-
Notifications
You must be signed in to change notification settings - Fork 0
/
YoloAcc.py
117 lines (97 loc) · 3.88 KB
/
YoloAcc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import json
import os
import cv2
import numpy as np
from sklearn.metrics import confusion_matrix
import csv
import torch
def drawCounters(counters, img, color=(0, 0, 255)):
for counter in counters:
cv2.rectangle(img, (counter[1], counter[0]), (counter[3], counter[2]), color, 4)
return img
def drawFillCounters(counters, img):
for counter in counters:
cv2.rectangle(img, (counter[1], counter[0]), (counter[3], counter[2]), (255, 255, 255), -1)
return img
def yoloBoxToCv2(detection, shape):
height = shape[0]
width = shape[1]
center_x = int(detection[1] * width)
center_y = int(detection[2] * height)
w = int(detection[3] * width)
h = int(detection[4] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
return [y, x, y+h, x+w]
def countIOU(rec1, rec2):
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
sum_area = S_rec1 + S_rec2
left_line = max(rec1[1], rec2[1])
right_line = min(rec1[3], rec2[3])
top_line = max(rec1[0], rec2[0])
bottom_line = min(rec1[2], rec2[2])
if left_line >= right_line or top_line >= bottom_line:
return 0, -1, S_rec1, S_rec2
else:
intersect = (right_line - left_line) * (bottom_line - top_line)
return (intersect / (sum_area - intersect))*1.0, intersect, S_rec1, S_rec2
def testMask(preImage, gtImage):
preImage = preImage[:,:,0].reshape((-1))//255
gtImage = gtImage[:,:,0].reshape((-1))//255
preImage_torch = torch.from_numpy(preImage).cuda()
gtImage_torch = torch.from_numpy(gtImage).cuda()
TP = torch.sum((gtImage_torch == 1) & (preImage_torch == 1)).item() #gpu version
FN = torch.sum((gtImage_torch == 0) & (preImage_torch == 1)).item()
FP = torch.sum((gtImage_torch == 1) & (preImage_torch == 0)).item()
TN = torch.sum((gtImage_torch == 0) & (preImage_torch == 0)).item()
# accuracy = confusion_matrix(preImage, gtImage, labels=[1, 0]) #cpu version
# TP = accuracy[0,0]
# FN = accuracy[0,1]
# FP = accuracy[1,0]
# TN = accuracy[1,1]
# print(accuracy)
P = TP/(TP+FP)
R = TP/(TP+FN)
F1 = 2*P*R/(P+R)
Acc = (TP+TN)/(TP+TN+FP+FN)
print("Accuracy =", Acc)
print("Precision=", P)
print("Recall =", R)
print("F1 =", F1)
Acc = "{:.4f}".format(Acc*100)
P = "{:.4f}".format(P*100)
R = "{:.4f}".format(R*100)
F1 = "{:.4f}".format(F1*100)
writer.writerow([Acc, P, R, F1])
jsonFlooder = "./result/marge/Yolo/"
GTFlooders = "./groundtruth/marge"
storeFlooder = "./storeImg/"
with open('result.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
for GTFlooderName in os.listdir(GTFlooders):
print(GTFlooderName)
GTPath = os.path.join(GTFlooders, GTFlooderName)
ImgPath = os.path.join(GTPath, GTFlooderName + ".jpg")
GTTxtPath = os.path.join(GTPath, GTFlooderName + ".txt")
classNamePath = os.path.join(GTPath, "classes.txt")
jsonPath = os.path.join(jsonFlooder, GTFlooderName + ".json")
image = cv2.imread(ImgPath)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)
imagePreMask = np.zeros(image.shape)
with open(jsonPath) as f: #讀取預測結果
prediectData = json.load(f)
image = drawCounters(prediectData, image, color=(255, 0, 0))
imagePreMask = drawFillCounters(prediectData, imagePreMask)
with open(GTTxtPath,'r') as f: #讀取真實結果
fStrs = f.readlines()
fStrs = [fStr.replace("\n", "") for fStr in fStrs]
yoloRects = [[float(i) for i in fStr.split(" ")] for fStr in fStrs]
cv2Rects = [yoloBoxToCv2(i, image.shape) for i in yoloRects]
# image = drawCounters(cv2Rects, image, color=(0, 0, 255))
imageMaskGt = np.zeros(image.shape)
imageMaskGt = drawFillCounters(cv2Rects, imageMaskGt)
testMask(imagePreMask, imageMaskGt)
# image = drawCounters(pairRectsA, image, color=(0, 255, 0))
cv2.imwrite(os.path.join(storeFlooder, GTFlooderName + ".jpg"), image)