diff --git a/src/ert/dark_storage/common.py b/src/ert/dark_storage/common.py index dc97e7127b1..b8c0e0a77a7 100644 --- a/src/ert/dark_storage/common.py +++ b/src/ert/dark_storage/common.py @@ -101,35 +101,62 @@ def data_for_key( """Returns a pandas DataFrame with the datapoints for a given key for a given ensemble. The row index is the realization number, and the columns are an index over the indexes/dates""" + if key.startswith("LOG10_"): key = key[6:] - try: - summary_data = ensemble.load_responses( - "summary", tuple(ensemble.get_realization_list_with_responses("summary")) - ) - summary_keys = summary_data["response_key"].unique().to_list() - except (ValueError, KeyError, polars.exceptions.ColumnNotFoundError): - summary_data = polars.DataFrame() - summary_keys = [] - - if key in summary_keys: - df = ( - summary_data.filter(polars.col("response_key").eq(key)) - .rename({"time": "Date", "realization": "Realization"}) - .drop("response_key") - .to_pandas() - ) - df = df.set_index(["Date", "Realization"]) - # This performs the same aggragation by mean of duplicate values - # as in ert/analysis/_es_update.py - df = df.groupby(["Date", "Realization"]).mean() - data = df.unstack(level="Date") - data.columns = data.columns.droplevel(0) - try: - return data.astype(float) - except ValueError: - return data + response_key_to_response_type = ensemble.experiment.response_key_to_response_type + response_key = next((k for k in response_key_to_response_type if k in key), None) + + if response_key is not None: + response_type = response_key_to_response_type[response_key] + + if response_type == "summary": + summary_data = ensemble.load_responses( + "summary", + tuple(ensemble.get_realization_list_with_responses("summary")), + ) + df = ( + summary_data.filter(polars.col("response_key").eq(key)) + .rename({"time": "Date", "realization": "Realization"}) + .drop("response_key") + .to_pandas() + ) + df = df.set_index(["Date", "Realization"]) + # This performs the same aggragation by mean of duplicate values + # as in ert/analysis/_es_update.py + df = df.groupby(["Date", "Realization"]).mean() + data = df.unstack(level="Date") + data.columns = data.columns.droplevel(0) + try: + return data.astype(float) + except ValueError: + return data + + if response_type == "gen_data": + response_key, report_step = displayed_key_to_response_key["gen_data"](key) + try: + mask = ensemble.get_realization_mask_with_responses(response_key) + realizations = np.where(mask)[0] + data = ensemble.load_responses(response_key, tuple(realizations)) + except ValueError as err: + print(f"Could not load response {key}: {err}") + return pd.DataFrame() + + try: + vals = data.filter(polars.col("report_step").eq(report_step)) + pivoted = vals.drop("response_key", "report_step").pivot( + on="index", values="values" + ) + data = pivoted.to_pandas().set_index("realization") + data.columns = data.columns.astype(int) + data.columns.name = "axis" + try: + return data.astype(float) + except ValueError: + return data + except (ValueError, KeyError): + return pd.DataFrame() group = key.split(":")[0] parameters = ensemble.experiment.parameter_configuration @@ -168,30 +195,6 @@ def data_for_key( return data.astype(float) except ValueError: return data - if key in gen_data_keys(ensemble): - response_key, report_step = displayed_key_to_response_key["gen_data"](key) - try: - mask = ensemble.get_realization_mask_with_responses(response_key) - realizations = np.where(mask)[0] - data = ensemble.load_responses(response_key, tuple(realizations)) - except ValueError as err: - print(f"Could not load response {key}: {err}") - return pd.DataFrame() - - try: - vals = data.filter(polars.col("report_step").eq(report_step)) - pivoted = vals.drop("response_key", "report_step").pivot( - on="index", values="values" - ) - data = pivoted.to_pandas().set_index("realization") - data.columns = data.columns.astype(int) - data.columns.name = "axis" - try: - return data.astype(float) - except ValueError: - return data - except (ValueError, KeyError): - return pd.DataFrame() return pd.DataFrame()