Skip to content

Latest commit

 

History

History
160 lines (126 loc) · 4.95 KB

README.md

File metadata and controls

160 lines (126 loc) · 4.95 KB

culip_icon

CULiP - CUDA Library Profiler

CULiP is a library for profiling the execution time of CUDA official library functions

Supported libraries and functions

Dependencies

  • CUDA >= 10.0
  • CMake >= 3.18
  • C++ >= 14

Usage

  1. Clone CULiP
git clone https://github.com/enp1s0/CULiP
cd CULiP
  1. Build
mkdir build
cmake .. -DCMAKE_INSTALL_PREFIX=/path/to/install/CULiP
make
make install
  1. Set an environmental variable
export LD_PRELOAD=/path/to/install/CULiP/lib/libculip_cublas.so:$LD_PRELOAD
  1. Execute the application
./foo.bar

Then the execution time is printed on stdout.

[CULiP Result][cublasSgemm_v2-m1024-n1024-k1024] 155182ns

To disable profiling at runtime, define an environment variable CULIP_PROFILING_CUBLAS_DISABLE.

# Disable cuBLAS profiling
export CULIP_DISABLE_CUBLAS_PROFILING=1

# Enable cuBLAS profiling
export CULIP_DISABLE_CUBLAS_PROFILING=0
# or
unset CULIP_DISABLE_CUBLAS_PROFILING

To enable exponent statistics, set an environmental variable CULIP_ENABLE_EXP_STATS.

# Enable exponent statistics
export CULIP_ENABLE_EXP_STATS=1

To enable small abs value cutoff, set an environmental variable CULIP_CUTOFF_THRESHOLD.

# Enable exponent statistics
export CULIP_CUTOFF_THRESHOLD=1e-7

Profiling control API

CULiP provides profiling control API. By default, all profiling is enabled.

// nvcc -I/path/to/install/CULiP/include ...
#include <CULiP/cublas.hpp>

// Disable profiling of all functions
CULiP_profiling_cublas_disable_all();

// Enable profiling of all functions
CULiP_profiling_cublas_enable_all();

// Disable profiling of a function (e.g. `cublasSgemm`)
CULiP_profiling_cublas_disable(CULiP_cublasSgemm);

// Enable profiling of a function (e.g. `cublasSgemm`)
CULiP_profiling_cublas_enable(CULiP_cublasSgemm);

How it works

culip_how_it_works

Analyzer

CULiP also provides result analyzer CULiP_analyzer.

./foo.bar > result.log
cat result.log | CULiP_analyzer

Analyzing result:

#####################################
#       CULiP Profiling Result      #
#  https://github.com/enp1s0/CULiP  #
#####################################

- cublasDgemm_v2 : [143904971774 ns; 1.439050e+02 s; 99.40%]
              params    count                   sum          avg          max          min
  m1048576-n128-k128       96  41173.198ms( 28.61%)    428.887ms    433.445ms    427.390ms
  m128-n128-k1048576       96  29626.117ms( 20.59%)    308.605ms    313.811ms    306.485ms
   m524288-n128-k128       96  20592.321ms( 14.31%)    214.503ms    219.402ms    213.780ms
   m128-n128-k524288       96  12510.157ms(  8.69%)    130.314ms    134.215ms    128.985ms
   m262144-n128-k128       96  10294.148ms(  7.15%)    107.231ms    110.439ms    106.706ms
   m128-n128-k262144       96   6687.382ms(  4.65%)     69.660ms     70.357ms     68.977ms
   m128-n128-k131072       96   6627.523ms(  4.61%)     69.037ms     70.009ms     67.999ms
   m131072-n128-k128       96   5152.191ms(  3.58%)     53.669ms     55.125ms     53.376ms
    m128-n128-k65536       96   3028.057ms(  2.10%)     31.542ms     33.302ms     31.127ms
...

- cublasSgemm_v2 : [869182648 ns; 8.691826e-01 s;  0.60%]
              params    count                   sum          avg          max          min
  m128-n128-k1048576       64    180.648ms( 20.78%)      2.823ms      3.347ms      2.503ms
   m128-n128-k524288       64     93.173ms( 10.72%)      1.456ms      1.658ms      1.276ms
  m1048576-n128-k128       32     75.253ms(  8.66%)      2.352ms      2.359ms      2.344ms
   m128-n128-k262144       64     46.822ms(  5.39%)      0.732ms      0.828ms      0.658ms
    m1048576-n96-k32       32     44.452ms(  5.11%)      1.389ms      1.397ms      1.384ms
   m524288-n128-k128       32     37.917ms(  4.36%)      1.185ms      1.191ms      1.179ms
    m32-n96-k1048576       32     36.564ms(  4.21%)      1.143ms      1.190ms      1.093ms
    m1048544-n64-k32       32     31.889ms(  3.67%)      0.997ms      1.003ms      0.992ms
   m128-n128-k131072       64     24.763ms(  2.85%)      0.387ms      0.424ms      0.349ms
    m32-n64-k1048544       32     23.477ms(  2.70%)      0.734ms      0.749ms      0.716ms
...

CSV output

cat result.log | CULiP_analyzer csv

CSV results are printed after the result above.

e.g.

// ----------- CSV output ----------
func,params,count,sum,avg,max,min
cublasCgemmStridedBatched,NN-m128-n128-k128-batchCount1024,1,44.995,44.995,44.995,44.995
cublasZgemmBatched,NN-m128-n128-k128-batchCount1024,1,38.964,38.964,38.964,38.964
cublasDgemmStridedBatched,NN-m128-n128-k128-batchCount1024,1,32.694,32.694,32.694,32.694
cublasZher2k_v2,LOWER-N-n1024-k1024,1,20.308,20.308,20.308,20.308
cublasZgemm_v2,NN-m1024-n1024-k1024,1,20.253,20.253,20.253,20.253
cublasZsyr2k_v2,LOWER-N-n1024-k1024,1,19.637,19.637,19.637,19.637

License

MIT