-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy path1.data_process.py
62 lines (49 loc) · 1.75 KB
/
1.data_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import csv
from random import shuffle
from tqdm import tqdm
def read_corpus(file_path='./data/corpus.tsv'):
reader = csv.reader(open(file_path), delimiter='\t')
total_dict = dict()
for line in reader:
corpus_id = int(line[0])
corpus = line[1]
total_dict[corpus_id] = corpus
return total_dict
def make_qrels(query_dict, corpus_dict,
qrels_file='./data/qrels.train.tsv',
writer_file='./data/query_doc.csv',
test_file='./data/query_doc_test.csv',
test_num=1000,
):
reader = csv.reader(open(qrels_file), delimiter='\t')
writer = csv.writer(open(writer_file, 'w'))
test_writer = csv.writer(open(test_file, 'w'))
reader = [line for line in reader]
shuffle(reader)
train_lines = reader[:-test_num]
test_lines = reader[-test_num:]
print(len(train_lines),len(test_lines))
max_len = 0
writer.writerow(['query', 'doc'])
test_writer.writerow(['query', 'doc'])
for line in tqdm(train_lines):
q_id = int(line[0])
v_id = int(line[2])
q = query_dict[q_id]
v = corpus_dict[v_id]
writer.writerow([q, v])
max_len = max(len(q), max_len)
max_len = max(len(v), max_len)
for line in tqdm(test_lines):
q_id = int(line[0])
v_id = int(line[2])
q = query_dict[q_id]
v = corpus_dict[v_id]
test_writer.writerow([q, v])
max_len = max(len(q), max_len)
max_len = max(len(v), max_len)
print(max_len)
if __name__ == '__main__':
corpus_dict = read_corpus()
query_dict = read_corpus('./data/train.query.txt')
make_qrels(query_dict, corpus_dict,test_num=1000)