJu+b/4/PPPpXHjxjJgwACrvh07dsiQIUOkU6dO1v2ioqLkpZdeEhGRN954Q7744gtZsWKFhIaGyqFDh6R06dJSr149cTgcUqxYsVS2BAAAAAAgI+NIOQAAAAAekXQk3J2Eh4ff8PfOnTtFRKRdu3Zy9epVKVmypHTp0kW+++47SUhIEBGRbdu2SWJiopQpU0buuece62fVqlXy119/Wc+XPXt2qVy5sktGhw4dZOXKlXLs2DEREZk8ebK0aNFC8uXLJyLXj5x7//33pVKlShIYGCj33HOPLF68WA4dOpSm/8HOnTulbt26Lsvq1q0re/fulcTERGtZ8vVzOBwSFBQkp06dEpHrp8rcunWrhIaGSs+ePWXJkiVpWgcAAAAAQMbEpBwAAACAdAkJCRGHw2FNrKW0c+dOuffee6VgwYJ3fK4HHnhAdu/eLSNGjJCcOXPKSy+9JA0aNJD4+Hi5fPmyZMmSRTZv3ixbt261fnbu3CnDhg2zniNnzpzicDhcnrdWrVpSqlQpmTZtmly9elW+++4769SVItdPqTls2DB54403ZMWKFbJ161Zp3ry5XLt2zc3/yu1ly5bN5W+HwyFOp1NERKpXry4HDhyQ999/X65evSpPPPGEPP74415ZDwAAAACA73D6SgAAAADpkj9/fmnatKmMGDFCevfu7XJduRMnTsjkyZPlmWeesSbK1q9f7/L49evXu5z6MmfOnNKqVStp1aqVvPzyy1K2bFnZtm2bVKtWTRITE+XUqVNSv379NK9nhw4dZPLkyVKkSBHx8/OTFi1aWLetXbtWHn30UXn66adFRMTpdMqePXukfPny1n2yZ8/ucrTbzZQrV07Wrl3rsmzt2rVSpkwZyZIlS6rXNSAgQJ588kl58skn5fHHH5eIiAg5e/asBAYGpvo5AAAAAAAZC0fKAQAAAEi3r7/+WuLi4qR58+ayevVqOXz4sCxatEiaNm0qwcHBMmjQIOu+a9eulU8++UT27Nkjw4cPl5kzZ8orr7wiIiITJ06UcePGyZ9//in79++X6OhoyZkzpxQrVkzKlCkjHTp0kGeeeUbmzJkjBw4ckI0bN8rgwYNl4cKFd1zHDh06yJYtW2TQoEHy+OOPi7+/v3Vb6dKlZenSpfLLL7/Izp07pVu3bnLy5EmXxxcvXlw2bNggBw8elH/++cc6si25vn37yk8//STvv/++7NmzRyZNmiRff/21y/Xq7uTzzz+XqVOnyq5du2TPnj0yc+ZMCQoKsk61CQAAAADInJiUAwAAAJBupUuXll9//VVKliwpTzzxhJQqVUq6du0qDz30kKxbt87lCK++ffvKr7/+KtWqVZMPPvhAPv/8c2nevLmIiOTLl0/+7//+T+rWrSuVK1eWZcuWyYIFCyR//vwiIjJhwgR55plnpG/fvhIaGiqtW7eWTZs2SdGiRe+4jiEhIVK7dm35448/XE5dKSLy9ttvS/Xq1aV58+bSqFEjCQoKktatW7vc59VXX5UsWbJI+fLlpWDBgje93lz16tVlxowZMm3aNKlYsaL873//k/fee086deqU6v9lnjx55JNPPpGaNWtKrVq15ODBg/LDDz+Inx+7bwAAAACQmTk0tVdjBwAAAAAAAAAAAOAWvmoJAAAAAAAAAAAAeBmTcgAAAAAAAAAAAICXMSkHAAAAAAAAAAAAeBmTcgAAAAAAAAAAAICXMSkHAAAAAAAAAAAAeBmTcgAAAAAAAAAAAICXMSkHAAAAAAAAAAAAeBmTcgAAAAAAAAAAAICXMSkHAAAAAAAAAAAAeBmTcgAAAAAAAAAAAICXMSkHAAAAAAAAAAAAeBmTcgAAAAAAAAAAAICX/T9mkmyYOU0AagAAAABJRU5ErkJggg==",
+ "text/plain": [
+ "