From e6358b29ecad74a6da40830b9403c212b94deb0a Mon Sep 17 00:00:00 2001 From: enblacar Date: Thu, 12 Jan 2023 12:06:00 +0100 Subject: [PATCH] Another reiteration of CRAN checks for the new version. --- CRAN-SUBMISSION | 4 +- DESCRIPTION | 10 +- NAMESPACE | 3 - R/do_LigandReceptorPlot.R | 461 ------------------ R/do_SankeyPlot.R | 281 ----------- R/save_Plot.R | 203 -------- R/utils.R | 11 +- cran-comments.md | 7 +- man/do_LigandReceptorPlot.Rd | 150 ------ man/do_SankeyPlot.Rd | 140 ------ man/examples/examples_do_LigandReceptorPlot.R | 16 - man/examples/examples_do_SankeyPlot.R | 46 -- man/examples/examples_save_Plot.R | 47 -- man/save_Plot.Rd | 96 ---- tests/testthat/setup.R | 47 +- tests/testthat/test-do_LigandReceptorPlot.R | 265 ---------- tests/testthat/test-do_SankeyPlot.R | 177 ------- tests/testthat/test-save_Plot.R | 222 --------- 18 files changed, 44 insertions(+), 2142 deletions(-) delete mode 100644 R/do_LigandReceptorPlot.R delete mode 100644 R/do_SankeyPlot.R delete mode 100644 R/save_Plot.R delete mode 100644 man/do_LigandReceptorPlot.Rd delete mode 100644 man/do_SankeyPlot.Rd delete mode 100644 man/examples/examples_do_LigandReceptorPlot.R delete mode 100644 man/examples/examples_do_SankeyPlot.R delete mode 100644 man/examples/examples_save_Plot.R delete mode 100644 man/save_Plot.Rd delete mode 100644 tests/testthat/test-do_LigandReceptorPlot.R delete mode 100644 tests/testthat/test-do_SankeyPlot.R delete mode 100644 tests/testthat/test-save_Plot.R diff --git a/CRAN-SUBMISSION b/CRAN-SUBMISSION index 08646d0..f237703 100644 --- a/CRAN-SUBMISSION +++ b/CRAN-SUBMISSION @@ -1,3 +1,3 @@ Version: 1.1.1 -Date: 2023-01-11 17:37:20 UTC -SHA: e2ef21aed669baeea241c031ef4147871457e778 +Date: 2023-01-12 11:03:54 UTC +SHA: 4f3f9dc095fb81d8972f246ac251686d26a2853f diff --git a/DESCRIPTION b/DESCRIPTION index 48513ab..5242e95 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Package: SCpubr Type: Package Title: Generate Publication Ready Visualizations of Single Cell Transcriptomics Data -Version: 1.1.1.9000 +Version: 1.1.1 Authors@R: person("Enrique", "Blanco-Carmona", email = "scpubr@gmail.com", role = c("cre", "aut"), comment = c(ORCID = "0000-0002-1208-1691")) Description: A system that provides a streamlined way of generating publication ready plots for known Single-Cell transcriptomics data in a “publication ready” format. This is, the goal is to automatically generate plots with the highest quality possible, that can be used right away or with minimal modifications for a research article. License: GPL-3 @@ -61,13 +61,9 @@ Suggests: enrichplot, ggnewscale, AnnotationDbi, - org.Hs.eg.db, - liana (>= 0.1.6), - ggsankey (>= 0.0.99999) + org.Hs.eg.db VignetteBuilder: knitr Config/testthat/edition: 3 biocViews: Software, SingleCell, Visualization -Remotes: - saezlab/liana, - davidsjoberg/ggsankey + diff --git a/NAMESPACE b/NAMESPACE index f798ac8..88ff6a1 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -19,14 +19,11 @@ export(do_FunctionalAnnotationPlot) export(do_GeyserPlot) export(do_GroupedGOTermPlot) export(do_GroupwiseDEPlot) -export(do_LigandReceptorPlot) export(do_NebulosaPlot) export(do_PathwayActivityPlot) export(do_RidgePlot) -export(do_SankeyPlot) export(do_TFActivityPlot) export(do_TermEnrichmentPlot) export(do_ViolinPlot) export(do_VolcanoPlot) -export(save_Plot) export(state_dependencies) diff --git a/R/do_LigandReceptorPlot.R b/R/do_LigandReceptorPlot.R deleted file mode 100644 index 3a694cb..0000000 --- a/R/do_LigandReceptorPlot.R +++ /dev/null @@ -1,461 +0,0 @@ -#' Visualize Ligand-Receptor analysis output. -#' -#' This function makes use of [liana](https://github.com/saezlab/liana) package to run Ligand-Receptor analysis. Takes the output of liana and generates a dot-plot visualization according to the user's specifications. -#' -#' @inheritParams doc_function -#' @param liana_output \strong{\code{\link[tibble]{tibble}}} | Object resulting from running \link[liana]{liana_wrap}. -#' @param split.by \strong{\code{\link[base]{character}}} | Whether to further facet the plot on the y axis by common ligand.complex or receptor.complex. Values to provide: NULL, ligand.complex, receptor.complex. -#' @param keep_source,keep_target \strong{\code{\link[base]{character}}} | Identities to keep for the source/target of the interactions. NULL otherwise. -#' @param top_interactions \strong{\code{\link[base]{numeric}}} | Number of unique interactions to retrieve ordered by magnitude and specificity. It does not necessarily mean that the output will contain as many, but rather an approximate value. -#' @param dot_border \strong{\code{\link[base]{logical}}} | Whether to draw a black border in the dots. -#' @param rotate_strip_text \strong{\code{\link[base]{logical}}} | Whether the text in the strips should be flipped 90 degrees. -#' @param dot.size \strong{\code{\link[base]{numeric}}} | Size aesthetic for the dots. -#' @param compute_ChordDiagrams \strong{\code{\link[base]{logical}}} | Whether to also compute Chord Diagrams for both the number of interactions between source and target but also between ligand.complex and receptor.complex. -#' @param add_missing_LR_combinations \strong{\code{\link[base]{logical}}} | Depending on the value provided to \strong{\code{top_interactions}}, there might be some source-target combinations missing. If set to TRUE, those combinations will be brought back to the plot as NA values. -#' @param arrange_interactions_by \strong{\code{\link[base]{character}}} | Select the method in which the output matrix of interactions is arranged for plotting. One of: -#' \itemize{ -#' \item \emph{\code{aggregate_rank}}: Uses the output matrix of \strong{\code{\link[liana]{liana_aggregate}}}. Interactions are ordered based on \strong{\code{aggregate_rank}}. -#' \item \emph{\code{specificity}}: Uses the \strong{\code{natmi.edge_specificity}} column to arrange the interactions by their specificity. -#' \item \emph{\code{magnitude}}: Uses the \strong{\code{sca.LRscore}} column to arrange the interactions by their specificity. -#' \item \emph{\code{both}}: Uses both \strong{\code{sca.LRscore}} and \strong{\code{natmi.edge_specificity}} columns to arrange the interactions by their specificity and magnitude altogether. -#' } -#' @param sort_interactions_alphabetically \strong{\code{\link[base]{logical}}} | Sort the interactions to be plotted alphabetically (\strong{\code{TRUE}}) or keep them in their original order in the matrix (\strong{\code{FALSE}}). - -#' @return A ggplot2 plot with the results of the Ligand-Receptor analysis. -#' @export -#' -#' @example /man/examples/examples_do_LigandReceptorPlot.R - -do_LigandReceptorPlot <- function(liana_output, - split.by = NULL, - keep_source = NULL, - keep_target = NULL, - top_interactions = 25, - dot_border = TRUE, - border.color = "black", - rotate_x_axis_labels = 45, - rotate_strip_text = FALSE, - legend.position = "bottom", - legend.type = "colorbar", - legend.length = 20, - legend.width = 1, - legend.framecolor = "grey50", - legend.tickcolor = "white", - legend.framewidth = 0.5, - legend.tickwidth = 0.5, - viridis_color_map = "G", - viridis_direction = 1, - font.size = 14, - dot.size = 1, - font.type = "sans", - flip = FALSE, - plot.grid = TRUE, - grid.color = "grey90", - grid.type = "dotted", - compute_ChordDiagrams = FALSE, - add_missing_LR_combinations = TRUE, - arrange_interactions_by = "both", - sort_interactions_alphabetically = FALSE){ - - # Checks for packages. - check_suggests(function_name = "do_LigandReceptorPlot") - `%>%` <- magrittr::`%>%` - - # Check logical parameters. - logical_list <- list("dot_border" = dot_border, - "flip" = flip, - "rotate_strip_text" = rotate_strip_text, - "plot.grid" = plot.grid, - "add_missing_LR_combinations" = add_missing_LR_combinations, - "sort_interactions_alphabetically" = sort_interactions_alphabetically) - check_type(parameters = logical_list, required_type = "logical", test_function = is.logical) - # Check numeric parameters. - numeric_list <- list("font.size" = font.size, - "top_interactions" = top_interactions, - "legend.length" = legend.length, - "legend.width" = legend.width, - "legend.framewidth" = legend.framewidth, - "legend.tickwidth" = legend.tickwidth, - "dot.size" = dot.size, - "rotate_x_axis_labels" = rotate_x_axis_labels, - "viridis_direction" = viridis_direction) - check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric) - # Check character parameters. - character_list <- list("split.by" = split.by, - "keep_source" = keep_source, - "keep_target" = keep_target, - "border.color" = border.color, - "legend.position" = legend.position, - "legend.type" = legend.type, - "legend.framecolor" = legend.framecolor, - "viridis_color_map" = viridis_color_map, - "legend.tickcolor" = legend.tickcolor, - "font.type" = font.type, - "grid.color" = grid.color, - "grid.type" = grid.type, - "arrange_interactions_by" = arrange_interactions_by) - check_type(parameters = character_list, required_type = "character", test_function = is.character) - - # Check border color. - check_colors(border.color, parameter_name = "border.color") - - # Check viridis_color_map. - check_viridis_color_map(viridis_color_map = viridis_color_map) - - # Check the colors provided to legend.framecolor and legend.tickcolor. - check_colors(legend.framecolor, parameter_name = "legend.framecolor") - check_colors(legend.tickcolor, parameter_name = "legend.tickcolor") - check_colors(grid.color, parameter_name = "grid.color") - - check_parameters(parameter = font.type, parameter_name = "font.type") - check_parameters(parameter = legend.type, parameter_name = "legend.type") - check_parameters(parameter = legend.position, parameter_name = "legend.position") - check_parameters(parameter = viridis_direction, parameter_name = "viridis_direction") - check_parameters(parameter = viridis_color_map, parameter_name = "viridis_color_map") - check_parameters(parameter = grid.type, parameter_name = "grid.type") - check_parameters(parameter = rotate_x_axis_labels, parameter_name = "rotate_x_axis_labels") - check_parameters(parameter = arrange_interactions_by, parameter_name = "arrange_interactions_by") - - if (!is.null(split.by)){ - assertthat::assert_that(split.by %in% c("receptor.complex", "ligand.complex"), - msg = "Please select one of the following for split.by: ligand.complex, receptor.complex.") - } - - # Define legend parameters. Width and height values will change depending on the legend orientation. - if (legend.position %in% c("top", "bottom")){ - legend.barwidth <- legend.length - legend.barheight <- legend.width - size_title <- "Interaction specificity" - fill.title <- "Expression Magnitude" - } else if (legend.position %in% c("left", "right")){ - legend.barwidth <- legend.width - legend.barheight <- legend.length - size_title <- stringr::str_wrap("Interaction specificity", width = 10) - fill.title <- stringr::str_wrap("Expression Magnitude", width = 10) - } - - liana_output <- liana_output %>% - liana::liana_aggregate(verbose = FALSE) - - # This is to later on add missing interacting pairs. - possible_interacting_clusters <- c() - - # If we are subsetting the final plot. - if (isTRUE(add_missing_LR_combinations)){ - possible_sources <- if(is.null(keep_source)){sort(unique(liana_output$source))} else {sort(unique(liana_output$source))[sort(unique(liana_output$source)) %in% keep_source]} - possible_targets <- if(is.null(keep_target)){sort(unique(liana_output$target))} else {sort(unique(liana_output$target))[sort(unique(liana_output$target)) %in% keep_target]} - - for (source in possible_sources){ - for (target in possible_targets){ - name <- paste0(source, "_", target) - possible_interacting_clusters <- c(possible_interacting_clusters, name) - } - } - } - - liana_output <- liana_output %>% - dplyr::mutate(magnitude = .data$sca.LRscore) %>% - dplyr::mutate(specificity = .data$natmi.edge_specificity) - - # Differential arrangement of the interactions. - if (arrange_interactions_by == "aggregate_rank"){ - liana_output <- liana_output %>% - dplyr::arrange(.data$aggregate_rank) - } else if (arrange_interactions_by == "specificity"){ - liana_output <- liana_output %>% - dplyr::arrange(dplyr::desc(.data$specificity)) - } else if (arrange_interactions_by == "magnitude"){ - liana_output <- liana_output %>% - dplyr::arrange(dplyr::desc(.data$magnitude)) - } else if (arrange_interactions_by == "both"){ - liana_output <- liana_output %>% - dplyr::arrange(dplyr::desc(.data$specificity), dplyr::desc(.data$magnitude)) - } - - liana_output <- liana_output %>% - # Merge ligand.complex and receptor.complex columns into one, that will be used for the Y axis. - tidyr::unite(c("ligand.complex", "receptor.complex"), - col = "interaction", - sep = " | ", - remove = FALSE) %>% - # Merge source and target column into one, for future filtering. - tidyr::unite(c("source", "target"), - col = "interacting_clusters", - remove = FALSE) - # For Chord diagrams. - output_copy <- liana_output %>% dplyr::filter(.data$aggregate_rank <= 0.05) - - - liana_output <- liana_output %>% - # Filter based on the top X interactions of ascending sensibilities. - dplyr::inner_join(y = {liana_output %>% - dplyr::distinct_at(c("ligand.complex", "receptor.complex")) %>% - dplyr::slice_head(n = top_interactions)}, - by = c("ligand.complex", "receptor.complex")) - if (isTRUE(add_missing_LR_combinations)){ - # Fix to add missing "NA" interactions. - liana_output <- liana_output %>% - dplyr::select(dplyr::all_of(c("interacting_clusters", - "source", - "target", - "interaction", - "ligand.complex", - "receptor.complex", - "magnitude", - "specificity"))) - - # Iterate over each possible interaction and each interacting pair. - not_found_interaction_pairs <- possible_interacting_clusters[possible_interacting_clusters %!in% unique(liana_output$interacting_clusters)] - interactions <- unique(liana_output$interaction) - - # Iterate over each interaction. - for(interaction in interactions){ - ligand.complex <- stringr::str_split(interaction, pattern = " \\| ")[[1]][1] - receptor.complex <- stringr::str_split(interaction, pattern = " \\| ")[[1]][2] - # For each missing interaction pair. - for (interacting_cluster in not_found_interaction_pairs){ - source <- stringr::str_split(interacting_cluster, pattern = "_")[[1]][1] - target <- stringr::str_split(interacting_cluster, pattern = "_")[[1]][2] - - # If the interacting pair - interaction is missing, add a mock row with it. - column <- tibble::tibble("interacting_clusters" = interacting_cluster, - "source" = source, - "target" = target, - "interaction" = interaction, - "ligand.complex" = ligand.complex, - "receptor.complex" = receptor.complex, - "magnitude" = NA, - "specificity" = NA) - liana_output <- liana_output %>% dplyr::bind_rows(column) - } - } - } - - # If the user wants to trim the matrix and subset interacting entities. - if (!(is.null(keep_source))){ - liana_output <- liana_output %>% - dplyr::filter(.data$source %in% keep_source) - output_copy <- output_copy %>% - dplyr::filter(.data$source %in% keep_source) - } - - if (!(is.null(keep_target))){ - liana_output <- liana_output %>% - dplyr::filter(.data$target %in% keep_target) - output_copy <- output_copy %>% - dplyr::filter(.data$target %in% keep_target) - } - - # Make source and target factors, so that they do not get dropped by the plot. - if (isTRUE(sort_interactions_alphabetically)){ - liana_output$source <- factor(liana_output$source, levels = sort(unique(liana_output$source))) - liana_output$target <- factor(liana_output$target, levels = sort(unique(liana_output$target))) - liana_output$interaction <- factor(liana_output$interaction, levels = rev(sort(unique(liana_output$interaction)))) - } else if (isFALSE(sort_interactions_alphabetically)){ - liana_output$source <- factor(liana_output$source, levels = sort(unique(liana_output$source))) - liana_output$target <- factor(liana_output$target, levels = sort(unique(liana_output$target))) - liana_output$interaction <- factor(liana_output$interaction, levels = rev(unique(liana_output$interaction))) - } - - - # Plot. - if (isTRUE(flip)){ - if (isTRUE(dot_border)){ - p <- liana_output %>% - ggplot2::ggplot(mapping = ggplot2::aes(x = .data$interaction, - y = .data$target, - fill = .data$magnitude, - size = .data$specificity, - group = .data$interacting_clusters)) + - ggplot2::geom_point(shape = 21, - na.rm = TRUE) - } else if (isFALSE(dot_border)) { - p <- liana_output %>% - ggplot2::ggplot(mapping = ggplot2::aes(x = .data$interaction, - y = .data$target, - size = .data$specificity, - group = .data$interacting_clusters)) + - ggplot2::geom_point(mapping = ggplot2::aes(color = .data$magnitude), - shape = 19, - na.rm = TRUE) - } - } else if (isFALSE(flip)){ - if (isTRUE(dot_border)){ - p <- liana_output %>% - ggplot2::ggplot(mapping = ggplot2::aes(x = .data$target, - y = .data$interaction, - fill = .data$magnitude, - size = .data$specificity, - group = .data$interacting_clusters)) + - ggplot2::geom_point(shape = 21, - na.rm = TRUE) - } else if (isFALSE(dot_border)){ - p <- liana_output %>% - ggplot2::ggplot(mapping = ggplot2::aes(x = .data$target, - y = .data$interaction, - size = .data$specificity, - group = .data$interacting_clusters)) + - ggplot2::geom_point(mapping = ggplot2::aes(color = .data$magnitude), - shape = 19, - na.rm = TRUE) - } - } - p <- p + - ggplot2::scale_size_continuous(name = size_title, - range = c(1 * dot.size, 5 * dot.size)) - # Settings for bordered dots. - if (isTRUE(dot_border)){ - # Add color to aesthetics. - p$layers[[1]]$aes_params$color <- border.color - p <- p + - ggplot2::scale_fill_viridis_c(option = viridis_color_map, - name = fill.title, - direction = viridis_direction, - na.value = NA) - } else { - p <- p + - ggplot2::scale_color_viridis_c(option = viridis_color_map, - name = fill.title, - direction = viridis_direction, - na.value = NA) - } - # Continue plotting. - if (isFALSE(flip)){ - if (isTRUE(rotate_strip_text)){ - strip_text_angle <- 90 - } else { - strip_text_angle <- 0 - } - if (is.null(split.by)){ - p <- p + - ggplot2::facet_grid(. ~ .data$source, - space = "free", - scales = "free", - drop = FALSE) - } else if (split.by == "ligand.complex"){ - p <- p + - ggplot2::facet_grid(.data$ligand.complex ~ .data$source, - space = "free", - scales = "free", - drop = FALSE) - } else if (split.by == "receptor.complex"){ - p <- p + - ggplot2::facet_grid(.data$receptor.complex ~ .data$source, - space = "free", - scales = "free", - drop = FALSE) - } - } else if (isTRUE(flip)) { - if (isTRUE(rotate_strip_text)){ - strip_text_angle <- 0 - } else { - strip_text_angle <- 270 - } - if (is.null(split.by)){ - p <- p + - ggplot2::facet_grid(.data$source ~ ., - space = "free", - scales = "free", - drop = FALSE) - } else if (split.by == "ligand.complex"){ - p <- p + - ggplot2::facet_grid(.data$source ~ .data$ligand.complex, - space = "free", - scales = "free", - drop = FALSE) - } else if (split.by == "receptor.complex"){ - p <- p + - ggplot2::facet_grid(.data$source ~ .data$receptor.complex, - space = "free", - scales = "free", - drop = FALSE) - } - } - - - - p <- p + - ggplot2::labs(title = "Source") + - ggplot2::xlab(if (isTRUE(flip)){paste("Ligand", "|", "Receptor", sep = " ")} else if (isFALSE(flip)){"Target"}) + - ggplot2::ylab(if (isFALSE(flip)){paste("Ligand", "|", "Receptor", sep = " ")} else if (isTRUE(flip)){"Target"}) + - ggplot2::guides(size = ggplot2::guide_legend(title.position = "top", - title.hjust = 0.5, - override.aes = ggplot2::aes(fill = "black"))) + - ggplot2::theme_minimal(base_size = font.size) + - ggplot2::theme(plot.title = ggplot2::element_text(face = "bold", - hjust = if (isFALSE(flip)){0.5} else {1}, - vjust = 0, - size = font.size), - plot.subtitle = ggplot2::element_text(hjust = 0), - plot.caption = ggplot2::element_text(hjust = 1), - plot.title.position = if (isFALSE(flip)){"panel"} else {"plot"}, - plot.caption.position = "plot", - text = ggplot2::element_text(family = font.type), - legend.justification = "center", - legend.text = ggplot2::element_text(face = "bold"), - legend.title = ggplot2::element_text(face = "bold"), - legend.position = legend.position, - axis.title.x = ggplot2::element_text(face = "bold", hjust = 0.5), - axis.title.y = ggplot2::element_text(face = "bold", angle = 90), - axis.text.y = ggplot2::element_text(face = "bold"), - axis.text = ggplot2::element_text(face = "bold", color = "black"), - axis.ticks = ggplot2::element_line(color = "black"), - axis.text.x = ggplot2::element_text(color = "black", - face = "bold", - angle = get_axis_parameters(angle = rotate_x_axis_labels, flip = flip)[["angle"]], - hjust = get_axis_parameters(angle = rotate_x_axis_labels, flip = flip)[["hjust"]], - vjust = get_axis_parameters(angle = rotate_x_axis_labels, flip = flip)[["vjust"]]), - strip.text.x = if (isFALSE(flip)) {ggplot2::element_text(face = "bold", - angle = strip_text_angle)} - else {ggplot2::element_blank()}, - strip.text.y = if (isFALSE(flip)) {ggplot2::element_blank()} - else {ggplot2::element_text(face = "bold", - angle = strip_text_angle)}, - panel.border = ggplot2::element_rect(color = "black", fill = NA), - panel.grid = if (isTRUE(plot.grid)){ggplot2::element_line(color = grid.color, linetype = grid.type)} else {ggplot2::element_blank()}, - plot.margin = ggplot2::margin(t = 10, r = 10, b = 10, l = 10), - plot.background = ggplot2::element_rect(fill = "white", color = "white"), - panel.background = ggplot2::element_rect(fill = "white", color = "black", linetype = "solid"), - legend.background = ggplot2::element_rect(fill = "white", color = "white")) - - # Adjust for the type of legend and whether it is fill or color. - p <- modify_continuous_legend(p = p, - legend.aes = ifelse(isTRUE(dot_border), "fill", "color"), - legend.type = legend.type, - legend.position = legend.position, - legend.length = legend.length, - legend.width = legend.width, - legend.framecolor = legend.framecolor, - legend.tickcolor = legend.tickcolor, - legend.framewidth = legend.framewidth, - legend.tickwidth = legend.tickwidth) - - if (isTRUE(compute_ChordDiagrams)){ - data <- output_copy %>% - dplyr::select(dplyr::all_of(c("source", "target"))) %>% - dplyr::group_by(.data$target, .data$source) %>% - dplyr::summarise(value = dplyr::n()) %>% - dplyr::rename("from" = "source", - "to" = "target") %>% - dplyr::select(dplyr::all_of(c("from", "to", "value"))) - p.source_target <- SCpubr::do_ChordDiagramPlot(from_df = TRUE, df = data, link.border.color = "black", z_index = TRUE) - - data <- liana_output %>% - dplyr::filter(!(is.na(.data$magnitude))) %>% - dplyr::select(dplyr::all_of(c("ligand.complex", "receptor.complex"))) %>% - dplyr::group_by(.data$ligand.complex, .data$receptor.complex) %>% - dplyr::summarise(value = dplyr::n()) %>% - dplyr::rename("from" = "ligand.complex", - "to" = "receptor.complex") %>% - dplyr::select(dplyr::all_of(c("from", "to", "value"))) - p.ligand_receptor <- SCpubr::do_ChordDiagramPlot(from_df = TRUE, df = data, link.border.color = "black", z_index = TRUE) - return(list("dotplot" = p, - "chord_total_interactions" = p.source_target, - "chord_ligand_receptor" = p.ligand_receptor)) - } else { - return(p) - } - -} - - diff --git a/R/do_SankeyPlot.R b/R/do_SankeyPlot.R deleted file mode 100644 index fe1d58a..0000000 --- a/R/do_SankeyPlot.R +++ /dev/null @@ -1,281 +0,0 @@ - -#' Do Sankey or Alluvial plots. -#' -#' @inheritParams doc_function -#' @param first_group \strong{\code{\link[base]{character}}} | Categorical metadata variable. First group of nodes of the sankey plot. -#' @param last_group \strong{\code{\link[base]{character}}} | Categorical metadata variable. Last group of nodes of the sankey plot. -#' @param middle_groups \strong{\code{\link[base]{character}}} | Categorical metadata variable. Vector of groups of nodes of the sankey plot. -#' @param type \strong{\code{\link[base]{character}}} | Type of plot to make. One of: -#' \itemize{ -#' \item \emph{\code{sankey}}: Generates a sankey plot. -#' \item \emph{\code{alluvial}}: Generated an Alluvial plot, a kind of sankey plot where all groups have the same height. -#' } -#' @param width \strong{\code{\link[base]{numeric}}} | Width of the nodes. -#' @param space \strong{\code{\link[base]{numeric}}} | Vertical space between the nodes. It appears to be equal to a single cell. Use big numbers to see a difference (like, 1000 or 10000). -#' @param position \strong{\code{\link[base]{character}}} | GGplot2 position. -#' @param node.fill \strong{\code{\link[base]{character}}} | Color to fill the nodes. -#' @param node.color \strong{\code{\link[base]{character}}} | Color for the contour of the nodes. -#' @param flow.alpha \strong{\code{\link[base]{character}}} | Alpha of the connections. -#' @param flow.color \strong{\code{\link[base]{character}}} | Color for the contour of the connections. -#' @param text_size \strong{\code{\link[base]{numeric}}} | Size of the labels. -#' @param text_color \strong{\code{\link[base]{character}}} | Color of the labels. -#' @param smooth \strong{\code{\link[base]{numeric}}} | How smooth the connections are. -#' @param colors.first,colors.middle,colors.last \strong{\code{\link[base]{character}}} | Named vector of colors equal to ALL unique values in first_group, middle_groups, or last_group. -#' @param use_labels \strong{\code{\link[base]{logical}}} | Whether to use labels or text for the node names. -#' @param hjust \strong{\code{\link[base]{numeric}}} | General hjust for the labels. -#' -#' @return A ggplot2 object. -#' @export -#' -#' @example /man/examples/examples_do_SankeyPlot.R -do_SankeyPlot <- function(sample, - first_group, - last_group, - type = "sankey", - middle_groups = NULL, - width = 0.1, - space = ifelse(type == "sankey", 0.05 * ncol(sample), 0), - position = "identity", - node.fill = "white", - node.color = "white", - flow.alpha = 0.75, - flow.color = "black", - text_size = 3, - text_color = "black", - font.size = 14, - font.type = "sans", - smooth = 8, - use_labels = FALSE, - hjust = NULL, - colors.first = NULL, - colors.middle = NULL, - colors.last = NULL, - plot.title = NULL, - plot.subtitle = NULL, - plot.caption = NULL){ - - # Checks for packages. - check_suggests(function_name = "do_SankeyPlot") - # Check if the sample provided is a Seurat object. - check_Seurat(sample = sample) - - # Check logical parameters. - logical_list <- list("use_labels" = use_labels) - check_type(parameters = logical_list, required_type = "logical", test_function = is.logical) - # Check numeric parameters. - numeric_list <- list("width" = width, - "space" = space, - "flow.alpha" = flow.alpha, - "text_size" = text_size, - "font.size" = font.size, - "smooth" = smooth, - "hjust" = hjust) - check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric) - # Check character parameters. - - character_list <- list("first_group" = first_group, - "last_group" = last_group, - "middle_groups" = middle_groups, - "type" = type, - "position" = position, - "node.color" = node.color, - "flow.color" = flow.color, - "text_color" = text_color, - "font.type" = font.type, - "colors.first" = colors.first, - "colors.middle" = colors.middle, - "colors.last" = colors.last, - "node.fill" = node.fill, - "plot.title" = plot.title, - "plot.subtitle" = plot.subtitle, - "plot.caption" = plot.caption) - # Checks - check_type(parameters = character_list, required_type = "character", test_function = is.character) - - check_colors(node.color, parameter_name = "node.color") - check_colors(flow.color, parameter_name = "flow.color") - check_colors(text_color, parameter_name = "text_color") - - check_parameters(parameter = font.type, parameter_name = "font.type") - - # Wrong type. - assertthat::assert_that(type %in% c("alluvial", "sankey"), - msg = "Please provide either sankey or alluvial to type.") - - # Wrong position. - assertthat::assert_that(position %in% c("identity", "nudge"), - msg = "This position type has not been tested.") - - # Not a metadata column. - assertthat::assert_that(first_group %in% colnames(sample@meta.data), - msg = "The metadata variable for first_group is not in the metadata of the object.") - - assertthat::assert_that(class(sample@meta.data[, first_group]) %in% c("character", "factor"), - msg = "The metadata variable for first_group has to be either a character vector or a factor.") - - assertthat::assert_that(last_group %in% colnames(sample@meta.data), - msg = "The metadata variable for last_group is not in the metadata of the object.") - - assertthat::assert_that(class(sample@meta.data[, last_group]) %in% c("character", "factor"), - msg = "The metadata variable for last_group has to be either a character vector or a factor.") - - - for (var in middle_groups){ - assertthat::assert_that(var %in% colnames(sample@meta.data), - msg = "The metadata variable for middle_groups is not in the metadata of the object.") - - assertthat::assert_that(class(sample@meta.data[, var]) %in% c("character", "factor"), - msg = "The metadata variable for middle_groups has to be either a character vector or a factor.") - } - - - `%>%` <- magrittr::`%>%` - - data <- suppressWarnings({sample@meta.data %>% - dplyr::select(dplyr::all_of(c(first_group, middle_groups, last_group))) %>% - tibble::rownames_to_column(var = "cell") %>% - dplyr::select(-.data$cell) %>% - ggsankey::make_long(dplyr::all_of(c(first_group, middle_groups, last_group))) %>% - dplyr::rowwise() %>% - dplyr::mutate(hjust = if(.data$x %in% middle_groups){0.5} - else if (.data$x == last_group){0} - else if (.data$x == first_group){1})}) - if (!is.null(hjust)){data$hjust <- hjust} - - if (!(is.null(colors.first))){ - check_colors(colors.first, parameter_name = "colors.first") - if (sum(names(colors.first) %!in% unique(sample@meta.data[, first_group])) > 0){ - stop("Not all colors provided for the first group match the unique values for first_group.", call. = FALSE) - } - - if (length(colors.first) != length(unique(sample@meta.data[, first_group]))){ - stop("The colors provided for the first group do not match the number of unique nodes.", call. = FALSE) - } - } else { - colors.first <- viridis::viridis(n = length(unique(sample@meta.data[, first_group])), option = "G") - if (is.factor(sample@meta.data[, first_group])){ - names(colors.first) <- levels(sample@meta.data[, first_group]) - } else { - names(colors.first) <- sort(unique(sample@meta.data[, first_group])) - } - } - - if (!(is.null(colors.last))){ - check_colors(colors.last, parameter_name = "colors.last") - if (sum(names(colors.last) %!in% unique(sample@meta.data[, last_group])) > 0){ - stop("Not all colors provided for the last group match the unique values for last_group", call. = FALSE) - } - - if (length(colors.last) != length(unique(sample@meta.data[, last_group]))){ - stop("The colors provided for the last group do not match the number of unique nodes.", call. = FALSE) - } - } else{ - colors.last <- viridis::viridis(n = length(unique(sample@meta.data[, last_group])), option = "D") - if (is.factor(sample@meta.data[, last_group])){ - names(colors.last) <- levels(sample@meta.data[, last_group]) - } else { - names(colors.last) <- sort(unique(sample@meta.data[, last_group])) - } - } - - if (!(is.null(colors.middle))){ - check_colors(colors.middle, parameter_name = "colors.middle") - - unique_middle_values <- c() - for(var in middle_groups){ - if (is.factor(sample@meta.data[, var])){ - unique_middle_values <- c(unique_middle_values, levels(sample@meta.data[, var])) - } else { - unique_middle_values <- c(unique_middle_values, sort(unique(sample@meta.data[, var]))) - } - } - - if (sum(names(colors.middle) %!in% unique_middle_values) > 0){ - stop("Not all colors provided for the middle groups match the unique values for middle_groups", call. = FALSE) - } - - if (length(colors.middle) != length(unique_middle_values)){ - stop("The colors provided for the middle groups do not match the number of unique nodes.", call. = FALSE) - } - } else { - unique_middle_values <- c() - for(var in middle_groups){ - if (is.factor(sample@meta.data[, var])){ - unique_middle_values <- c(unique_middle_values, levels(sample@meta.data[, var])) - } else { - unique_middle_values <- c(unique_middle_values, sort(unique(sample@meta.data[, var]))) - } - } - - colors.middle <- viridis::viridis(n = length(unique_middle_values), option = "C") - names(colors.middle) <- unique_middle_values - } - - colors.use <- c(colors.first, colors.middle, colors.last) - func_use <- ifelse(isTRUE(use_labels), ggsankey::geom_sankey_label, ggsankey::geom_sankey_text) - - p <- data %>% - - ggplot2::ggplot(mapping = ggplot2::aes(x = .data$x, - next_x = .data$next_x, - node = .data$node, - next_node = .data$next_node, - fill = factor(.data$node), - label = .data$node, - hjust = .data$hjust)) + - ggsankey::geom_sankey(flow.alpha = flow.alpha, - node.color = node.color, - node.fill = node.fill, - color = flow.color, - width = width, - position = position, - type = type, - space = space) + - func_use(size = text_size, - color = text_color, - fontface = "bold", - position = position, - type = type, - space = space) + - ggplot2::scale_fill_manual(values = colors.use) + - ggplot2::xlab("") + - ggplot2::ylab("") + - ggplot2::labs(title = plot.title, - subtitle = plot.subtitle, - caption = plot.caption) + - ggplot2::theme_minimal(base_size = font.size) + - ggplot2::theme(axis.title = ggplot2::element_text(color = "black", - face = "bold"), - axis.line.x = ggplot2::element_blank(), - axis.text.x = ggplot2::element_text(color = "black", - face = "bold", - angle = 0, - hjust = 0.5, - vjust = 1), - axis.text.x.top = ggplot2::element_text(color = "black", - face = "bold", - angle = 0, - hjust = 0.5, - vjust = 1), - axis.text.y = ggplot2::element_blank(), - axis.ticks = ggplot2::element_blank(), - panel.grid.major = ggplot2::element_blank(), - plot.title.position = "plot", - plot.title = ggplot2::element_text(face = "bold", hjust = 0), - plot.subtitle = ggplot2::element_text(hjust = 0), - plot.caption = ggplot2::element_text(hjust = 1), - panel.grid = ggplot2::element_blank(), - text = ggplot2::element_text(family = font.type), - plot.caption.position = "plot", - legend.text = ggplot2::element_text(face = "bold"), - legend.position = "none", - legend.title = ggplot2::element_text(face = "bold"), - legend.justification = "center", - plot.margin = ggplot2::margin(t = 10, r = 10, b = 10, l = 10), - plot.background = ggplot2::element_rect(fill = "white", color = "white"), - panel.background = ggplot2::element_rect(fill = "white", color = "white"), - legend.background = ggplot2::element_rect(fill = "white", color = "white"), - strip.text =ggplot2::element_text(color = "black", face = "bold")) - - return(p) -} diff --git a/R/save_Plot.R b/R/save_Plot.R deleted file mode 100644 index ac4965b..0000000 --- a/R/save_Plot.R +++ /dev/null @@ -1,203 +0,0 @@ -#' Save a plot as png, pdf and svg. -#' -#' -#' @param plot Plot to save. -#' @param figure_path \strong{\code{\link[base]{character}}} | Path where the figure will be stored. -#' @param create_path \strong{\code{\link[base]{logical}}} | Whether to create the path. -#' @param file_name \strong{\code{\link[base]{character}}} | Name of the file (without extension, it will be added automatically). -#' @param output_format \strong{\code{\link[base]{character}}} | Output format of the saved figure. One of: -#' \itemize{ -#' \item \emph{\code{pdf}}: Saves the figure as a PDF file. -#' \item \emph{\code{png}}: Saves the figure as a PNG file. -#' \item \emph{\code{jpeg}}: Saves the figure as a JPEG file. -#' \item \emph{\code{tiff}}: Saves the figure as a TIFF file. -#' \item \emph{\code{svg}}: Saves the figure as a SVG file. -#' \item \emph{\code{publication}}: Saves the figure as PDF, PNG and SVG files. -#' \item \emph{\code{all}}: Saves the figure in all possible formats. -#' } -#' @param dpi \strong{\code{\link[base]{numeric}}} | Dpi to use. -#' @param width,height \strong{\code{\link[base]{numeric}}} | Width and height of the figure (inches). -#' -#' @return Nothing. -#' @export -#' -#' @example /man/examples/examples_save_Plot.R -save_Plot <- function(plot, - figure_path = NULL, - create_path = TRUE, - file_name = NULL, - dpi = 300, - output_format = "publication", - width = 8, - height = 8){ - # nocov start - - # Checks for packages. - check_suggests(function_name = "save_Plot") - - # Check logical parameters. - logical_list <- list("create_path" = create_path) - check_type(parameters = logical_list, required_type = "logical", test_function = is.logical) - # Check numeric parameters. - numeric_list <- list("dpi" = dpi, - "width" = width, - "height" = height) - check_type(parameters = numeric_list, required_type = "numeric", test_function = is.numeric) - # Check character parameters. - character_list <- list("figure_path" = figure_path, - "file_name" = file_name) - check_type(parameters = character_list, required_type = "character", test_function = is.character) - - # Null file name? - if (is.null(file_name)){file_name <- "output_figure"} - # Null figure path? - if (is.null(figure_path)){figure_path <- paste0(".", .Platform$file.sep)} - - # Create directory. - if (!(dir.exists(figure_path))){ - if (isTRUE(create_path)){dir.create(figure_path, recursive = TRUE)} - } - - - - - # Handle devices: - output_options <- c("all", "publication", "pdf", "png", "jpeg", "svg", "tiff") - - assertthat::assert_that(sum(output_format %in% output_options) >= 1, - msg = "Please select a valid output format from the available options: all, publication, pdf, png, jpeg, svg, tiff") - - assertthat::assert_that(isFALSE("all" %in% output_format & "publication" %in% output_format), - msg = "Please select either `all` or `publication`.") - - if (output_format == "publication"){ - devices_use <- c("pdf", "png", "svg") - } else if (output_format == "all"){ - devices_use <- c("pdf", "png", "jpeg", "svg", "tiff") - } else { - options <- c("pdf", "png", "jpeg", "svg", "tiff") - devices_use <- output_format[output_format %in% options] - } - - # is ggplot? - - if (sum(class(plot) %in% c("ggplot")) >= 1){ - # Having width = NULL and height = NULL will make the ggsave() function crash. - for (device in devices_use){ - suppressMessages({ - ggplot2::ggsave(filename = sprintf("%s.%s", file_name, device), - plot = plot, - path = figure_path, - dpi = dpi, - width = width, - height = height, - device = device) - }) - } - # Is it a heatmap? - } else if (sum(class(plot) %in% c("HeatmapList", "ComplexHeatmap")) >= 1) { - suppressMessages({ - filename <- paste0(figure_path, "/", file_name) - if ("png" %in% devices_use){ - grDevices::png(filename = paste0(filename, ".png"), units = "in", height = height, width = width, res = dpi) - ComplexHeatmap::draw(plot, show_heatmap_legend = TRUE, padding = ggplot2::unit(c(20, 20, 2, 20), "mm")) - grDevices::dev.off() - } - - if ("pdf" %in% devices_use){ - grDevices::pdf(file = paste0(filename, ".pdf"), height = height, width = width) - ComplexHeatmap::draw(plot, show_heatmap_legend = TRUE, padding = ggplot2::unit(c(20, 20, 2, 20), "mm")) - grDevices::dev.off() - } - - if ("jpeg" %in% devices_use){ - grDevices::jpeg(file = paste0(filename, ".jpeg"), units = "in", height = height, width = width, res = dpi) - ComplexHeatmap::draw(plot, show_heatmap_legend = TRUE, padding = ggplot2::unit(c(20, 20, 2, 20), "mm")) - grDevices::dev.off() - } - - if ("tiff" %in% devices_use){ - grDevices::jpeg(file = paste0(filename, ".tiff"), units = "in", height = height, width = width, res = dpi) - ComplexHeatmap::draw(plot, show_heatmap_legend = TRUE, padding = ggplot2::unit(c(20, 20, 2, 20), "mm")) - grDevices::dev.off() - } - - if ("svg" %in% devices_use){ - svglite::svglite(filename = paste0(filename, ".svg"), height = height, width = width) - ComplexHeatmap::draw(plot, show_heatmap_legend = TRUE, padding = ggplot2::unit(c(20, 20, 2, 20), "mm")) - grDevices::dev.off() - } - - }) - - } else if (sum(class(plot) %in% c("pheatmap")) >= 1){ - suppressMessages({ - filename <- paste0(figure_path, "/", file_name) - if ("png" %in% devices_use){ - grDevices::png(filename = paste0(filename, ".png"), units = "in", height = height, width = width, res = dpi) - print(plot) - grDevices::dev.off() - - } - - if ("pdf" %in% devices_use){ - grDevices::pdf(file = paste0(filename, ".pdf"), height = height, width = width) - print(plot) - grDevices::dev.off() - } - - if ("jpeg" %in% devices_use){ - grDevices::jpeg(file = paste0(filename, ".jpeg"), units = "in", height = height, width = width, res = dpi) - print(plot) - grDevices::dev.off() - } - - if ("tiff" %in% devices_use){ - grDevices::jpeg(file = paste0(filename, ".tiff"), units = "in", height = height, width = width, res = dpi) - print(plot) - grDevices::dev.off() - } - - if ("svg" %in% devices_use){ - svglite::svglite(filename = paste0(filename, ".svg"), height = height, width = width) - print(plot) - grDevices::dev.off() - } - }) - } else if (sum(class(plot) %in% c("recordedplot")) >= 1){ - suppressMessages({ - filename <- paste0(figure_path, "/", file_name) - if ("png" %in% devices_use){ - grDevices::png(filename = paste0(filename, ".png"), units = "in", height = height, width = width, res = dpi) - grDevices::replayPlot(plot) - grDevices::dev.off() - - } - - if ("pdf" %in% devices_use){ - grDevices::pdf(file = paste0(filename, ".pdf"), height = height, width = width) - grDevices::replayPlot(plot) - grDevices::dev.off() - } - - if ("jpeg" %in% devices_use){ - grDevices::jpeg(file = paste0(filename, ".jpeg"), units = "in", height = height, width = width, res = dpi) - grDevices::replayPlot(plot) - grDevices::dev.off() - } - - if ("tiff" %in% devices_use){ - grDevices::jpeg(file = paste0(filename, ".tiff"), units = "in", height = height, width = width, res = dpi) - grDevices::replayPlot(plot) - grDevices::dev.off() - } - - if ("svg" %in% devices_use){ - svglite::svglite(filename = paste0(filename, ".svg"), height = height, width = width) - grDevices::replayPlot(plot) - grDevices::dev.off() - } - }) - } - # nocov end -} diff --git a/R/utils.R b/R/utils.R index dfcd045..f05fbd0 100644 --- a/R/utils.R +++ b/R/utils.R @@ -288,10 +288,11 @@ check_suggests <- function(function_name, passive = FALSE){ "grDevices", "stats", "viridis", + "forcats", "scales", "grid", "assertthat"), - "do_AlluvialPlot" = c("ggalluvial", "ggrepel"), + "do_AlluvialPlot" = c("ggalluvial"), "do_AzimuthAnalysisPlot" = c(), "do_BarPlot" = c("colorspace", "ggrepel"), "do_BeeSwarmPlot" = c("colorspace", "ggbeeswarm", "ggrastr"), @@ -306,9 +307,9 @@ check_suggests <- function(function_name, passive = FALSE){ "do_EnrichmentHeatmap" = c("ComplexHeatmap", "circlize"), "do_ExpressionHeatmap" = c("ComplexHeatmap", "circlize"), "do_FeaturePlot" = c("scattermore"), - "do_FunctionalAnnotationPlot" = c("clusterProfiler", "enrichplot", "ggnewscale"), + "do_FunctionalAnnotationPlot" = c("clusterProfiler", "enrichplot", "ggnewscale", "AnnotationDbi"), "do_GeyserPlot" = c("ggdist"), - "do_GroupedGOTermPlot" = c("clusterProfiler"), + "do_GroupedGOTermPlot" = c("clusterProfiler", "AnnotationDbi"), "do_GroupwiseDEPlot" = c("ComplexHeatmap"), "do_LigandReceptorPlot" = c("liana"), "do_NebulosaPlot" = c("Nebulosa"), @@ -399,9 +400,9 @@ state_dependencies <- function(function_name = NULL, return_dependencies = FALSE "do_EnrichmentHeatmap" = c("ComplexHeatmap", "circlize"), "do_ExpressionHeatmap" = c("ComplexHeatmap", "circlize"), "do_FeaturePlot" = c("scattermore"), - "do_FunctionalAnnotationPlot" = c("clusterProfiler", "enrichplot", "ggnewscale"), + "do_FunctionalAnnotationPlot" = c("clusterProfiler", "enrichplot", "ggnewscale", "AnnotationDbi"), "do_GeyserPlot" = c("ggdist"), - "do_GroupedGOTermPlot" = c("clusterProfiler"), + "do_GroupedGOTermPlot" = c("clusterProfiler", "AnnotationDbi"), "do_GroupwiseDEPlot" = c("ComplexHeatmap"), "do_LigandReceptorPlot" = c("liana"), "do_NebulosaPlot" = c("Nebulosa"), diff --git a/cran-comments.md b/cran-comments.md index d7ab618..5db4b4e 100644 --- a/cran-comments.md +++ b/cran-comments.md @@ -1,10 +1,13 @@ +# Resubmission version 1.1.1 +Fixed the conditional use of AnnotationDbi package. If it still does not work properly, I would really appreciate some further input on how to solve it. Thanks! + # Submission version 1.1.1 Hotfixes to unit tests to comply with CRAN internal testings. It was asked to be corrected before 25-01-2023. -## R CMD check results +## `devtools` R CMD check results There were no ERRORs, WARNINGs or NOTEs. -## R CMD check results `_R_CHECK_DEPENDS_ONLY_` = TRUE +## `devtools` R CMD check results `_R_CHECK_DEPENDS_ONLY_` = TRUE There were no ERRORs, WARNINGs or NOTEs. ## Downstream dependencies diff --git a/man/do_LigandReceptorPlot.Rd b/man/do_LigandReceptorPlot.Rd deleted file mode 100644 index f5e8d04..0000000 --- a/man/do_LigandReceptorPlot.Rd +++ /dev/null @@ -1,150 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/do_LigandReceptorPlot.R -\name{do_LigandReceptorPlot} -\alias{do_LigandReceptorPlot} -\title{Visualize Ligand-Receptor analysis output.} -\usage{ -do_LigandReceptorPlot( - liana_output, - split.by = NULL, - keep_source = NULL, - keep_target = NULL, - top_interactions = 25, - dot_border = TRUE, - border.color = "black", - rotate_x_axis_labels = 45, - rotate_strip_text = FALSE, - legend.position = "bottom", - legend.type = "colorbar", - legend.length = 20, - legend.width = 1, - legend.framecolor = "grey50", - legend.tickcolor = "white", - legend.framewidth = 0.5, - legend.tickwidth = 0.5, - viridis_color_map = "G", - viridis_direction = 1, - font.size = 14, - dot.size = 1, - font.type = "sans", - flip = FALSE, - plot.grid = TRUE, - grid.color = "grey90", - grid.type = "dotted", - compute_ChordDiagrams = FALSE, - add_missing_LR_combinations = TRUE, - arrange_interactions_by = "both", - sort_interactions_alphabetically = FALSE -) -} -\arguments{ -\item{liana_output}{\strong{\code{\link[tibble]{tibble}}} | Object resulting from running \link[liana]{liana_wrap}.} - -\item{split.by}{\strong{\code{\link[base]{character}}} | Whether to further facet the plot on the y axis by common ligand.complex or receptor.complex. Values to provide: NULL, ligand.complex, receptor.complex.} - -\item{keep_source, keep_target}{\strong{\code{\link[base]{character}}} | Identities to keep for the source/target of the interactions. NULL otherwise.} - -\item{top_interactions}{\strong{\code{\link[base]{numeric}}} | Number of unique interactions to retrieve ordered by magnitude and specificity. It does not necessarily mean that the output will contain as many, but rather an approximate value.} - -\item{dot_border}{\strong{\code{\link[base]{logical}}} | Whether to draw a black border in the dots.} - -\item{border.color}{\strong{\code{\link[base]{character}}} | Color to use for the border of the cells.} - -\item{rotate_x_axis_labels}{\strong{\code{\link[base]{numeric}}} | Degree to rotate the X labels. One of: 0, 45, 90.} - -\item{rotate_strip_text}{\strong{\code{\link[base]{logical}}} | Whether the text in the strips should be flipped 90 degrees.} - -\item{legend.position}{\strong{\code{\link[base]{character}}} | Position of the legend in the plot. One of: -\itemize{ -\item \emph{\code{top}}: Top of the figure. -\item \emph{\code{bottom}}: Bottom of the figure. -\item \emph{\code{left}}: Left of the figure. -\item \emph{\code{right}}: Right of the figure. -\item \emph{\code{none}}: No legend is displayed. -}} - -\item{legend.type}{\strong{\code{\link[base]{character}}} | Type of legend to display. One of: -\itemize{ -\item \emph{\code{normal}}: Default legend displayed by \pkg{ggplot2}. -\item \emph{\code{colorbar}}: Redefined colorbar legend, using \link[ggplot2]{guide_colorbar}. -\item \emph{\code{colorsteps}}: Redefined legend with colors going by range, in steps, using \link[ggplot2]{guide_colorsteps}. -}} - -\item{legend.length, legend.width}{\strong{\code{\link[base]{numeric}}} | Length and width of the legend. Will adjust automatically depending on legend side.} - -\item{legend.framecolor}{\strong{\code{\link[base]{character}}} | Color of the lines of the box in the legend.} - -\item{legend.tickcolor}{\strong{\code{\link[base]{character}}} | Color of the ticks of the box in the legend.} - -\item{legend.framewidth, legend.tickwidth}{\strong{\code{\link[base]{numeric}}} | Width of the lines of the box in the legend.} - -\item{viridis_color_map}{\strong{\code{\link[base]{character}}} | A capital letter from A to H or the scale name as in \link[viridis]{scale_fill_viridis}.} - -\item{viridis_direction}{\strong{\code{\link[base]{numeric}}} | Either 1 or -1. Controls how the gradient of viridis scale is formed.} - -\item{font.size}{\strong{\code{\link[base]{numeric}}} | Overall font size of the plot. All plot elements will have a size relationship with this font size.} - -\item{dot.size}{\strong{\code{\link[base]{numeric}}} | Size aesthetic for the dots.} - -\item{font.type}{\strong{\code{\link[base]{character}}} | Base font family for the plot. One of: -\itemize{ -\item \emph{\code{mono}}: Mono spaced font. -\item \emph{\code{serif}}: Serif font family. -\item \emph{\code{sans}}: Default font family. -}} - -\item{flip}{\strong{\code{\link[base]{logical}}} | Whether to invert the axis of the displayed plot.} - -\item{plot.grid}{\strong{\code{\link[base]{logical}}} | Whether to plot grid lines.} - -\item{grid.color}{\strong{\code{\link[base]{character}}} | Color of the grid in the panels.} - -\item{grid.type}{\strong{\code{\link[base]{character}}} | One of the possible linetype options: -\itemize{ -\item \emph{\code{blank}}. -\item \emph{\code{solid}}. -\item \emph{\code{dashed}}. -\item \emph{\code{dotted}}. -\item \emph{\code{dotdash}}. -\item \emph{\code{longdash}}. -\item \emph{\code{twodash}}. -}} - -\item{compute_ChordDiagrams}{\strong{\code{\link[base]{logical}}} | Whether to also compute Chord Diagrams for both the number of interactions between source and target but also between ligand.complex and receptor.complex.} - -\item{add_missing_LR_combinations}{\strong{\code{\link[base]{logical}}} | Depending on the value provided to \strong{\code{top_interactions}}, there might be some source-target combinations missing. If set to TRUE, those combinations will be brought back to the plot as NA values.} - -\item{arrange_interactions_by}{\strong{\code{\link[base]{character}}} | Select the method in which the output matrix of interactions is arranged for plotting. One of: -\itemize{ -\item \emph{\code{aggregate_rank}}: Uses the output matrix of \strong{\code{\link[liana]{liana_aggregate}}}. Interactions are ordered based on \strong{\code{aggregate_rank}}. -\item \emph{\code{specificity}}: Uses the \strong{\code{natmi.edge_specificity}} column to arrange the interactions by their specificity. -\item \emph{\code{magnitude}}: Uses the \strong{\code{sca.LRscore}} column to arrange the interactions by their specificity. -\item \emph{\code{both}}: Uses both \strong{\code{sca.LRscore}} and \strong{\code{natmi.edge_specificity}} columns to arrange the interactions by their specificity and magnitude altogether. -}} - -\item{sort_interactions_alphabetically}{\strong{\code{\link[base]{logical}}} | Sort the interactions to be plotted alphabetically (\strong{\code{TRUE}}) or keep them in their original order in the matrix (\strong{\code{FALSE}}).} -} -\value{ -A ggplot2 plot with the results of the Ligand-Receptor analysis. -} -\description{ -This function makes use of \href{https://github.com/saezlab/liana}{liana} package to run Ligand-Receptor analysis. Takes the output of liana and generates a dot-plot visualization according to the user's specifications. -} -\examples{ -\donttest{ - # Check Suggests. - value <- SCpubr:::check_suggests(function_name = "do_LigandReceptorPlot", passive = TRUE) - - if (isTRUE(value)){ - liana_output <- readRDS(system.file("extdata/liana_output_example.rds", package = "SCpubr")) - # Ligand Receptor analysis plot. - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output) - p - - } else if (isFALSE(value)){ - message("This function can not be used without its suggested packages.") - message("Check out which ones are needed using `SCpubr::state_dependencies()`.") - } -} - -} diff --git a/man/do_SankeyPlot.Rd b/man/do_SankeyPlot.Rd deleted file mode 100644 index d7a5749..0000000 --- a/man/do_SankeyPlot.Rd +++ /dev/null @@ -1,140 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/do_SankeyPlot.R -\name{do_SankeyPlot} -\alias{do_SankeyPlot} -\title{Do Sankey or Alluvial plots.} -\usage{ -do_SankeyPlot( - sample, - first_group, - last_group, - type = "sankey", - middle_groups = NULL, - width = 0.1, - space = ifelse(type == "sankey", 0.05 * ncol(sample), 0), - position = "identity", - node.fill = "white", - node.color = "white", - flow.alpha = 0.75, - flow.color = "black", - text_size = 3, - text_color = "black", - font.size = 14, - font.type = "sans", - smooth = 8, - use_labels = FALSE, - hjust = NULL, - colors.first = NULL, - colors.middle = NULL, - colors.last = NULL, - plot.title = NULL, - plot.subtitle = NULL, - plot.caption = NULL -) -} -\arguments{ -\item{sample}{\strong{\code{\link[SeuratObject]{Seurat}}} | A Seurat object, generated by \link[Seurat]{CreateSeuratObject}.} - -\item{first_group}{\strong{\code{\link[base]{character}}} | Categorical metadata variable. First group of nodes of the sankey plot.} - -\item{last_group}{\strong{\code{\link[base]{character}}} | Categorical metadata variable. Last group of nodes of the sankey plot.} - -\item{type}{\strong{\code{\link[base]{character}}} | Type of plot to make. One of: -\itemize{ -\item \emph{\code{sankey}}: Generates a sankey plot. -\item \emph{\code{alluvial}}: Generated an Alluvial plot, a kind of sankey plot where all groups have the same height. -}} - -\item{middle_groups}{\strong{\code{\link[base]{character}}} | Categorical metadata variable. Vector of groups of nodes of the sankey plot.} - -\item{width}{\strong{\code{\link[base]{numeric}}} | Width of the nodes.} - -\item{space}{\strong{\code{\link[base]{numeric}}} | Vertical space between the nodes. It appears to be equal to a single cell. Use big numbers to see a difference (like, 1000 or 10000).} - -\item{position}{\strong{\code{\link[base]{character}}} | GGplot2 position.} - -\item{node.fill}{\strong{\code{\link[base]{character}}} | Color to fill the nodes.} - -\item{node.color}{\strong{\code{\link[base]{character}}} | Color for the contour of the nodes.} - -\item{flow.alpha}{\strong{\code{\link[base]{character}}} | Alpha of the connections.} - -\item{flow.color}{\strong{\code{\link[base]{character}}} | Color for the contour of the connections.} - -\item{text_size}{\strong{\code{\link[base]{numeric}}} | Size of the labels.} - -\item{text_color}{\strong{\code{\link[base]{character}}} | Color of the labels.} - -\item{font.size}{\strong{\code{\link[base]{numeric}}} | Overall font size of the plot. All plot elements will have a size relationship with this font size.} - -\item{font.type}{\strong{\code{\link[base]{character}}} | Base font family for the plot. One of: -\itemize{ -\item \emph{\code{mono}}: Mono spaced font. -\item \emph{\code{serif}}: Serif font family. -\item \emph{\code{sans}}: Default font family. -}} - -\item{smooth}{\strong{\code{\link[base]{numeric}}} | How smooth the connections are.} - -\item{use_labels}{\strong{\code{\link[base]{logical}}} | Whether to use labels or text for the node names.} - -\item{hjust}{\strong{\code{\link[base]{numeric}}} | General hjust for the labels.} - -\item{colors.first, colors.middle, colors.last}{\strong{\code{\link[base]{character}}} | Named vector of colors equal to ALL unique values in first_group, middle_groups, or last_group.} - -\item{plot.title, plot.subtitle, plot.caption}{\strong{\code{\link[base]{character}}} | Title, subtitle or caption to use in the plot.} -} -\value{ -A ggplot2 object. -} -\description{ -Do Sankey or Alluvial plots. -} -\examples{ -\donttest{ - # Check Suggests. - value <- SCpubr:::check_suggests(function_name = "do_SankeyPlot", passive = TRUE) - - if (isTRUE(value)){ - library(dplyr) - # Define your Seurat object. - sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr")) - - # Compute basic sankey plot. - p1 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - type = "sankey") - - # Compute basic alluvial plot. - p2 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - type = "alluvial") - - p <- p1 / p2 - p - - sample$assignment <- ifelse(sample$seurat_clusters \%in\% c("0", "2", "4"), "A", "B") - - # Add more groups. - p1 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - middle_groups = c("assignment"), - last_group = "orig.ident", - type = "sankey") - - p2 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - middle_groups = c("assignment"), - last_group = "orig.ident", - type = "alluvial") - - p <- p1 / p2 - p - } else if (isFALSE(value)){ - message("This function can not be used without its suggested packages.") - message("Check out which ones are needed using `SCpubr::state_dependencies()`.") - } -} -} diff --git a/man/examples/examples_do_LigandReceptorPlot.R b/man/examples/examples_do_LigandReceptorPlot.R deleted file mode 100644 index 327aa82..0000000 --- a/man/examples/examples_do_LigandReceptorPlot.R +++ /dev/null @@ -1,16 +0,0 @@ -\donttest{ - # Check Suggests. - value <- SCpubr:::check_suggests(function_name = "do_LigandReceptorPlot", passive = TRUE) - - if (isTRUE(value)){ - liana_output <- readRDS(system.file("extdata/liana_output_example.rds", package = "SCpubr")) - # Ligand Receptor analysis plot. - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output) - p - - } else if (isFALSE(value)){ - message("This function can not be used without its suggested packages.") - message("Check out which ones are needed using `SCpubr::state_dependencies()`.") - } -} - diff --git a/man/examples/examples_do_SankeyPlot.R b/man/examples/examples_do_SankeyPlot.R deleted file mode 100644 index 219785f..0000000 --- a/man/examples/examples_do_SankeyPlot.R +++ /dev/null @@ -1,46 +0,0 @@ -\donttest{ - # Check Suggests. - value <- SCpubr:::check_suggests(function_name = "do_SankeyPlot", passive = TRUE) - - if (isTRUE(value)){ - library(dplyr) - # Define your Seurat object. - sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr")) - - # Compute basic sankey plot. - p1 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - type = "sankey") - - # Compute basic alluvial plot. - p2 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - type = "alluvial") - - p <- p1 / p2 - p - - sample$assignment <- ifelse(sample$seurat_clusters %in% c("0", "2", "4"), "A", "B") - - # Add more groups. - p1 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - middle_groups = c("assignment"), - last_group = "orig.ident", - type = "sankey") - - p2 <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - middle_groups = c("assignment"), - last_group = "orig.ident", - type = "alluvial") - - p <- p1 / p2 - p - } else if (isFALSE(value)){ - message("This function can not be used without its suggested packages.") - message("Check out which ones are needed using `SCpubr::state_dependencies()`.") - } -} diff --git a/man/examples/examples_save_Plot.R b/man/examples/examples_save_Plot.R deleted file mode 100644 index 1d48ddd..0000000 --- a/man/examples/examples_save_Plot.R +++ /dev/null @@ -1,47 +0,0 @@ -\dontrun{ - # Check Suggests. - value <- SCpubr:::check_suggests(function_name = "save_Plot", passive = TRUE) - - if (isTRUE(value)){ - # Define your Seurat object. - sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr")) - - # Generate a plot. - p <- SCpubr::do_DimPlot(sample = sample) - - # Default parameters. - SCpubr::save_Plot(plot = p) - - # Specifying the name and folder. - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure") - - # Specify to also create a new folder. - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure", - create_path = TRUE) - - # Set dimensions for the figure. - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure", - create_path = TRUE, - width = 8, - height = 8) - - # Set quality (dpi). - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure", - create_path = TRUE, - width = 8, - height = 8, - dpi = 300) - } else if (isFALSE(value)){ - message("This function can not be used without its suggested packages.") - message("Check out which ones are needed using `SCpubr::state_dependencies()`.") - } -} - diff --git a/man/save_Plot.Rd b/man/save_Plot.Rd deleted file mode 100644 index 1bb8bf6..0000000 --- a/man/save_Plot.Rd +++ /dev/null @@ -1,96 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/save_Plot.R -\name{save_Plot} -\alias{save_Plot} -\title{Save a plot as png, pdf and svg.} -\usage{ -save_Plot( - plot, - figure_path = NULL, - create_path = TRUE, - file_name = NULL, - dpi = 300, - output_format = "publication", - width = 8, - height = 8 -) -} -\arguments{ -\item{plot}{Plot to save.} - -\item{figure_path}{\strong{\code{\link[base]{character}}} | Path where the figure will be stored.} - -\item{create_path}{\strong{\code{\link[base]{logical}}} | Whether to create the path.} - -\item{file_name}{\strong{\code{\link[base]{character}}} | Name of the file (without extension, it will be added automatically).} - -\item{dpi}{\strong{\code{\link[base]{numeric}}} | Dpi to use.} - -\item{output_format}{\strong{\code{\link[base]{character}}} | Output format of the saved figure. One of: -\itemize{ -\item \emph{\code{pdf}}: Saves the figure as a PDF file. -\item \emph{\code{png}}: Saves the figure as a PNG file. -\item \emph{\code{jpeg}}: Saves the figure as a JPEG file. -\item \emph{\code{tiff}}: Saves the figure as a TIFF file. -\item \emph{\code{svg}}: Saves the figure as a SVG file. -\item \emph{\code{publication}}: Saves the figure as PDF, PNG and SVG files. -\item \emph{\code{all}}: Saves the figure in all possible formats. -}} - -\item{width, height}{\strong{\code{\link[base]{numeric}}} | Width and height of the figure (inches).} -} -\value{ -Nothing. -} -\description{ -Save a plot as png, pdf and svg. -} -\examples{ -\dontrun{ - # Check Suggests. - value <- SCpubr:::check_suggests(function_name = "save_Plot", passive = TRUE) - - if (isTRUE(value)){ - # Define your Seurat object. - sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr")) - - # Generate a plot. - p <- SCpubr::do_DimPlot(sample = sample) - - # Default parameters. - SCpubr::save_Plot(plot = p) - - # Specifying the name and folder. - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure") - - # Specify to also create a new folder. - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure", - create_path = TRUE) - - # Set dimensions for the figure. - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure", - create_path = TRUE, - width = 8, - height = 8) - - # Set quality (dpi). - SCpubr::save_Plot(plot = p, - figure_path = "/path/to/my/figures/", - file_name = "my_figure", - create_path = TRUE, - width = 8, - height = 8, - dpi = 300) - } else if (isFALSE(value)){ - message("This function can not be used without its suggested packages.") - message("Check out which ones are needed using `SCpubr::state_dependencies()`.") - } -} - -} diff --git a/tests/testthat/setup.R b/tests/testthat/setup.R index 7242a7c..70fb331 100644 --- a/tests/testthat/setup.R +++ b/tests/testthat/setup.R @@ -3,9 +3,7 @@ if (requireNamespace("Seurat", quietly = TRUE)) { suppressMessages(library("Seurat")) } -if (requireNamespace("org.Hs.eg.db", quietly = TRUE)) { - suppressMessages(library("org.Hs.eg.db")) -} + if (requireNamespace("magrittr", quietly = TRUE)) { suppressMessages(library("magrittr")) @@ -17,6 +15,8 @@ if (requireNamespace("dplyr", quietly = TRUE)) { "avg_diff" = "avg_log2FC") } + + sample <- readRDS(system.file("extdata/seurat_dataset_example.rds", package = "SCpubr")) metacell_mapping <- readRDS(system.file("extdata/metacell_mapping_example.rds", package = "SCpubr")) infercnv_object <- readRDS(system.file("extdata/infercnv_object_example.rds", package = "SCpubr")) @@ -25,7 +25,6 @@ human_chr_locations <- SCpubr::human_chr_locations progeny_activities <- readRDS(system.file("extdata/progeny_activities_example.rds", package = "SCpubr")) dorothea_activities <- readRDS(system.file("extdata/dorothea_activities_example.rds", package = "SCpubr")) enriched_terms <- readRDS(system.file("extdata/enriched_terms_example.rds", package = "SCpubr")) -org.db <- AnnotationDbi::loadDb(system.file("./extdata/org.Hs.eg.sqlite", package = "org.Hs.eg.db")) # Get packages. @@ -59,24 +58,34 @@ for (func in names(dependencies)){ dep_check[[func]] <- value } +if (isFALSE(dep_check[["do_GroupedGOTermPlot"]]) | isFALSE(dep_check[["do_FunctionalAnnotationPlot"]])){ + if (requireNamespace("org.Hs.eg.db", quietly = TRUE)) { + suppressMessages(library("org.Hs.eg.db")) + } -# Remove this for publication in CRAN. -if (isFALSE(dep_check[["do_LigandReceptorPlot"]])){ - liana_output <- readRDS(system.file("extdata/liana_output_example.rds", package = "SCpubr")) + if (requireNamespace("AnnotationDbi", quietly = TRUE)) { + suppressMessages(library("AnnotationDbi")) + org.db <- AnnotationDbi::loadDb(system.file("./extdata/org.Hs.eg.sqlite", package = "org.Hs.eg.db")) + } } -if (isFALSE(dep_check[["do_DimPlot"]]) & - isFALSE(dep_check[["do_CorrelationPlot"]]) & - isFALSE(dep_check[["do_ChordDiagramPlot"]]) & - isTRUE(requireNamespace(pkg, quietly = TRUE)) & - isFALSE(dep_check[["save_Plot"]])){ - p <- SCpubr::do_DimPlot(sample) - p.heatmap <- SCpubr::do_CorrelationPlot(sample) - data <- p.heatmap@ht_list$`Pearson coef.`@matrix - p.pheatmap <- pheatmap::pheatmap(data) - p.chord <- SCpubr::do_ChordDiagramPlot(sample = sample, from = "seurat_clusters", to = "orig.ident") - figure_path <- getwd() -} +# Remove this for publication in CRAN. +#if (isFALSE(dep_check[["do_LigandReceptorPlot"]])){ +# liana_output <- readRDS(system.file("extdata/liana_output_example.rds", package = "SCpubr")) +#} +# +#if (isFALSE(dep_check[["do_DimPlot"]]) & +# isFALSE(dep_check[["do_CorrelationPlot"]]) & +# isFALSE(dep_check[["do_ChordDiagramPlot"]]) & +# isTRUE(requireNamespace(pkg, quietly = TRUE)) & +# isFALSE(dep_check[["save_Plot"]])){ +# p <- SCpubr::do_DimPlot(sample) +# p.heatmap <- SCpubr::do_CorrelationPlot(sample) +# data <- p.heatmap@ht_list$`Pearson coef.`@matrix +# p.pheatmap <- pheatmap::pheatmap(data) +# p.chord <- SCpubr::do_ChordDiagramPlot(sample = sample, from = "seurat_clusters", to = "orig.ident") +# figure_path <- getwd() +#} #monocle_sample <- sample diff --git a/tests/testthat/test-do_LigandReceptorPlot.R b/tests/testthat/test-do_LigandReceptorPlot.R deleted file mode 100644 index d754907..0000000 --- a/tests/testthat/test-do_LigandReceptorPlot.R +++ /dev/null @@ -1,265 +0,0 @@ -if(isFALSE(dep_check[["do_LigandReceptorPlot"]])){ - testthat::test_that("do_LigandReceptorPlot: CRAN essentials", { - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - from output", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = FALSE, plot.grid = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = FALSE, plot.grid = TRUE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = TRUE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = TRUE, keep_source = c("0", "3", "5"), keep_target = c("0", "2", "4")) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - dot_border = FALSE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - flip = TRUE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_strip_text = TRUE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_strip_text = TRUE, - flip = TRUE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_strip_text = TRUE, - flip = TRUE, - dot_border = FALSE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - from output different n", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - legend.type", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "normal", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "colorbar", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "colorsteps", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "colorsteps", - dot_border = FALSE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "normal", - dot_border = FALSE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "colorbar", - dot_border = FALSE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "colorsteps", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - split.by", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - split.by = "ligand.complex", - dot_border = FALSE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - split.by = "receptor.complex", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - split.by = "ligand.complex", - flip = TRUE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - split.by = "receptor.complex", - flip = TRUE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - from output, angle ", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_x_axis_labels = 0, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_x_axis_labels = 45, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_x_axis_labels = 90, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - from output flip", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - flip = TRUE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - from output different keep", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - keep_source = "0", - keep_target = "0", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - keep_source = "0", - keep_target = "0", - flip = TRUE, - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - from output legend.position", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - flip = TRUE, - legend.position = "bottom", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - flip = TRUE, - legend.position = "right", - add_missing_LR_combinations = FALSE) - testthat::expect_type(p, "list") - }) - - - testthat::test_that("do_LigandReceptorPlot: PASS - arrange interactions", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - arrange_interactions_by = "aggregate_rank") - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - arrange_interactions_by = "specificity") - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - arrange_interactions_by = "magnitude") - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - arrange_interactions_by = "both") - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - sort interactions", { - testthat::skip_on_cran() - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - sort_interactions_alphabetically = TRUE) - testthat::expect_type(p, "list") - - p <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - top_interactions = 50, - sort_interactions_alphabetically = FALSE) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_LigandReceptorPlot: FAIL - wrong parameters", { - testthat::skip_on_cran() - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - font.type = "wrong", - add_missing_LR_combinations = FALSE)}) - - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.type = "wrong", - add_missing_LR_combinations = FALSE)}) - - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - rotate_x_axis_labels = 10, - add_missing_LR_combinations = FALSE)}) - - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - font.type = "wrong", - add_missing_LR_combinations = FALSE)}) - - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - legend.position = "wrong", - add_missing_LR_combinations = FALSE)}) - - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - grid.type = "wrong", - add_missing_LR_combinations = FALSE)}) - - testthat::expect_error({SCpubr::do_LigandReceptorPlot(liana_output = liana_output, - split.by = "wrong", - add_missing_LR_combinations = FALSE)}) - - }) - - testthat::test_that("do_LigandReceptorPlot: PASS - chord diagrams", { - testthat::skip_on_cran() - out <- SCpubr::do_LigandReceptorPlot(liana_output = liana_output, add_missing_LR_combinations = FALSE, compute_ChordDiagrams = TRUE) - testthat::expect_type(out, "list") - testthat::expect_length(out, 3) - testthat::expect_s3_class(out$dotplot, c("gg", "ggplot")) - testthat::expect_s3_class(out$chord_total_interactions, c("recordedplot")) - testthat::expect_s3_class(out$chord_ligand_receptor, c("recordedplot")) - }) -} - diff --git a/tests/testthat/test-do_SankeyPlot.R b/tests/testthat/test-do_SankeyPlot.R deleted file mode 100644 index 8c87262..0000000 --- a/tests/testthat/test-do_SankeyPlot.R +++ /dev/null @@ -1,177 +0,0 @@ -if(isFALSE(dep_check[["do_SankeyPlot"]])){ - testthat::test_that("do_SankeyPlot: CRAN essentials", { - - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident") - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_SankeyPlot: PASS - default", { - testthat::skip_on_cran() - - - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident") - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_SankeyPlot: PASS - test colors when colors.use is null", { - testthat::skip_on_cran() - sample$first_group <- as.character(sample$orig.ident) - sample$middle_group <- as.character(sample$orig.ident) - sample$middle_group2 <- as.character(ifelse(sample$seurat_clusters %in% c("0"), "A", "B")) - sample$last_group <- as.character(sample$orig.ident) - sample$first_group_factor <- factor(sample$orig.ident) - sample$middle_group_factor <- factor(sample$orig.ident) - sample$middle_group2_factor <- factor(ifelse(sample$seurat_clusters %in% c("0"), "A", "B")) - sample$last_group_factor <- factor(sample$orig.ident) - - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group", - middle_groups = "middle_group", - last_group = "last_group") - testthat::expect_type(p, "list") - - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group", - middle_groups = "middle_group", - last_group = "last_group", - colors.middle = c("Cell" = "red")) - testthat::expect_type(p, "list") - - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group", - middle_groups = "middle_group", - last_group = "last_group", - colors.middle = c("Cell?" = "red"))}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group", - middle_groups = "middle_group2", - last_group = "last_group", - colors.middle = c("A" = "red"))}) - - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group_factor", - middle_groups = "middle_group_factor", - last_group = "last_group_factor") - testthat::expect_type(p, "list") - - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group_factor", - middle_groups = "middle_group_factor", - last_group = "last_group_factor", - colors.middle = c("Cell" = "red")) - testthat::expect_type(p, "list") - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group_factor", - middle_groups = "middle_group_factor", - last_group = "last_group_factor", - colors.middle = c("Cell?" = "red"))}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "first_group_factor", - middle_groups = "middle_group2_factor", - last_group = "last_group_factor", - colors.middle = c("A" = "red"))}) - }) - - testthat::test_that("do_SankeyPlot: PASS - middle_groups", { - testthat::skip_on_cran() - - - sample$middle_group <- sample$seurat_clusters - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - middle_group = "middle_group") - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_SankeyPlot: PASS - hjust", { - - testthat::skip_on_cran() - - sample$middle_group <- sample$seurat_clusters - p <- SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - hjust = 0.5) - testthat::expect_type(p, "list") - }) - - testthat::test_that("do_SankeyPlot: FAILS", { - testthat::skip_on_cran() - - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - type = "wrong")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - position = "wrong")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "wrong", - last_group = "orig.ident")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "nCount_RNA", - last_group = "orig.ident")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - last_group = "wrong", - first_group = "orig.ident")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - last_group = "nCount_RNA", - first_group = "orig.ident")}) - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - last_group = "seurat_clusters", - middle_groups = "wrong", - first_group = "orig.ident")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - last_group = "seurat_clusters", - middle_groups = "nCount_RNA", - first_group = "orig.ident")}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - colors.first = c("A" = "red"))}) - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - colors.first = c("0" = "red"))}) - - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - middle_groups = "middle_group", - last_group = "orig.ident", - colors.middle = c("A" = "red"))}) - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - middle_groups = "middle_group", - last_group = "orig.ident", - colors.middle = c("0" = "red"))}) - sample$orig.ident <- ifelse(sample$seurat_clusters == "0", "C", "B") - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - colors.last = c("A" = "red"))}) - testthat::expect_error({SCpubr::do_SankeyPlot(sample = sample, - first_group = "seurat_clusters", - last_group = "orig.ident", - colors.last = c("B" = "red"))}) - }) -} - - diff --git a/tests/testthat/test-save_Plot.R b/tests/testthat/test-save_Plot.R deleted file mode 100644 index 2ad4938..0000000 --- a/tests/testthat/test-save_Plot.R +++ /dev/null @@ -1,222 +0,0 @@ -if(isFALSE(dep_check[["save_Plot"]])){ - testthat::test_that("save_Plot: PASS - no file", { - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - output_format = "svg")) - - }) - - testthat::test_that("save_Plot: PASS - no file path", { - - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - file_name = "test", - output_format = "svg")) - - }) - - testthat::test_that("save_Plot: PASS - null file path", { - - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - file_name = "test", - output_format = "svg")) - - }) - - testthat::test_that("save_Plot: PASS - no file path", { - - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = paste0(figure_path, "/deleteme"), - file_name = "test", - output_format = "svg")) - - }) - - testthat::test_that("save_Plot: FAIL - wrong output format", { - testthat::skip_on_ci() - testthat::expect_error(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "wrong")) - - }) - - testthat::test_that("save_Plot: FAIL - all and publication at the same time.", { - - - testthat::expect_error(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = c("all", "publication"))) - }) - - testthat::test_that("save_Plot: PASS - all", { - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "all")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "all")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "all")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.chord, - figure_path = figure_path, - file_name = "test", - output_format = "all")) - - }) - - testthat::test_that("save_Plot: PASS - publication", { - - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "publication")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "publication")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "publication")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.chord, - figure_path = figure_path, - file_name = "test", - output_format = "publication")) - - - }) - - testthat::test_that("save_Plot: PASS - jpeg", { - - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "jpeg")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "jpeg")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "jpeg")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.chord, - figure_path = figure_path, - file_name = "test", - output_format = "jpeg")) - }) - - testthat::test_that("save_Plot: PASS - png", { - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "png")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "png")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "png")) - }) - - testthat::test_that("save_Plot: PASS - pdf", { - - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "pdf")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "pdf")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "pdf")) - }) - - testthat::test_that("save_Plot: PASS - tiff", { - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "tiff")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "tiff")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "tiff")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.chord, - figure_path = figure_path, - file_name = "test", - output_format = "tiff")) - }) - - testthat::test_that("save_Plot: PASS - svg", { - testthat::skip_on_ci() - testthat::expect_silent(SCpubr::save_Plot(plot = p, - figure_path = figure_path, - file_name = "test", - output_format = "svg")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.heatmap, - figure_path = figure_path, - file_name = "test", - output_format = "svg")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.pheatmap, - figure_path = figure_path, - file_name = "test", - output_format = "svg")) - - testthat::expect_silent(SCpubr::save_Plot(plot = p.chord, - figure_path = figure_path, - file_name = "test", - output_format = "svg")) - }) - - - unlink(paste0(figure_path, "*.svg")) - unlink(paste0(figure_path, "test.jpeg")) - unlink(paste0(figure_path, "test.pdf")) - unlink(paste0(figure_path, "test.tiff")) - unlink(paste0(figure_path, "test.png")) - unlink(paste0(figure_path, "/deleteme"), recursive = TRUE) - -} -