-
Notifications
You must be signed in to change notification settings - Fork 0
/
otsu2018.py
838 lines (669 loc) · 25.1 KB
/
otsu2018.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
from __future__ import print_function
import numpy as np
import matplotlib.pyplot as plt
import time
from colour import (SpectralShape, SpectralDistribution,
STANDARD_OBSERVER_CMFS, sd_ones, sd_to_XYZ, XYZ_to_xy)
from colour.plotting import plot_chromaticity_diagram_CIE1931
from colour.utilities import as_float_array
def load_Otsu2018_spectra(path, every_nth=1):
"""
Loads a set of measured reflectances from Otsu et al.'s csv file.
TODO: This function can't determine the spectral shape.
Parameters
----------
path : str
File path.
every_nth : int
Load only every n-th spectrum. The original files are huge, so this can
be useful for testing.
"""
data = np.genfromtxt(path, delimiter=',', skip_header=1)
# The first column is the id and is redundant
data = data[:, 1:]
spectra = []
for i in range(data.shape[0]):
if i % every_nth != 0:
continue
values = data[i, :]
spectra.append(values)
return np.array(spectra)
class PartitionAxis:
"""
Represents a horizontal or vertical line, partitioning the 2D space in
two half-planes.
Attributes
----------
origin : float
The x coordinate of a vertical line or the y coordinate of a horizontal
line.
direction : int
'0' if vertical, '1' if horizontal.
"""
def __init__(self, origin, direction):
self.origin = origin
self.direction = direction
def __str__(self):
return '%s=%s' % ('yx'[self.direction], repr(self.origin))
# Python 3: drop the subclassing
class Colours(object):
"""
Represents multiple colours: their reflectances, XYZ tristimulus values
and xy coordinates. The cmfs and the illuminant are taken from the parent
tree.
This class also supports partitioning, or creating two smaller instances
of Colours, split along a horizontal or a vertical axis on the xy plane.
"""
def __init__(self, tree, reflectances):
"""
Parameters
==========
tree : tree
The parent tree. This determines what cmfs and illuminant
are used in colourimetric calculations.
reflectances : ndarray (n,m)
Reflectances of the ``n`` colours to be stored in this class.
The shape must match ``tree.shape`` with ``m`` points for
each colour.
"""
self.reflectances = reflectances
self.XYZ = np.empty((reflectances.shape[0], 3))
self.xy = np.empty((reflectances.shape[0], 2))
for i in range(len(self)):
sd = SpectralDistribution(reflectances[i, :], tree.wl)
XYZ = sd_to_XYZ(sd, illuminant=tree.illuminant) / 100
self.XYZ[i, :] = XYZ
self.xy[i, :] = XYZ_to_xy(XYZ)
def __len__(self):
"""
Counts the number of colours in this object.
"""
return self.reflectances.shape[0]
def partition(self, axis):
"""
Parameters
==========
axis : PartitionAxis
Defines the partition axis.
Returns
=======
lesser : Colours
The left or lower part.
greater : Colours
The right or upper part.
"""
mask = self.xy[:, axis.direction] <= axis.origin
lesser = object.__new__(Colours)
greater = object.__new__(Colours)
lesser.reflectances = self.reflectances[mask, :]
greater.reflectances = self.reflectances[np.logical_not(mask), :]
lesser.XYZ = self.XYZ[mask, :]
greater.XYZ = self.XYZ[np.logical_not(mask), :]
lesser.xy = self.xy[mask, :]
greater.xy = self.xy[np.logical_not(mask), :]
return lesser, greater
class Otsu2018Error(Exception):
"""
Exception used for various errors originating from code in this file.
"""
pass
# Python 3: drop the subclassing
class Node(object):
"""
Represents a node in the tree tree.
"""
_counter = 1
def __init__(self, tree, colours):
"""
Parameters
==========
tree : tree
The parent tree. This determines what cmfs and illuminant
are used in colourimetric calculations.
colours : Colours
The colours that belong in this node.
"""
self.tree = tree
self.colours = colours
self.children = None
self._cached_reconstruction_error = None
self.PCA_done = False
self.best_partition = None
# This is just for __str__ and plots
self.number = Node._counter
Node._counter += 1
def __str__(self):
return 'Node #%d (%d)' % (self.number, len(self.colours))
@property
def leaf(self):
"""
Is this node a leaf? Otsu2018Tree leaves don't have any children and store
instances of ``Colours``.
"""
return self.children is None
def split(self, children, partition_axis):
"""
Turns a leaf into a node with the given children.
Parameters
==========
children : tuple
Two instances of ``Node`` in a tuple.
partition_axis : PartitionAxis
Defines the partition axis.
"""
self.children = children
self.partition_axis = partition_axis
self.colours = None
self._cached_reconstruction_error = None
self.best_partition = None
def _leaves_generator(self):
if self.leaf:
yield self
else:
for child in self.children:
# (Python 3) yield from child.leaves
for leaf in child.leaves:
yield leaf
@property
def leaves(self):
"""
Returns a generator of all leaves connected to this node.
"""
return self._leaves_generator()
#
# PCA and reconstruction
#
def PCA(self):
"""
Performs the principal component analysis on colours in this node.
"""
if not self.leaf:
raise RuntimeError('Node.PCA called for a node that is not a leaf')
self.mean = np.mean(self.colours.reflectances, axis=0)
data_matrix = self.colours.reflectances - self.mean
covariance_matrix = np.dot(data_matrix.T, data_matrix)
_eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix)
self.basis_functions = eigenvectors[:, -3:].T
# TODO: better names
M = np.empty((3, 3))
for i in range(3):
R = self.basis_functions[i, :]
M[:, i] = self.tree.fast_sd_to_XYZ(R)
self.M_inverse = np.linalg.inv(M)
self.XYZ_mu = self.tree.fast_sd_to_XYZ(self.mean)
self.PCA_done = True
def _reconstruct_xy(self, XYZ, xy):
if not self.leaf:
if xy[self.partition_axis.direction] <= self.partition_axis.origin:
return self.children[0]._reconstruct_xy(XYZ, xy)
else:
return self.children[1]._reconstruct_xy(XYZ, xy)
weights = np.dot(self.M_inverse, XYZ - self.XYZ_mu)
reflectance = np.dot(weights, self.basis_functions) + self.mean
reflectance = np.clip(reflectance, 0, 1)
return SpectralDistribution(reflectance, self.tree.wl)
def reconstruct(self, XYZ):
"""
Reconstructs the reflectance for the given *XYZ* tristimulus values.
If this is a leaf, data from this node will be used. Otherwise the
code will look for the appropriate subnode.
Parameters
==========
XYZ : ndarray, (3,)
*CIE XYZ* tristimulus values to recover the spectral distribution
from.
Returns
-------
SpectralDistribution
Recovered spectral distribution.
"""
xy = XYZ_to_xy(XYZ)
return self._reconstruct_xy(XYZ, xy)
#
# Optimisation
#
def reconstruction_error(self):
"""
For every colour in this node, its spectrum is reconstructed (using
PCA data in this node) and compared with its true, measured spectrum.
The errors are then summed up and returned.
Returns
=======
error : float
The sum reconstruction errors for this node.
"""
if self._cached_reconstruction_error:
return self._cached_reconstruction_error
if not self.PCA_done:
self.PCA()
error = 0
for i in range(len(self.colours)):
sd = self.colours.reflectances[i, :]
XYZ = self.colours.XYZ[i, :]
recovered_sd = self.reconstruct(XYZ)
error += np.sum((sd - recovered_sd.values) ** 2)
self._cached_reconstruction_error = error
return error
def total_reconstruction_error(self):
"""
Computes the reconstruction error for an entire subtree, starting at
this node.
Returns
=======
error : float
The total reconstruction error of the subtree.
"""
if self.leaf:
return self.reconstruction_error()
else:
return sum([child.total_reconstruction_error()
for child in self.children])
def partition_error(self, axis):
"""
Compute the sum of reconstruction errors of the two nodes created by
a given partition of this node.
Parameters
==========
axis : PartitionAxis
Defines the partition axis.
Returns
=======
error : float
Sum of reconstruction errors of the two nodes created from
splitting.
lesser, greater : tuple
Subnodes created from splitting.
"""
partition = self.colours.partition(axis)
if (len(partition[0]) < self.tree.min_cluster_size
or len(partition[1]) < self.tree.min_cluster_size):
raise Otsu2018Error(
'partition created parts smaller than min_cluster_size')
lesser = Node(self.tree, partition[0])
lesser.PCA()
greater = Node(self.tree, partition[1])
greater.PCA()
error = lesser.reconstruction_error() + greater.reconstruction_error()
return error, (lesser, greater)
def find_best_partition(self):
"""
Finds the best partition of this node. See
``tree.find_best_partition``.
"""
if self.best_partition is not None:
return self.best_partition
error = self.reconstruction_error()
best_error = None
bar = None
if self.tree._progress_bar:
bar = self.tree._progress_bar(total=2 * len(self.colours),
leave=False)
for direction in [0, 1]:
for i in range(len(self.colours)):
if bar:
bar.update()
origin = self.colours.xy[i, direction]
axis = PartitionAxis(origin, direction)
try:
new_error, partition = self.partition_error(axis)
except Otsu2018Error:
continue
if new_error >= error:
continue
if best_error is None or new_error < best_error:
self.best_partition = (new_error, axis, partition)
if bar:
bar.close()
if self.best_partition is None:
raise Otsu2018Error('no partitions are possible')
return self.best_partition
#
# Plotting
#
def _plot_colours(self, number):
if not self.leaf:
for child in self.children:
child._plot_colours(number)
return
symbols = ['+', '^', '*', '>', 'o', 'v', 'x', '<']
# Python 3: plt.plot(*self.colours.xy.T, ...
plt.plot(self.colours.xy[:, 0], self.colours.xy[:, 1],
'k' + symbols[number[0] % len(symbols)],
label=str(self))
number[0] += 1
def visualise(self):
"""
Plots the subtree on a xy chromaticity diagram. Does not call
``plt.show``.
"""
plot_chromaticity_diagram_CIE1931(standalone=False)
self._plot_colours([0])
plt.legend()
def visualise_pca(self):
"""
Makes a plot showing the principal components of this node and how
well they reconstruct the source data.
"""
plt.subplot(2, 1, 1)
plt.title(str(self) + ': principal components')
for i in range(3):
plt.plot(self.wl, self.basis_functions[i, :], label='PC%d' % i)
plt.legend()
plt.subplot(2, 1, 2)
plt.title(str(self) + ': data')
for i in range(3):
plt.plot(self.wl, self.colours.reflectances[i, :], 'C%d:' % i)
XYZ = self.colours.XYZ[i, :]
recon = self.reconstruct(XYZ)
plt.plot(self.wl, recon.values, 'C%d-' % i)
recon = self.reconstruct(XYZ)
plt.plot(self.wl, recon.values, 'C%d--' % i)
class Otsu2018Tree(Node):
"""
This is an extension of ``Node``. It's meant to represent the root of the
tree and contains information shared with all the nodes, such as cmfs
and the illuminant (if any is used).
Operations involving the entire tree, such as optimisation and
reconstruction, are also implemented here.
"""
def __init__(
self,
sds,
shape,
cmfs=STANDARD_OBSERVER_CMFS['CIE 1931 2 Degree Standard Observer'],
illuminant=sd_ones()):
"""
Parameters
----------
sds : ndarray (n,m)
Reflectances of the ``n`` reference colours to be used for
optimisation.
shape : SpectralShape
Spectral shape of ``sds``.
cmfs : XYZ_ColourMatchingFunctions, optional
Standard observer colour matching functions.
illuminant : SpectralDistribution, optional
Illuminant spectral distribution.
"""
self.shape = shape
self.wl = shape.range()
self.dw = self.wl[1] - self.wl[0]
self.cmfs = cmfs.copy().align(shape)
self.illuminant = illuminant.copy().align(shape)
self.xy_w = XYZ_to_xy(sd_to_XYZ(illuminant, cmfs=cmfs))
# The normalising constant used in sd_to_XYZ.
self.k = 1 / (np.sum(self.cmfs.values[:, 1]
* self.illuminant.values) * self.dw)
# Python 3: super().__init__(...)
super(Otsu2018Tree, self).__init__(self, Colours(self, sds))
def fast_sd_to_XYZ(self, R):
"""
Compute the XYZ tristimulus values of a given reflectance. Faster for
humans, by using cmfs and the illuminant stored in the ''tree'',
thus avoiding unnecessary repetition. Faster for computers, by using
a very simple and direct method.
Parameters
----------
R : ndarray
Reflectance with shape matching the one used to construct this
``tree``.
Returns
-------
ndarray (3,)
XYZ tristimulus values, normalised to 1.
"""
E = self.illuminant.values * R
return self.k * np.dot(E, self.cmfs.values) * self.dw
def optimise(self,
repeats=8,
min_cluster_size=None,
print_callback=print,
progress_bar=None):
"""
Optimise the tree by repeatedly performing optimal partitions of the
nodes, creating a tree that minimizes the total reconstruction
error.
Parameters
----------
repeats : int, optional
Maximum number of splits. If the dataset is too small, this number
might not be reached. The default is to create 8 clusters, like in
the original paper.
min_cluster_size : int, optional
Smallest acceptable cluster size. By default it's chosen
automatically, based on the size of the dataset and desired number
of clusters. Must be at least 3 or principal component analysis
will not be possible.
print_callback : function, optional
Function to use for printing progress and diagnostic information.
progress_bar : class, optional
Class for creating progress bar objects. Must be compatible with
tqdm.
"""
t0 = time.time()
def _print(text):
if print_callback is None:
return
delta = time.time() - t0
stamp = '%3d:%02d ' % (delta // 60, np.floor(delta % 60))
for line in text.splitlines():
print_callback(stamp, line)
self._progress_bar = progress_bar
if min_cluster_size is not None:
self.min_cluster_size = min_cluster_size
else:
self.min_cluster_size = len(self.colours) / repeats // 2
if self.min_cluster_size <= 3:
self.min_cluster_size = 3
initial_error = self.total_reconstruction_error()
_print('Initial error is %g.' % initial_error)
for repeat in range(repeats):
_print('\n=== Iteration %d of %d ===' % (repeat + 1, repeats))
best_total_error = None
total_error = self.total_reconstruction_error()
for i, leaf in enumerate(self.leaves):
_print('Optimising %s...' % leaf)
try:
error, axis, partition = leaf.find_best_partition()
except Otsu2018Error as e:
_print('Failed: %s' % e)
continue
new_total_error = (total_error - leaf.reconstruction_error()
+ error)
if (best_total_error is None
or new_total_error < best_total_error):
best_total_error = new_total_error
best_axis = axis
best_leaf = leaf
best_partition = partition
if best_total_error is None:
_print('\nNo further improvements are possible.\n'
'Terminating at iteration %d.\n' % repeat)
break
_print('\nSplit %s into %s and %s along %s.'
% (best_leaf, best_partition[0], best_partition[1],
best_axis))
_print('Error is reduced by %g and is now %g, '
'%.1f%% of the initial error.'
% (leaf.reconstruction_error()
- error, best_total_error, 100 * best_total_error
/ initial_error))
best_leaf.split(best_partition, best_axis)
_print('Finished.')
def _create_selector_array(self):
"""
Create an array that describes how to select the appropriate cluster
for given *CIE xy* coordinates. See ``Otsu2018Dataset.select`` for
information about what the array looks like and how to use it.
"""
rows = []
# (Python 3) leaf_number = 0
leaf_number = [0]
symbol_table = {}
def add_rows(node):
# nonlocal leaf_number
if node.leaf:
# symbol_table[node] = leaf_number
# leaf_number += 1
symbol_table[node] = leaf_number[0]
leaf_number[0] += 1
return
symbol_table[node] = -len(rows)
rows.append([node.partition_axis.direction,
node.partition_axis.origin,
node.children[0],
node.children[1]])
for child in node.children:
add_rows(child)
add_rows(self)
# Special case for trees with just the root
if len(rows) == 0:
return as_float_array([0., 0., 0., 0.])
for i, (_, _, symbol_1, symbol_2) in enumerate(rows):
rows[i][2] = symbol_table[symbol_1]
rows[i][3] = symbol_table[symbol_2]
return as_float_array(rows)
def to_dataset(self):
"""
Create an ``Otsu2018Dataset`` based on information stored in this tree.
The object can then be saved to disk or used in reflectance recovery.
Returns
=======
Otsu2018Dataset
The dataset object.
"""
basis_functions = [leaf.basis_functions for leaf in self.leaves]
means = [leaf.mean for leaf in self.leaves]
selector_array = self._create_selector_array()
return Otsu2018Dataset(self.shape,
basis_functions,
means,
selector_array)
class Otsu2018Dataset:
"""
Stores all the information needed for the *Otsu et al. (2018)* spectral
upsampling method. Datasets can be either generated and turned into
this form using ``Otsu2018Tree.to_dataset`` or loaded from disk.
Attributes
==========
shape: SpectralShape
Shape of the spectral data.
basis_functions : ndarray(n, 3, m)
Three basis functions for every cluster.
means : ndarray(n, m)
Mean for every cluster.
selector_array : ndarray(k, 4)
Array describing how to select the appropriate cluster. See
``Otsu2018Dataset.select`` for details.
"""
def __init__(self,
shape=None,
basis_functions=None,
means=None,
selector_array=None):
self.shape = shape
self.basis_functions = basis_functions
self.means = means
self.selector_array = selector_array
def to_file(self, path):
"""
Saves the dataset to an .npz file.
"""
shape_array = as_float_array([self.shape.start, self.shape.end,
self.shape.interval])
np.savez(path,
shape=shape_array,
basis_functions=self.basis_functions,
means=self.means,
selector_array=self.selector_array)
def to_Python_file(self, path):
"""
Write the tree into a Python dataset compatible with Colour's
``colour.recovery.otsu2018`` code.
Parameters
----------
path : string
File path.
"""
with open(path, 'w') as fd:
fd.write('# Autogenerated, do not modify\n\n')
fd.write('from numpy import array\n')
fd.write('from colour import SpectralShape\n\n\n')
fd.write('OTSU_2018_SPECTRAL_SHAPE = SpectralShape%s\n\n\n'
% self.shape)
def write_array(name, array):
fd.write('%s = [\n' % name)
for line in (repr(array) + ',').splitlines():
fd.write(' %s\n' % line)
fd.write(']\n\n\n')
write_array('OTSU_2018_BASIS_FUNCTIONS', self.basis_functions)
write_array('OTSU_2018_MEANS', self.means)
write_array('OTSU_2018_SELECTOR_ARRAY', self.selector_array)
def from_file(self, path):
"""
Loads a dataset from an .npz file.
Parameters
==========
path : unicode
Path to file.
Raises
======
ValueError, KeyError
Raised when loading the file succeeded but it did not contain the
expected data.
"""
npz = np.load(path, allow_pickle=False)
if not isinstance(npz, np.lib.npyio.NpzFile):
raise ValueError('the loaded file is not an .npz file')
start, end, interval = npz['shape']
self.shape = SpectralShape(start, end, interval)
self.basis_functions = npz['basis_functions']
self.means = npz['means']
self.selector_array = npz['selector_array']
n, three, m = self.basis_functions.shape
if (three != 3 or self.means.shape != (n, m)
or self.selector_array.shape[1] != 4):
raise ValueError('array shapes are not correct, the file could be '
'corrupted or in a wrong format')
def select(self, xy):
"""
Returns the cluster index appropriate for the given *CIE xy*
coordinates.
Parameters
==========
ndarray : (2,)
*CIE xy* chromaticity coordinates.
Returns
=======
int
Cluster index.
"""
i = 0
while True:
row = self.selector_array[i, :]
direction, origin, lesser_index, greater_index = row
if xy[int(direction)] <= origin:
index = int(lesser_index)
else:
index = int(greater_index)
if index < 0:
i = -index
else:
return index
def cluster(self, xy):
"""
Returns the basis functions and dataset mean for the given *CIE xy*
coordinates.
Parameters
==========
ndarray : (2,)
*CIE xy* chromaticity coordinates.
Returns
=======
basis_functions : ndarray (3, n)
Three basis functions.
mean : ndarray (n,)
Dataset mean.
"""
index = self.select(xy)
return self.basis_functions[index, :, :], self.means[index, :]