forked from rivo/tview
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.go
717 lines (666 loc) · 20.3 KB
/
grid.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
package tview
import (
"math"
"github.com/gdamore/tcell/v2"
)
// gridItem represents one primitive and its possible position on a grid.
type gridItem struct {
Item Primitive // The item to be positioned. May be nil for an empty item.
Row, Column int // The top-left grid cell where the item is placed.
Width, Height int // The number of rows and columns the item occupies.
MinGridWidth, MinGridHeight int // The minimum grid width/height for which this item is visible.
Focus bool // Whether or not this item attracts the layout's focus.
visible bool // Whether or not this item was visible the last time the grid was drawn.
x, y, w, h int // The last position of the item relative to the top-left corner of the grid. Undefined if visible is false.
}
// Grid is an implementation of a grid-based layout. It works by defining the
// size of the rows and columns, then placing primitives into the grid.
//
// Some settings can lead to the grid exceeding its available space. SetOffset()
// can then be used to scroll in steps of rows and columns. These offset values
// can also be controlled with the arrow keys (or the "g","G", "j", "k", "h",
// and "l" keys) while the grid has focus and none of its contained primitives
// do.
//
// See https://github.com/rivo/tview/wiki/Grid for an example.
type Grid struct {
*Box
// The items to be positioned.
items []*gridItem
// The definition of the rows and columns of the grid. See
// [Grid.SetRows] / [Grid.SetColumns] for details.
rows, columns []int
// The minimum sizes for rows and columns.
minWidth, minHeight int
// The size of the gaps between neighboring primitives. This is automatically
// set to 1 if borders is true.
gapRows, gapColumns int
// The number of rows and columns skipped before drawing the top-left corner
// of the grid.
rowOffset, columnOffset int
// Whether or not borders are drawn around grid items. If this is set to true,
// a gap size of 1 is automatically assumed (which is filled with the border
// graphics).
borders bool
// The color of the borders around grid items.
bordersColor tcell.Color
}
// NewGrid returns a new grid-based layout container with no initial primitives.
//
// Note that Box, the superclass of Grid, will be transparent so that any grid
// areas not covered by any primitives will leave their background unchanged. To
// clear a Grid's background before any items are drawn, reset its Box to one
// with the desired color:
//
// grid.Box = NewBox()
func NewGrid() *Grid {
g := &Grid{
bordersColor: Styles.GraphicsColor,
}
g.Box = NewBox()
g.Box.dontClear = true
return g
}
// SetColumns defines how the columns of the grid are distributed. Each value
// defines the size of one column, starting with the leftmost column. Values
// greater than 0 represent absolute column widths (gaps not included). Values
// less than or equal to 0 represent proportional column widths or fractions of
// the remaining free space, where 0 is treated the same as -1. That is, a
// column with a value of -3 will have three times the width of a column with a
// value of -1 (or 0). The minimum width set with SetMinSize() is always
// observed.
//
// Primitives may extend beyond the columns defined explicitly with this
// function. A value of 0 is assumed for any undefined column. In fact, if you
// never call this function, all columns occupied by primitives will have the
// same width. On the other hand, unoccupied columns defined with this function
// will always take their place.
//
// Assuming a total width of the grid of 100 cells and a minimum width of 0, the
// following call will result in columns with widths of 30, 10, 15, 15, and 30
// cells:
//
// grid.SetColumns(30, 10, -1, -1, -2)
//
// If a primitive were then placed in the 6th and 7th column, the resulting
// widths would be: 30, 10, 10, 10, 20, 10, and 10 cells.
//
// If you then called SetMinSize() as follows:
//
// grid.SetMinSize(15, 20)
//
// The resulting widths would be: 30, 15, 15, 15, 20, 15, and 15 cells, a total
// of 125 cells, 25 cells wider than the available grid width.
func (g *Grid) SetColumns(columns ...int) *Grid {
g.columns = columns
return g
}
// SetRows defines how the rows of the grid are distributed. These values behave
// the same as the column values provided with [Grid.SetColumns], see there
// for a definition and examples.
//
// The provided values correspond to row heights, the first value defining
// the height of the topmost row.
func (g *Grid) SetRows(rows ...int) *Grid {
g.rows = rows
return g
}
// SetSize is a shortcut for [Grid.SetRows] and [Grid.SetColumns] where
// all row and column values are set to the given size values. See
// [Grid.SetColumns] for details on sizes.
func (g *Grid) SetSize(numRows, numColumns, rowSize, columnSize int) *Grid {
g.rows = make([]int, numRows)
for index := range g.rows {
g.rows[index] = rowSize
}
g.columns = make([]int, numColumns)
for index := range g.columns {
g.columns[index] = columnSize
}
return g
}
// SetMinSize sets an absolute minimum width for rows and an absolute minimum
// height for columns. Panics if negative values are provided.
func (g *Grid) SetMinSize(row, column int) *Grid {
if row < 0 || column < 0 {
panic("Invalid minimum row/column size")
}
g.minHeight, g.minWidth = row, column
return g
}
// SetGap sets the size of the gaps between neighboring primitives on the grid.
// If borders are drawn (see SetBorders()), these values are ignored and a gap
// of 1 is assumed. Panics if negative values are provided.
func (g *Grid) SetGap(row, column int) *Grid {
if row < 0 || column < 0 {
panic("Invalid gap size")
}
g.gapRows, g.gapColumns = row, column
return g
}
// SetBorders sets whether or not borders are drawn around grid items. Setting
// this value to true will cause the gap values (see SetGap()) to be ignored and
// automatically assumed to be 1 where the border graphics are drawn.
func (g *Grid) SetBorders(borders bool) *Grid {
g.borders = borders
return g
}
// SetBordersColor sets the color of the item borders.
func (g *Grid) SetBordersColor(color tcell.Color) *Grid {
g.bordersColor = color
return g
}
// AddItem adds a primitive and its position to the grid. The top-left corner
// of the primitive will be located in the top-left corner of the grid cell at
// the given row and column and will span "rowSpan" rows and "colSpan" columns.
// For example, for a primitive to occupy rows 2, 3, and 4 and columns 5 and 6:
//
// grid.AddItem(p, 2, 5, 3, 2, 0, 0, true)
//
// If rowSpan or colSpan is 0, the primitive will not be drawn.
//
// You can add the same primitive multiple times with different grid positions.
// The minGridWidth and minGridHeight values will then determine which of those
// positions will be used. This is similar to CSS media queries. These minimum
// values refer to the overall size of the grid. If multiple items for the same
// primitive apply, the one with the highest minimum value (width or height,
// whatever is higher) will be used, or the primitive added last if those values
// are the same. Example:
//
// grid.AddItem(p, 0, 0, 0, 0, 0, 0, true). // Hide in small grids.
// AddItem(p, 0, 0, 1, 2, 100, 0, true). // One-column layout for medium grids.
// AddItem(p, 1, 1, 3, 2, 300, 0, true) // Multi-column layout for large grids.
//
// To use the same grid layout for all sizes, simply set minGridWidth and
// minGridHeight to 0.
//
// If the item's focus is set to true, it will receive focus when the grid
// receives focus. If there are multiple items with a true focus flag, the last
// visible one that was added will receive focus.
func (g *Grid) AddItem(p Primitive, row, column, rowSpan, colSpan, minGridHeight, minGridWidth int, focus bool) *Grid {
g.items = append(g.items, &gridItem{
Item: p,
Row: row,
Column: column,
Height: rowSpan,
Width: colSpan,
MinGridHeight: minGridHeight,
MinGridWidth: minGridWidth,
Focus: focus,
})
return g
}
// RemoveItem removes all items for the given primitive from the grid, keeping
// the order of the remaining items intact.
func (g *Grid) RemoveItem(p Primitive) *Grid {
for index := len(g.items) - 1; index >= 0; index-- {
if g.items[index].Item == p {
g.items = append(g.items[:index], g.items[index+1:]...)
}
}
return g
}
// Clear removes all items from the grid.
func (g *Grid) Clear() *Grid {
g.items = nil
return g
}
// SetOffset sets the number of rows and columns which are skipped before
// drawing the first grid cell in the top-left corner. As the grid will never
// completely move off the screen, these values may be adjusted the next time
// the grid is drawn. The actual position of the grid may also be adjusted such
// that contained primitives that have focus remain visible.
func (g *Grid) SetOffset(rows, columns int) *Grid {
g.rowOffset, g.columnOffset = rows, columns
return g
}
// GetOffset returns the current row and column offset (see SetOffset() for
// details).
func (g *Grid) GetOffset() (rows, columns int) {
return g.rowOffset, g.columnOffset
}
// Focus is called when this primitive receives focus.
func (g *Grid) Focus(delegate func(p Primitive)) {
for _, item := range g.items {
if item.Focus {
delegate(item.Item)
return
}
}
g.Box.Focus(delegate)
}
// HasFocus returns whether or not this primitive has focus.
func (g *Grid) HasFocus() bool {
for _, item := range g.items {
if item.visible && item.Item.HasFocus() {
return true
}
}
return g.Box.HasFocus()
}
// Draw draws this primitive onto the screen.
func (g *Grid) Draw(screen tcell.Screen) {
g.Box.DrawForSubclass(screen, g)
x, y, width, height := g.GetInnerRect()
screenWidth, screenHeight := screen.Size()
// Make a list of items which apply.
items := make([]*gridItem, 0, len(g.items))
ItemLoop:
for _, item := range g.items {
item.visible = false
if item.Item == nil || item.Width <= 0 || item.Height <= 0 || width < item.MinGridWidth || height < item.MinGridHeight {
continue // Disqualified.
}
// Check for overlaps and multiple layouts of the same item.
for index, existing := range items {
// Do they overlap or are identical?
if item.Item != existing.Item &&
(item.Row >= existing.Row+existing.Height || item.Row+item.Height <= existing.Row ||
item.Column >= existing.Column+existing.Width || item.Column+item.Width <= existing.Column) {
continue // They don't and aren't.
}
// What's their minimum size?
itemMin := item.MinGridWidth
if item.MinGridHeight > itemMin {
itemMin = item.MinGridHeight
}
existingMin := existing.MinGridWidth
if existing.MinGridHeight > existingMin {
existingMin = existing.MinGridHeight
}
// Which one is more important?
if itemMin < existingMin {
continue ItemLoop // This one isn't. Drop it.
}
items[index] = item // This one is. Replace the other.
continue ItemLoop
}
// This item will be visible.
items = append(items, item)
}
// How many rows and columns do we have?
rows := len(g.rows)
columns := len(g.columns)
for _, item := range items {
rowEnd := item.Row + item.Height
if rowEnd > rows {
rows = rowEnd
}
columnEnd := item.Column + item.Width
if columnEnd > columns {
columns = columnEnd
}
}
if rows == 0 || columns == 0 {
return // No content.
}
// Where are they located?
rowPos := make([]int, rows)
rowHeight := make([]int, rows)
columnPos := make([]int, columns)
columnWidth := make([]int, columns)
// How much space do we distribute?
remainingWidth := width
remainingHeight := height
proportionalWidth := 0
proportionalHeight := 0
for index, row := range g.rows {
if row > 0 {
if row < g.minHeight {
row = g.minHeight
}
remainingHeight -= row
rowHeight[index] = row
} else if row == 0 {
proportionalHeight++
} else {
proportionalHeight += -row
}
}
for index, column := range g.columns {
if column > 0 {
if column < g.minWidth {
column = g.minWidth
}
remainingWidth -= column
columnWidth[index] = column
} else if column == 0 {
proportionalWidth++
} else {
proportionalWidth += -column
}
}
if g.borders {
remainingHeight -= rows + 1
remainingWidth -= columns + 1
} else {
remainingHeight -= (rows - 1) * g.gapRows
remainingWidth -= (columns - 1) * g.gapColumns
}
if rows > len(g.rows) {
proportionalHeight += rows - len(g.rows)
}
if columns > len(g.columns) {
proportionalWidth += columns - len(g.columns)
}
// Distribute proportional rows/columns.
for index := 0; index < rows; index++ {
row := 0
if index < len(g.rows) {
row = g.rows[index]
}
if row > 0 {
continue // Not proportional. We already know the width.
} else if row == 0 {
row = 1
} else {
row = -row
}
rowAbs := row * remainingHeight / proportionalHeight
remainingHeight -= rowAbs
proportionalHeight -= row
if rowAbs < g.minHeight {
rowAbs = g.minHeight
}
rowHeight[index] = rowAbs
}
for index := 0; index < columns; index++ {
column := 0
if index < len(g.columns) {
column = g.columns[index]
}
if column > 0 {
continue // Not proportional. We already know the height.
} else if column == 0 {
column = 1
} else {
column = -column
}
columnAbs := column * remainingWidth / proportionalWidth
remainingWidth -= columnAbs
proportionalWidth -= column
if columnAbs < g.minWidth {
columnAbs = g.minWidth
}
columnWidth[index] = columnAbs
}
// Calculate row/column positions.
var columnX, rowY int
if g.borders {
columnX++
rowY++
}
for index, row := range rowHeight {
rowPos[index] = rowY
gap := g.gapRows
if g.borders {
gap = 1
}
rowY += row + gap
}
for index, column := range columnWidth {
columnPos[index] = columnX
gap := g.gapColumns
if g.borders {
gap = 1
}
columnX += column + gap
}
// Calculate primitive positions.
var focus *gridItem // The item which has focus.
for _, item := range items {
px := columnPos[item.Column]
py := rowPos[item.Row]
var pw, ph int
for index := 0; index < item.Height; index++ {
ph += rowHeight[item.Row+index]
}
for index := 0; index < item.Width; index++ {
pw += columnWidth[item.Column+index]
}
if g.borders {
pw += item.Width - 1
ph += item.Height - 1
} else {
pw += (item.Width - 1) * g.gapColumns
ph += (item.Height - 1) * g.gapRows
}
item.x, item.y, item.w, item.h = px, py, pw, ph
item.visible = true
if item.Item.HasFocus() {
focus = item
}
}
// Calculate screen offsets.
var offsetX, offsetY int
add := 1
if !g.borders {
add = g.gapRows
}
for index, height := range rowHeight {
if index >= g.rowOffset {
break
}
offsetY += height + add
}
if !g.borders {
add = g.gapColumns
}
for index, width := range columnWidth {
if index >= g.columnOffset {
break
}
offsetX += width + add
}
// The focused item must be within the visible area.
if focus != nil {
if focus.y+focus.h-offsetY >= height {
offsetY = focus.y - height + focus.h
}
if focus.y-offsetY < 0 {
offsetY = focus.y
}
if focus.x+focus.w-offsetX >= width {
offsetX = focus.x - width + focus.w
}
if focus.x-offsetX < 0 {
offsetX = focus.x
}
}
// Adjust row/column offsets based on this value.
var from, to int
for index, pos := range rowPos {
if pos-offsetY < 0 {
from = index + 1
}
if pos-offsetY < height {
to = index
}
}
if g.rowOffset < from {
g.rowOffset = from
}
if g.rowOffset > to {
g.rowOffset = to
}
from, to = 0, 0
for index, pos := range columnPos {
if pos-offsetX < 0 {
from = index + 1
}
if pos-offsetX < width {
to = index
}
}
if g.columnOffset < from {
g.columnOffset = from
}
if g.columnOffset > to {
g.columnOffset = to
}
// Draw primitives and borders.
borderStyle := tcell.StyleDefault.Background(g.backgroundColor).Foreground(g.bordersColor)
for _, item := range items {
// Final primitive position.
if !item.visible {
continue
}
item.x -= offsetX
item.y -= offsetY
if item.x >= width || item.x+item.w <= 0 || item.y >= height || item.y+item.h <= 0 {
item.visible = false
continue
}
if item.x+item.w > width {
item.w = width - item.x
}
if item.y+item.h > height {
item.h = height - item.y
}
if item.x < 0 {
item.w += item.x
item.x = 0
}
if item.y < 0 {
item.h += item.y
item.y = 0
}
if item.w <= 0 || item.h <= 0 {
item.visible = false
continue
}
item.x += x
item.y += y
item.Item.SetRect(item.x, item.y, item.w, item.h)
// Draw primitive.
if item == focus {
defer item.Item.Draw(screen)
} else {
item.Item.Draw(screen)
}
// Draw border around primitive.
if g.borders {
for bx := item.x; bx < item.x+item.w; bx++ { // Top/bottom lines.
if bx < 0 || bx >= screenWidth {
continue
}
by := item.y - 1
if by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.Horizontal, borderStyle)
}
by = item.y + item.h
if by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.Horizontal, borderStyle)
}
}
for by := item.y; by < item.y+item.h; by++ { // Left/right lines.
if by < 0 || by >= screenHeight {
continue
}
bx := item.x - 1
if bx >= 0 && bx < screenWidth {
PrintJoinedSemigraphics(screen, bx, by, Borders.Vertical, borderStyle)
}
bx = item.x + item.w
if bx >= 0 && bx < screenWidth {
PrintJoinedSemigraphics(screen, bx, by, Borders.Vertical, borderStyle)
}
}
bx, by := item.x-1, item.y-1 // Top-left corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.TopLeft, borderStyle)
}
bx, by = item.x+item.w, item.y-1 // Top-right corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.TopRight, borderStyle)
}
bx, by = item.x-1, item.y+item.h // Bottom-left corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.BottomLeft, borderStyle)
}
bx, by = item.x+item.w, item.y+item.h // Bottom-right corner.
if bx >= 0 && bx < screenWidth && by >= 0 && by < screenHeight {
PrintJoinedSemigraphics(screen, bx, by, Borders.BottomRight, borderStyle)
}
}
}
}
// MouseHandler returns the mouse handler for this primitive.
func (g *Grid) MouseHandler() func(action MouseAction, event *tcell.EventMouse, setFocus func(p Primitive)) (consumed bool, capture Primitive) {
return g.WrapMouseHandler(func(action MouseAction, event *tcell.EventMouse, setFocus func(p Primitive)) (consumed bool, capture Primitive) {
if !g.InRect(event.Position()) {
return false, nil
}
// Pass mouse events along to the first child item that takes it.
for _, item := range g.items {
if item.Item == nil {
continue
}
consumed, capture = item.Item.MouseHandler()(action, event, setFocus)
if consumed {
return
}
}
return
})
}
// InputHandler returns the handler for this primitive.
func (g *Grid) InputHandler() func(event *tcell.EventKey, setFocus func(p Primitive)) {
return g.WrapInputHandler(func(event *tcell.EventKey, setFocus func(p Primitive)) {
if !g.hasFocus {
// Pass event on to child primitive.
for _, item := range g.items {
if item != nil && item.Item.HasFocus() {
if handler := item.Item.InputHandler(); handler != nil {
handler(event, setFocus)
return
}
}
}
return
}
// Process our own key events if we have direct focus.
switch event.Key() {
case tcell.KeyRune:
switch event.Rune() {
case 'g':
g.rowOffset, g.columnOffset = 0, 0
case 'G':
g.rowOffset = math.MaxInt32
case 'j':
g.rowOffset++
case 'k':
g.rowOffset--
case 'h':
g.columnOffset--
case 'l':
g.columnOffset++
}
case tcell.KeyHome:
g.rowOffset, g.columnOffset = 0, 0
case tcell.KeyEnd:
g.rowOffset = math.MaxInt32
case tcell.KeyUp:
g.rowOffset--
case tcell.KeyDown:
g.rowOffset++
case tcell.KeyLeft:
g.columnOffset--
case tcell.KeyRight:
g.columnOffset++
}
})
}
// PasteHandler returns the handler for this primitive.
func (g *Grid) PasteHandler() func(pastedText string, setFocus func(p Primitive)) {
return g.WrapPasteHandler(func(pastedText string, setFocus func(p Primitive)) {
for _, item := range g.items {
if item != nil && item.Item.HasFocus() {
if handler := item.Item.PasteHandler(); handler != nil {
handler(pastedText, setFocus)
return
}
}
}
})
}