diff --git a/.doctrees/chameo.doctree b/.doctrees/chameo.doctree index af21256..3248b17 100644 Binary files a/.doctrees/chameo.doctree and b/.doctrees/chameo.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index 956bae4..9d0766a 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/_sources/chameo.rst.txt b/_sources/chameo.rst.txt index 5012399..30b3515 100644 --- a/_sources/chameo.rst.txt +++ b/_sources/chameo.rst.txt @@ -33,6 +33,14 @@ ACVoltammetry Annotations + + Preflabel + ACVoltammetry + + + Elucidation + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + Comment The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. @@ -45,10 +53,6 @@ ACVoltammetry Comment - - Elucidation - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - Wikidatareference https://www.wikidata.org/wiki/Q120895154 @@ -57,10 +61,6 @@ ACVoltammetry Altlabel ACV - - Preflabel - ACVoltammetry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -97,20 +97,20 @@ AbrasiveStrippingVoltammetry Annotations - Comment - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + Preflabel + AbrasiveStrippingVoltammetry - Comment - + Elucidation + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - Elucidation + Comment electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - Preflabel - AbrasiveStrippingVoltammetry + Comment + Label @@ -144,16 +144,16 @@ AccessConditions Annotations - Comment - Describes what is needed to repeat the experiment + Preflabel + AccessConditions Elucidation Describes what is needed to repeat the experiment - Preflabel - AccessConditions + Comment + Describes what is needed to repeat the experiment Example @@ -191,25 +191,25 @@ AdsorptiveStrippingVoltammetry Annotations - Comment - A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + Preflabel + AdsorptiveStrippingVoltammetry - Comment + Elucidation Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - Elucidation + Comment + A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + + + Comment Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). Altlabel AdSV - - Preflabel - AdsorptiveStrippingVoltammetry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -246,16 +246,16 @@ AlphaSpectrometry Annotations - Comment - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + Preflabel + AlphaSpectrometry Elucidation Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - Preflabel - AlphaSpectrometry + Comment + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. Label @@ -289,20 +289,20 @@ Amperometry Annotations - Comment - Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. + Preflabel + Amperometry - Comment + Elucidation The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - Elucidation - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + Comment + Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. - Preflabel - Amperometry + Comment + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. Iupacreference @@ -340,16 +340,16 @@ AnalyticalElectronMicroscopy Annotations - Comment - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + Preflabel + AnalyticalElectronMicroscopy Elucidation Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - Preflabel - AnalyticalElectronMicroscopy + Comment + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. Label @@ -383,20 +383,20 @@ AnodicStrippingVoltammetry Annotations - Comment - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + Preflabel + AnodicStrippingVoltammetry Elucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - Wikidatareference - https://www.wikidata.org/wiki/Q939328 + Comment + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - Preflabel - AnodicStrippingVoltammetry + Wikidatareference + https://www.wikidata.org/wiki/Q939328 Iupacreference @@ -434,13 +434,17 @@ AtomProbeTomography Annotations - Comment - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + Preflabel + AtomProbeTomography Elucidation Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + + Comment + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + Altlabel 3D Atom Probe @@ -449,10 +453,6 @@ AtomProbeTomography Altlabel APT - - Preflabel - AtomProbeTomography - Label AtomProbeTomography @@ -485,16 +485,16 @@ AtomicForceMicroscopy Annotations - Comment - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + Preflabel + AtomicForceMicroscopy Elucidation Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - Preflabel - AtomicForceMicroscopy + Comment + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. Label @@ -563,13 +563,17 @@ BrunauerEmmettTellerMethod Annotations - Comment - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + Preflabel + BrunauerEmmettTellerMethod Elucidation A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + + Comment + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + Wikidatareference https://www.wikidata.org/wiki/Q795838 @@ -578,10 +582,6 @@ BrunauerEmmettTellerMethod Altlabel BET - - Preflabel - BrunauerEmmettTellerMethod - Wikipediareference https://en.wikipedia.org/wiki/BET_theory @@ -618,16 +618,16 @@ CalibrationData Annotations - Comment - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + Preflabel + CalibrationData Elucidation Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - Preflabel - CalibrationData + Comment + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. Label @@ -660,6 +660,14 @@ CalibrationProcess Annotations + + Preflabel + CalibrationProcess + + + Elucidation + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + Comment Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. @@ -676,14 +684,6 @@ CalibrationProcess Comment Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - - Elucidation - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - - - Preflabel - CalibrationProcess - Definition Operation performed on a measuring instrument or a measuring system that, under specified conditions
1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and
2. uses this information to establish a relation for obtaining a measurement result from an indication
NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system.
NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty.
NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from
measurement standards.
NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty
for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the
past the second step was usually considered to occur after the calibration.
NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement
standards.

-- International Vocabulary of Metrology(VIM) @@ -740,16 +740,16 @@ Calorimetry Annotations - Comment - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + Preflabel + Calorimetry Elucidation In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - Preflabel - Calorimetry + Comment + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. Label @@ -783,13 +783,17 @@ CathodicStrippingVoltammetry Annotations - Comment - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + Preflabel + CathodicStrippingVoltammetry Elucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + + Comment + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + Wikidatareference https://www.wikidata.org/wiki/Q4016325 @@ -798,10 +802,6 @@ CathodicStrippingVoltammetry Altlabel CSV - - Preflabel - CathodicStrippingVoltammetry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -837,14 +837,14 @@ CharacterisationComponent Annotations - - Comment - - Preflabel CharacterisationComponent + + Comment + + Label CharacterisationComponent @@ -877,16 +877,16 @@ CharacterisationData Annotations - Comment - Represents every type of data that is produced during a characterisation process + Preflabel + CharacterisationData Elucidation Represents every type of data that is produced during a characterisation process - Preflabel - CharacterisationData + Comment + Represents every type of data that is produced during a characterisation process Label @@ -920,16 +920,16 @@ CharacterisationDataValidation Annotations - Comment - Procedure to validate the characterisation data. + Preflabel + CharacterisationDataValidation Elucidation Procedure to validate the characterisation data. - Preflabel - CharacterisationDataValidation + Comment + Procedure to validate the characterisation data. Label @@ -963,8 +963,12 @@ CharacterisationEnvironment Annotations - Comment - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + Preflabel + CharacterisationEnvironment + + + Elucidation + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. Comment @@ -972,16 +976,12 @@ CharacterisationEnvironment Comment - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - Elucidation + Comment Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - - Preflabel - CharacterisationEnvironment - Label CharacterisationEnvironment @@ -1021,14 +1021,14 @@ CharacterisationEnvironmentProperty Annotations - - Comment - - Preflabel CharacterisationEnvironmentProperty + + Comment + + Label CharacterisationEnvironmentProperty @@ -1061,20 +1061,20 @@ CharacterisationExperiment Annotations - Comment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + Preflabel + CharacterisationExperiment - Comment + Elucidation A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - Elucidation + Comment A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - Preflabel - CharacterisationExperiment + Comment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. Label @@ -1108,16 +1108,16 @@ CharacterisationHardware Annotations - Comment - Whatever hardware is used during the characterisation process. + Preflabel + CharacterisationHardware Elucidation Whatever hardware is used during the characterisation process. - Preflabel - CharacterisationHardware + Comment + Whatever hardware is used during the characterisation process. Label @@ -1150,14 +1150,14 @@ CharacterisationHardwareSpecification Annotations - - Comment - - Preflabel CharacterisationHardwareSpecification + + Comment + + Label CharacterisationHardwareSpecification @@ -1189,6 +1189,14 @@ CharacterisationMeasurementInstrument Annotations + + Preflabel + CharacterisationMeasurementInstrument + + + Elucidation + The instrument used for characterising a material, which usually has a probe and a detector as parts. + Comment Device used for making measurements, alone or in conjunction with one or more supplementary
devices
NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system.
NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. @@ -1197,14 +1205,6 @@ CharacterisationMeasurementInstrument Comment The instrument used for characterising a material, which usually has a probe and a detector as parts. - - Elucidation - The instrument used for characterising a material, which usually has a probe and a detector as parts. - - - Preflabel - CharacterisationMeasurementInstrument - Definition Device used for making measurements, alone or in conjunction with one or more supplementary
devices
NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system.
NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. @@ -1265,20 +1265,20 @@ CharacterisationMeasurementProcess Annotations - Comment - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information
NOTE 1 The quantity mentioned in the definition is an individual quantity.
NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement,
such that some may be more representative of the measurand than others.
NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the
process of obtaining values of nominal properties is called “examination”.
NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at
some step of the process and the use of models and calculations that are based on conceptual considerations.
NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the
quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated
measuring system operating according to the specified measurement procedure, including the measurement
conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the
measurement procedure and the measuring system should then be chosen in order not to exceed these measuring
system specifications.

-- International Vocabulary of Metrology(VIM) + Preflabel + CharacterisationMeasurementProcess - Comment + Elucidation The measurement process associates raw data to the sample through a probe and a detector. - Elucidation - The measurement process associates raw data to the sample through a probe and a detector. + Comment + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information
NOTE 1 The quantity mentioned in the definition is an individual quantity.
NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement,
such that some may be more representative of the measurand than others.
NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the
process of obtaining values of nominal properties is called “examination”.
NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at
some step of the process and the use of models and calculations that are based on conceptual considerations.
NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the
quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated
measuring system operating according to the specified measurement procedure, including the measurement
conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the
measurement procedure and the measuring system should then be chosen in order not to exceed these measuring
system specifications.

-- International Vocabulary of Metrology(VIM) - Preflabel - CharacterisationMeasurementProcess + Comment + The measurement process associates raw data to the sample through a probe and a detector. Definition @@ -1344,8 +1344,12 @@ CharacterisationProcedure Annotations - Comment - Characterisation procedure may refer to the full characterisation process or just a part of the full process. + Preflabel + CharacterisationProcedure + + + Elucidation + The process of performing characterisation by following some existing formalised operative rules. Comment @@ -1353,16 +1357,12 @@ CharacterisationProcedure Comment - The process of performing characterisation by following some existing formalised operative rules. + Characterisation procedure may refer to the full characterisation process or just a part of the full process. - Elucidation + Comment The process of performing characterisation by following some existing formalised operative rules. - - Preflabel - CharacterisationProcedure - Example Sample preparation
Sample inspection
Calibration
Microscopy
Viscometry
Data sampling @@ -1399,16 +1399,16 @@ CharacterisationProcedureValidation Annotations - Comment - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + Preflabel + CharacterisationProcedureValidation Elucidation Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - Preflabel - CharacterisationProcedureValidation + Comment + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. Label @@ -1442,16 +1442,16 @@ CharacterisationProperty Annotations - Comment - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + Preflabel + CharacterisationProperty Elucidation The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - Preflabel - CharacterisationProperty + Comment + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). Label @@ -1485,16 +1485,16 @@ CharacterisationProtocol Annotations - Comment - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + Preflabel + CharacterisationProtocol Elucidation A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - Preflabel - CharacterisationProtocol + Comment + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. Label @@ -1528,16 +1528,16 @@ CharacterisationSoftware Annotations - Comment - A software application to process characterisation data + Preflabel + CharacterisationSoftware Elucidation A software application to process characterisation data - Preflabel - CharacterisationSoftware + Comment + A software application to process characterisation data Example @@ -1575,20 +1575,20 @@ CharacterisationSystem Annotations - Comment - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Preflabel + CharacterisationSystem - Comment - Set of one or more measuring instruments and often other components, assembled and
adapted to give information used to generate measured values within specified intervals for
quantities of specified kinds
NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies.
NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012,
Measurement management systems – Requirements for measurement processes and measuring equipment and ISO
17025, General requirements for the competence of testing and calibration laboratories.
NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the
latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement,
including the object under measurement and the person(s) performing the measurement.
NOTE 4 A measuring system can be used as a measurement standard. + Elucidation + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Elucidation + Comment A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Preflabel - CharacterisationSystem + Comment + Set of one or more measuring instruments and often other components, assembled and
adapted to give information used to generate measured values within specified intervals for
quantities of specified kinds
NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies.
NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012,
Measurement management systems – Requirements for measurement processes and measuring equipment and ISO
17025, General requirements for the competence of testing and calibration laboratories.
NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the
latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement,
including the object under measurement and the person(s) performing the measurement.
NOTE 4 A measuring system can be used as a measurement standard. Definition @@ -1637,14 +1637,14 @@ CharacterisationTask Annotations - - Comment - - Preflabel CharacterisationTask + + Comment + + Label CharacterisationTask @@ -1689,11 +1689,11 @@ CharacterisationTechnique Annotations - Comment - A characterisation technique is not only related to the measurement process which can be one of its steps. + Preflabel + CharacterisationTechnique - Comment + Elucidation The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). @@ -1701,9 +1701,13 @@ CharacterisationTechnique A characterisation technique is not only related to the measurement process which can be one of its steps. - Elucidation + Comment The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + + Comment + A characterisation technique is not only related to the measurement process which can be one of its steps. + Altlabel Characterisation procedure @@ -1712,10 +1716,6 @@ CharacterisationTechnique Altlabel Characterisation technique - - Preflabel - CharacterisationTechnique - Label CharacterisationTechnique @@ -1748,16 +1748,16 @@ CharacterisationWorkflow Annotations - Comment - A characterisation procedure that has at least two characterisation tasks as proper parts. + Preflabel + CharacterisationWorkflow Elucidation A characterisation procedure that has at least two characterisation tasks as proper parts. - Preflabel - CharacterisationWorkflow + Comment + A characterisation procedure that has at least two characterisation tasks as proper parts. Label @@ -1803,16 +1803,16 @@ CharacterisedSample Annotations - Comment - The sample after having been subjected to a characterization process + Preflabel + CharacterisedSample Elucidation The sample after having been subjected to a characterization process - Preflabel - CharacterisedSample + Comment + The sample after having been subjected to a characterization process Label @@ -1845,14 +1845,14 @@ ChargeDistribution Annotations - - Comment - - Preflabel ChargeDistribution + + Comment + + Label ChargeDistribution @@ -1885,16 +1885,16 @@ Chromatography Annotations - Comment - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + Preflabel + Chromatography Elucidation In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - Preflabel - Chromatography + Comment + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. Wikipediareference @@ -1932,13 +1932,17 @@ Chronoamperometry Annotations - Comment - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Preflabel + Chronoamperometry Elucidation Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + + Comment + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Altlabel AmperiometricDetection @@ -1947,10 +1951,6 @@ Chronoamperometry Altlabel AmperometricCurrentTimeCurve - - Preflabel - Chronoamperometry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -1987,16 +1987,16 @@ Chronocoulometry Annotations - Comment - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Preflabel + Chronocoulometry Elucidation Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Preflabel - Chronocoulometry + Comment + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. Iupacreference @@ -2034,16 +2034,16 @@ Chronopotentiometry Annotations - Comment - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Preflabel + Chronopotentiometry Elucidation Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Preflabel - Chronopotentiometry + Comment + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. Iupacreference @@ -2081,16 +2081,16 @@ CompressionTesting Annotations - Comment - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + Preflabel + CompressionTesting Elucidation Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - Preflabel - CompressionTesting + Comment + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. Label @@ -2124,20 +2124,20 @@ ConductometricTitration Annotations - Comment - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + Preflabel + ConductometricTitration Elucidation Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - Wikidatareference - https://www.wikidata.org/wiki/Q11778221 + Comment + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - Preflabel - ConductometricTitration + Wikidatareference + https://www.wikidata.org/wiki/Q11778221 Iupacreference @@ -2175,20 +2175,24 @@ Conductometry Annotations - Comment - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Preflabel + Conductometry Elucidation Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + + Comment + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Wikidatareference https://www.wikidata.org/wiki/Q901180 - Preflabel - Conductometry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference @@ -2198,10 +2202,6 @@ Conductometry Example Monitoring of the purity of deionized water. - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label Conductometry @@ -2234,16 +2234,16 @@ ConfocalMicroscopy Annotations - Comment - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + Preflabel + ConfocalMicroscopy Elucidation Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - Preflabel - ConfocalMicroscopy + Comment + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. Label @@ -2277,16 +2277,16 @@ CoulometricTitration Annotations - Comment - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + Preflabel + CoulometricTitration Elucidation Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - Preflabel - CoulometricTitration + Comment + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. Label @@ -2320,32 +2320,32 @@ Coulometry Annotations - Comment - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + Preflabel + Coulometry Elucidation Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Wikidatareference - https://www.wikidata.org/wiki/Q1136979 + Comment + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Preflabel - Coulometry + Wikidatareference + https://www.wikidata.org/wiki/Q1136979 - Wikipediareference - https://en.wikipedia.org/wiki/Coulometry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikipediareference + https://en.wikipedia.org/wiki/Coulometry Label @@ -2379,16 +2379,16 @@ CreepTesting Annotations - Comment - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + Preflabel + CreepTesting Elucidation The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - Preflabel - CreepTesting + Comment + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. Label @@ -2421,14 +2421,14 @@ CriticalAndSupercriticalChromatography Annotations - - Comment - - Preflabel CriticalAndSupercriticalChromatography + + Comment + + Label CriticalAndSupercriticalChromatography @@ -2461,8 +2461,8 @@ CyclicChronopotentiometry Annotations - Comment - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + Preflabel + CyclicChronopotentiometry Elucidation @@ -2473,8 +2473,8 @@ CyclicChronopotentiometry chronopotentiometry where the change in applied current undergoes a cyclic current reversal - Preflabel - CyclicChronopotentiometry + Comment + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. Label @@ -2508,36 +2508,36 @@ CyclicVoltammetry Annotations - Comment - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + Preflabel + CyclicVoltammetry Elucidation Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - Wikidatareference - https://www.wikidata.org/wiki/Q1147647 + Comment + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - Altlabel - CV + Dbpediareference + https://dbpedia.org/page/Cyclic_voltammetry - Preflabel - CyclicVoltammetry + Wikidatareference + https://www.wikidata.org/wiki/Q1147647 - Wikipediareference - https://en.wikipedia.org/wiki/Cyclic_voltammetry + Altlabel + CV Iupacreference https://doi.org/10.1515/pac-2018-0109 - Dbpediareference - https://dbpedia.org/page/Cyclic_voltammetry + Wikipediareference + https://en.wikipedia.org/wiki/Cyclic_voltammetry Label @@ -2571,16 +2571,16 @@ DCPolarography Annotations - Comment - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + Preflabel + DCPolarography Elucidation Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - Preflabel - DCPolarography + Comment + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. Iupacreference @@ -2618,16 +2618,16 @@ DataAcquisitionRate Annotations - Comment - Quantifies the raw data acquisition rate, if applicable. + Preflabel + DataAcquisitionRate Elucidation Quantifies the raw data acquisition rate, if applicable. - Preflabel - DataAcquisitionRate + Comment + Quantifies the raw data acquisition rate, if applicable. Label @@ -2661,16 +2661,16 @@ DataAnalysis Annotations - Comment - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + Preflabel + DataAnalysis Elucidation Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - Preflabel - DataAnalysis + Comment + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. Label @@ -2704,16 +2704,16 @@ DataFiltering Annotations - Comment - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + Preflabel + DataFiltering Elucidation Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - Preflabel - DataFiltering + Comment + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. Label @@ -2747,11 +2747,11 @@ DataNormalisation Annotations - Comment - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + Preflabel + DataNormalisation - Comment + Elucidation Data normalization involves adjusting raw data to a notionally common scale. @@ -2759,12 +2759,12 @@ DataNormalisation It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - Elucidation + Comment Data normalization involves adjusting raw data to a notionally common scale. - Preflabel - DataNormalisation + Comment + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. Label @@ -2798,16 +2798,16 @@ DataPostProcessing Annotations - Comment - Analysis, that allows one to calculate the final material property from the calibrated primary data. + Preflabel + DataPostProcessing Elucidation Analysis, that allows one to calculate the final material property from the calibrated primary data. - Preflabel - DataPostProcessing + Comment + Analysis, that allows one to calculate the final material property from the calibrated primary data. Label @@ -2841,16 +2841,16 @@ DataPreparation Annotations - Comment - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + Preflabel + DataPreparation Elucidation Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - Preflabel - DataPreparation + Comment + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. Label @@ -2884,16 +2884,16 @@ DataProcessingThroughCalibration Annotations - Comment - Describes how raw data are corrected and/or modified through calibrations. + Preflabel + DataProcessingThroughCalibration Elucidation Describes how raw data are corrected and/or modified through calibrations. - Preflabel - DataProcessingThroughCalibration + Comment + Describes how raw data are corrected and/or modified through calibrations. Label @@ -2927,16 +2927,16 @@ DataQuality Annotations - Comment - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + Preflabel + DataQuality Elucidation Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - Preflabel - DataQuality + Comment + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. Example @@ -2974,16 +2974,16 @@ Detector Annotations - Comment - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Preflabel + Detector Elucidation Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Preflabel - Detector + Comment + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. Example @@ -3025,16 +3025,16 @@ DielectricAndImpedanceSpectroscopy Annotations - Comment - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + Preflabel + DielectricAndImpedanceSpectroscopy Elucidation Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - Preflabel - DielectricAndImpedanceSpectroscopy + Comment + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. Label @@ -3068,16 +3068,16 @@ Dielectrometry Annotations - Comment - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Preflabel + Dielectrometry Elucidation Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Preflabel - Dielectrometry + Comment + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. Iupacreference @@ -3115,16 +3115,16 @@ DifferentialLinearPulseVoltammetry Annotations - Comment - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + Preflabel + DifferentialLinearPulseVoltammetry Elucidation Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - Preflabel - DifferentialLinearPulseVoltammetry + Comment + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. Label @@ -3158,13 +3158,17 @@ DifferentialPulseVoltammetry Annotations - Comment - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + Preflabel + DifferentialPulseVoltammetry Elucidation Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + + Comment + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + Wikidatareference https://www.wikidata.org/wiki/Q5275361 @@ -3174,17 +3178,13 @@ DifferentialPulseVoltammetry DPV - Preflabel - DifferentialPulseVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Differential_pulse_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label DifferentialPulseVoltammetry @@ -3216,14 +3216,14 @@ DifferentialRefractiveIndex Annotations - - Comment - - Preflabel DifferentialRefractiveIndex + + Comment + + Label DifferentialRefractiveIndex @@ -3256,20 +3256,20 @@ DifferentialScanningCalorimetry Annotations - Comment - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + Preflabel + DifferentialScanningCalorimetry Elucidation Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - Altlabel - DSC + Comment + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - Preflabel - DifferentialScanningCalorimetry + Altlabel + DSC Label @@ -3303,16 +3303,16 @@ DifferentialStaircasePulseVoltammetry Annotations - Comment - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + Preflabel + DifferentialStaircasePulseVoltammetry Elucidation Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - Preflabel - DifferentialStaircasePulseVoltammetry + Comment + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. Label @@ -3346,20 +3346,20 @@ DifferentialThermalAnalysis Annotations - Comment - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + Preflabel + DifferentialThermalAnalysis Elucidation Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - Altlabel - DTA + Comment + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - Preflabel - DifferentialThermalAnalysis + Altlabel + DTA Label @@ -3393,16 +3393,16 @@ Dilatometry Annotations - Comment - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + Preflabel + Dilatometry Elucidation Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - Preflabel - Dilatometry + Comment + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. Label @@ -3436,16 +3436,16 @@ DirectCoulometryAtControlledCurrent Annotations - Comment - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + Preflabel + DirectCoulometryAtControlledCurrent Elucidation Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - Preflabel - DirectCoulometryAtControlledCurrent + Comment + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. Label @@ -3479,12 +3479,8 @@ DirectCoulometryAtControlledPotential Annotations - Comment - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - - - Comment - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + Preflabel + DirectCoulometryAtControlledPotential Elucidation @@ -3495,8 +3491,12 @@ DirectCoulometryAtControlledPotential In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - Preflabel - DirectCoulometryAtControlledPotential + Comment + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + + + Comment + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. Iupacreference @@ -3534,16 +3534,16 @@ DirectCurrentInternalResistance Annotations - Comment - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + Preflabel + DirectCurrentInternalResistance Elucidation Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - Preflabel - DirectCurrentInternalResistance + Comment + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. Label @@ -3577,20 +3577,20 @@ DynamicLightScattering Annotations - Comment - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + Preflabel + DynamicLightScattering Elucidation Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - Altlabel - DLS + Comment + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - Preflabel - DynamicLightScattering + Altlabel + DLS Label @@ -3624,16 +3624,16 @@ DynamicMechanicalAnalysis Annotations - Comment - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + Preflabel + DynamicMechanicalAnalysis Elucidation Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - Preflabel - DynamicMechanicalAnalysis + Comment + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. Label @@ -3667,20 +3667,20 @@ DynamicMechanicalSpectroscopy Annotations - Comment - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + Preflabel + DynamicMechanicalSpectroscopy Elucidation Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - Altlabel - DMA + Comment + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - Preflabel - DynamicMechanicalSpectroscopy + Altlabel + DMA Label @@ -3714,13 +3714,17 @@ ElectrochemicalImpedanceSpectroscopy Annotations - Comment - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + Preflabel + ElectrochemicalImpedanceSpectroscopy Elucidation Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + + Comment + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + Wikidatareference https://www.wikidata.org/wiki/Q3492904 @@ -3729,10 +3733,6 @@ ElectrochemicalImpedanceSpectroscopy Altlabel EIS - - Preflabel - ElectrochemicalImpedanceSpectroscopy - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -3769,16 +3769,16 @@ ElectrochemicalPiezoelectricMicrogravimetry Annotations - Comment - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + Preflabel + ElectrochemicalPiezoelectricMicrogravimetry Elucidation Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - Preflabel - ElectrochemicalPiezoelectricMicrogravimetry + Comment + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. Iupacreference @@ -3816,20 +3816,20 @@ ElectrochemicalTesting Annotations - Comment - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity + Preflabel + ElectrochemicalTesting - Comment + Elucidation In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - Elucidation - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + Comment + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity - Preflabel - ElectrochemicalTesting + Comment + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. Label @@ -3863,8 +3863,8 @@ Electrogravimetry Annotations - Comment - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Preflabel + Electrogravimetry Elucidation @@ -3874,22 +3874,22 @@ Electrogravimetry Elucidation method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + + Comment + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Wikidatareference https://www.wikidata.org/wiki/Q902953 - Preflabel - Electrogravimetry + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 Wikipediareference https://en.wikipedia.org/wiki/Electrogravimetry - - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 - Label Electrogravimetry @@ -3922,20 +3922,20 @@ ElectronBackscatterDiffraction Annotations - Comment - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + Preflabel + ElectronBackscatterDiffraction Elucidation Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - Altlabel - EBSD + Comment + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - Preflabel - ElectronBackscatterDiffraction + Altlabel + EBSD Label @@ -3973,16 +3973,16 @@ ElectronProbeMicroanalysis Annotations - Comment - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + Preflabel + ElectronProbeMicroanalysis Elucidation Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - Preflabel - ElectronProbeMicroanalysis + Comment + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. Label @@ -4016,16 +4016,16 @@ Ellipsometry Annotations - Comment - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + Preflabel + Ellipsometry Elucidation Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - Preflabel - Ellipsometry + Comment + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. Label @@ -4059,13 +4059,17 @@ EnergyDispersiveXraySpectroscopy Annotations - Comment - An analytical technique used for the elemental analysis or chemical characterization of a sample. + Preflabel + EnergyDispersiveXraySpectroscopy Elucidation An analytical technique used for the elemental analysis or chemical characterization of a sample. + + Comment + An analytical technique used for the elemental analysis or chemical characterization of a sample. + Wikidatareference https://www.wikidata.org/wiki/Q386334 @@ -4078,10 +4082,6 @@ EnergyDispersiveXraySpectroscopy Altlabel EDX - - Preflabel - EnergyDispersiveXraySpectroscopy - Wikipediareference https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy @@ -4118,16 +4118,16 @@ EnvironmentalScanningElectronMicroscopy Annotations - Comment - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + Preflabel + EnvironmentalScanningElectronMicroscopy Elucidation The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - Preflabel - EnvironmentalScanningElectronMicroscopy + Comment + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. Label @@ -4161,16 +4161,16 @@ Exafs Annotations - Comment - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + Preflabel + Exafs Elucidation Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - Preflabel - Exafs + Comment + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. Label @@ -4204,16 +4204,16 @@ FatigueTesting Annotations - Comment - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + Preflabel + FatigueTesting Elucidation Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - Preflabel - FatigueTesting + Comment + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. Label @@ -4247,20 +4247,20 @@ FibDic Annotations - Comment - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + Preflabel + FibDic Elucidation The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - Altlabel - FIBDICResidualStressAnalysis + Comment + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - Preflabel - FibDic + Altlabel + FIBDICResidualStressAnalysis Label @@ -4294,20 +4294,20 @@ FieldEmissionScanningElectronMicroscopy Annotations - Comment - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + Preflabel + FieldEmissionScanningElectronMicroscopy Elucidation Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - Altlabel - FE-SEM + Comment + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - Preflabel - FieldEmissionScanningElectronMicroscopy + Altlabel + FE-SEM Label @@ -4341,13 +4341,17 @@ FourierTransformInfraredSpectroscopy Annotations - Comment - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + Preflabel + FourierTransformInfraredSpectroscopy Elucidation A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + + Comment + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + Wikidatareference https://www.wikidata.org/wiki/Q901559 @@ -4356,10 +4360,6 @@ FourierTransformInfraredSpectroscopy Altlabel FTIR - - Preflabel - FourierTransformInfraredSpectroscopy - Wikipediareference https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy @@ -4396,16 +4396,16 @@ Fractography Annotations - Comment - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + Preflabel + Fractography Elucidation Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - Preflabel - Fractography + Comment + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. Label @@ -4439,16 +4439,16 @@ FreezingPointDepressionOsmometry Annotations - Comment - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + Preflabel + FreezingPointDepressionOsmometry Elucidation The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - Preflabel - FreezingPointDepressionOsmometry + Comment + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. Label @@ -4482,13 +4482,17 @@ GalvanostaticIntermittentTitrationTechnique Annotations - Comment - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + Preflabel + GalvanostaticIntermittentTitrationTechnique Elucidation Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + + Comment + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + Wikidatareference https://www.wikidata.org/wiki/Q120906986 @@ -4497,10 +4501,6 @@ GalvanostaticIntermittentTitrationTechnique Altlabel GITT - - Preflabel - GalvanostaticIntermittentTitrationTechnique - Label GalvanostaticIntermittentTitrationTechnique @@ -4533,16 +4533,16 @@ GammaSpectrometry Annotations - Comment - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + Preflabel + GammaSpectrometry Elucidation Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - Preflabel - GammaSpectrometry + Comment + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. Label @@ -4576,19 +4576,19 @@ GasAdsorptionPorosimetry Annotations - Comment - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + Preflabel + GasAdsorptionPorosimetry Elucidation Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - Altlabel - GasAdsorptionPorosimetry + Comment + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - Preflabel + Altlabel GasAdsorptionPorosimetry @@ -4623,16 +4623,16 @@ Grinding Annotations - Comment - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + Preflabel + Grinding Elucidation Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - Preflabel - Grinding + Comment + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. Label @@ -4666,13 +4666,17 @@ HPPC Annotations - Comment - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + Preflabel + HPPC Elucidation Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + + Comment + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + Altlabel HybridPulsePowerCharacterisation @@ -4681,10 +4685,6 @@ HPPC Altlabel HybridPulsePowerCharacterization - - Preflabel - HPPC - Label HPPC @@ -4717,16 +4717,16 @@ HardnessTesting Annotations - Comment - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + Preflabel + HardnessTesting Elucidation A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - Preflabel - HardnessTesting + Comment + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. Label @@ -4759,14 +4759,14 @@ HardwareManufacturer Annotations - - Comment - - Preflabel HardwareManufacturer + + Comment + + Label HardwareManufacturer @@ -4798,14 +4798,14 @@ HardwareModel Annotations - - Comment - - Preflabel HardwareModel + + Comment + + Label HardwareModel @@ -4838,16 +4838,16 @@ Hazard Annotations - Comment - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + Preflabel + Hazard Elucidation Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - Preflabel - Hazard + Comment + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. Label @@ -4881,16 +4881,16 @@ Holder Annotations - Comment - An object which supports the specimen in the correct position for the characterisation process. + Preflabel + Holder Elucidation An object which supports the specimen in the correct position for the characterisation process. - Preflabel - Holder + Comment + An object which supports the specimen in the correct position for the characterisation process. Label @@ -4924,29 +4924,29 @@ HydrodynamicVoltammetry Annotations - Comment - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + Preflabel + HydrodynamicVoltammetry Elucidation Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + + Comment + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + Wikidatareference https://www.wikidata.org/wiki/Q17028237 - Preflabel - HydrodynamicVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label HydrodynamicVoltammetry @@ -4979,20 +4979,20 @@ ICI Annotations - Comment - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + Preflabel + ICI Elucidation Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - Altlabel - IntermittentCurrentInterruptionMethod + Comment + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - Preflabel - ICI + Altlabel + IntermittentCurrentInterruptionMethod Label @@ -5026,16 +5026,16 @@ Impedimetry Annotations - Comment - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Preflabel + Impedimetry Elucidation Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Preflabel - Impedimetry + Comment + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. Iupacreference @@ -5072,6 +5072,14 @@ InteractionVolume Annotations + + Preflabel + InteractionVolume + + + Elucidation + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + Comment In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. @@ -5088,14 +5096,6 @@ InteractionVolume Comment The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - - Elucidation - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - - - Preflabel - InteractionVolume - Example In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). @@ -5131,14 +5131,14 @@ IntermediateSample Annotations - - Comment - - Preflabel IntermediateSample + + Comment + + Label IntermediateSample @@ -5171,16 +5171,16 @@ IonChromatography Annotations - Comment - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + Preflabel + IonChromatography Elucidation Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - Preflabel - IonChromatography + Comment + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. Wikipediareference @@ -5218,20 +5218,20 @@ IonMobilitySpectrometry Annotations - Comment - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + Preflabel + IonMobilitySpectrometry Elucidation Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - Altlabel - IMS + Comment + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - Preflabel - IonMobilitySpectrometry + Altlabel + IMS Label @@ -5265,20 +5265,20 @@ IsothermalMicrocalorimetry Annotations - Comment - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + Preflabel + IsothermalMicrocalorimetry Elucidation Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - Altlabel - IMC + Comment + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - Preflabel - IsothermalMicrocalorimetry + Altlabel + IMC Label @@ -5312,16 +5312,16 @@ Laboratory Annotations - Comment - The laboratory where the whole characterisation process or some of its stages take place. + Preflabel + Laboratory Elucidation The laboratory where the whole characterisation process or some of its stages take place. - Preflabel - Laboratory + Comment + The laboratory where the whole characterisation process or some of its stages take place. Label @@ -5355,16 +5355,16 @@ LevelOfAutomation Annotations - Comment - Describes the level of automation of the test. + Preflabel + LevelOfAutomation Elucidation Describes the level of automation of the test. - Preflabel - LevelOfAutomation + Comment + Describes the level of automation of the test. Label @@ -5398,16 +5398,16 @@ LevelOfExpertise Annotations - Comment - Describes the level of expertise required to carry out a process (the entire test or the data processing). + Preflabel + LevelOfExpertise Elucidation Describes the level of expertise required to carry out a process (the entire test or the data processing). - Preflabel - LevelOfExpertise + Comment + Describes the level of expertise required to carry out a process (the entire test or the data processing). Label @@ -5441,16 +5441,16 @@ LightScattering Annotations - Comment - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + Preflabel + LightScattering Elucidation Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - Preflabel - LightScattering + Comment + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. Label @@ -5484,8 +5484,8 @@ LinearChronopotentiometry Annotations - Comment - Chronopotentiometry where the applied current is changed linearly. + Preflabel + LinearChronopotentiometry Elucidation @@ -5496,8 +5496,8 @@ LinearChronopotentiometry chronopotentiometry where the applied current is changed linearly - Preflabel - LinearChronopotentiometry + Comment + Chronopotentiometry where the applied current is changed linearly. Label @@ -5531,13 +5531,17 @@ LinearScanVoltammetry Annotations - Comment - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + Preflabel + LinearScanVoltammetry Elucidation Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + + Comment + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + Wikidatareference https://www.wikidata.org/wiki/Q620700 @@ -5555,17 +5559,13 @@ LinearScanVoltammetry LinearSweepVoltammetry - Preflabel - LinearScanVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Linear_sweep_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label LinearScanVoltammetry @@ -5598,16 +5598,16 @@ MassSpectrometry Annotations - Comment - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + Preflabel + MassSpectrometry Elucidation Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - Preflabel - MassSpectrometry + Comment + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. Label @@ -5641,20 +5641,20 @@ MeasurementParameter Annotations - Comment - Describes the main input parameters that are needed to acquire the signal. + Preflabel + MeasurementParameter - Comment + Elucidation Describes the main input parameters that are needed to acquire the signal. - Elucidation + Comment Describes the main input parameters that are needed to acquire the signal. - Preflabel - MeasurementParameter + Comment + Describes the main input parameters that are needed to acquire the signal. Label @@ -5687,6 +5687,14 @@ MeasurementSystemAdjustment Annotations + + Preflabel + MeasurementSystemAdjustment + + + Elucidation + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Comment Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. @@ -5700,21 +5708,13 @@ MeasurementSystemAdjustment Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Elucidation - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Definition + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. Altlabel MeasurementParameterAdjustment - - Preflabel - MeasurementSystemAdjustment - - - Definition - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Vimterm Adjustment @@ -5755,20 +5755,20 @@ MeasurementTime Annotations - Comment - The overall time needed to acquire the measurement data. + Preflabel + MeasurementTime - Comment + Elucidation The overall time needed to acquire the measurement data. - Elucidation + Comment The overall time needed to acquire the measurement data. - Preflabel - MeasurementTime + Comment + The overall time needed to acquire the measurement data. Label @@ -5802,16 +5802,16 @@ MechanicalTesting Annotations - Comment - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + Preflabel + MechanicalTesting Elucidation Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - Preflabel - MechanicalTesting + Comment + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. Wikipediareference @@ -5849,20 +5849,20 @@ MembraneOsmometry Annotations - Comment - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + Preflabel + MembraneOsmometry - Comment + Elucidation In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - Elucidation + Comment In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - Preflabel - MembraneOsmometry + Comment + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. Label @@ -5896,20 +5896,20 @@ MercuryPorosimetry Annotations - Comment - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + Preflabel + MercuryPorosimetry - Comment + Elucidation A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - Elucidation + Comment A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - Preflabel - MercuryPorosimetry + Comment + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. Label @@ -5943,20 +5943,20 @@ Microscopy Annotations - Comment - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Preflabel + Microscopy - Comment + Elucidation Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Elucidation + Comment Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Preflabel - Microscopy + Comment + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Label @@ -5990,16 +5990,16 @@ Milling Annotations - Comment - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + Preflabel + Milling Elucidation Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - Preflabel - Milling + Comment + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. Label @@ -6033,20 +6033,20 @@ Mounting Annotations - Comment - The sample is mounted on a holder. + Preflabel + Mounting - Comment + Elucidation The sample is mounted on a holder. - Elucidation + Comment The sample is mounted on a holder. - Preflabel - Mounting + Comment + The sample is mounted on a holder. Label @@ -6084,20 +6084,20 @@ Nanoindentation Annotations - Comment - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + Preflabel + Nanoindentation - Comment - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Elucidation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Elucidation + Comment Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Preflabel - Nanoindentation + Comment + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. Example @@ -6135,20 +6135,20 @@ NeutronSpinEchoSpectroscopy Annotations - Comment - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + Preflabel + NeutronSpinEchoSpectroscopy Elucidation Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - Altlabel - NSE + Comment + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - Preflabel - NeutronSpinEchoSpectroscopy + Altlabel + NSE Label @@ -6182,16 +6182,16 @@ Nexafs Annotations - Comment - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Preflabel + Nexafs Elucidation Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - Preflabel - Nexafs + Comment + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. Label @@ -6225,20 +6225,20 @@ NormalPulseVoltammetry Annotations - Comment - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + Preflabel + NormalPulseVoltammetry Elucidation Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - Altlabel - NPV + Comment + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - Preflabel - NormalPulseVoltammetry + Altlabel + NPV Iupacreference @@ -6276,13 +6276,17 @@ NuclearMagneticResonance Annotations - Comment - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + Preflabel + NuclearMagneticResonance Elucidation Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + + Comment + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + Altlabel Magnetic resonance spectroscopy (MRS) @@ -6291,10 +6295,6 @@ NuclearMagneticResonance Altlabel NMR - - Preflabel - NuclearMagneticResonance - Label NuclearMagneticResonance @@ -6327,20 +6327,20 @@ OpenCircuitHold Annotations - Comment - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + Preflabel + OpenCircuitHold Elucidation A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - Altlabel - OCVHold + Comment + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - Preflabel - OpenCircuitHold + Altlabel + OCVHold Label @@ -6374,16 +6374,16 @@ Operator Annotations - Comment - The human operator who takes care of the whole characterisation method or sub-processes/stages. + Preflabel + Operator Elucidation The human operator who takes care of the whole characterisation method or sub-processes/stages. - Preflabel - Operator + Comment + The human operator who takes care of the whole characterisation method or sub-processes/stages. Label @@ -6425,16 +6425,16 @@ OpticalMicroscopy Annotations - Comment - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + Preflabel + OpticalMicroscopy Elucidation Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - Preflabel - OpticalMicroscopy + Comment + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. Label @@ -6467,14 +6467,14 @@ OpticalTesting Annotations - - Comment - - Preflabel OpticalTesting + + Comment + + Label OpticalTesting @@ -6507,16 +6507,16 @@ Osmometry Annotations - Comment - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Preflabel + Osmometry Elucidation Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - Preflabel - Osmometry + Comment + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). Label @@ -6550,20 +6550,20 @@ OutlierRemoval Annotations - Comment - Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. + Preflabel + OutlierRemoval - Comment - + Elucidation + Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - Elucidation + Comment Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - Preflabel - OutlierRemoval + Comment + Label @@ -6597,16 +6597,16 @@ PhotoluminescenceMicroscopy Annotations - Comment - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + Preflabel + PhotoluminescenceMicroscopy Elucidation Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - Preflabel - PhotoluminescenceMicroscopy + Comment + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. Label @@ -6640,20 +6640,20 @@ PhysicsOfInteraction Annotations - Comment - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + Preflabel + PhysicsOfInteraction - Comment - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + Elucidation + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Elucidation + Comment Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Preflabel - PhysicsOfInteraction + Comment + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). Example @@ -6695,16 +6695,16 @@ Polishing Annotations - Comment - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Preflabel + Polishing Elucidation Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - Preflabel - Polishing + Comment + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. Label @@ -6737,14 +6737,14 @@ Porosimetry Annotations - - Comment - - Preflabel Porosimetry + + Comment + + Label Porosimetry @@ -6776,6 +6776,14 @@ PostProcessingModel Annotations + + Preflabel + PostProcessingModel + + + Elucidation + Mathematical model used to process data. + Comment The PostProcessingModel use is mainly intended to get secondary data from primary data. @@ -6792,14 +6800,6 @@ PostProcessingModel Comment The PostProcessingModel use is mainly intended to get secondary data from primary data. - - Elucidation - Mathematical model used to process data. - - - Preflabel - PostProcessingModel - Label PostProcessingModel @@ -6831,6 +6831,18 @@ PotentiometricStrippingAnalysis Annotations + + Preflabel + PotentiometricStrippingAnalysis + + + Elucidation + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + + + Elucidation + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + Comment Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. @@ -6851,22 +6863,10 @@ PotentiometricStrippingAnalysis Comment the time between changes in potential in step 2 is related to the concentration of analyte in the solution - - Elucidation - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - - - Elucidation - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - Altlabel PSA - - Preflabel - PotentiometricStrippingAnalysis - Label PotentiometricStrippingAnalysis @@ -6899,29 +6899,29 @@ Potentiometry Annotations - Comment - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Preflabel + Potentiometry Elucidation Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + + Comment + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Wikidatareference https://www.wikidata.org/wiki/Q900632 - Preflabel - Potentiometry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label Potentiometry @@ -6954,16 +6954,16 @@ PreparedSample Annotations - Comment - The sample after a preparation process. + Preflabel + PreparedSample Elucidation The sample after a preparation process. - Preflabel - PreparedSample + Comment + The sample after a preparation process. Label @@ -6997,16 +6997,16 @@ PrimaryData Annotations - Comment - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + Preflabel + PrimaryData Elucidation Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - Preflabel - PrimaryData + Comment + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. Example @@ -7043,6 +7043,14 @@ Probe Annotations + + Preflabel + Probe + + + Elucidation + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + Comment Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. @@ -7051,14 +7059,6 @@ Probe Comment - - Elucidation - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - - - Preflabel - Probe - Example In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. @@ -7111,20 +7111,20 @@ ProbeSampleInteraction Annotations - Comment - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + Preflabel + ProbeSampleInteraction - Comment - + Elucidation + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - Elucidation + Comment Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - Preflabel - ProbeSampleInteraction + Comment + Label @@ -7174,20 +7174,20 @@ ProcessingReproducibility Annotations - Comment - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + Preflabel + ProcessingReproducibility - Comment - + Elucidation + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - Elucidation + Comment Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - Preflabel - ProcessingReproducibility + Comment + Label @@ -7221,20 +7221,20 @@ Profilometry Annotations - Comment - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + Preflabel + Profilometry - Comment - + Elucidation + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - Elucidation + Comment Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - Preflabel - Profilometry + Comment + Label @@ -7268,25 +7268,25 @@ PseudoOpenCircuitVoltageMethod Annotations - Comment + Preflabel + PseudoOpenCircuitVoltageMethod + + + Elucidation a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage Comment - + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - Elucidation - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + Comment + Altlabel PseudoOCV - - Preflabel - PseudoOpenCircuitVoltageMethod - Label PseudoOpenCircuitVoltageMethod @@ -7319,20 +7319,20 @@ PulsedElectroacousticMethod Annotations - Comment - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + Preflabel + PulsedElectroacousticMethod - Comment - + Elucidation + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - Elucidation + Comment The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - Preflabel - PulsedElectroacousticMethod + Comment + Iupacreference @@ -7370,20 +7370,20 @@ RamanSpectroscopy Annotations - Comment - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + Preflabel + RamanSpectroscopy - Comment - + Elucidation + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - Elucidation + Comment Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - Preflabel - RamanSpectroscopy + Comment + Label @@ -7417,16 +7417,16 @@ Rationale Annotations - Comment - A set of reasons or a logical basis for a decision or belief + Preflabel + Rationale Elucidation A set of reasons or a logical basis for a decision or belief - Preflabel - Rationale + Comment + A set of reasons or a logical basis for a decision or belief Label @@ -7460,32 +7460,32 @@ RawData Annotations - Comment - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + Preflabel + RawData - Comment + Elucidation Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - Comment - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + Elucidation + The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. Comment - + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - Elucidation + Comment Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - Elucidation - The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. + Comment + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - Preflabel - RawData + Comment + Example @@ -7530,14 +7530,14 @@ RawSample Annotations - - Comment - - Preflabel RawSample + + Comment + + Label RawSample @@ -7569,6 +7569,14 @@ ReferenceSample Annotations + + Preflabel + ReferenceSample + + + Elucidation + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Comment Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination
NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property
value.
NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.
NOTE 3 Reference materials can be used for measurement precision evaluation and quality control.
EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.
NOTE 4 Properties of reference materials can be quantities or nominal properties.
NOTE 5 A reference material is sometimes incorporated into a specially fabricated device.
EXAMPLE Spheres of uniform size mounted on a microscope slide.
NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to
which International Units (IU) have been assigned by the World Health Organization.
NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality
control, but not both.
NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference
materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.

-- International Vocabulary of Metrology(VIM) @@ -7582,8 +7590,12 @@ ReferenceSample - Elucidation - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Definition + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination
NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property
value.
NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.
NOTE 3 Reference materials can be used for measurement precision evaluation and quality control.
EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.
NOTE 4 Properties of reference materials can be quantities or nominal properties.
NOTE 5 A reference material is sometimes incorporated into a specially fabricated device.
EXAMPLE Spheres of uniform size mounted on a microscope slide.
NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to
which International Units (IU) have been assigned by the World Health Organization.
NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality
control, but not both.
NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference
materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.

-- International Vocabulary of Metrology(VIM) + + + Definition + Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] Altlabel @@ -7597,18 +7609,6 @@ ReferenceSample Altlabel ReferenceSpecimen - - Preflabel - ReferenceSample - - - Definition - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination
NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property
value.
NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.
NOTE 3 Reference materials can be used for measurement precision evaluation and quality control.
EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.
NOTE 4 Properties of reference materials can be quantities or nominal properties.
NOTE 5 A reference material is sometimes incorporated into a specially fabricated device.
EXAMPLE Spheres of uniform size mounted on a microscope slide.
NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to
which International Units (IU) have been assigned by the World Health Organization.
NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality
control, but not both.
NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference
materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.

-- International Vocabulary of Metrology(VIM) - - - Definition - Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] - Vimterm Reference material @@ -7644,6 +7644,14 @@ Sample Annotations + + Preflabel + Sample + + + Elucidation + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. + Comment Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. @@ -7660,18 +7668,10 @@ Sample Comment Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - - Elucidation - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. - Altlabel Specimen - - Preflabel - Sample - Label Sample @@ -7704,11 +7704,11 @@ SampleExtraction Annotations - Comment - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + Preflabel + SampleExtraction - Comment + Elucidation Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. @@ -7717,15 +7717,15 @@ SampleExtraction Comment - + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - Elucidation - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + Comment + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - Preflabel - SampleExtraction + Comment + Label @@ -7797,14 +7797,14 @@ SampleExtractionInstrument Annotations - - Comment - - Preflabel SampleExtractionInstrument + + Comment + + Label SampleExtractionInstrument @@ -7837,20 +7837,20 @@ SampleInspection Annotations - Comment - Analysis of the sample in order to determine information that are relevant for the characterisation method. + Preflabel + SampleInspection - Comment - + Elucidation + Analysis of the sample in order to determine information that are relevant for the characterisation method. - Elucidation + Comment Analysis of the sample in order to determine information that are relevant for the characterisation method. - Preflabel - SampleInspection + Comment + Example @@ -7903,14 +7903,14 @@ SampleInspectionInstrument Annotations - - Comment - - Preflabel SampleInspectionInstrument + + Comment + + Label SampleInspectionInstrument @@ -7943,20 +7943,20 @@ SampleInspectionParameter Annotations - Comment - Parameter used for the sample inspection process + Preflabel + SampleInspectionParameter - Comment - + Elucidation + Parameter used for the sample inspection process - Elucidation + Comment Parameter used for the sample inspection process - Preflabel - SampleInspectionParameter + Comment + Label @@ -7990,20 +7990,20 @@ SamplePreparation Annotations - Comment - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + Preflabel + SamplePreparation - Comment - + Elucidation + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - Elucidation + Comment Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - Preflabel - SamplePreparation + Comment + Label @@ -8083,14 +8083,14 @@ SamplePreparationInstrument Annotations - - Comment - - Preflabel SamplePreparationInstrument + + Comment + + Label SamplePreparationInstrument @@ -8123,20 +8123,20 @@ SamplePreparationParameter Annotations - Comment - Parameter used for the sample preparation process + Preflabel + SamplePreparationParameter - Comment - + Elucidation + Parameter used for the sample preparation process - Elucidation + Comment Parameter used for the sample preparation process - Preflabel - SamplePreparationParameter + Comment + Label @@ -8169,6 +8169,14 @@ SampledDCPolarography Annotations + + Preflabel + SampledDCPolarography + + + Elucidation + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + Comment DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. @@ -8181,18 +8189,10 @@ SampledDCPolarography Comment - - Elucidation - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - Altlabel TASTPolarography - - Preflabel - SampledDCPolarography - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -8229,25 +8229,25 @@ ScanningAugerElectronMicroscopy Annotations - Comment + Preflabel + ScanningAugerElectronMicroscopy + + + Elucidation Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. Comment - + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - Elucidation - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + Comment + Altlabel AES - - Preflabel - ScanningAugerElectronMicroscopy - Label ScanningAugerElectronMicroscopy @@ -8280,25 +8280,25 @@ ScanningElectronMicroscopy Annotations - Comment + Preflabel + ScanningElectronMicroscopy + + + Elucidation The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. Comment - + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - Elucidation - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + Comment + Altlabel SEM - - Preflabel - ScanningElectronMicroscopy - Label ScanningElectronMicroscopy @@ -8331,25 +8331,25 @@ ScanningKelvinProbe Annotations - Comment + Preflabel + ScanningKelvinProbe + + + Elucidation Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. Comment - + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - Elucidation - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + Comment + Altlabel SKB - - Preflabel - ScanningKelvinProbe - Label ScanningKelvinProbe @@ -8382,20 +8382,20 @@ ScanningProbeMicroscopy Annotations - Comment - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + Preflabel + ScanningProbeMicroscopy - Comment - + Elucidation + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - Elucidation + Comment Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - Preflabel - ScanningProbeMicroscopy + Comment + Label @@ -8429,25 +8429,25 @@ ScanningTunnelingMicroscopy Annotations - Comment + Preflabel + ScanningTunnelingMicroscopy + + + Elucidation Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. Comment - + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - Elucidation - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + Comment + Altlabel STM - - Preflabel - ScanningTunnelingMicroscopy - Label ScanningTunnelingMicroscopy @@ -8479,14 +8479,14 @@ ScatteringAndDiffraction Annotations - - Comment - - Preflabel ScatteringAndDiffraction + + Comment + + Label ScatteringAndDiffraction @@ -8519,25 +8519,25 @@ SecondaryData Annotations - Comment + Preflabel + SecondaryData + + + Elucidation Data resulting from the application of post-processing or model generation to other data. Comment - + Data resulting from the application of post-processing or model generation to other data. - Elucidation - Data resulting from the application of post-processing or model generation to other data. + Comment + Altlabel Elaborated data - - Preflabel - SecondaryData - Example Deconvoluted curves @@ -8578,25 +8578,25 @@ SecondaryIonMassSpectrometry Annotations - Comment + Preflabel + SecondaryIonMassSpectrometry + + + Elucidation Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. Comment - + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - Elucidation - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + Comment + Altlabel SIMS - - Preflabel - SecondaryIonMassSpectrometry - Label SecondaryIonMassSpectrometry @@ -8628,14 +8628,14 @@ ShearOrTorsionTesting Annotations - - Comment - - Preflabel ShearOrTorsionTesting + + Comment + + Label ShearOrTorsionTesting @@ -8667,6 +8667,14 @@ Signal Annotations + + Preflabel + Signal + + + Elucidation + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Comment Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. @@ -8687,14 +8695,6 @@ Signal Comment - - Elucidation - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - - - Preflabel - Signal - Definition According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). @@ -8731,20 +8731,20 @@ Spectrometry Annotations - Comment - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + Preflabel + Spectrometry - Comment - + Elucidation + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - Elucidation + Comment Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - Preflabel - Spectrometry + Comment + Label @@ -8778,20 +8778,20 @@ Spectroscopy Annotations - Comment - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + Preflabel + Spectroscopy - Comment - + Elucidation + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - Elucidation + Comment Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - Preflabel - Spectroscopy + Comment + Label @@ -8824,6 +8824,14 @@ SquareWaveVoltammetry Annotations + + Preflabel + SquareWaveVoltammetry + + + Elucidation + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + Comment Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. @@ -8844,10 +8852,6 @@ SquareWaveVoltammetry Comment - - Elucidation - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - Wikidatareference https://www.wikidata.org/wiki/Q4016323 @@ -8865,17 +8869,13 @@ SquareWaveVoltammetry SWV - Preflabel - SquareWaveVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Squarewave_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label SquareWaveVoltammetry @@ -8908,20 +8908,20 @@ StepChronopotentiometry Annotations - Comment - chronopotentiometry where the applied current is changed in steps + Preflabel + StepChronopotentiometry - Comment - + Elucidation + chronopotentiometry where the applied current is changed in steps - Elucidation + Comment chronopotentiometry where the applied current is changed in steps - Preflabel - StepChronopotentiometry + Comment + Label @@ -8954,6 +8954,14 @@ StrippingVoltammetry Annotations + + Preflabel + StrippingVoltammetry + + + Elucidation + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + Comment Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. @@ -8983,21 +8991,13 @@ StrippingVoltammetry - Elucidation - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - - - Preflabel - StrippingVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label StrippingVoltammetry @@ -9029,14 +9029,14 @@ Synchrotron Annotations - - Comment - - Preflabel Synchrotron + + Comment + + Label Synchrotron @@ -9069,25 +9069,25 @@ TensileTesting Annotations - Comment + Preflabel + TensileTesting + + + Elucidation Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. Comment - + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - Elucidation - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. + Comment + Altlabel TensionTest - - Preflabel - TensileTesting - Label TensileTesting @@ -9120,25 +9120,25 @@ ThermochemicalTesting Annotations - Comment + Preflabel + ThermochemicalTesting + + + Elucidation Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. Comment - + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - Elucidation - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + Comment + Altlabel TMA - - Preflabel - ThermochemicalTesting - Label ThermochemicalTesting @@ -9171,25 +9171,25 @@ Thermogravimetry Annotations - Comment + Preflabel + Thermogravimetry + + + Elucidation Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). Comment - + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - Elucidation - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + Comment + Altlabel TGA - - Preflabel - Thermogravimetry - Label Thermogravimetry @@ -9222,16 +9222,20 @@ ThreePointBendingTesting Annotations - Comment + Preflabel + ThreePointBendingTesting + + + Elucidation Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample Comment - + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - Elucidation - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + Comment + Wikidatareference @@ -9241,10 +9245,6 @@ ThreePointBendingTesting Altlabel ThreePointFlexuralTest - - Preflabel - ThreePointBendingTesting - Wikipediareference https://en.wikipedia.org/wiki/Three-point_flexural_test @@ -9281,16 +9281,16 @@ Tomography Annotations - Comment - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + Preflabel + Tomography Elucidation Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - Preflabel - Tomography + Comment + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. Label @@ -9324,25 +9324,25 @@ TransmissionElectronMicroscopy Annotations - Comment + Preflabel + TransmissionElectronMicroscopy + + + Elucidation Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. Comment - + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - Elucidation - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + Comment + Altlabel TEM - - Preflabel - TransmissionElectronMicroscopy - Label TransmissionElectronMicroscopy @@ -9375,16 +9375,16 @@ UltrasonicTesting Annotations - Comment - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + Preflabel + UltrasonicTesting Elucidation Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - Preflabel - UltrasonicTesting + Comment + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. Label @@ -9418,16 +9418,16 @@ UserCase Annotations - Comment - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + Preflabel + UserCase Elucidation High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - Preflabel - UserCase + Comment + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. Label @@ -9458,7 +9458,15 @@ VaporPressureDepressionOsmometry https://w3id.org/emmo/domain/characterisation-methodology/chameo#VaporPressureDepressionOsmometry - Annotations + Annotations + + + Preflabel + VaporPressureDepressionOsmometry + + + Elucidation + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. Comment @@ -9468,18 +9476,10 @@ VaporPressureDepressionOsmometry Comment - - Elucidation - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - Altlabel VPO - - Preflabel - VaporPressureDepressionOsmometry - Label VaporPressureDepressionOsmometry @@ -9512,25 +9512,25 @@ Viscometry Annotations - Comment + Preflabel + Viscometry + + + Elucidation Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. Comment - + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - Elucidation - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + Comment + Altlabel Viscosity - - Preflabel - Viscometry - Label Viscometry @@ -9562,6 +9562,14 @@ Voltammetry Annotations + + Preflabel + Voltammetry + + + Elucidation + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + Comment The current vs. potential (I-E) curve is called a voltammogram. @@ -9574,29 +9582,21 @@ Voltammetry Comment - - Elucidation - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - Wikidatareference https://www.wikidata.org/wiki/Q904093 - Preflabel - Voltammetry - - - Wikipediareference - https://en.wikipedia.org/wiki/Voltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikipediareference + https://en.wikipedia.org/wiki/Voltammetry Label @@ -9630,16 +9630,16 @@ VoltammetryAtARotatingDiskElectrode Annotations - Comment - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + Preflabel + VoltammetryAtARotatingDiskElectrode Elucidation Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - Preflabel - VoltammetryAtARotatingDiskElectrode + Comment + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation Iupacreference @@ -9677,16 +9677,16 @@ WearTesting Annotations - Comment - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + Preflabel + WearTesting Elucidation A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - Preflabel - WearTesting + Comment + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. Label @@ -9720,13 +9720,17 @@ XpsVariableKinetic Annotations - Comment - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + Preflabel + XpsVariableKinetic Elucidation X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + + Comment + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + Altlabel Electron spectroscopy for chemical analysis (ESCA) @@ -9735,10 +9739,6 @@ XpsVariableKinetic Altlabel X-ray photoelectron spectroscopy (XPS) - - Preflabel - XpsVariableKinetic - Label XpsVariableKinetic @@ -9771,16 +9771,20 @@ XrayDiffraction Annotations - Comment + Preflabel + XrayDiffraction + + + Elucidation a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice Comment - + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - Elucidation - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + Comment + Wikidatareference @@ -9790,10 +9794,6 @@ XrayDiffraction Altlabel XRD - - Preflabel - XrayDiffraction - Wikipediareference https://en.wikipedia.org/wiki/X-ray_crystallography @@ -9830,25 +9830,25 @@ XrayPowderDiffraction Annotations - Comment + Preflabel + XrayPowderDiffraction + + + Elucidation a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample Comment - + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - Elucidation - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + Comment + Altlabel XRPD - - Preflabel - XrayPowderDiffraction - Wikipediareference https://en.wikipedia.org/wiki/Powder_diffraction @@ -9884,14 +9884,14 @@ XrdGrazingIncidence Annotations - - Comment - - Preflabel XrdGrazingIncidence + + Comment + + Label XrdGrazingIncidence @@ -9929,14 +9929,14 @@ hasAccessConditions Annotations - - Comment - - Preflabel hasAccessConditions + + Comment + + Label hasAccessConditions @@ -10003,6 +10003,10 @@ hasBeginCharacterisationTask Annotations + + Preflabel + hasBeginCharacterisationTask + Comment @@ -10011,10 +10015,6 @@ hasBeginCharacterisationTask Altlabel hasBeginCharacterizationTask - - Preflabel - hasBeginCharacterisationTask - Label hasBeginCharacterisationTask @@ -10050,6 +10050,10 @@ hasCharacterisationComponent Annotations + + Preflabel + hasCharacterisationComponent + Comment @@ -10058,10 +10062,6 @@ hasCharacterisationComponent Altlabel hasCharacterizationComponent - - Preflabel - hasCharacterisationComponent - Label hasCharacterisationComponent @@ -10097,6 +10097,10 @@ hasCharacterisationEnvironment Annotations + + Preflabel + hasCharacterisationEnvironment + Comment @@ -10105,10 +10109,6 @@ hasCharacterisationEnvironment Altlabel hasCharacterizationEnvironment - - Preflabel - hasCharacterisationEnvironment - Label hasCharacterisationEnvironment @@ -10144,6 +10144,10 @@ hasCharacterisationEnvironmentProperty Annotations + + Preflabel + hasCharacterisationEnvironmentProperty + Comment @@ -10152,10 +10156,6 @@ hasCharacterisationEnvironmentProperty Altlabel hasCharacterizationEnvironmentProperty - - Preflabel - hasCharacterisationEnvironmentProperty - Label hasCharacterisationEnvironmentProperty @@ -10191,6 +10191,10 @@ hasCharacterisationInput Annotations + + Preflabel + hasCharacterisationInput + Comment @@ -10199,10 +10203,6 @@ hasCharacterisationInput Altlabel hasCharacterizationInput - - Preflabel - hasCharacterisationInput - Label hasCharacterisationInput @@ -10238,6 +10238,10 @@ hasCharacterisationMeasurementInstrument Annotations + + Preflabel + hasCharacterisationMeasurementInstrument + Comment @@ -10246,10 +10250,6 @@ hasCharacterisationMeasurementInstrument Altlabel hasCharacterizationMeasurementInstrument - - Preflabel - hasCharacterisationMeasurementInstrument - Label hasCharacterisationMeasurementInstrument @@ -10285,6 +10285,10 @@ hasCharacterisationOutput Annotations + + Preflabel + hasCharacterisationOutput + Comment @@ -10293,10 +10297,6 @@ hasCharacterisationOutput Altlabel hasCharacterizationOutput - - Preflabel - hasCharacterisationOutput - Label hasCharacterisationOutput @@ -10332,14 +10332,14 @@ hasCharacterisationProcedureValidation Annotations - - Comment - - Preflabel hasCharacterisationProcedureValidation + + Comment + + Label hasCharacterisationProcedureValidation @@ -10375,6 +10375,10 @@ hasCharacterisationProperty Annotations + + Preflabel + hasCharacterisationProperty + Comment @@ -10383,10 +10387,6 @@ hasCharacterisationProperty Altlabel hasCharacterizationProperty - - Preflabel - hasCharacterisationProperty - Label hasCharacterisationProperty @@ -10422,6 +10422,10 @@ hasCharacterisationSoftware Annotations + + Preflabel + hasCharacterisationSoftware + Comment @@ -10430,10 +10434,6 @@ hasCharacterisationSoftware Altlabel hasCharacterizationSoftware - - Preflabel - hasCharacterisationSoftware - Label hasCharacterisationSoftware @@ -10469,6 +10469,10 @@ hasCharacterisationTask Annotations + + Preflabel + hasCharacterisationTask + Comment @@ -10477,10 +10481,6 @@ hasCharacterisationTask Altlabel hasCharacterizationTask - - Preflabel - hasCharacterisationTask - Label hasCharacterisationTask @@ -10516,14 +10516,14 @@ hasDataAcquisitionRate Annotations - - Comment - - Preflabel hasDataAcquisitionRate + + Comment + + Label hasDataAcquisitionRate @@ -10559,14 +10559,14 @@ hasDataProcessingThroughCalibration Annotations - - Comment - - Preflabel hasDataProcessingThroughCalibration + + Comment + + Label hasDataProcessingThroughCalibration @@ -10602,14 +10602,14 @@ hasDataQuality Annotations - - Comment - - Preflabel hasDataQuality + + Comment + + Label hasDataQuality @@ -10645,14 +10645,14 @@ hasDataset Annotations - - Comment - - Preflabel hasDataset + + Comment + + Label hasDataset @@ -10688,14 +10688,14 @@ hasDateOfCalibration Annotations - - Comment - - Preflabel hasDateOfCalibration + + Comment + + Label hasDateOfCalibration @@ -10731,6 +10731,10 @@ hasEndCharacterisationTask Annotations + + Preflabel + hasEndCharacterisationTask + Comment @@ -10739,10 +10743,6 @@ hasEndCharacterisationTask Altlabel hasEndCharacterizationTask - - Preflabel - hasEndCharacterisationTask - Label hasEndCharacterisationTask @@ -10778,14 +10778,14 @@ hasHardwareSpecification Annotations - - Comment - - Preflabel hasHardwareSpecification + + Comment + + Label hasHardwareSpecification @@ -10821,14 +10821,14 @@ hasHazard Annotations - - Comment - - Preflabel hasHazard + + Comment + + Label hasHazard @@ -10864,14 +10864,14 @@ hasHolder Annotations - - Comment - - Preflabel hasHolder + + Comment + + Label hasHolder @@ -10907,14 +10907,14 @@ hasInstrumentForCalibration Annotations - - Comment - - Preflabel hasInstrumentForCalibration + + Comment + + Label hasInstrumentForCalibration @@ -10950,14 +10950,14 @@ hasInteractionVolume Annotations - - Comment - - Preflabel hasInteractionVolume + + Comment + + Label hasInteractionVolume @@ -10993,14 +10993,14 @@ hasInteractionWithProbe Annotations - - Comment - - Preflabel hasInteractionWithProbe + + Comment + + Label hasInteractionWithProbe @@ -11036,14 +11036,14 @@ hasInteractionWithSample Annotations - - Comment - - Preflabel hasInteractionWithSample + + Comment + + Label hasInteractionWithSample @@ -11079,14 +11079,14 @@ hasLab Annotations - - Comment - - Preflabel hasLab + + Comment + + Label hasLab @@ -11122,14 +11122,14 @@ hasLevelOfAutomation Annotations - - Comment - - Preflabel hasLevelOfAutomation + + Comment + + Label hasLevelOfAutomation @@ -11166,16 +11166,16 @@ hasManufacturer Annotations - Comment - A string representing the Manufacturer of a CharacterisationHardware + Preflabel + hasManufacturer Elucidation A string representing the Manufacturer of a CharacterisationHardware - Preflabel - hasManufacturer + Comment + A string representing the Manufacturer of a CharacterisationHardware Label @@ -11212,14 +11212,14 @@ hasMeasurementDetector Annotations - - Comment - - Preflabel hasMeasurementDetector + + Comment + + Label hasMeasurementDetector @@ -11255,14 +11255,14 @@ hasMeasurementParameter Annotations - - Comment - - Preflabel hasMeasurementParameter + + Comment + + Label hasMeasurementParameter @@ -11298,14 +11298,14 @@ hasMeasurementProbe Annotations - - Comment - - Preflabel hasMeasurementProbe + + Comment + + Label hasMeasurementProbe @@ -11341,14 +11341,14 @@ hasMeasurementSample Annotations - - Comment - - Preflabel hasMeasurementSample + + Comment + + Label hasMeasurementSample @@ -11384,14 +11384,14 @@ hasMeasurementTime Annotations - - Comment - - Preflabel hasMeasurementTime + + Comment + + Label hasMeasurementTime @@ -11428,16 +11428,16 @@ hasModel Annotations - Comment - A string representing the model of a CharacterisationHardware + Preflabel + hasModel Elucidation A string representing the model of a CharacterisationHardware - Preflabel - hasModel + Comment + A string representing the model of a CharacterisationHardware Label @@ -11474,14 +11474,14 @@ hasOperator Annotations - - Comment - - Preflabel hasOperator + + Comment + + Label hasOperator @@ -11517,14 +11517,14 @@ hasPeerReviewedArticle Annotations - - Comment - - Preflabel hasPeerReviewedArticle + + Comment + + Label hasPeerReviewedArticle @@ -11560,14 +11560,14 @@ hasPhysicsOfInteraction Annotations - - Comment - - Preflabel hasPhysicsOfInteraction + + Comment + + Label hasPhysicsOfInteraction @@ -11603,14 +11603,14 @@ hasPostProcessingModel Annotations - - Comment - - Preflabel hasPostProcessingModel + + Comment + + Label hasPostProcessingModel @@ -11646,14 +11646,14 @@ hasProcessingReproducibility Annotations - - Comment - - Preflabel hasProcessingReproducibility + + Comment + + Label hasProcessingReproducibility @@ -11689,14 +11689,14 @@ hasReferenceSample Annotations - - Comment - - Preflabel hasReferenceSample + + Comment + + Label hasReferenceSample @@ -11732,14 +11732,14 @@ hasSampleBeforeSamplePreparation Annotations - - Comment - - Preflabel hasSampleBeforeSamplePreparation + + Comment + + Label hasSampleBeforeSamplePreparation @@ -11779,14 +11779,14 @@ hasSampleForInspection Annotations - - Comment - - Preflabel hasSampleForInspection + + Comment + + Label hasSampleForInspection @@ -11822,14 +11822,14 @@ hasSampleInspectionInstrument Annotations - - Comment - - Preflabel hasSampleInspectionInstrument + + Comment + + Label hasSampleInspectionInstrument @@ -11865,14 +11865,14 @@ hasSampleInspectionParameter Annotations - - Comment - - Preflabel hasSampleInspectionParameter + + Comment + + Label hasSampleInspectionParameter @@ -11908,14 +11908,14 @@ hasSamplePreparationInstrument Annotations - - Comment - - Preflabel hasSamplePreparationInstrument + + Comment + + Label hasSamplePreparationInstrument @@ -11951,14 +11951,14 @@ hasSamplePreparationParameter Annotations - - Comment - - Preflabel hasSamplePreparationParameter + + Comment + + Label hasSamplePreparationParameter @@ -11994,14 +11994,14 @@ hasSampledSample Annotations - - Comment - - Preflabel hasSampledSample + + Comment + + Label hasSampledSample @@ -12038,16 +12038,16 @@ hasUniqueID Annotations - Comment - A string representing the UniqueID of a CharacterisationHardware + Preflabel + hasUniqueID Elucidation A string representing the UniqueID of a CharacterisationHardware - Preflabel - hasUniqueID + Comment + A string representing the UniqueID of a CharacterisationHardware Label @@ -12142,14 +12142,14 @@ requiresLevelOfExpertise Annotations - - Comment - - Preflabel requiresLevelOfExpertise + + Comment + + Label requiresLevelOfExpertise diff --git a/chameo-inferred.owl b/chameo-inferred.owl index 3c999d1..1afd4df 100644 --- a/chameo-inferred.owl +++ b/chameo-inferred.owl @@ -51,61 +51,28 @@ https://raw.githubusercontent.com/emmo-repo/domain-characterisation-methodology/main/images/chameo_logo_small.png - - - - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - hasSpatialSlice - hasSpatialIntegralPart - hasSpatialSlice - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - - - - - - - All other mereology relations can be defined in FOL using hasPart as primitive. - The primitive relation that express the concept of an entity being part of another one. - hasPart - hasPart - The primitive relation that express the concept of an entity being part of another one. - All other mereology relations can be defined in FOL using hasPart as primitive. - - - - - - - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - hasSpatialPart - hasSpatialPart - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - - - - hasSamplePreparationInstrument - hasSamplePreparationInstrument + + + + + + Relates a quantity to its reference unit through spatial direct parthood. + hasReferencePart + hasReferencePart + Relates a quantity to its reference unit through spatial direct parthood. - - - - - - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - hasTemporaryParticipant - hasTemporaryParticipant - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + + + + + + + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + hasSpatialTile + hasSpatialDirectPart + hasSpatialTile + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. @@ -120,39 +87,20 @@ The relation between an entity and one of its parts, when both entities are distinct. - - - - - - - The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). - isConcomitantWith - alongsideOf - isConcomitantWith - The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). - - - - - - - - - isSpatiallyRelatedWith - isSpatiallyRelatedWith - - - + + - - - A causal relation between the effected and the causing entities with intermediaries. - An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. - isIndirectCauseOf - isIndirectCauseOf - An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. - A causal relation between the effected and the causing entities with intermediaries. + + + + + A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. + This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. + hasSpatioTemporalTile + hasWellFormedTile + hasSpatioTemporalTile + A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. + This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. @@ -166,130 +114,119 @@ Length hasUnit only LengthUnit - - - - - - The relation between a holistic whole and its related entities, being them parts or other overlapping entities. - hasHolisticRelation - hasHolisticRelation - The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + + + + + + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + hasCognised + hasCognised + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - - - - - The relation between two entities that share at least one of their parts. - overlaps - overlaps - The relation between two entities that share at least one of their parts. + + + + + + A relation that connects the interpreter to the semiotic object in a semiotic process. + hasReferent + hasSemioticObject + hasReferent + A relation that connects the interpreter to the semiotic object in a semiotic process. - - - - + + + - hasConnectedPortion - hasConnectedPortion + All other mereology relations can be defined in FOL using hasPart as primitive. + The primitive relation that express the concept of an entity being part of another one. + hasPart + hasPart + The primitive relation that express the concept of an entity being part of another one. + All other mereology relations can be defined in FOL using hasPart as primitive. - - - - - - - + + + - A proper part relation with domain restricted to items. - hasPortionPart - hasPortionPart - A proper part relation with domain restricted to items. + + x isNotCauseOf y iff not(x isCauseOf y) + isNotCauseOf + isNotCauseOf + x isNotCauseOf y iff not(x isCauseOf y) - - - - - + + - A proper part relation with range restricted to items. - hasItemPart - hasItemPart - A proper part relation with range restricted to items. + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + The superclass of all causal EMMO relations. + causal + causal + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + The superclass of all causal EMMO relations. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - - - - - - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - hasCogniser - hasCogniser - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + + + + + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + isCauseOf + isCauseOf + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + :isCauseOf owl:propertyDisjointWith :overlaps + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. + The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. +While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. - - - - - - A relation connecting a sign to the interpreter in a semiotic process. - hasInterpreter - hasInterpreter - A relation connecting a sign to the interpreter in a semiotic process. + + + + hasModel + hasModel - - - - - - - - The relation between a process whole and a temporal part of the same type. - hasInterval - hasInterval - The relation between a process whole and a temporal part of the same type. - - - - - - - - - The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. - -On the contrary, the holistic parthood, is expected to go that deep. - The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. - hasRedundantPart - hasRedundantPart - The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. - A volume of water has redundand parts other volumes of water. All this volumes have holistic parts some water molecules. - The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. - -On the contrary, the holistic parthood, is expected to go that deep. + + + + + + A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + hasIcon + hasIcon + A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. - - - - A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. - A temporal part of an item cannot both cause and be caused by any other proper part of the item. - -A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. - hasTemporalPart - hasTemporalPart - A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. - A temporal part of an item cannot both cause and be caused by any other proper part of the item. - -A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + + + + + + Relates a prefixed unit to its non-prefixed part. + hasUnitNonPrefixPart + hasUnitNonPrefixPart + Relates a prefixed unit to its non-prefixed part. + For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". @@ -301,134 +238,6 @@ A temporal part is not constraint to be causally self-connected, i.e. it can be hasTask - - - - - - hasCharacteriser - hasCharacteriser - - - - - - - - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - hasDeclarer - hasDeclarer - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - - - - - - - - hasVariable - hasVariable - - - - - - - - A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - hasConvention - hasConvention - A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - - - - - - - - A causal relation between the causing and the effected entities occurring without intermediaries. - Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. -It does not exclude the possibility of indirect causal routes between proper parts of the two entities. - Direct cause is irreflexive. - isDirectCauseOf - isDirectCauseOf - Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. -It does not exclude the possibility of indirect causal routes between proper parts of the two entities. - A causal relation between the causing and the effected entities occurring without intermediaries. - Direct cause is irreflexive. - Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. - - - - - - - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - isCauseOf - isCauseOf - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - :isCauseOf owl:propertyDisjointWith :overlaps - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. - The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. -While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. - - - - - - The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - hasHeterogeneousPart - hasHeterogeneousPart - The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - - - - - - The part is not connected with the rest item or members with hasNext relation (or its inverse). - hasNonTemporalPart - hasNonTemporalPart - The part is not connected with the rest item or members with hasNext relation (or its inverse). - - - - - - - - - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. - hasJunctionTile - hasJunctionTile - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. - - - - - - - - - - A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. - This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - hasSpatioTemporalTile - hasWellFormedTile - hasSpatioTemporalTile - A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. - This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - - @@ -450,158 +259,167 @@ While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive A semiotic relation that connects a semiotic object to a property in a declaration process. - - - - - - The relation between the whole and a temporal tile that has only outgoing temporal connections. - hasBeginTile - hasTemporalFirst - hasBeginTile - The relation between the whole and a temporal tile that has only outgoing temporal connections. + + + + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + hasSpatialSection + hasSpatialPartialPart + hasSpatialSection + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. +A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. - - - - - + + + - Equality is here defined following a mereological approach. - The relation between two entities that stands for the same individuals. - equalsTo - equalsTo - The relation between two entities that stands for the same individuals. - Equality is here defined following a mereological approach. + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + hasSpatialPart + hasSpatialPart + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - + + - isPartOf - isPartOf + A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. + A temporal part of an item cannot both cause and be caused by any other proper part of the item. + +A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. + hasTemporalPart + hasTemporalPart + A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. + A temporal part of an item cannot both cause and be caused by any other proper part of the item. + +A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - + + + + - hasCharacterisationProperty - hasCharacterizationProperty - hasCharacterisationProperty - - - - - - - Assigns a quantity to an object via a well-defined measurement procedure. - hasMeasuredProperty - hasMeasuredProperty - Assigns a quantity to an object via a well-defined measurement procedure. + hasDataProcessingThroughCalibration + hasDataProcessingThroughCalibration - - - - - - A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. - hasIcon - hasIcon - A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + + + + + + + + A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). + isPredecessorOf + isAntecedentOf + isPredecessorOf + A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). - - - - - - A relation that connects the semiotic object to the sign in a semiotic process. - hasSign - hasSign - A relation that connects the semiotic object to the sign in a semiotic process. + + + + + A causal relation between the effected and the causing entities with intermediaries. + An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. + isIndirectCauseOf + isIndirectCauseOf + An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. + A causal relation between the effected and the causing entities with intermediaries. - - + - - - - - Relates a quantity to its metrological reference through a semiotic process. - hasMetrologicalReference - In EMMO version 1.0.0-beta7, physical quantities used the hasMetrologicalReference object property to relate them to their units via physical dimensionality. This was simplified in 1.0.0-alpha3 in order to make reasoning faster. - -The restriction (e.g. for the physical quantity Length) - - Length hasMetrologicalReference only (hasPhysicsDimension only LengthDimension) - -was in 1.0.0-alpha3 changed to - - Length hasPhysicsDimension some LengthDimension + + + isTemporallyBefore + isTemporallyBefore + -Likewise were the universal restrictions on the corresponding unit changed to excistential. E.g. + + + + + + + The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + isConcomitantWith + alongsideOf + isConcomitantWith + The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + - Metre hasPhysicsDimension only LengthDimension + + + + + + Relates a prefixed unit to its metric prefix part. + hasMetricPrefix + hasMetricPrefix + -was changed to + + + + + + hasHazard + hasHazard + - Metre hasPhysicsDimension some LengthDimension + + + + The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + The superclass of all mereological EMMO relations. + mereological + mereological + The superclass of all mereological EMMO relations. + The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + -The label of this class was also changed from PhysicsDimension to PhysicalDimension. - hasMetrologicalReference + + + + + + The class for all relations used by the EMMO. + EMMORelation + EMMORelation + The class for all relations used by the EMMO. - - - - - The relation within a process and an agengt participant. - hasAgent - hasAgent - The relation within a process and an agengt participant. + + + + + + + hasCharacterisationMeasurementInstrument + hasCharacterizationMeasurementInstrument + hasCharacterisationMeasurementInstrument - - + + - + - Participation is a parthood relation: you must be part of the process to contribute to it. A participant whose 4D extension is totally contained within the process. - -Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters. - The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - hasParticipant - hasParticipant - The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - - - - - - - - - A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). -It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). -Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. - An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. - Spatial contact is symmetric and irreflexive. - contacts - hasSpatiialnteractionWith - contacts - A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). -It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). -Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. - An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. - Spatial contact is symmetric and irreflexive. - The contact relation is not an ordering relation since is symmetric. + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + hasTemporaryParticipant + hasTemporaryParticipant + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. @@ -616,390 +434,219 @@ Contacts between two entities exclude the possibility of other causal relations The relation between the whole and a temporal tile that has only ingoing temporal connections. - - - - - - A semiotic relation that connects a declared semiotic object to a description in a declaration process. - hasDescription - hasDescription - A semiotic relation that connects a declared semiotic object to a description in a declaration process. - - - - - - - A temporal part that is an item. - hasTemporalItemSlice - hasTemporalItemSlice - A temporal part that is an item. + + + + + + + A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. + hasTemporalTile + hasTemporalDirectPart + hasTemporalTile + A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. - - + + + + - A temporal part that capture the overall spatial extension of the causal object. - hasTemporalSlice - hasTemporalSlice - A temporal part that capture the overall spatial extension of the causal object. + A causal relation between the causing and the effected entities occurring without intermediaries. + Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. +It does not exclude the possibility of indirect causal routes between proper parts of the two entities. + Direct cause is irreflexive. + isDirectCauseOf + isDirectCauseOf + Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. +It does not exclude the possibility of indirect causal routes between proper parts of the two entities. + A causal relation between the causing and the effected entities occurring without intermediaries. + Direct cause is irreflexive. + Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. - - - - - - hasHolisticTemporalPart - hasHolisticTemporalPart + + + + + + + hasSampleInspectionParameter + hasSampleInspectionParameter - - - - - - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - hasHolisticPart - hasHolisticPart - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - An holistic part of water fluid is a water molecule. + + + + + The input of a process. + hasInput + hasInput + The input of a process. - - - + + + + - hasLab - hasLab + hasAccessConditions + hasAccessConditions - + - - - - - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - hasDirectPart - hasDirectPart - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. - - - - - - - - A relation that connects the interpreter to the semiotic object in a semiotic process. - hasReferent - hasSemioticObject - hasReferent - A relation that connects the interpreter to the semiotic object in a semiotic process. - - - - - - The generic EMMO semiotical relation. - semiotical - semiotical - The generic EMMO semiotical relation. + + + A proper part relation with range restricted to collections. + hasScatteredPart + hasScatteredPart + A proper part relation with range restricted to collections. - - - - - - - hasCharacterisationEnvironmentProperty - hasCharacterizationEnvironmentProperty - hasCharacterisationEnvironmentProperty + + + + + + + The relation between an entity that overlaps another without being its part. + overcrosses + overcrosses + The relation between an entity that overlaps another without being its part. - - - - - - - hasBeginCharacterisationTask - hasBeginCharacterizationTask - hasBeginCharacterisationTask + + + + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. + hasSpatialSlice + hasSpatialIntegralPart + hasSpatialSlice + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - - - - hasBeginTask - hasBeginTask + + + + + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + hasOutput + hasOutput + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - + - - + + - hasStatus - hasStatus + hasBehaviour + hasBehaviour - - - - - - - - A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. -This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. - A time contact occurs when x isDirectCause y and not(y isCauseOf x). - Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. - hasNext - isBefore - hasNext - A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. -This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. - A time contact occurs when x isDirectCause y and not(y isCauseOf x). - Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. - This relation is asymmetric and irreflexive. + + + + + + hasHolisticTemporalPart + hasHolisticTemporalPart - - - - - - isTemporallyBefore - isTemporallyBefore + + + + hasEndTask + hasEndTask - - - - + + + + + hasDataset + hasDataset - - - - - The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - hasJunctionPart - hasSpatioTemporalPart - hasJunctionPart - The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. + + + + + + A relation that connects the semiotic object to the sign in a semiotic process. + hasSign + hasSign + A relation that connects the semiotic object to the sign in a semiotic process. - + - + - hasSampleBeforeSamplePreparation - hasSampleForPreparation - hasSampleBeforeSamplePreparation + hasHolder + hasHolder - - - - - + + + + + - hasScatteredPortion - hasScatteredPortion + + The inverse relation for hasProperPart. + isProperPartOf + isProperPartOf + The inverse relation for hasProperPart. - - - - + + - A proper part relation with range restricted to collections. - hasScatteredPart - hasScatteredPart - A proper part relation with range restricted to collections. + isPartOf + isPartOf - - - - - Assigns a quantity to an object via a well-defined modelling procedure. - hasModelledProperty - hasModelledProperty - Assigns a quantity to an object via a well-defined modelling procedure. + + + + + + hasCharacteriser + hasCharacteriser - - - - - Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. - hasObjectiveProperty - hasObjectiveProperty - - - - - - - - The relation between two entities that overlaps and neither of both is part of the other. - properOverlaps - properOverlaps - The relation between two entities that overlaps and neither of both is part of the other. - - - - - - - - - The relation between an entity that overlaps another without being its part. - overcrosses - overcrosses - The relation between an entity that overlaps another without being its part. - - - - - - - - x isNotCauseOf y iff not(x isCauseOf y) - isNotCauseOf - isNotCauseOf - x isNotCauseOf y iff not(x isCauseOf y) - - - - - - - Relates a resource to its identifier. - hasResourceIdentifier - hasResourceIdentifier - Relates a resource to its identifier. - - - - - - - - Relates a dataset to its datum. - hasDatum - hasDatum - Relates a dataset to its datum. - - - - - - - - - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - hasHolisticOverlap - hasHolisticOverlap - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - A man and the process of building a house. -The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. -The process of building a house is a whole that possesses an holistic spatial part which is a builder. -The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. -In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - - - - - - - - - hasAccessConditions - hasAccessConditions - - - - - - - - - hasCharacterisationMeasurementInstrument - hasCharacterizationMeasurementInstrument - hasCharacterisationMeasurementInstrument - - - - - - - - hasHolisticNonTemporalPart - hasHolisticNonTemporalPart - - - - - - - - - hasCharacterisationEnvironment - hasCharacterizationEnvironment - hasCharacterisationEnvironment + + + + + + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. + hasDeclarer + hasDeclarer + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - + - - - - - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - hasSpatialTile - hasSpatialDirectPart - hasSpatialTile - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - - - - - - - - hasMeasurementProbe - hasMeasurementProbe - - - - + - hasMaximalCollection - hasMaximalCollection + The relation between a collection and one of its item members. + hasMember + hasMember + The relation between a collection and one of its item members. @@ -1010,13 +657,13 @@ In this sense, the man and the building process overcrosses. and the overlapping hasMaximalPart - + + - - + - hasSubCollection - hasSubCollection + hasSubItem + hasSubItem @@ -1030,12 +677,25 @@ In this sense, the man and the building process overcrosses. and the overlapping A proper part relation with domain restricted to collections. - - - - - hasServiceOutput - hasServiceOutput + + + + + + + hasPhysicsOfInteraction + hasPhysicsOfInteraction + + + + + + + + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + hasIndex + hasIndex + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. @@ -1046,109 +706,202 @@ In this sense, the man and the building process overcrosses. and the overlapping hasProductOutput - - - - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - The superclass of all causal EMMO relations. - causal - causal - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - The superclass of all causal EMMO relations. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - - - - - - - - - - - Relates a quantity to its numerical value through spatial direct parthood. - hasNumericalPart - hasNumericalPart + + + + hasBeginTask + hasBeginTask - - + + - hasNonMaximalPart - hasNonMaximalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). + hasNonTemporalPart + hasNonTemporalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). - - - - isPortionPartOf - isPortionPartOf + + + + + + + hasInteractionVolume + hasInteractionVolume - - + + + - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - hasOutput - hasOutput - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + Participation is a parthood relation: you must be part of the process to contribute to it. A participant whose 4D extension is totally contained within the process. + +Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters. + The relation between a process and an object participating to it, i.e. that is relevant to the process itself. + hasParticipant + hasParticipant + The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - - - - + + + + - hasMeasurementTime - hasMeasurementTime - - - - - - - - hasBehaviour - hasBehaviour + hasCharacterisationInput + hasCharacterizationInput + hasCharacterisationInput - - - - - - hasConstitutiveProcess - hasConstitutiveProcess + + + + + + The relation between the whole and a temporal tile that has only outgoing temporal connections. + hasBeginTile + hasTemporalFirst + hasBeginTile + The relation between the whole and a temporal tile that has only outgoing temporal connections. - + - - + + - hasMeasurementSample - hasMeasurementSample + hasSamplePreparationInstrument + hasSamplePreparationInstrument - - - - - - - The relation between a object whole and its spatial part of the same type. - hasPortion - hasPortion - The relation between a object whole and its spatial part of the same type. - A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). + + + + + + A semiotic relation that connects a declared semiotic object to a description in a declaration process. + hasDescription + hasDescription + A semiotic relation that connects a declared semiotic object to a description in a declaration process. + + + + + + + + A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. + hasConvention + hasConvention + A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. + + + + + + + + A relation connecting a sign to the interpreter in a semiotic process. + hasInterpreter + hasInterpreter + A relation connecting a sign to the interpreter in a semiotic process. + + + + + + The generic EMMO semiotical relation. + semiotical + semiotical + The generic EMMO semiotical relation. + + + + + + hasNonMaximalPart + hasNonMaximalPart + + + + + + + + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + hasHolisticPart + hasHolisticPart + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + An holistic part of water fluid is a water molecule. + + + + + + + + The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + hasHolisticRelation + hasHolisticRelation + The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + + + + + + + + + + A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. +This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. + A time contact occurs when x isDirectCause y and not(y isCauseOf x). + Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. + hasNext + isBefore + hasNext + A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. +This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. + A time contact occurs when x isDirectCause y and not(y isCauseOf x). + Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. + This relation is asymmetric and irreflexive. + + + + + + + + + A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). +It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). +Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. + An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. + Spatial contact is symmetric and irreflexive. + contacts + hasSpatiialnteractionWith + contacts + A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). +It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). +Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. + An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. + Spatial contact is symmetric and irreflexive. + The contact relation is not an ordering relation since is symmetric. + + + + + + + Relates the result of a semiotic process to ont of its optained quantities. + hasQuantity + hasQuantity + Relates the result of a semiotic process to ont of its optained quantities. @@ -1162,28 +915,48 @@ Embracing a strong reductionistic view, causality originates at quantum entities The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. - - - - - - + + + + + + hasHolisticNonTemporalPart + hasHolisticNonTemporalPart + + + + + - A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). - isPredecessorOf - isAntecedentOf - isPredecessorOf - A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). + The relation between two entities that share at least one of their parts. + overlaps + overlaps + The relation between two entities that share at least one of their parts. - - - - - - Relates a prefixed unit to its metric prefix part. - hasMetricPrefix - hasMetricPrefix + + + + isOvercrossedBy + isOvercrossedBy + + + + + + + + hasStatus + hasStatus + + + + + + + + hasVariable + hasVariable @@ -1197,46 +970,86 @@ Embracing a strong reductionistic view, causality originates at quantum entities hasCharacterisationOutput - - - - The EMMO adheres to Atomistic General Extensional Mereology (AGEM). - The superclass of all mereological EMMO relations. - mereological - mereological - The superclass of all mereological EMMO relations. - The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + + + + + + hasComponent + hasComponent - - - - - + + + + + Assigns a quantity to an object via a well-defined modelling procedure. + hasModelledProperty + hasModelledProperty + Assigns a quantity to an object via a well-defined modelling procedure. + + + + + + + Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. + hasObjectiveProperty + hasObjectiveProperty + + + + + - The relation between a collection and one of its item members. - hasMember - hasMember - The relation between a collection and one of its item members. + A temporal part that is a collection. + hasTemporalCollectionSlice + hasTemporalCollectionSlice + A temporal part that is a collection. - - - - + + - hasSubItem - hasSubItem + A temporal part that capture the overall spatial extension of the causal object. + hasTemporalSlice + hasTemporalSlice + A temporal part that capture the overall spatial extension of the causal object. - - - - - - - hasDataQuality - hasDataQuality + + + + + + + hasScatteredPortion + hasScatteredPortion + + + + + + + + Relates a dataset to its datum. + hasDatum + hasDatum + Relates a dataset to its datum. + + + + + + + + + + + A proper part relation with domain restricted to items. + hasPortionPart + hasPortionPart + A proper part relation with domain restricted to items. @@ -1249,320 +1062,420 @@ Embracing a strong reductionistic view, causality originates at quantum entities hasInteractionWithProbe - - - - - The relation between a process and the entity that represents how things have turned out. - hasOutcome - hasOutcome - The relation between a process and the entity that represents how things have turned out. - - - - - - - - Relates a quantity to its reference unit through spatial direct parthood. - hasReferencePart - hasReferencePart - Relates a quantity to its reference unit through spatial direct parthood. - - - - - - - - - hasMeasurementParameter - hasMeasurementParameter - - - - - + + + + + - The input of a process. - hasInput - hasInput - The input of a process. - - - - - - - - - A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. - hasTemporalTile - hasTemporalDirectPart - hasTemporalTile - A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. + The relation between a object whole and its spatial part of the same type. + hasPortion + hasPortion + The relation between a object whole and its spatial part of the same type. + A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). - - - - - - A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. - hasDeducer - hasDeducer - A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. - + + + + + + + The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. - - - - - - hasFractionalMember - hasFractionalMember - +On the contrary, the holistic parthood, is expected to go that deep. + The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. + hasRedundantPart + hasRedundantPart + The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. + A volume of water has redundand parts other volumes of water. All this volumes have holistic parts some water molecules. + The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. - - - - - - - hasInteractionVolume - hasInteractionVolume +On the contrary, the holistic parthood, is expected to go that deep. - - - - + + + + - hasHardwareSpecification - hasHardwareSpecification + hasEndCharacterisationTask + hasEndCharacterizationTask + hasEndCharacterisationTask - - + + - - hasSampleInspectionParameter - hasSampleInspectionParameter + hasSampleInspectionInstrument + hasSampleInspectionInstrument - - - + + + - hasInteractionWithSample - hasInteractionWithSample + hasSampledSample + hasSampledSample - - - - - - - - The inverse relation for hasProperPart. - isProperPartOf - isProperPartOf - The inverse relation for hasProperPart. + + + + + A relation that connects a semiotic object to the interpretant in a semiotic process. + hasInterpretant + hasInterpretant + A relation that connects a semiotic object to the interpretant in a semiotic process. - - - - - Assigns a quantity to an object by convention. - An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. - -The quantity is selected without an observation aimed to measure its actual value, but by convention. - hasConventionalProperty - hasConventionalProperty - Assigns a quantity to an object by convention. - An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. + + + + + The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. + hasJunctionPart + hasSpatioTemporalPart + hasJunctionPart + The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - - - - - - Relates a prefixed unit to its non-prefixed part. - hasUnitNonPrefixPart - hasUnitNonPrefixPart - Relates a prefixed unit to its non-prefixed part. - For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". + + + + The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. + hasHeterogeneousPart + hasHeterogeneousPart + The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - - - - - - Relates a prefixed unit to its unit symbol part. - hasUnitSymbol - hasUnitSymbol - Relates a prefixed unit to its unit symbol part. + + + + + + hasMaximalCollection + hasMaximalCollection - - - - - - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - hasDeduced - hasDeduced - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + + + + + + hasSubCollection + hasSubCollection - + - + + - hasSampleInspectionInstrument - hasSampleInspectionInstrument + hasSampleBeforeSamplePreparation + hasSampleForPreparation + hasSampleBeforeSamplePreparation - - - - - - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - hasCognised - hasCognised - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + + + + + + + + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + hasDirectPart + hasDirectPart + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. - + - - + + - hasDataProcessingThroughCalibration - hasDataProcessingThroughCalibration + hasDataQuality + hasDataQuality - - - - - - hasCollaborationWith - hasCollaborationWith - + + + + + Assigns a quantity to an object by convention. + An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. - - - - isOvercrossedBy - isOvercrossedBy +The quantity is selected without an observation aimed to measure its actual value, but by convention. + hasConventionalProperty + hasConventionalProperty + Assigns a quantity to an object by convention. + An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. - - - - + + + + - hasSamplePreparationParameter - hasSamplePreparationParameter + hasPostProcessingModel + hasPostProcessingModel - - - - - - hasSubObject - hasSubObject + + + + + + + hasInteractionWithSample + hasInteractionWithSample - - + + + + + - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - hasSpatialSection - hasSpatialPartialPart - hasSpatialSection - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. -A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. + isSpatiallyRelatedWith + isSpatiallyRelatedWith - + + + + + + + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + hasJunctionTile + hasJunctionTile + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + + + - + + - requiresLevelOfExpertise - requiresLevelOfExpertise - - - - - - - - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - hasMetrologicalUncertainty - hasMetrologicalUncertainty - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + hasCharacterisationEnvironmentProperty + hasCharacterizationEnvironmentProperty + hasCharacterisationEnvironmentProperty - - - - - - - hasReferenceSample - hasReferenceSample + + + + + + + notOverlaps + notOverlaps - - - + + + + - hasMeasurementDetector - hasMeasurementDetector + hasHardwareSpecification + hasHardwareSpecification - + - + - hasLevelOfAutomation - hasLevelOfAutomation + hasCharacterisationProcedureValidation + hasCharacterisationProcedureValidation - - + + + + + + + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + hasHolisticOverlap + hasHolisticOverlap + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + A man and the process of building a house. +The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. +The process of building a house is a whole that possesses an holistic spatial part which is a builder. +The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. +In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + + + + + + + + + hasCharacterisationProperty + hasCharacterizationProperty + hasCharacterisationProperty + + + + + + + Assigns a quantity to an object via a well-defined measurement procedure. + hasMeasuredProperty + hasMeasuredProperty + Assigns a quantity to an object via a well-defined measurement procedure. + + + + + + + + + hasProcessingReproducibility + hasProcessingReproducibility + + + + + + + + + + + Relates a quantity to its numerical value through spatial direct parthood. + hasNumericalPart + hasNumericalPart + + + + + + + + + hasReferenceSample + hasReferenceSample + + + + + + + + hasCollaborationWith + hasCollaborationWith + + + + + + + + + hasSamplePreparationParameter + hasSamplePreparationParameter + + + + + + + + hasFractionalMember + hasFractionalMember + + + + + + + + + A proper part relation with range restricted to items. + hasItemPart + hasItemPart + A proper part relation with range restricted to items. + + + + + + + + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + hasDeduced + hasDeduced + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + + + + + + + + + Equality is here defined following a mereological approach. + The relation between two entities that stands for the same individuals. + equalsTo + equalsTo + The relation between two entities that stands for the same individuals. + Equality is here defined following a mereological approach. + + + + + + + + requiresLevelOfExpertise + requiresLevelOfExpertise + + + + - - The relation between a process and one of its process parts. - hasSubProcess - hasSubProcess - The relation between a process and one of its process parts. + The relation between a process and the entity that represents how things have turned out. + hasOutcome + hasOutcome + The relation between a process and the entity that represents how things have turned out. + + + + + + + + hasLab + hasLab @@ -1576,42 +1489,58 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa A semiotic relation connecting a declaring interpreter to the "declared" semiotic object in a declaration process. - - - - + + + - - hasPhysicsOfInteraction - hasPhysicsOfInteraction - - - - hasModel - hasModel + + + + + The relation within a process and an agengt participant. + hasAgent + hasAgent + The relation within a process and an agengt participant. - - - - + + + + + Relates a resource to its identifier. + hasResourceIdentifier + hasResourceIdentifier + Relates a resource to its identifier. + + + + + + isPortionPartOf + isPortionPartOf + + + + + + - hasInstrumentForCalibration - hasInstrumentForCalibration + hasMeasurementTime + hasMeasurementTime - - - - - - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. - hasIndex - hasIndex - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + + + + + + The relation between two entities that overlaps and neither of both is part of the other. + properOverlaps + properOverlaps + The relation between two entities that overlaps and neither of both is part of the other. @@ -1625,17 +1554,6 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa hasCharacterisationTask - - - - - - The class for all relations used by the EMMO. - EMMORelation - EMMORelation - The class for all relations used by the EMMO. - - @@ -1651,33 +1569,74 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa - - - - - A temporal part that is a collection. - hasTemporalCollectionSlice - hasTemporalCollectionSlice - A temporal part that is a collection. + + + + + + + hasPeerReviewedArticle + hasPeerReviewedArticle - + + + + + + + + + Relates a quantity to its metrological reference through a semiotic process. + hasMetrologicalReference + In EMMO version 1.0.0-beta7, physical quantities used the hasMetrologicalReference object property to relate them to their units via physical dimensionality. This was simplified in 1.0.0-alpha3 in order to make reasoning faster. + +The restriction (e.g. for the physical quantity Length) + + Length hasMetrologicalReference only (hasPhysicsDimension only LengthDimension) + +was in 1.0.0-alpha3 changed to + + Length hasPhysicsDimension some LengthDimension + +Likewise were the universal restrictions on the corresponding unit changed to excistential. E.g. + + Metre hasPhysicsDimension only LengthDimension + +was changed to + + Metre hasPhysicsDimension some LengthDimension + +The label of this class was also changed from PhysicsDimension to PhysicalDimension. + hasMetrologicalReference + + + + + + + + hasOperator + hasOperator + + + - + + - hasCharacterisationSoftware - hasCharacterizationSoftware - hasCharacterisationSoftware + hasMeasurementSample + hasMeasurementSample - - - - - - hasManufacturedOutput - hasManufacturedOutput + + + + + + hasConnectedPortion + hasConnectedPortion @@ -1689,129 +1648,138 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa A temporal part that is not a slice. - - - - - - hasHazard - hasHazard - - - - - - hasEndTask - hasEndTask + + + + + + hasSubObject + hasSubObject - + - - + + - hasHolder - hasHolder + hasSampleForInspection + hasSampleForInspection - - - - + + + + + + hasFractionalCollection + hasFractionalCollection + + + + + + + + - hasComponent - hasComponent + The relation between a process whole and a temporal part of the same type. + hasInterval + hasInterval + The relation between a process whole and a temporal part of the same type. - - - - + + + + - hasCharacterisationInput - hasCharacterizationInput - hasCharacterisationInput - - - - - - - - - notOverlaps - notOverlaps + hasInstrumentForCalibration + hasInstrumentForCalibration - - + + + + - hasCharacterisationComponent - hasCharacterizationComponent - hasCharacterisationComponent + hasCharacterisationEnvironment + hasCharacterizationEnvironment + hasCharacterisationEnvironment - - - - + + + + - hasPostProcessingModel - hasPostProcessingModel + hasBeginCharacterisationTask + hasBeginCharacterizationTask + hasBeginCharacterisationTask - - - + + + + + + hasConstitutiveProcess + hasConstitutiveProcess + + + + + - hasOperator - hasOperator + hasMeasurementDetector + hasMeasurementDetector - + - + - hasCharacterisationProcedureValidation - hasCharacterisationProcedureValidation + hasLevelOfAutomation + hasLevelOfAutomation - - - - - - - hasEndCharacterisationTask - hasEndCharacterizationTask - hasEndCharacterisationTask + + + + + + hasManufacturedOutput + hasManufacturedOutput - - - + + + + - Relates the result of a semiotic process to ont of its optained quantities. - hasQuantity - hasQuantity - Relates the result of a semiotic process to ont of its optained quantities. + Relates a prefixed unit to its unit symbol part. + hasUnitSymbol + hasUnitSymbol + Relates a prefixed unit to its unit symbol part. - - - - - - - hasPeerReviewedArticle - hasPeerReviewedArticle + + + + + + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + hasMetrologicalUncertainty + hasMetrologicalUncertainty + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. @@ -1823,68 +1791,93 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa hasCharacterised - - - - - - hasFractionalCollection - hasFractionalCollection - - - - - - + + + + - hasSampleForInspection - hasSampleForInspection + hasMeasurementParameter + hasMeasurementParameter - - - + + + + - A relation that connects a semiotic object to the interpretant in a semiotic process. - hasInterpretant - hasInterpretant - A relation that connects a semiotic object to the interpretant in a semiotic process. + A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. + hasDeducer + hasDeducer + A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. - - - - + + - hasSampledSample - hasSampledSample + hasCharacterisationComponent + hasCharacterizationComponent + hasCharacterisationComponent - - - + + + + + A temporal part that is an item. + hasTemporalItemSlice + hasTemporalItemSlice + A temporal part that is an item. + + + + + - hasDataset - hasDataset + hasMeasurementProbe + hasMeasurementProbe - - - - + + + + + + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + hasCogniser + hasCogniser + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - - - - + + + + + + The relation between a process and one of its process parts. + hasSubProcess + hasSubProcess + The relation between a process and one of its process parts. + + + + + - hasProcessingReproducibility - hasProcessingReproducibility + hasCharacterisationSoftware + hasCharacterizationSoftware + hasCharacterisationSoftware + + + + + + + hasServiceOutput + hasServiceOutput @@ -1895,6 +1888,13 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa isGatheredPartOf + + + + + + + @@ -1904,6 +1904,29 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa Relates a SI dimensional unit to a dimension string. + + + + + + The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + hasNumericalValue + hasNumericalValue + The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + + + + + + + + + The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. + hasSymbolValue + hasSymbolValue + The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. + + @@ -1915,14 +1938,6 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa A string representing the model of a CharacterisationHardware - - - - - hasURIValue - hasURIValue - - @@ -1935,37 +1950,19 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). - - - - - - The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. - hasNumericalValue - hasNumericalValue - The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + + + + hasURNValue + hasURNValue - - + - - - - The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - hasSymbolValue - hasSymbolValue - The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - - - - - - - - - hasDateOfCalibration - hasDateOfCalibration + + + hasURIValue + hasURIValue @@ -1980,22 +1977,14 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa The owl:dataProperty that provides a serialisation of an EMMO string data entity. - + - - + + - A string representing the Manufacturer of a CharacterisationHardware - hasManufacturer - hasManufacturer - A string representing the Manufacturer of a CharacterisationHardware - - - - - - hasURNValue - hasURNValue + + hasDateOfCalibration + hasDateOfCalibration @@ -2009,6 +1998,17 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa A string representing the UniqueID of a CharacterisationHardware + + + + + + A string representing the Manufacturer of a CharacterisationHardware + hasManufacturer + hasManufacturer + A string representing the Manufacturer of a CharacterisationHardware + + @@ -2024,12 +2024,25 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa - - - + + + + + + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + uneceCommonCode + uneceCommonCode + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - + + + + metrologicalReference + metrologicalReference + + + @@ -2045,98 +2058,50 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. - + - - An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. - Short enlightening explanation aimed to facilitate the user in drawing the connection (interpretation) between a OWL entity and the real world object(s) for which it stands. - elucidation - elucidation - Short enlightening explanation aimed to facilitate the user in drawing the connection (interpretation) between a OWL entity and the real world object(s) for which it stands. - An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. + - - - - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - contact - contact - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - - - - - - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - OWLDLRestrictedAxiom - OWLDLRestrictedAxiom - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - - - - - - URL to corresponing entity in QUDT. - qudtReference - http://www.qudt.org/2.1/catalog/qudt-catalog.html - qudtReference - URL to corresponing entity in QUDT. - - - - + + - metrologicalReference - metrologicalReference + URL for the entry in the International Electrotechnical Vocabulary (IEV). + IEVReference + https://www.electropedia.org/ + IEVReference + URL for the entry in the International Electrotechnical Vocabulary (IEV). - + - - - URL to corresponding dpbedia entry. - dbpediaReference - https://wiki.dbpedia.org/ - dbpediaReference - URL to corresponding dpbedia entry. - + - - - URL to corresponding Wikipedia entry. - wikipediaReference - https://www.wikipedia.org/ - wikipediaReference - URL to corresponding Wikipedia entry. - + - + - - - - - - - - - + - - + + + + An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. + Short enlightening explanation aimed to facilitate the user in drawing the connection (interpretation) between a OWL entity and the real world object(s) for which it stands. + elucidation + elucidation + Short enlightening explanation aimed to facilitate the user in drawing the connection (interpretation) between a OWL entity and the real world object(s) for which it stands. + An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. @@ -2151,6 +2116,47 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa The etymology annotation is usually applied to rdfs:label entities, to better understand the connection between a label and the concept it concisely represents. + + + + A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + Precise and univocal description of an ontological entity in the framework of an axiomatic system. + definition + definition + Precise and univocal description of an ontological entity in the framework of an axiomatic system. + A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + + + + + + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + OWLDLRestrictedAxiom + OWLDLRestrictedAxiom + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + + + + + + URL corresponding to entry in Wikidata. + wikidataReference + https://www.wikidata.org/ + wikidataReference + URL corresponding to entry in Wikidata. + + + + + + IRI to corresponding concept in the Ontology of units of Measure. + omReference + https://enterpriseintegrationlab.github.io/icity/OM/doc/index-en.html + https://github.com/HajoRijgersberg/OM + omReference + IRI to corresponding concept in the Ontology of units of Measure. + + @@ -2163,15 +2169,15 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa An elucidation can provide references to external knowledge sources (i.e. ISO, Goldbook, RoMM). - - - - A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. - Precise and univocal description of an ontological entity in the framework of an axiomatic system. - definition - definition - Precise and univocal description of an ontological entity in the framework of an axiomatic system. - A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + + + + Corresponding item number in ISO 80 000. + ISO80000Reference + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en + ISO80000Reference + Corresponding item number in ISO 80 000. + 3-1.1 (ISO80000 reference to length) @@ -2188,17 +2194,6 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa The Unified Code for Units of Measure (UCUM) is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The purpose is to facilitate unambiguous electronic communication of quantities together with their units. - - - - - - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - uneceCommonCode - uneceCommonCode - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - - @@ -2211,43 +2206,15 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. - - - - URL corresponding to entry in Wikidata. - wikidataReference - https://www.wikidata.org/ - wikidataReference - URL corresponding to entry in Wikidata. - - - - - - Corresponding item number in ISO 80 000. - ISO80000Reference - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en - ISO80000Reference - Corresponding item number in ISO 80 000. - 3-1.1 (ISO80000 reference to length) - - - - - - IRI to corresponding concept in the Ontology of units of Measure. - omReference - https://enterpriseintegrationlab.github.io/icity/OM/doc/index-en.html - https://github.com/HajoRijgersberg/OM - omReference - IRI to corresponding concept in the Ontology of units of Measure. + + - - + + - + @@ -2261,15 +2228,70 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. - + - + + + + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. + contact + contact + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. + + + + + + + URL to corresponding Wikipedia entry. + wikipediaReference + https://www.wikipedia.org/ + wikipediaReference + URL to corresponding Wikipedia entry. + + + + + + ISO9000Reference + ISO9000Reference + + + - + + + + + + + + + + + + URL to corresponing entity in QUDT. + qudtReference + http://www.qudt.org/2.1/catalog/qudt-catalog.html + qudtReference + URL to corresponing entity in QUDT. + + + + + + + + + + + @@ -2292,22 +2314,27 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa Illustrative example of how the entity is used. + + + + - - - - ISO9000Reference - ISO9000Reference - + + + + + + + @@ -2315,26 +2342,19 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa ISO14040Reference - - - - - + - - - - - URL for the entry in the International Electrotechnical Vocabulary (IEV). - IEVReference - https://www.electropedia.org/ - IEVReference - URL for the entry in the International Electrotechnical Vocabulary (IEV). + + URL to corresponding dpbedia entry. + dbpediaReference + https://wiki.dbpedia.org/ + dbpediaReference + URL to corresponding dpbedia entry. @@ -2345,74 +2365,21 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa - - - - - + - - - - - - - - - - - - - - - - - - - - - A neutrino belonging to the second generation of leptons. - MuonNeutrino - MuonNeutrino - A neutrino belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon_neutrino - - - - - - - - - - - - - - - - - - - - SecondGenerationFermion - SecondGenerationFermion - - - - - + + - + - + - + @@ -2421,318 +2388,296 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - NeutrinoType - NeutrinoType - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - https://en.wikipedia.org/wiki/Neutrino + AntiElectronType + AntiElectronType - - - + + + + + + + + + + + + + + + AntiLepton + AntiLepton + + + + + + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + Rolling + Walzen + Rolling + + + + + + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. + lasciano tensioni residue di compressione + CompressiveForming + Druckumformen + CompressiveForming + + + + + - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - LondonPenetrationDepth - LondonPenetrationDepth - https://qudt.org/vocab/quantitykind/LondonPenetrationDepth - https://www.wikidata.org/wiki/Q3277853 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 - 12-38.1 - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + RelativePermeability + RelativePermeability + https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio + https://www.wikidata.org/wiki/Q77785645 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 + 6-27 + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + https://doi.org/10.1351/goldbook.R05272 - + - Quantities categorised according to ISO 80000-12. - CondensedMatterPhysicsQuantity - CondensedMatterPhysicsQuantity - Quantities categorised according to ISO 80000-12. + Quantities categorised according to ISO 80000-6. + ElectromagneticQuantity + ElectromagneticQuantity + Quantities categorised according to ISO 80000-6. - - - + + + + Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). + +Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + RatioQuantity + https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 + RatioQuantity + http://qudt.org/vocab/quantitykind/DimensionlessRatio + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + refractive index, +volume fraction, +fine structure constant + + + + + + + A estimation of a property using a functional icon. + Simulation + Modelling + Simulation + A estimation of a property using a functional icon. + I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. + + + + + + + + + + + + + + + + A determination of an object without any actual interaction. + Estimation + Estimation + A determination of an object without any actual interaction. + + + + + + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + Computation + Computation + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + A matematician that calculates 2+2. +A computation machine that calculate the average value of a dataset. + + + - + - + - Extend of a spatial dimension. - Length is a non-negative additive quantity attributed to a one-dimensional object in space. - Length - Length - http://qudt.org/vocab/quantitykind/Length - 3-1.1 - Extend of a spatial dimension. - https://doi.org/10.1351/goldbook.L03498 + Quotient of dynamic viscosity and mass density of a fluid. + KinematicViscosity + KinematicViscosity + https://qudt.org/vocab/quantitykind/KinematicViscosity + https://www.wikidata.org/wiki/Q15106259 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 + 4-25 + Quotient of dynamic viscosity and mass density of a fluid. + https://doi.org/10.1351/goldbook.K03395 - - - - The interpreter's internal representation of the object in a semiosis process. - Interpretant - Interpretant - The interpreter's internal representation of the object in a semiosis process. - - - - - - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Represents the number 1, used as an explicit unit to say something has no units. - UnitOne - Unitless - UnitOne - http://qudt.org/vocab/unit/UNITLESS - Represents the number 1, used as an explicit unit to say something has no units. - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Refractive index or volume fraction. - Typically used for ratios of two units whos dimensions cancels out. - - - - - - The subclass of measurement units with no physical dimension. - DimensionlessUnit - DimensionlessUnit - http://qudt.org/vocab/unit/UNITLESS - The subclass of measurement units with no physical dimension. - Refractive index -Plane angle -Number of apples - - - - - - - - - - - - The sample is mounted on a holder. - The sample is mounted on a holder. - Mounting - Mounting - The sample is mounted on a holder. - - - - - - - - - - - - - - - - + + - - + + - - + + + + + + - - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - - SamplePreparation - SamplePreparation - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - - - - - - chronopotentiometry where the applied current is changed in steps - - StepChronopotentiometry - StepChronopotentiometry - chronopotentiometry where the applied current is changed in steps - - - - - - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Chronopotentiometry - Chronopotentiometry - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - https://doi.org/10.1515/pac-2018-0109 - - - - - - - Number of holes in valence band per volume. - HoleDensity - HoleDensity - https://qudt.org/vocab/quantitykind/HoleDensity - https://www.wikidata.org/wiki/Q105971101 - 12-29.2 - Number of holes in valence band per volume. - - - - - - Count per volume. - VolumetricNumberDensity - VolumetricNumberDensity - Count per volume. - - - - - - - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - PhaseAngle - PhaseAngle - https://www.wikidata.org/wiki/Q415829 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 - 3-7 - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. + + + + + + + + + + + + + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The class of all the OWL individuals declared by EMMO as standing for world entities. + The disjoint union of the Item and Collection classes. + EMMO + EMMO + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The disjoint union of the Item and Collection classes. + The class of all the OWL individuals declared by EMMO as standing for world entities. + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - + - Quantities categorised according to ISO 80000-3. - SpaceAndTimeQuantity - SpaceAndTimeQuantity - Quantities categorised according to ISO 80000-3. + Quantities categorised according to ISO 80000-4. + MechanicalQuantity + MechanicalQuantity + Quantities categorised according to ISO 80000-4. - - - - Ratio of circular arc length to radius. - Angle - PlaneAngle - Angle - http://qudt.org/vocab/quantitykind/PlaneAngle - Ratio of circular arc length to radius. - 3-5 - https://doi.org/10.1351/goldbook.A00346 + + + + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + Declared + Declared + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - - - - A direct part that is obtained by partitioning a whole purely in temporal parts. - TemporalTile - TemporalTile - A direct part that is obtained by partitioning a whole purely in temporal parts. + + + + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + Symbol + AlphabeticEntity + Symbol + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). + +Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. +(Wikipedia) + The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. - - - - - - - - - - + - - - + + - - - - https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a - SpatioTemporalTile - WellFormedTile - SpatioTemporalTile - - - - - - Property of a solute in a solution. - StandardAbsoluteActivity - StandardAbsoluteActivityInASolution - StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89485936 - 9-26 - Property of a solute in a solution. - - - - - - - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - AbsoluteActivity - AbsoluteActivity - https://qudt.org/vocab/quantitykind/AbsoluteActivity - https://www.wikidata.org/wiki/Q56638155 - 9-18 - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - https://goldbook.iupac.org/terms/view/A00019 + + + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + Symbolic + Symbolic + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + fe780 +emmo +!5*a +cat +for(i=0;i<N;++i) + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + A symbolic object possesses a reductionistic oriented structure. +For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). - - + + - + - Mass per unit area. - AreaDensity - AreaDensity - http://qudt.org/vocab/quantitykind/SurfaceDensity - https://doi.org/10.1351/goldbook.S06167 - - - - - - - Derived quantities defined in the International System of Quantities (ISQ). - ISQDerivedQuantity - ISQDerivedQuantity - Derived quantities defined in the International System of Quantities (ISQ). + The amount of a constituent divided by the volume of the mixture. + AmountConcentration + Concentration + MolarConcentration + Molarity + AmountConcentration + http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB + https://doi.org/10.1351/goldbook.A00295 @@ -2749,942 +2694,638 @@ Pressure ChemicalPotential - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The class of all the OWL individuals declared by EMMO as standing for world entities. - The disjoint union of the Item and Collection classes. - EMMO - EMMO - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The disjoint union of the Item and Collection classes. - The class of all the OWL individuals declared by EMMO as standing for world entities. - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). + + + + the abundance of a constituent divided by the total volume of a mixture. + Concentration + Concentration + https://qudt.org/vocab/quantitykind/Concentration + https://www.wikidata.org/wiki/Q3686031 + https://dbpedia.org/page/Concentration + the abundance of a constituent divided by the total volume of a mixture. + https://en.wikipedia.org/wiki/Concentration + https://goldbook.iupac.org/terms/view/C01222 - - - - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - Declared - Declared - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + + + + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + Planing + Hobeln + Planing - - - - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - Electrogravimetry - Electrogravimetry - https://www.wikidata.org/wiki/Q902953 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - https://en.wikipedia.org/wiki/Electrogravimetry + + + + A manufacturing in which material is removed from the workpiece in the form of chips. + Machining + RemovingChipsFromWorkpiece + Machining + A manufacturing in which material is removed from the workpiece in the form of chips. - - - - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - ElectrochemicalTesting - http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 - ElectrochemicalTesting - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + + + + Process for joining two (base) materials by means of an adhesive polymer material + Gluing + Kleben + Gluing - - - - - CharacterisationEnvironmentProperty - CharacterisationEnvironmentProperty + + + + + Unit for dimensionless quantities that have the nature of count. + CountingUnit + CountingUnit + http://qudt.org/vocab/unit/NUM + 1 + Unit for dimensionless quantities that have the nature of count. + Unit of atomic number +Unit of number of cellular +Unit of degeneracy in quantum mechanics - - - - - - - - - - - - - - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - Property - Property - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - Hardness is a subclass of properties. -Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. - The name "red" which is atomic in the code made of the list of colors. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + + + + The subclass of measurement units with no physical dimension. + DimensionlessUnit + DimensionlessUnit + http://qudt.org/vocab/unit/UNITLESS + The subclass of measurement units with no physical dimension. + Refractive index +Plane angle +Number of apples - - - - - - - - - - - - - The derivative of the electric charge of a system with respect to the electric potential. - Capacitance - ElectricCapacitance - Capacitance - http://qudt.org/vocab/quantitykind/Capacitance - 6-13 - The derivative of the electric charge of a system with respect to the electric potential. - https://doi.org/10.1351/goldbook.C00791 + + + + Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this +is desirable (μm/m, nmol/mol). +-- SI Brochure + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + FractionUnit + RatioUnit + FractionUnit + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - - - - Quantities categorised according to ISO 80000-6. - ElectromagneticQuantity - ElectromagneticQuantity - Quantities categorised according to ISO 80000-6. + + + + + An object which is an holistic temporal part of another object. + Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. + SubObject + SubObject + An object which is an holistic temporal part of another object. + If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. - - - - - A quantity whose magnitude is additive for subsystems. - Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. - Extensive - Extensive - A quantity whose magnitude is additive for subsystems. - Mass -Volume -Entropy + + + + An holistic temporal part of a whole. + TemporalRole + HolisticTemporalPart + TemporalRole + An holistic temporal part of a whole. - - - + + + + A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). +However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. +In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. +To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + Object + Continuant + Endurant + Object + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + + + + + + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + ComputerSystem + Computer + ComputerSystem + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + https://en.wikipedia.org/wiki/Computer + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - Base quantities defined in the International System of Quantities (ISQ). - ISQBaseQuantity - ISQBaseQuantity - Base quantities defined in the International System of Quantities (ISQ). - https://en.wikipedia.org/wiki/International_System_of_Quantities - + + + + + + + + + + + + + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + A metrological reference for a physical quantity. + MeasurementUnit + MeasurementUnit + A metrological reference for a physical quantity. + kg +m/s +km + measurement unit (VIM3 1.9) + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + "Unit symbols are mathematical entities and not abbreviations." - - - - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - Planing - Hobeln - Planing - +"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." - - - - Heat treatment process that generally produces martensite in the matrix. - Hardening - Hardening - Heat treatment process that generally produces martensite in the matrix. +https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf + Measurement units and procedure units are disjoint. + Quantitative value are expressed as a multiple of the 'MeasurementUnit'. - - - - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - HeatTreatment - wärmebehandeln - HeatTreatment - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - + + + + + + + 1 + + + + + + + 1 + + + + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). - - - - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - - Viscometry - Viscosity - Viscometry - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - +So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. - - - - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - A characterisation technique is not only related to the measurement process which can be one of its steps. - CharacterisationTechnique - Characterisation procedure - Characterisation technique - CharacterisationTechnique - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - A characterisation technique is not only related to the measurement process which can be one of its steps. +While the string "1 kg" is a 'QuantityValue'. + QuantityValue + QuantityValue + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + 6.8 m +0.9 km +8 K +6 MeV +43.5 HRC(150 kg) + quantity value + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - + - - - T-2 L+2 M+1 I0 Θ0 N0 J0 - + + + + + + + - - - EnergyUnit - EnergyUnit - - - - - - Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). - In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). - -In general the dimension of any quantity Q is written in the form of a dimensional product, - - dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η - -where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. --- SI brouchure - -The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: - -^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ - -Examples of correspondance between dimensional units and their dimensional units are: - -- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" -- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" -- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - SIDimensionalUnit - SIDimensionalUnit - Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). - In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). - -In general the dimension of any quantity Q is written in the form of a dimensional product, - - dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η - -where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. --- SI brouchure - -The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: - -^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ - -Examples of correspondance between dimensional units and their dimensional units are: - -- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" -- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" -- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - - - - - - - - - - - - - - - - - - - - - - - BottomAntiQuark - BottomAntiQuark - - - - - - - - - - - - - - - - - - - - ThirdGenerationFermion - ThirdGenerationFermion - - - - - - - - - - - - - - - - - - - - - - DownAntiQuarkType - DownAntiQuarkType - - - - - - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. - Deduced - Deduced - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. - - - - - - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. - It has a shape, so we conclude that it is solid - Object that is processed with a machine - Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product - The raw material or partially finished piece that is shaped by performing various operations. - They are not powders or threads - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - fili e polveri non sono compresi - it seems to be an intermediate product, that has to reach the final shape. - it seems to be solid, so it has a proper shape - powder is not workpiece because it has the shape of the recipient containing them - WorkPiece - Werkstück - WorkPiece - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - - - - - - - - - - - - - - - A material that is obtained through a manufacturing process. - ManufacturedMaterial - EngineeredMaterial - ProcessedMaterial - ManufacturedMaterial - A material that is obtained through a manufacturing process. - - - - - - the abundance of a constituent divided by the total volume of a mixture. - Concentration - Concentration - https://qudt.org/vocab/quantitykind/Concentration - https://www.wikidata.org/wiki/Q3686031 - https://dbpedia.org/page/Concentration - the abundance of a constituent divided by the total volume of a mixture. - https://en.wikipedia.org/wiki/Concentration - https://goldbook.iupac.org/terms/view/C01222 - - - - - - - - - - - - - - - - - - - - - - - StrangeQuark - StrangeQuark - https://en.wikipedia.org/wiki/Strange_quark - - - - - - - - - - - - - - - - - - - - - - DownQuarkType - DownQuarkType - - - - - - - SamplePreparationInstrument - SamplePreparationInstrument - - - - - - - - - - - - - - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. - -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - Holistic - Wholistic - Holistic - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. - -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. - A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. - - - - - - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - Perspective - Perspective - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - - - - - - - - - - - - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - MeasurementSystemAdjustment - MeasurementParameterAdjustment - MeasurementSystemAdjustment - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - Adjustment - - - - - - Characterisation procedure may refer to the full characterisation process or just a part of the full process. - The process of performing characterisation by following some existing formalised operative rules. - CharacterisationProcedure - CharacterisationProcedure - The process of performing characterisation by following some existing formalised operative rules. - Sample preparation -Sample inspection -Calibration -Microscopy -Viscometry -Data sampling - Characterisation procedure may refer to the full characterisation process or just a part of the full process. - - - - - - Electroplating - Electroplating + + + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + MetrologicalReference + MetrologicalReference + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - - - - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. - CoatingManufacturing - DIN 8580:2020 - Beschichten - CoatingManufacturing - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + + + + A chain of linked physics based model simulations, where equations are solved sequentially. + LinkedModelsSimulation + LinkedModelsSimulation + A chain of linked physics based model simulations, where equations are solved sequentially. - - - - - - BlueDownQuark - BlueDownQuark + + + + + A physics based simulation with multiple physics based models. + MultiSimulation + MultiSimulation + A physics based simulation with multiple physics based models. - - - - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - BaseQuantity - BaseQuantity - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - base quantity + + + + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + InternalEnergy + ThermodynamicEnergy + InternalEnergy + http://qudt.org/vocab/quantitykind/InternalEnergy + 5.20-2 + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + https://doi.org/10.1351/goldbook.I03103 - + + + - - - + - Number of molecules of a substance in a mixture per volume. - MolecularConcentration - MolecularConcentration - https://qudt.org/vocab/quantitykind/MolecularConcentration - https://www.wikidata.org/wiki/Q88865973 - 9-9.2 - Number of molecules of a substance in a mixture per volume. - - - - - - Quantities categorised according to ISO 80000-9. - PhysioChemicalQuantity - PhysioChemicalQuantity - Quantities categorised according to ISO 80000-9. + A property of objects which can be transferred to other objects or converted into different forms. + Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. + Energy + Energy + http://qudt.org/vocab/quantitykind/Energy + 5-20-1 + A property of objects which can be transferred to other objects or converted into different forms. + https://doi.org/10.1351/goldbook.E02101 - + - - - - + + + + - + + - - - - - - + + + + + + - - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - Determiner - Determiner - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. + + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + MetrologicalSymbol + MetrologicalSymbol + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - - - - - - - - - - - - - - - - - - - - - - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - Declarer - Declarer - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). - Someone who assigns a name to an object. + + + + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + Metrological + Metrological + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The class of individuals that stand for quarks elementary particles. - Quark - Quark - The class of individuals that stand for quarks elementary particles. - https://en.wikipedia.org/wiki/Quark + + + + + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + IonizationEnergy + IonizationEnergy + https://qudt.org/vocab/quantitykind/IonizationEnergy + https://www.wikidata.org/wiki/Q483769 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 + 12-24.2 + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + https://doi.org/10.1351/goldbook.I03199 - - - - A law that provides a connection between a material property and other properties of the object. - MaterialLaw - MaterialLaw - A law that provides a connection between a material property and other properties of the object. + + + + Quantities categorised according to ISO 80000-12. + CondensedMatterPhysicsQuantity + CondensedMatterPhysicsQuantity + Quantities categorised according to ISO 80000-12. - - - - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - NaturalLaw - NaturalLaw - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + + + + + Average value of the increment of the lethargy per collision. + AverageLogarithmicEnergyDecrement + AverageLogarithmicEnergyDecrement + https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html + https://www.wikidata.org/wiki/Q1940739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 + 10-70 + Average value of the increment of the lethargy per collision. + + + + + + Quantities categorised according to ISO 80000-10. + AtomicAndNuclearPhysicsQuantity + AtomicAndNuclearPhysicsQuantity + Quantities categorised according to ISO 80000-10. + + + + + + + + + + + + + + A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. + ISQDimensionlessQuantity + ISQDimensionlessQuantity + http://qudt.org/vocab/quantitykind/Dimensionless + A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. + https://en.wikipedia.org/wiki/Dimensionless_quantity + https://doi.org/10.1351/goldbook.D01742 + + + + + + Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. + Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. + Often the product of the electrochemical stripping is identical to the analyte before the accumulation. + Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. + Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + + StrippingVoltammetry + StrippingVoltammetry + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis + https://doi.org/10.1515/pac-2018-0109 - - + + - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - MechanicalTesting - MechanicalTesting - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - https://en.wikipedia.org/wiki/Mechanical_testing - - - - - - - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. - EndStep - EndStep - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. - - - - - - - - - - - - - - - - A step is part of a specific granularity level for the workflow description, as composition of tasks. - A task that is a well formed tile of a workflow, according to a reductionistic description. - Step - Step - A task that is a well formed tile of a workflow, according to a reductionistic description. - A step is part of a specific granularity level for the workflow description, as composition of tasks. + The current vs. potential (I-E) curve is called a voltammogram. + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + + Voltammetry + Voltammetry + https://www.wikidata.org/wiki/Q904093 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + https://en.wikipedia.org/wiki/Voltammetry + https://doi.org/10.1515/pac-2018-0109 - + - - - - EndTile - EndTile + + A direct part that is obtained by partitioning a whole purely in spatial parts. + SpatialTile + SpatialTile + A direct part that is obtained by partitioning a whole purely in spatial parts. - + - + - + - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - Pressure - Pressure - http://qudt.org/vocab/quantitykind/Pressure - 4-14.1 - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - https://doi.org/10.1351/goldbook.P04819 + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. + Exposure + Exposure + https://qudt.org/vocab/quantitykind/Exposure + https://www.wikidata.org/wiki/Q336938 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 + 10-88 + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - + + + + + Derived quantities defined in the International System of Quantities (ISQ). + ISQDerivedQuantity + ISQDerivedQuantity + Derived quantities defined in the International System of Quantities (ISQ). + + + - T-2 L+2 M+1 I-2 Θ0 N0 J0 + T0 L-1 M0 I0 Θ0 N0 J0 - - InductanceUnit - InductanceUnit + + ReciprocalLengthUnit + ReciprocalLengthUnit - - + + + + + + + + + + - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - NonLeakageProbability - NonLeakageProbability - https://qudt.org/vocab/quantitykind/Non-LeakageProbability - https://www.wikidata.org/wiki/Q99415566 - 10-77 - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + Quotient of linear attenuation coefficient µ and the amount c of the medium. + MolarAttenuationCoefficient + MolarAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592828 + 10-51 + Quotient of linear attenuation coefficient µ and the amount c of the medium. - - + + + - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. - Probability - Probability - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - https://doi.org/10.1351/goldbook.P04855 + GrandCanonicalPartionFunction + GrandPartionFunction + GrandCanonicalPartionFunction + https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96176022 + 9-35.3 - + - Quantities categorised according to ISO 80000-10. - AtomicAndNuclearPhysicsQuantity - AtomicAndNuclearPhysicsQuantity - Quantities categorised according to ISO 80000-10. + Quantities categorised according to ISO 80000-9. + PhysioChemicalQuantity + PhysioChemicalQuantity + Quantities categorised according to ISO 80000-9. - - - - - - - - - - - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - A whole is categorized as fundamental (or maximal) or redundant (non-maximal). - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - Whole - Whole - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + + + + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + WorkpieceManufacturing + DIN 8580:2020 + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. + ISO 8887-1:2017 +manufacturing: production of components + DiscreteManufacturing + Werkstücke + WorkpieceManufacturing + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + + + + + + + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + MaximumBetaParticleEnergy + MaximumBetaParticleEnergy + https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy + https://www.wikidata.org/wiki/Q98148038 + 10-33 + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + + + + + + + A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. + A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). + A numerical data value. + In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. +More than one numeral stands for the same number. +In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). +Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). +The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. +For these reasons, the EMMO will consider numerals and numbers as the same concept. + Number + Numeral + Number + A numerical data value. + + + + + + + + + + + + + + + + + + + + + + + + + + + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + StateOfMatter + StateOfMatter + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + https://en.wikipedia.org/wiki/State_of_matter - - - - - T0 L-1 M0 I0 Θ0 N0 J0 - - - - - ReciprocalLengthUnit - ReciprocalLengthUnit + + + + + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. + Colloid + Colloid + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. - - + + - + - + - + @@ -3692,241 +3333,205 @@ This class is expected to host the definition of world objects as they appear in - - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The class of individuals standing for direct causally self-connected world entities. - The disjoint union of Elementary, Quantum and CausalSystem classes. - Item - Item - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The disjoint union of Elementary, Quantum and CausalSystem classes. - The class of individuals standing for direct causally self-connected world entities. - - - - - - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - - Probe - Probe - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. - In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. - In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) - In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). - In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry - - - - - - Whatever hardware is used during the characterisation process. - CharacterisationHardware - CharacterisationHardware - Whatever hardware is used during the characterisation process. + + A material in which distributed particles of one phase are dispersed in a different continuous phase. + Dispersion + Dispersion + A material in which distributed particles of one phase are dispersed in a different continuous phase. - - - - - - - - - - - + + - - - - - - + + - - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. -For example, when a Boeing 747 is used as a sign for another Boeing 747. - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] - Icon - Model - Simulacrum - Icon - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - A picture that reproduces the aspect of a person. - An equation that reproduces the logical connection of the properties of a physical entity. + + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + PhaseHeterogeneousMixture + PhaseHeterogeneousMixture + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - - - - - - - - - - - - - - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - Cogniser - Cogniser - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - The scientist that connects an equation to a physical phenomenon. + + + + + Vector quantity expressing the internal angular momentum of a particle or a particle system. + Spin + Spin + https://qudt.org/vocab/quantitykind/Spin + https://www.wikidata.org/wiki/Q133673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 + 10-10 + Vector quantity expressing the internal angular momentum of a particle or a particle system. - + + - + - Quotient of dynamic viscosity and mass density of a fluid. - KinematicViscosity - KinematicViscosity - https://qudt.org/vocab/quantitykind/KinematicViscosity - https://www.wikidata.org/wiki/Q15106259 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 - 4-25 - Quotient of dynamic viscosity and mass density of a fluid. - https://doi.org/10.1351/goldbook.K03395 + Measure of the extent and direction an object rotates about a reference point. + AngularMomentum + AngularMomentum + http://qudt.org/vocab/quantitykind/AngularMomentum + 4-11 + https://doi.org/10.1351/goldbook.A00353 - - - - Quantities categorised according to ISO 80000-4. - MechanicalQuantity - MechanicalQuantity - Quantities categorised according to ISO 80000-4. + + + + + T+4 L-2 M-1 I+1 Θ0 N0 J0 + + + + + JosephsonConstantUnit + JosephsonConstantUnit - - - + + - Sum of energies deposited by ionizing radiation in a given volume. - EnergyImparted - EnergyImparted - https://qudt.org/vocab/quantitykind/EnergyImparted - https://www.wikidata.org/wiki/Q99526944 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 - 10-80.1 - Sum of energies deposited by ionizing radiation in a given volume. + Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). + In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + +In general the dimension of any quantity Q is written in the form of a dimensional product, + + dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + +where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. +-- SI brouchure + +The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + +^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + +Examples of correspondance between dimensional units and their dimensional units are: + +- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" +- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" +- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" + SIDimensionalUnit + SIDimensionalUnit + Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). + In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + +In general the dimension of any quantity Q is written in the form of a dimensional product, + + dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + +where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. +-- SI brouchure + +The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + +^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + +Examples of correspondance between dimensional units and their dimensional units are: + +- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" +- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" +- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" + + + + + + A system which is mainly characterised by the spatial configuration of its elements. + HolisticArrangement + HolisticArrangement + A system which is mainly characterised by the spatial configuration of its elements. - - - - - + + + + - - + + - - A property of objects which can be transferred to other objects or converted into different forms. - Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. - Energy - Energy - http://qudt.org/vocab/quantitykind/Energy - 5-20-1 - A property of objects which can be transferred to other objects or converted into different forms. - https://doi.org/10.1351/goldbook.E02101 - - - - - - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - CategorizedPhysicalQuantity - https://physics.nist.gov/cuu/Constants - CategorizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - - - - - - Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. - The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. - IonActivity - IonActivity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. - - - - - - - ActivityOfSolute - RelativeActivityOfSolute - ActivityOfSolute - https://www.wikidata.org/wiki/Q89408862 - 9-24 + + A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. + HolisticSystem + HolisticSystem + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - + - T-1 L-2 M0 I0 Θ0 N+1 J0 + T0 L0 M0 I0 Θ0 N+1 J0 - AmountPerAreaTimeUnit - AmountPerAreaTimeUnit + AmountUnit + AmountUnit - - + + + - - T0 L-2 M0 I0 Θ0 N0 J+1 + + + + + + - - - - LuminanceUnit - LuminanceUnit + + + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + Cogniser + Cogniser + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + The scientist that connects an equation to a physical phenomenon. - + + + + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + Cognised + Cognised + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + A physical phenomenon that is connected to an equation by a scientist. + + + - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - DataFiltering - DataFiltering - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + DataNormalisation + DataNormalisation + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. @@ -3938,1505 +3543,1047 @@ For example, when a Boeing 747 is used as a sign for another Boeing 747.Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - + - + - + - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - DoseEquivalent - DoseEquivalent - http://qudt.org/vocab/quantitykind/DoseEquivalent - 10-83.1 - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - https://doi.org/10.1351/goldbook.E02101 - - - - - - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - TransformationLanguage - TransformationLanguage - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - https://en.wikipedia.org/wiki/Transformation_language - Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + VolumeFlowRate + VolumetricFlowRate + VolumeFlowRate + https://qudt.org/vocab/quantitykind/VolumeFlowRate + https://www.wikidata.org/wiki/Q1134348 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 + 4-31 + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + https://en.wikipedia.org/wiki/Volumetric_flow_rate - - - - A computer language by which a human can specify an executable problem solution to a computer. - ConstructionLanguage - ConstructionLanguage - A computer language by which a human can specify an executable problem solution to a computer. - https://en.wikipedia.org/wiki/Software_construction#Construction_languages + + + + + Mass of a constituent divided by the total mass of all constituents in the mixture. + MassFraction + MassFraction + http://qudt.org/vocab/quantitykind/MassFraction + 9-11 + https://doi.org/10.1351/goldbook.M03722 - - - - - - - - - - - + + + - Inverse of 'ElectricalConductance'. - Measure of the difficulty to pass an electric current through a material. - ElectricResistance - Resistance - ElectricResistance - http://qudt.org/vocab/quantitykind/Resistance - https://www.wikidata.org/wiki/Q25358 - 6-46 - Measure of the difficulty to pass an electric current through a material. - https://doi.org/10.1351/goldbook.E01936 + Quotient of Larmor angular frequency and 2π. + LarmonFrequency + LarmonFrequency + 10-15.2 + Quotient of Larmor angular frequency and 2π. - + - + - + - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - ExtentOfReaction - ExtentOfReaction - https://qudt.org/vocab/quantitykind/ExtentOfReaction - https://www.wikidata.org/wiki/Q899046 - 9-31 - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - https://doi.org/10.1351/goldbook.E02283 - - - - - - A suspension of fine particles in the atmosphere. - Dust - Dust - A suspension of fine particles in the atmosphere. - - - - - - - A coarse dispersion of solid in a gas continuum phase. - GasSolidSuspension - GasSolidSuspension - A coarse dispersion of solid in a gas continuum phase. - Dust, sand storm. + Number of periods per time interval. + Frequency + Frequency + http://qudt.org/vocab/quantitykind/Frequency + https://www.wikidata.org/wiki/Q11652 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 + 3-15.1 + Number of periods per time interval. + https://doi.org/10.1351/goldbook.FT07383 - - - - - Dissociation may occur stepwise. - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - DegreeOfDissociation - DissociationFraction - DegreeOfDissociation - https://qudt.org/vocab/quantitykind/DegreeOfDissociation - https://www.wikidata.org/wiki/Q907334 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 - 9-43 - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - https://doi.org/10.1351/goldbook.D01566 + + + + Heat capacity at constant volume. + IsochoricHeatCapacity + HeatCapacityAtConstantVolume + IsochoricHeatCapacity + https://www.wikidata.org/wiki/Q112187521 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 + 5-16.3 + Heat capacity at constant volume. - + + - - + + - A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. - ISQDimensionlessQuantity - ISQDimensionlessQuantity - http://qudt.org/vocab/quantitykind/Dimensionless - A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. - https://en.wikipedia.org/wiki/Dimensionless_quantity - https://doi.org/10.1351/goldbook.D01742 - - - - - - A manufacturing involving the creation of long-term connection of several workpieces. - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - JoinManufacturing - DIN 8580:2020 - Fügen - JoinManufacturing - A manufacturing involving the creation of long-term connection of several workpieces. - - - - - - MergingManufacturing - AddingManufacturing - MergingManufacturing + Examples of condition might be constant volume or constant pressure for a gas. + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + HeatCapacity + HeatCapacity + https://qudt.org/vocab/quantitykind/HeatCapacity + https://www.wikidata.org/wiki/Q179388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 + https://dbpedia.org/page/Heat_capacity + 5-15 + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + https://en.wikipedia.org/wiki/Heat_capacity + https://doi.org/10.1351/goldbook.H02753 - + - T0 L0 M0 I0 Θ0 N+1 J0 + T0 L-1 M0 I0 Θ-1 N0 J0 - AmountUnit - AmountUnit - - - - - - - GreenStrangeAntiQuark - GreenStrangeAntiQuark - - - - - - - - - - - - - - - - - - - - - - - StrangeAntiQuark - StrangeAntiQuark - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GreenAntiQuark - GreenAntiQuark - - - - - - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - - PulsedElectroacousticMethod - PulsedElectroacousticMethod - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - https://doi.org/10.1007/s10832-023-00332-y + PerLengthTemperatureUnit + PerLengthTemperatureUnit - - + + + Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. + The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped + The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - ChargeDistribution - ChargeDistribution - - - - - - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - A material process requires the output to be classified as an individual of a material subclass. - MaterialsProcessing - ContinuumManufacturing - MaterialsProcessing - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. - A material process requires the output to be classified as an individual of a material subclass. - - - - - - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - Conversion of materials and assembly of components for the manufacture of products - Technology is the application of knowledge for achieving practical goals in a reproducible way. - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - TechnologyProcess - ProductionEngineeringProcess - TechnologyProcess - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + SquareWaveVoltammetry + OSWV + OsteryoungSquareWaveVoltammetry + SWV + SquareWaveVoltammetry + https://www.wikidata.org/wiki/Q4016323 + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + https://en.wikipedia.org/wiki/Squarewave_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - ICI - IntermittentCurrentInterruptionMethod - ICI - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + + + + Ruby + Ruby - - - - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). - -For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. - Process - Occurrent - Perdurant - Process - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + + + + A programming language that is executed through runtime interpretation. + ScriptingLanguage + ScriptingLanguage + A programming language that is executed through runtime interpretation. - - - - - - - - - - - - - A whole possessing some proper parts of its same type. - Redundant - NonMaximal - Redundant - A whole possessing some proper parts of its same type. - An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. + + + + + Quotient of mass defect and the unified atomic mass constant. + RelativeMassDefect + RelativeMassDefect + https://qudt.org/vocab/quantitykind/RelativeMassDefect + https://www.wikidata.org/wiki/Q98038718 + 10-22.2 + Quotient of mass defect and the unified atomic mass constant. + -If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. + + + + + T0 L+3 M0 I0 Θ0 N0 J0 + + + + + VolumeUnit + VolumeUnit - - + + - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - DynamicMechanicalAnalysis - DynamicMechanicalAnalysis - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + ConductometricTitration + ConductometricTitration + https://www.wikidata.org/wiki/Q11778221 + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + https://doi.org/10.1515/pac-2018-0109 - - - - A manufacturing in which material is removed from the workpiece in the form of chips. - Machining - RemovingChipsFromWorkpiece - Machining - A manufacturing in which material is removed from the workpiece in the form of chips. + + + + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Conductometry + Conductometry + https://www.wikidata.org/wiki/Q901180 + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Monitoring of the purity of deionized water. + https://en.wikipedia.org/wiki/Conductometry + https://doi.org/10.1515/pac-2018-0109 - - - - DefinedEdgeCutting - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - Spanen mit geometrisch bestimmten Schneiden - DefinedEdgeCutting + + + + + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + ParticleEmissionRate + ParticleEmissionRate + https://www.wikidata.org/wiki/Q98153151 + 10-36 + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - + - - + - In nuclear physics, incident radiant energy per cross-sectional area. - EnergyFluence - EnergyFluence - https://qudt.org/vocab/quantitykind/EnergyFluence - https://www.wikidata.org/wiki/Q98538612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 - 10-46 - In nuclear physics, incident radiant energy per cross-sectional area. + ReciprocalDuration + InverseDuration + InverseTime + ReciprocalTime + ReciprocalDuration + https://qudt.org/vocab/quantitykind/InverseTime + https://www.wikidata.org/wiki/Q98690850 - - - + + + - A unit symbol that stands for a derived unit. - Special units are semiotic shortcuts to more complex composed symbolic objects. - SpecialUnit - SpecialUnit - A unit symbol that stands for a derived unit. - Pa stands for N/m2 -J stands for N m - + A quantity that is obtained from a well-defined procedure. + Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - - - - A measurement unit for a derived quantity. --- VIM - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - DerivedUnit - DerivedUnit - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - derived unit - A measurement unit for a derived quantity. --- VIM +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + ObjectiveProperty + PhysicalProperty + QuantitativeProperty + ObjectiveProperty + A quantity that is obtained from a well-defined procedure. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - + - - - - + + + + - - + + + + + + 1 + + - + - + - A symbol that stands for a single unit. - UnitSymbol - UnitSymbol - A symbol that stands for a single unit. - Some examples are "Pa", "m" and "J". - + A quantifiable property of a phenomenon, body, or substance. + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - - - - - - - - - - - - - Often denoted B. - Strength of the magnetic field. - MagneticFluxDensity - MagneticInduction - MagneticFluxDensity - http://qudt.org/vocab/quantitykind/MagneticFluxDensity - https://www.wikidata.org/wiki/Q30204 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 - 6-21 - Strength of the magnetic field. - https://doi.org/10.1351/goldbook.M03686 - +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + Quantity + Measurand + Quantity + https://qudt.org/schema/qudt/Quantity + A quantifiable property of a phenomenon, body, or substance. + length +Rockwell C hardness +electric resistance + measurand + quantity + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - - - - - MuonAntiNeutrino - MuonAntiNeutrino +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - - - - ModulusOfAdmittance - ModulusOfAdmittance - https://qudt.org/vocab/quantitykind/ModulusOfAdmittance - https://www.wikidata.org/wiki/Q79466359 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 - 6-52.4 + + + + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + Objective + Objective + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - - - - - - - + + - - + + T-1 L+1 M+1 I0 Θ0 N0 J0 - - - Inverse of 'ElectricalResistance'. - Measure of the ease for electric current to pass through a material. - ElectricConductance - Conductance - ElectricConductance - http://qudt.org/vocab/quantitykind/Conductance - https://www.wikidata.org/wiki/Q309017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 - 6-47 - Measure of the ease for electric current to pass through a material. - https://doi.org/10.1351/goldbook.E01925 - - - - - - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - DataQuality - DataQuality - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) + + + + MomentumUnit + MomentumUnit - - + + + - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. - Solubility - Solubility - https://www.wikidata.org/wiki/Q170731 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - https://doi.org/10.1351/goldbook.S05740 + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + ExchangeIntegral + ExchangeIntegral + https://qudt.org/vocab/quantitykind/ExchangeIntegral + https://www.wikidata.org/wiki/Q10882959 + 12-34 + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - - - - Quantities categorised according to ISO 80000-5. - ThermodynamicalQuantity - ThermodynamicalQuantity - Quantities categorised according to ISO 80000-5. - + + + + A real bond between atoms is always something hybrid between covalent, metallic and ionic. - - - - A tessellation in wich a tile has next two or more non spatially connected tiles. - Fork - Fork - A tessellation in wich a tile has next two or more non spatially connected tiles. +In general, metallic and ionic bonds have atoms sharing electrons. + An bonded atom that shares at least one electron to the atom-based entity of which is part of. + The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. + This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. + BondedAtom + BondedAtom + An bonded atom that shares at least one electron to the atom-based entity of which is part of. - - + + - - + + - - A well formed tessellation with tiles that are all temporal. - TemporalTiling - TemporalTiling - A well formed tessellation with tiles that are all temporal. - - - - - - - - - - + + - - Extent of a surface. - Area - Area - http://qudt.org/vocab/quantitykind/Area - 3-3 - https://doi.org/10.1351/goldbook.A00429 - + + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - - - - A formal language used to communicate with a computer. - The categorisation of computer languages is based on +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. -Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. -https://www.computer.org/education/bodies-of-knowledge/software-engineering - ComputerLanguage - ComputerLanguage - A formal language used to communicate with a computer. - The categorisation of computer languages is based on +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. -Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. -https://www.computer.org/education/bodies-of-knowledge/software-engineering - https://en.wikipedia.org/wiki/Computer_language +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + Atom + ChemicalElement + Atom + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. + +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - + + + + + + Amount of heat through a surface during a time interval divided by the duration of this interval. + HeatFlowRate + HeatFlowRate + https://qudt.org/vocab/quantitykind/HeatFlowRate + https://www.wikidata.org/wiki/Q12160631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 + 5-7 + Amount of heat through a surface during a time interval divided by the duration of this interval. + + + + - + - - + - Heat capacity divided by mass. - SpecificHeatCapacity - SpecificHeatCapacity - https://qudt.org/vocab/quantitykind/SpecificHeatCapacity - https://www.wikidata.org/wiki/Q487756 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 - https://dbpedia.org/page/Specific_heat_capacity - 5-16.1 - Heat capacity divided by mass. - https://en.wikipedia.org/wiki/Specific_heat_capacity - https://doi.org/10.1351/goldbook.S05800 + Rate of transfer of energy per unit time. + Power + Power + http://qudt.org/vocab/quantitykind/Power + 4-27 + 6-45 + Rate of transfer of energy per unit time. + https://doi.org/10.1351/goldbook.P04792 - - + + - Ratio of void volume and total volume of a porous material. - Porosity - Porosity - https://www.wikidata.org/wiki/Q622669 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 - Ratio of void volume and total volume of a porous material. - https://doi.org/10.1351/goldbook.P04762 + Quantities categorised according to ISO 80000-5. + ThermodynamicalQuantity + ThermodynamicalQuantity + Quantities categorised according to ISO 80000-5. - - + + + - Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). - -Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - RatioQuantity - https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 - RatioQuantity - http://qudt.org/vocab/quantitykind/DimensionlessRatio - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - refractive index, -volume fraction, -fine structure constant - - - - - - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury - the accumulation is similar to that used in stripping voltammetry - the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution - the time between changes in potential in step 2 is related to the concentration of analyte in the solution - PotentiometricStrippingAnalysis - PSA - PotentiometricStrippingAnalysis - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - - - - - - The current vs. potential (I-E) curve is called a voltammogram. - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - - Voltammetry - Voltammetry - https://www.wikidata.org/wiki/Q904093 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - https://en.wikipedia.org/wiki/Voltammetry - https://doi.org/10.1515/pac-2018-0109 + At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + DensityOfHeatFlowRate + AreicHeatFlowRate + DensityOfHeatFlowRate + https://www.wikidata.org/wiki/Q1478382 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 + 5-8 + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + https://doi.org/10.1351/goldbook.H02755 - - - - - - - - - - - - The interest is on the 4D object as it extends in time (process) or as it persists in time (object): -- object (focus on spatial configuration) -- process (focus on temporal evolution) - -The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. - -For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. - -Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. - -This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). - -The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. - The union of the object or process classes. - Persistence - Persistence - The union of the object or process classes. + + + + + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. + ReshapeManufacturing + DIN 8580:2020 + Forming + Umformen + ReshapeManufacturing + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. - - + + - IsothermalCompressibility - IsothermalCompressibility - https://qudt.org/vocab/quantitykind/IsothermalCompressibility - https://www.wikidata.org/wiki/Q2990696 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 - 5-5.1 + Quotient of the mass of water vapour in moist gas by the total gas volume. + The mass concentration of water at saturation is denoted vsat. + MassConcentrationOfWaterVapour + MassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + Quotient of the mass of water vapour in moist gas by the total gas volume. - - - - - - - - - - - + + + - Measure of the relative volume change of a fluid or solid as a response to a pressure change. - Compressibility - Compressibility - https://qudt.org/vocab/quantitykind/Compressibility - https://www.wikidata.org/wiki/Q8067817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 - 4-20 - Measure of the relative volume change of a fluid or solid as a response to a pressure change. + Mass of a constituent divided by the volume of the mixture. + MassConcentration + MassConcentration + http://qudt.org/vocab/quantitykind/MassConcentration + https://doi.org/10.1351/goldbook.M03713 - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - + + - - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. + + + + + + + + + + + + + A procedure that has at least two procedures (tasks) as proper parts. + Workflow + Workflow + A procedure that has at least two procedures (tasks) as proper parts. + --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - CharacterisationMeasurementProcess - CharacterisationMeasurementProcess - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. + + + + A procedure can be considered as an intentional process with a plan. + The process in which an agent works with some entities according to some existing formalised operative rules. + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + Procedure + Elaboration + Work + Procedure + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + The process in which an agent works with some entities according to some existing formalised operative rules. + The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). +The process in which a librarian order books alphabetically on a shelf. +The execution of an algorithm. + A procedure can be considered as an intentional process with a plan. + --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - Measurement + + + + + The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + MeanFreePath + MeanFreePath + https://qudt.org/vocab/quantitykind/MeanFreePath + https://www.wikidata.org/wiki/Q756307 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 + 9-38 + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + https://doi.org/10.1351/goldbook.M03778 - - - - - - - - - - - - - - - - - - - - - - - A measurement always implies a causal interaction between the object and the observer. - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - Measurement - Measurement - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - measurement + + + + Length of a rectifiable curve between two of its points. + PathLength + ArcLength + PathLength + https://www.wikidata.org/wiki/Q7144654 + https://dbpedia.org/page/Arc_length + 3-1.7 + Length of a rectifiable curve between two of its points. + https://en.wikipedia.org/wiki/Arc_length - + - - + + - + + + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. + Product + Output + Product + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 + https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. + + + + - Structural - Structural + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + TemporallyFundamental + TemporallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + + + + A mathematical string that express a relation between the elements in one set X to elements in another set Y. + The set X is called domain and the set Y range or codomain. + MathematicalFormula + MathematicalFormula + A mathematical string that express a relation between the elements in one set X to elements in another set Y. - + - - + + - - + + - - - - - - + + - - - CharacterisationTask - CharacterisationTask - - - - - - - CharacterisationHardwareSpecification - CharacterisationHardwareSpecification - - - - - - An observer that makes use of a measurement tool and provides a quantitative property. - Measurer - Measurer - An observer that makes use of a measurement tool and provides a quantitative property. + + MathematicalConstruct + MathematicalConstruct - - - - A characteriser that declares a property for an object through the specific interaction required by the property definition. - Observer - Observer - A characteriser that declares a property for an object through the specific interaction required by the property definition. + + + + + + The abstract notion of angle. + AngularMeasure + AngularMeasure + https://qudt.org/vocab/quantitykind/Angle + https://www.wikidata.org/wiki/Q1357788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 + 3-5 + The abstract notion of angle. + https://doi.org/10.1351/goldbook.A00346 - - - - - RedCharmQuark - RedCharmQuark + + + + Quantities categorised according to ISO 80000-3. + SpaceAndTimeQuantity + SpaceAndTimeQuantity + Quantities categorised according to ISO 80000-3. - - - - - - - - - - - - - - - - - - - - - CharmQuark - CharmQuark - https://en.wikipedia.org/wiki/Charm_quark + + + + Ratio of circular arc length to radius. + Angle + PlaneAngle + Angle + http://qudt.org/vocab/quantitykind/PlaneAngle + Ratio of circular arc length to radius. + 3-5 + https://doi.org/10.1351/goldbook.A00346 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - RedQuark - RedQuark + + + + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + CharacterisationProcedureValidation + CharacterisationProcedureValidation + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - - - - - ElementaryBoson - ElementaryBoson - + + + + "Property of a phenomenon, body, or substance, where the property has no magnitude." - - - - - - - - - - - - - - - - A chausal chain whose quantum parts are of the same standard model fundamental type. - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - ElementaryParticle - SingleParticleChain - ElementaryParticle - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - A chausal chain whose quantum parts are of the same standard model fundamental type. - +"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." - - - - - - - - - - - - - - - A physical particle with integer spin that follows Bose–Einstein statistics. - Boson - Boson - A physical particle with integer spin that follows Bose–Einstein statistics. - https://en.wikipedia.org/wiki/Boson - +International vocabulary of metrology (VIM) + An 'ObjectiveProperty' that cannot be quantified. + NominalProperty + NominalProperty + An 'ObjectiveProperty' that cannot be quantified. + CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered - - - - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - 3DPrinting - 3DPrinting - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - +A color is a nominal property. - - - - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - AdditiveManufacturing - GenerativeManufacturing - AdditiveManufacturing - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, +Sex of a human being. + nominal property - + - - + - Quotient of the mean rate of production of particles in a volume, and that volume. - ParticleSourceDensity - ParticleSourceDensity - https://qudt.org/vocab/quantitykind/ParticleSourceDensity - https://www.wikidata.org/wiki/Q98915762 - 10-66 - Quotient of the mean rate of production of particles in a volume, and that volume. + Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). + a photometric measure of the luminous intensity per unit area of light travelling in a given direction. + Luminance + Luminance + http://qudt.org/vocab/quantitykind/Luminance + https://doi.org/10.1351/goldbook.L03640 - + + - + - ReciprocalDuration - InverseDuration - InverseTime - ReciprocalTime - ReciprocalDuration - https://qudt.org/vocab/quantitykind/InverseTime - https://www.wikidata.org/wiki/Q98690850 - - - - - - Vector quantity equal to the time derivative of the electric flux density. - DisplacementCurrentDensity - DisplacementCurrentDensity - https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity - https://www.wikidata.org/wiki/Q77614612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 - 6-18 - Vector quantity equal to the time derivative of the electric flux density. + Change of pressure per change of temperature at constant volume. + PressureCoefficient + PressureCoefficient + https://qudt.org/vocab/quantitykind/PressureCoefficient + https://www.wikidata.org/wiki/Q74762732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 + 5-4 + Change of pressure per change of temperature at constant volume. - - - - - - + + - - + + + 1 - - Electric current divided by the cross-sectional area it is passing through. - ElectricCurrentDensity - AreicElectricCurrent - CurrentDensity - ElectricCurrentDensity - http://qudt.org/vocab/quantitykind/ElectricCurrentDensity - https://www.wikidata.org/wiki/Q234072 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 - 6-8 - https://en.wikipedia.org/wiki/Current_density - https://doi.org/10.1351/goldbook.E01928 + + + + + 1 + + + + A measurement unit that is made of a metric prefix and a unit symbol. + PrefixedUnit + PrefixedUnit + A measurement unit that is made of a metric prefix and a unit symbol. - - - - - - - - - - - - - - - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. - The union of hadron and lepton, or fermion and bosons. - PhysicalParticle - Particle - PhysicalParticle - The union of hadron and lepton, or fermion and bosons. - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + + + + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + A well-formed formula that follows the syntactic rules of computer science. + ComputerScience + ComputerScience + A well-formed formula that follows the syntactic rules of computer science. + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - - - - - Service - IntangibleProduct - Service - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 + + + + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + Language + Language + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - - - - - - - - - - + + + - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. - Product - Output - Product - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 - https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. + Has shaped bodies as input and output. + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + esce workpiece + MaterialTreatment + DIN 8580:2020 + Stoffeigenschaft ändern + WorkPieceTreatment + MaterialTreatment + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + Has shaped bodies as input and output. + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - - - - + + + + + - - + + - - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - IntentionalProcess - Project - IntentionalProcess - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - - - - - - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - Symbol - AlphabeticEntity - Symbol - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). - -Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. -(Wikipedia) - The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. + + In nuclear physics, incident radiant energy per cross-sectional area. + EnergyFluence + EnergyFluence + https://qudt.org/vocab/quantitykind/EnergyFluence + https://www.wikidata.org/wiki/Q98538612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 + 10-46 + In nuclear physics, incident radiant energy per cross-sectional area. - + - - - - + + + + - - - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - Symbolic - Symbolic - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - fe780 -emmo -!5*a -cat -for(i=0;i<N;++i) - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - A symbolic object possesses a reductionistic oriented structure. -For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). - - - - - - - Quotient of the mass of water vapour in moist gas by the total gas volume. - The mass concentration of water at saturation is denoted vsat. - MassConcentrationOfWaterVapour - MassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - Quotient of the mass of water vapour in moist gas by the total gas volume. + + + + + + + + + + + + + + + CharacterisationTask + CharacterisationTask - - - - - Mass of a constituent divided by the volume of the mixture. - MassConcentration - MassConcentration - http://qudt.org/vocab/quantitykind/MassConcentration - https://doi.org/10.1351/goldbook.M03713 + + + + + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + + RawData + RawData + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. + In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. + In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - - - - Rate of change of the phase angle. - AngularFrequency - AngularFrequency - https://qudt.org/vocab/quantitykind/AngularFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 - https://dbpedia.org/page/Angular_frequency - 3-18 - Rate of change of the phase angle. - https://en.wikipedia.org/wiki/Angular_frequency - https://doi.org/10.1351/goldbook.A00352 + + + + Quantifies the raw data acquisition rate, if applicable. + DataAcquisitionRate + DataAcquisitionRate + Quantifies the raw data acquisition rate, if applicable. - + - + - + - Number of periods per time interval. - Frequency - Frequency - http://qudt.org/vocab/quantitykind/Frequency - https://www.wikidata.org/wiki/Q11652 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 - 3-15.1 - Number of periods per time interval. - https://doi.org/10.1351/goldbook.FT07383 + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume + DensityOfVibrationalStates + DensityOfVibrationalStates + https://qudt.org/vocab/quantitykind/DensityOfStates + https://www.wikidata.org/wiki/Q105637294 + 12-12 + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - - - - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - IntentionalAgent - IntentionalAgent - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + + + + + Quotient of mass excess and the unified atomic mass constant. + RelativeMassExcess + RelativeMassExcess + https://qudt.org/vocab/quantitykind/RelativeMassExcess + https://www.wikidata.org/wiki/Q98038610 + 10-22.1 + Quotient of mass excess and the unified atomic mass constant. - - - - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. - MeasuredConstant - MeasuredConstant - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + + + + + Reciprocal of the wavelength. + Wavenumber + Repetency + Wavenumber + https://qudt.org/vocab/quantitykind/Wavenumber + https://www.wikidata.org/wiki/Q192510 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 + https://dbpedia.org/page/Wavenumber + 3-20 + Reciprocal of the wavelength. + https://en.wikipedia.org/wiki/Wavenumber + https://doi.org/10.1351/goldbook.W06664 - - - - - - - - - - - - - - - Physical constants are categorised into "exact" and measured constants. - -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - PhysicalConstant - PhysicalConstant - Physical constants are categorised into "exact" and measured constants. - -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - https://en.wikipedia.org/wiki/List_of_physical_constants + + + + + + + + + + + + The inverse of length. + ReciprocalLength + InverseLength + ReciprocalLength + http://qudt.org/vocab/quantitykind/InverseLength + The inverse of length. + https://en.wikipedia.org/wiki/Reciprocal_length - - - - Data that are non-quantitatively interpreted (e.g., qualitative data, types). - NonNumericalData - NonNumericalData - Data that are non-quantitatively interpreted (e.g., qualitative data, types). + + + + duration of one cycle of a periodic event + PeriodDuration + Period + PeriodDuration + https://qudt.org/vocab/quantitykind/Period + https://www.wikidata.org/wiki/Q2642727 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 + 3-14 + duration of one cycle of a periodic event + https://doi.org/10.1351/goldbook.P04493 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. -Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). -A data object may be used as the physical basis for a sign, under Semiotics perspective. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - EncodedData - EncodedVariation - EncodedData - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - A Radio Morse Code transmission can be addressed by combination of perspectives. + + + + Physical quantity for describing the temporal distance between events. + Duration + Duration + https://www.wikidata.org/wiki/Q2199864 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 + 3-9 + Physical quantity for describing the temporal distance between events. + -Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). -Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. -Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. -Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). - A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - https://no.wikipedia.org/wiki/Data + + + + + + + + + + + + + One-dimensional subspace of space-time, which is locally orthogonal to space. + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + Time can be seen as the duration of an event or, more operationally, as "what clocks read". + Time + Time + http://qudt.org/vocab/quantitykind/Time + One-dimensional subspace of space-time, which is locally orthogonal to space. + 3-7 + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + https://doi.org/10.1351/goldbook.T06375 - - - - - BlueBottomAntiQuark - BlueBottomAntiQuark + + + + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). + Cutting + Schneiden + Cutting - - + + + - + - + - + - + - + - - + + + + + + + @@ -5449,865 +4596,968 @@ We call "interpreting" the act of providing semantic meaning to data, which is c - - BlueAntiQuark - BlueAntiQuark + + Base quantities defined in the International System of Quantities (ISQ). + ISQBaseQuantity + ISQBaseQuantity + Base quantities defined in the International System of Quantities (ISQ). + https://en.wikipedia.org/wiki/International_System_of_Quantities - - + + - The class of general mathematical symbolic objects respecting mathematical syntactic rules. - A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. - Mathematical - Mathematical - The class of general mathematical symbolic objects respecting mathematical syntactic rules. + A physics-based model based on a physics equation describing the behaviour of atoms. + AtomisticModel + AtomisticModel + A physics-based model based on a physics equation describing the behaviour of atoms. - - - - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - Variable - Variable - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - x -k + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A solvable set of one Physics Equation and one or more Materials Relations. + MaterialsModel + https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 + MaterialsModel + A solvable set of one Physics Equation and one or more Materials Relations. + + + + + + + T-1 L-3 M0 I0 Θ0 N0 J0 + + + + + FrequencyPerVolumeUnit + FrequencyPerVolumeUnit + + + + + + HardeningByForming + Verfestigen durch Umformen + HardeningByForming + + + + + + + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + ResonanceEnergy + ResonanceEnergy + https://qudt.org/vocab/quantitykind/ResonanceEnergy + https://www.wikidata.org/wiki/Q98165187 + 10-37.2 + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + + + + + + PaperManufacturing + PaperManufacturing + + + + + + FormingFromChip + FormingFromChip + + + + + + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + + Spectroscopy + Spectroscopy + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + + + + + + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + A characterisation technique is not only related to the measurement process which can be one of its steps. + CharacterisationTechnique + Characterisation procedure + Characterisation technique + CharacterisationTechnique + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + A characterisation technique is not only related to the measurement process which can be one of its steps. + + + + + + ISO80000Categorised + ISO80000Categorised + + + + + + The number of waves per unit length along the direction of propagation. + Wavenumber + Wavenumber + http://qudt.org/vocab/quantitykind/Wavenumber + 3-18 + https://doi.org/10.1351/goldbook.W06664 + + + + + + + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + BohrRadius + BohrRadius + https://qudt.org/vocab/constant/BohrRadius + https://www.wikidata.org/wiki/Q652571 + 10-6 + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + https://doi.org/10.1351/goldbook.B00693 + + + + + + Distance from the centre of a circle to the circumference. + Radius + Radius + https://qudt.org/vocab/quantitykind/Radius + https://www.wikidata.org/wiki/Q173817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 + https://dbpedia.org/page/Radius + 3-1.6 + Distance from the centre of a circle to the circumference. + https://en.wikipedia.org/wiki/Radius + + + + + + + T-1 L-2 M0 I0 Θ0 N0 J0 + + + + + PerAreaTimeUnit + PerAreaTimeUnit + + + + + + A material is a crystal if it has essentially a sharp diffraction pattern. + +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) + Crystal + Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. + +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) - - - - - T0 L0 M-2 I0 Θ0 N0 J0 - - - - - InverseSquareMassUnit - InverseSquareMassUnit + + + + Suggestion of Rickard Armiento + CrystallineMaterial + CrystallineMaterial - - - - + + - - + + + + + + - - Measure of probability that a specific process will take place in a collision of two particles. - AtomicPhysicsCrossSection - AtomicPhysicsCrossSection - https://qudt.org/vocab/quantitykind/Cross-Section.html - https://www.wikidata.org/wiki/Q17128025 - 10-38.1 - Measure of probability that a specific process will take place in a collision of two particles. + + A 'Sign' that stands for an 'Object' due to causal continguity. + Index + Signal + Index + A 'Sign' that stands for an 'Object' due to causal continguity. + Smoke stands for a combustion process (a fire). +My facial expression stands for my emotional status. - - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - Bending - Bending + + + + + + A guess is a theory, estimated and subjective, since its premises are subjective. + Guess + Guess + A guess is a theory, estimated and subjective, since its premises are subjective. - - - - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - Cutting - Schneiden - Cutting - + + + + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. - - - - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - SeparateManufacturing - DIN 8580:2020 - CuttingManufacturing - Trennen - SeparateManufacturing - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. +This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. + +A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. + +e.g. you cannot evaluate the beauty of a person on objective basis. + Subjective + Subjective + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The beauty of that girl. +The style of your clothing. - - - - - - - - - - - + + - A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. + A 'conventional' that stand for a 'physical'. + The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. -Abramowitz and Stegun, 1968 - An analogical icon expressed in mathematical language. - MathematicalModel - MathematicalModel - An analogical icon expressed in mathematical language. +It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. + +In Peirce semiotics: legisign-symbol-argument + Theory + Theory + A 'conventional' that stand for a 'physical'. - - - - An icon that focus on HOW the object works. - An icon that represents the internal logical structure of the object. - AnalogicalIcon - AnalogicalIcon - An icon that represents the internal logical structure of the object. - A physics equation is replicating the mechanisms internal to the object. - Electrical diagram is diagrammatic and resemblance - MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. - An icon that focus on HOW the object works. - The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). + + + + Estimated + Estimated + The biography of a person that the author have not met. - - - - - + + + - - + + - - Decays per unit time. - Radioactivity - RadioactiveActivity - Radioactivity - http://qudt.org/vocab/quantitykind/SpecificActivity - Decays per unit time. - https://doi.org/10.1351/goldbook.A00114 - - - - - - A building or group of buildings where goods are manufactured or assembled. - Factory - IndustrialPlant - Factory - A building or group of buildings where goods are manufactured or assembled. - - - - - - - An object that has been designed and manufactured for a particular purpose. - ManufacturedProduct - Artifact - Engineered - TangibleProduct - ManufacturedProduct - An object that has been designed and manufactured for a particular purpose. - Car, tire, composite material. - - - - - - - - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - Path - Path - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - /etc/fstab (UNIX-like path) -C:\\Users\\John\\Desktop (DOS-like path) - + + + + + + + + + + + + + + + + + + + + + + + + + + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. - - - - A physical made of more than one symbol sequentially arranged. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - String - String - A physical made of more than one symbol sequentially arranged. - The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + CharacterisationMeasurementProcess + CharacterisationMeasurementProcess + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. -In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + Measurement + -If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - A string is not requested to respect any syntactic rule: it's simply directly made of symbols. + + + + Describes how raw data are corrected and/or modified through calibrations. + DataProcessingThroughCalibration + DataProcessingThroughCalibration + Describes how raw data are corrected and/or modified through calibrations. - - - - - - - - - - - - - - A formal computer-interpretable identifier of a system resource. - ResourceIdentifier - ResourceIdentifier - A formal computer-interpretable identifier of a system resource. + + + + DefinedEdgeCutting + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + Spanen mit geometrisch bestimmten Schneiden + DefinedEdgeCutting - - - - A set of reasons or a logical basis for a decision or belief - Rationale - Rationale - A set of reasons or a logical basis for a decision or belief + + + + + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor + ElectronAffinity + ElectronAffinity + https://qudt.org/vocab/quantitykind/ElectronAffinity + https://www.wikidata.org/wiki/Q105846486 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 + 12-25 + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - - - - - T-1 L+1 M0 I0 Θ0 N0 J0 - - - - - SpeedUnit - SpeedUnit + + + + + A neutrino belonging to the second generation of leptons. + MuonNeutrino + MuonNeutrino + A neutrino belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon_neutrino - + - - + + + + + + + + - - - - - - - - - - - - - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - Role - HolisticPart - Part - Role - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - - - - - - A tessellation of temporal slices. - Sequence - Sequence - A tessellation of temporal slices. - - - - - - - - - - - - - - - - - - - - + - UpAntiQuarkType - UpAntiQuarkType + SecondGenerationFermion + SecondGenerationFermion - - + + + - + - + - + - - - - - - - - - - - - - - AntiQuark - AntiQuark - - - - - - - Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - DiffusionCoefficientForFluenceRate - DiffusionCoefficientForFluenceRate - https://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate - https://www.wikidata.org/wiki/Q98876254 - 10-65 - Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - - - - - - - - - - - - - - - Quotient of the activity A of a sample and the mass m of that sample. - SpecificActivity - MassicActivity - SpecificActivity - https://qudt.org/vocab/quantitykind/SpecificActivity - https://www.wikidata.org/wiki/Q2823748 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 - 10-28 - Quotient of the activity A of a sample and the mass m of that sample. - https://doi.org/10.1351/goldbook.S05790 - - - - - - - - - - - - - - Energy per unit change in amount of substance. - ChemicalPotential - ChemicalPotential - http://qudt.org/vocab/quantitykind/ChemicalPotential - 9-17 - https://doi.org/10.1351/goldbook.C01032 - - - - - - Chronopotentiometry where the applied current is changed linearly. - LinearChronopotentiometry - LinearChronopotentiometry - Chronopotentiometry where the applied current is changed linearly. - chronopotentiometry where the applied current is changed linearly + + + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + NeutrinoType + NeutrinoType + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + https://en.wikipedia.org/wiki/Neutrino - - - - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - UserCase - UserCase - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + + + + + T-3 L+2 M0 I0 Θ0 N0 J0 + + + + + AbsorbedDoseRateUnit + AbsorbedDoseRateUnit - - - - - Displacement of one surface with respect to another divided by the distance between them. - ShearStrain - ShearStrain - https://qudt.org/vocab/quantitykind/ShearStrain - https://www.wikidata.org/wiki/Q7561704 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 - 4-17.3 - Displacement of one surface with respect to another divided by the distance between them. - https://doi.org/10.1351/goldbook.S05637 + + + + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + Variable + Variable + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + x +k - - - - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). - Estimator - Estimator - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + + + + The class of general mathematical symbolic objects respecting mathematical syntactic rules. + A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. + Mathematical + Mathematical + The class of general mathematical symbolic objects respecting mathematical syntactic rules. - - - - - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - Product of the rest mass and the square of the speed of light in vacuum. - RestEnergy - RestEnergy - https://www.wikidata.org/wiki/Q11663629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 - 10-3 - Product of the rest mass and the square of the speed of light in vacuum. - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy + + + + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + HardnessTesting + HardnessTesting + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - - - - - - - - - - - - - - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. - JunctionTile - JunctionTile - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + + + + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + MechanicalTesting + MechanicalTesting + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + https://en.wikipedia.org/wiki/Mechanical_testing - + + + - - + - ThermalDiffusivity - ThermalDiffusionCoefficient - ThermalDiffusivity - https://qudt.org/vocab/quantitykind/ThermalDiffusivity - https://www.wikidata.org/wiki/Q3381809 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 - 5-14 + Extent of a surface. + Area + Area + http://qudt.org/vocab/quantitykind/Area + 3-3 + https://doi.org/10.1351/goldbook.A00429 - - - + + + - Number of donor levels per volume. - DonorDensity - DonorDensity - https://qudt.org/vocab/quantitykind/DonorDensity - https://www.wikidata.org/wiki/Q105979886 - 12-29.4 - Number of donor levels per volume. + A quantity whose magnitude is additive for subsystems. + Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. + Extensive + Extensive + A quantity whose magnitude is additive for subsystems. + Mass +Volume +Entropy - - - - - + + - - + + T0 L-2 M+1 I0 Θ+1 N0 J0 - + + - ReciprocalVolume - ReciprocalVolume + TemperatureMassPerAreaUnit + TemperatureMassPerAreaUnit - - - - - - - - - - + + - Fundamental translation vector for the crystal lattice. - FundamentalLatticeVector - FundamentalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalLatticeVector - https://www.wikidata.org/wiki/Q105451063 - 12-1.2 - Fundamental translation vector for the crystal lattice. + The energy possessed by a body by virtue of its position or orientation in a potential field. + PotentialEnergy + PotentialEnergy + http://qudt.org/vocab/quantitykind/PotentialEnergy + 4-28.1 + The energy possessed by a body by virtue of its position or orientation in a potential field. + https://doi.org/10.1351/goldbook.P04778 - + + - + - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - ElectricInductance - Inductance - ElectricInductance - http://qudt.org/vocab/quantitykind/Inductance - https://www.wikidata.org/wiki/Q177897 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 - 6-41.1 - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - https://doi.org/10.1351/goldbook.M04076 + Inverse of 'ElectricalResistance'. + Measure of the ease for electric current to pass through a material. + ElectricConductance + Conductance + ElectricConductance + http://qudt.org/vocab/quantitykind/Conductance + https://www.wikidata.org/wiki/Q309017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 + 6-47 + Measure of the ease for electric current to pass through a material. + https://doi.org/10.1351/goldbook.E01925 + + + + + + + Inverse of the radius of curvature. + Curvature + Curvature + https://qudt.org/vocab/quantitykind/CurvatureFromRadius + https://www.wikidata.org/wiki/Q214881 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 + https://dbpedia.org/page/Curvature + 3-2 + Inverse of the radius of curvature. + + + + + + ReactionSintering + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + ReactionSintering + + + + + + + + + + + + + + + A gaseous solution made of more than one component type. + GasSolution + GasMixture + GasSolution + A gaseous solution made of more than one component type. - - - - RMS value voltage multiplied by rms value of electric current. - ApparentPower - ApparentPower - https://qudt.org/vocab/quantitykind/ApparentPower - https://www.wikidata.org/wiki/Q1930258 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 - 6-57 - RMS value voltage multiplied by rms value of electric current. + + + + + + + + + + + + + GasMixture + GasMixture - - - - - - + + + + + A solution is a homogeneous mixture composed of two or more substances. + Solutions are characterized by the occurrence of Rayleigh scattering on light, + Solution + Solution + A solution is a homogeneous mixture composed of two or more substances. + + + + - - + + - - Rate of transfer of energy per unit time. - Power - Power - http://qudt.org/vocab/quantitykind/Power - 4-27 - 6-45 - Rate of transfer of energy per unit time. - https://doi.org/10.1351/goldbook.P04792 - + + + + + + + + + + + + + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. +ISO 80000-1 + Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. - - - - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - WearTesting - WearTesting - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. +Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. + Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. + +For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. + +However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. + +For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. + +As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). + — quantities of the same kind have the same quantity dimension, +— quantities of different quantity dimensions are always of different kinds, and +— quantities having the same quantity dimension are not necessarily of the same kind. +ISO 80000-1 + PhysicalQuantity + PhysicalQuantity + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - + - T+7 L-3 M-2 I+3 Θ0 N0 J0 + T-3 L0 M+1 I-1 Θ0 N0 J0 - CubicElectricChargeLengthPerSquareEnergyUnit - CubicElectricChargeLengthPerSquareEnergyUnit + ElectricPotentialPerAreaUnit + ElectricPotentialPerAreaUnit - - - - - + + - - + + - - Mass per length. - LinearMassDensity - LinearDensity - LineicMass - LinearMassDensity - https://qudt.org/vocab/quantitykind/LinearDensity - https://www.wikidata.org/wiki/Q56298294 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 - 4-6 - Mass per length. + + A well formed tessellation with tiles that are all temporal. + TemporalTiling + TemporalTiling + A well formed tessellation with tiles that are all temporal. - - - - - - + + + + + + + + + + + - - + + - - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - ThermodynamicTemperature - ThermodynamicTemperature - http://qudt.org/vocab/quantitykind/ThermodynamicTemperature - 5-1 - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - https://doi.org/10.1351/goldbook.T06321 + + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + SpatioTemporalTessellation + WellFormedTessellation + SpatioTemporalTessellation + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - - - - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - PhysicalBasedSimulationSoftware - PhysicalBasedSimulationSoftware - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + + + + + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + RelativeMassDensity + RelativeDensity + RelativeMassDensity + https://www.wikidata.org/wiki/Q11027905 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 + 4-4 + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + https://doi.org/10.1351/goldbook.R05262 - - - - - An application aimed to functionally reproduce an object. - SimulationApplication - SimulationApplication - An application aimed to functionally reproduce an object. - An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. + + + + + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + The mass concentration of water at saturation is denoted wsat. + MassConcentrationOfWater + MassConcentrationOfWater + https://qudt.org/vocab/quantitykind/MassConcentrationOfWater + https://www.wikidata.org/wiki/Q76378758 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 + 5-27 + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - - - - Vector quantity from the origin of a coordinate system to a point in space. - PositionVector - PositionVector - https://www.wikidata.org/wiki/Q192388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 - https://dbpedia.org/page/Position_(geometry) - 3-1.10 - Vector quantity from the origin of a coordinate system to a point in space. - https://en.wikipedia.org/wiki/Position_(geometry) + + + + + + Dimensionless multiplicative unit prefix. + MetricPrefix + https://en.wikipedia.org/wiki/Metric_prefix + MetricPrefix + Dimensionless multiplicative unit prefix. - - - - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - Non la metterei - Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). - FreeForming - FreeForming + + + + + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + PartialPressure + PartialPressure + https://qudt.org/vocab/quantitykind/PartialPressure + https://www.wikidata.org/wiki/Q27165 + 9-19 + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + https://doi.org/10.1351/goldbook.P04420 - - - - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - lasciano tensioni residue di compressione - CompressiveForming - Druckumformen - CompressiveForming + + + + + + + + + + + + + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + Pressure + Pressure + http://qudt.org/vocab/quantitykind/Pressure + 4-14.1 + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + https://doi.org/10.1351/goldbook.P04819 - - - + + + - Vector quantity expressing the internal angular momentum of a particle or a particle system. - Spin - Spin - https://qudt.org/vocab/quantitykind/Spin - https://www.wikidata.org/wiki/Q133673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 - 10-10 - Vector quantity expressing the internal angular momentum of a particle or a particle system. + Force opposing the motion of a body sliding on a surface. + KineticFrictionForce + DynamicFrictionForce + KineticFrictionForce + https://www.wikidata.org/wiki/Q91005629 + 4-9.4 + Force opposing the motion of a body sliding on a surface. - + + - - + - Measure of the extent and direction an object rotates about a reference point. - AngularMomentum - AngularMomentum - http://qudt.org/vocab/quantitykind/AngularMomentum - 4-11 - https://doi.org/10.1351/goldbook.A00353 + Any interaction that, when unopposed, will change the motion of an object + Force + Force + http://qudt.org/vocab/quantitykind/Force + 4-9.1 + Any interaction that, when unopposed, will change the motion of an object + https://doi.org/10.1351/goldbook.F02480 - - - - - BlueStrangeQuark - BlueStrangeQuark + + + + + An object which is an holistic temporal part of a process. + Status + State + Status + An object which is an holistic temporal part of a process. + A semi-naked man is a status in the process of a man's dressing. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - BlueQuark - BlueQuark + + + + + The sample after a preparation process. + PreparedSample + PreparedSample + The sample after a preparation process. - - - - - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - MassFractionOfDryMatter - MassFractionOfDryMatter - https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter - https://www.wikidata.org/wiki/Q76379189 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 - 5-32 - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + + + + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. + + Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. + Sample + Specimen + Sample + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. + Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - - - - - Mass of a constituent divided by the total mass of all constituents in the mixture. - MassFraction - MassFraction - http://qudt.org/vocab/quantitykind/MassFraction - 9-11 - https://doi.org/10.1351/goldbook.M03722 - + + + + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - - - - - GreenUpQuark - GreenUpQuark +-- International Vocabulary of Metrology(VIM) + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + + ReferenceSample + Certified Reference Material + Reference material + ReferenceSpecimen + ReferenceSample + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. + +-- International Vocabulary of Metrology(VIM) + Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Reference material - - - + + + - + - + - + @@ -6316,38 +5566,44 @@ where m_0 is the rest mass of that particle and c_0 is the speed of light in a v - UpQuark - UpQuark - https://en.wikipedia.org/wiki/Up_quark + BottomQuark + BottomQuark + https://en.wikipedia.org/wiki/Bottom_quark + + + + + + + + + + + + + + + + + + + + ThirdGenerationFermion + ThirdGenerationFermion - + - + - + - - - - - - - - - - - - - - - - - + + @@ -6355,1397 +5611,1385 @@ where m_0 is the rest mass of that particle and c_0 is the speed of light in a v - GreenQuark - GreenQuark - - - - - - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - LinearScanVoltammetry - LSV - LinearPolarization - LinearSweepVoltammetry - LinearScanVoltammetry - https://www.wikidata.org/wiki/Q620700 - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - https://en.wikipedia.org/wiki/Linear_sweep_voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - PhysicsEquation - PhysicsEquation - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - The Newton's equation of motion. -The Schrödinger equation. -The Navier-Stokes equation. + DownQuarkType + DownQuarkType - - - + + + + + - - + + - - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedModel - PhysicsBasedModel - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + + SectionModulus + SectionModulus + https://qudt.org/vocab/quantitykind/SectionModulus + https://www.wikidata.org/wiki/Q1930808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 + 4-22 - - - - - - - - - - - An equation with variables can always be represented as: - -f(v0, v1, ..., vn) = g(v0, v1, ..., vn) + + + + + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + ShearCutting + Scherschneiden + ShearCutting + -where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - Equation - Equation - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - 2+3 = 5 -x^2 +3x = 5x -dv/dt = a -sin(x) = y + + + + - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + - - + + + + + + - - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - MassEnergyTransferCoefficient - MassEnergyTransferCoefficient - https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient - https://www.wikidata.org/wiki/Q99714619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 - 10-87 - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + + A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. +A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. +A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. + +For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. +An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) +Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). +This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. +This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. + Coded + Coded + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. + The name "red" that stands for the color of an object. - - - - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - Device - Equipment - Machine - Device - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + + + + + GreenStrangeQuark + GreenStrangeQuark - + - - - T+4 L0 M-1 I+2 Θ0 N0 J0 - + + + + + + - - - SquareCurrentQuarticTimePerMassUnit - SquareCurrentQuarticTimePerMassUnit + + + + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + StrictFundamental + StrictFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - This must be a mathematical function v(t), x(t). -A dataset as solution is a conventional sign. - PhysicsEquationSolution - PhysicsEquationSolution - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. + + + + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + SpatiallyFundamental + SpatiallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - PhaseCoefficient - PhaseChangeCoefficient - PhaseCoefficient - https://qudt.org/vocab/quantitykind/PhaseCoefficient - https://www.wikidata.org/wiki/Q32745742 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 - 3-26.2 - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant + + + + Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. + MagneticPolarisation + MagneticPolarisation + https://qudt.org/vocab/quantitykind/MagneticPolarization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54 + 6-29 + Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - + + - + - The inverse of length. - ReciprocalLength - InverseLength - ReciprocalLength - http://qudt.org/vocab/quantitykind/InverseLength - The inverse of length. - https://en.wikipedia.org/wiki/Reciprocal_length - - - - - - - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - Quantum - Quantum - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. -However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + Often denoted B. + Strength of the magnetic field. + MagneticFluxDensity + MagneticInduction + MagneticFluxDensity + http://qudt.org/vocab/quantitykind/MagneticFluxDensity + https://www.wikidata.org/wiki/Q30204 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 + 6-21 + Strength of the magnetic field. + https://doi.org/10.1351/goldbook.M03686 - + + - + - + - - The class of entities that have no spatial structure. - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - CausalParticle - CausalParticle - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - The class of entities that have no spatial structure. + + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + Fermion + Fermion + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - - + + - Analysis, that allows one to calculate the final material property from the calibrated primary data. - DataPostProcessing - DataPostProcessing - Analysis, that allows one to calculate the final material property from the calibrated primary data. + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + + ProcessingReproducibility + ProcessingReproducibility + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - - - - - - - - - - - - - + + - - + + - - A computation that provides a data output following the elaboration of some input data, using a data processing application. - DataProcessing - DataProcessing - A computation that provides a data output following the elaboration of some input data, using a data processing application. - + + 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). - - - - - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - - RawData - RawData - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. - In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. - In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - +'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. - - - - Quantifies the raw data acquisition rate, if applicable. - DataAcquisitionRate - DataAcquisitionRate - Quantifies the raw data acquisition rate, if applicable. - +This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. - - - - - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - AngularReciprocalLatticeVector - AngularReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475278 - 12-2.1 - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - +e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. + A 'Physical' which is a tessellation of 'State' temporal direct parts. + An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. - - - - - RedStrangeQuark - RedStrangeQuark - +By definition, the tiles are represented by 'State'-s individual. - - - - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - Annealing - Annealing - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - +Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. + Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. - - - - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - CharacterisationProcedureValidation - CharacterisationProcedureValidation - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. +Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. + Existent + true + Existent + A 'Physical' which is a tessellation of 'State' temporal direct parts. - - - - "Property of a phenomenon, body, or substance, where the property has no magnitude." - -"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." - -International vocabulary of metrology (VIM) - An 'ObjectiveProperty' that cannot be quantified. - NominalProperty - NominalProperty - An 'ObjectiveProperty' that cannot be quantified. - CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered + + + + A tessellation of temporal slices. + Sequence + Sequence + A tessellation of temporal slices. + -A color is a nominal property. + + + + A coded that is not atomic with respect to a code of description. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + Description + Description + A coded that is not atomic with respect to a code of description. + A biography. + A sentence about some object, depticting its properties. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + -Sex of a human being. - nominal property + + + + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + Hazard + Hazard + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - - - - - A coarse dispersion of gas in a solid continuum phase. - SolidGasSuspension - SolidGasSuspension - A coarse dispersion of gas in a solid continuum phase. + + + + MultiParticlePath + MultiParticlePath - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - Suspensions show no significant effect on light. - Suspension - Suspension - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + CausalPath + CausalChain + Elementary + CausalPath + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + An electron with at least one causal interaction with another particle. + hasTemporalPart min 2 (Elementary or Quantum) - - - - - - - - - - - - - SolidMixture - SolidMixture + + + + MergingManufacturing + AddingManufacturing + MergingManufacturing - + - T0 L+2 M0 I+1 Θ0 N0 J0 + T+1 L-3 M0 I0 Θ0 N0 J0 - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit + + TimePerVolumeUnit + TimePerVolumeUnit - - - - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - Software - Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + + + + A manufacturing involving the creation of long-term connection of several workpieces. + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + JoinManufacturing + DIN 8580:2020 + Fügen + JoinManufacturing + A manufacturing involving the creation of long-term connection of several workpieces. - - - - - - - - - - - - - - - - - - - - + + + + A whole with temporal parts of its same type. + TemporallyRedundant + TemporallyRedundant + A whole with temporal parts of its same type. + + + + + + + + + + + + + + + A whole possessing some proper parts of its same type. + Redundant + NonMaximal + Redundant + A whole possessing some proper parts of its same type. + An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. + +If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. + + + + + + + - - + + - - Analysis of the sample in order to determine information that are relevant for the characterisation method. - - SampleInspection - SampleInspection - Analysis of the sample in order to determine information that are relevant for the characterisation method. - In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. + + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. + Magnetization + Magnetization + https://qudt.org/vocab/quantitykind/Magnetization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 + 6-24 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - - - - + + + + Spacing + Spacing + + + + + + + The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. + The value of the absolute dielectric permittivity of classical vacuum. + VacuumElectricPermittivity + PermittivityOfVacuum + VacuumElectricPermittivity + http://qudt.org/vocab/constant/PermittivityOfVacuum + 6-14.1 + https://doi.org/10.1351/goldbook.P04508 + + + + + + + + - - + + - - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - Experiment - Experiment - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + + Measure for how the polarization of a material is affected by the application of an external electric field. + Permittivity + Permittivity + http://qudt.org/vocab/quantitykind/Permittivity + 6-14.1 + 6-14.2 + https://doi.org/10.1351/goldbook.P04507 + + + + + + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + MeasuredConstant + MeasuredConstant + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. - - + + + + - - - - - - + + - - A characterisation of an object with an actual interaction. - Observation - Observation - A characterisation of an object with an actual interaction. + + Material property which describes how the size of an object changes with a change in temperature. + CoefficientOfThermalExpansion + ThermalExpansionCoefficient + CoefficientOfThermalExpansion + https://www.wikidata.org/wiki/Q45760 + Material property which describes how the size of an object changes with a change in temperature. - - - - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - Exafs - Exafs - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + + + + + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + Gas + Gas + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - - - - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - - Spectroscopy - Spectroscopy - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + + + + A reference unit provided by a measurement procedure. + Procedure units and measurement units are disjoint. + ProcedureUnit + MeasurementProcedure + ProcedureUnit + A reference unit provided by a measurement procedure. + Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) + Procedure units and measurement units are disjoint. - - - + + + + + + + + + + + + + + + A physical particle with integer spin that follows Bose–Einstein statistics. + Boson + Boson + A physical particle with integer spin that follows Bose–Einstein statistics. + https://en.wikipedia.org/wiki/Boson + + + + - Time constant for recombination or trapping of minority charge carriers in semiconductors - CarrierLifetime - CarrierLifetime - https://qudt.org/vocab/quantitykind/CarrierLifetime - https://www.wikidata.org/wiki/Q5046374 - 12-32.2 - Time constant for recombination or trapping of minority charge carriers in semiconductors + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + DimensionalUnit + DimensionalUnit + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - - + + + - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - TimeConstant - TimeConstant - https://www.wikidata.org/wiki/Q1335249 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 - 3-15 - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + StandardChemicalPotential + StandardChemicalPotential + https://qudt.org/vocab/quantitykind/StandardChemicalPotential + https://www.wikidata.org/wiki/Q89333468 + 9-21 + https://doi.org/10.1351/goldbook.S05908 - - + + + + + - - T-1 L+3 M0 I0 Θ0 N0 J0 + + - - + - VolumePerTimeUnit - VolumePerTimeUnit + Energy per amount of substance. + MolarEnergy + MolarEnergy + https://qudt.org/vocab/quantitykind/MolarEnergy + https://www.wikidata.org/wiki/Q69427512 + Energy per amount of substance. - - - - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - ApplicationProgram - App - Application - ApplicationProgram - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - Word processors, graphic image processing programs, database management systems, numerical simulation software and games. + + + + + + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. + RollingResistance + RollingDrag + RollingFrictionForce + RollingResistance + https://www.wikidata.org/wiki/Q914921 + 4-9.5 + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - - - - - - - - - - - - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - A set of instructions that tell a computer what to do. - Program - Executable - Program - A set of instructions that tell a computer what to do. - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + + + + + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + RollingResistanceFactor + RollingResistanceFactor + https://www.wikidata.org/wiki/Q91738044 + 4-23.3 + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - - - - - Critical thermodynamic temperature of a ferromagnet. - CurieTemperature - CurieTemperature - https://qudt.org/vocab/quantitykind/CurieTemperature - https://www.wikidata.org/wiki/Q191073 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 - 12-35.1 - Critical thermodynamic temperature of a ferromagnet. + + + + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + ShearForming + Schubumformen + ShearForming + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + + SamplePreparation + SamplePreparation + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - - - - Temperature below which quantum effects dominate. - CriticalTemperature - CriticalTemperature - https://www.wikidata.org/wiki/Q1450516 - Temperature below which quantum effects dominate. + + + + + AntiMuon + AntiMuon - - - - A procedure can be considered as an intentional process with a plan. - The process in which an agent works with some entities according to some existing formalised operative rules. - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - Procedure - Elaboration - Work - Procedure - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - The process in which an agent works with some entities according to some existing formalised operative rules. - The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). -The process in which a librarian order books alphabetically on a shelf. -The execution of an algorithm. - A procedure can be considered as an intentional process with a plan. + + + + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + ConfocalMicroscopy + ConfocalMicroscopy + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - - - - - - BeginTile - BeginTile + + + + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy + Microscopy + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - - - - - - - - - - - - + + + + In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + CentreOfMass + CentreOfMass + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + https://en.wikipedia.org/wiki/Center_of_mass + + + + + + - - + + - - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Semiosis - Semiosis - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Me looking a cat and saying loud: "Cat!" -> the semiosis process + + In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. -me -> interpreter -cat -> object (in Peirce semiotics) -the cat perceived by my mind -> interpretant -"Cat!" -> sign, the produced sign +-- IEC + Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. + +-- ISO 80000-3 + Vector r characterizing a point P in a point space with a given origin point O. + PositionVector + Position + PositionVector + http://qudt.org/vocab/quantitykind/PositionVector + Vector r characterizing a point P in a point space with a given origin point O. - + - - - - - - + + + T-3 L+2 M+1 I-1 Θ0 N0 J0 + - - - Semiotics - Semiotics - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - CausalSystem - CausalSystem - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - A electron binded by a nucleus. + + + ElectricPotentialUnit + ElectricPotentialUnit - - - - PolymericMaterial - PolymericMaterial + + + + + + + + + + + + + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + MomentOfIntertia + MomentOfIntertia + https://qudt.org/vocab/quantitykind/MomentOfInertia + https://www.wikidata.org/wiki/Q165618 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 + 4-7 + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + https://doi.org/10.1351/goldbook.M04006 - - - - - - - - - - - - - - - - - - - - - - ClassicallyDefinedMaterial - ClassicallyDefinedMaterial + + + + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + the accumulation is similar to that used in stripping voltammetry + the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + PotentiometricStrippingAnalysis + PSA + PotentiometricStrippingAnalysis + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - - - - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. - - Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - Sample - Specimen - Sample - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. - Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. + + + + Unit for quantities of dimension one that are the fraction of two speeds. + SpeedFractionUnit + SpeedFractionUnit + Unit for quantities of dimension one that are the fraction of two speeds. + Unit for refractive index. - - - - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - CharacterisationProperty - CharacterisationProperty - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + + + + Heat capacity at constant pressure. + IsobaricHeatCapacity + HeatCapacityAtConstantPressure + IsobaricHeatCapacity + https://www.wikidata.org/wiki/Q112187490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 + 5-16.2 + Heat capacity at constant pressure. - - + + + + + + + + + + - - + + - - A well formed tessellation with tiles that all spatial. - SpatialTiling - SpatialTiling - A well formed tessellation with tiles that all spatial. + + + + + + + + + + + + + + Declaration + ConventionalSemiosis + Declaration - + - - - + + + - + + - - + + - - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - SpatioTemporalTessellation - WellFormedTessellation - SpatioTemporalTessellation - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - + + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Semiosis + Semiosis + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Me looking a cat and saying loud: "Cat!" -> the semiosis process - - - - Force of gravity acting on a body. - Weight - Weight - http://qudt.org/vocab/quantitykind/Weight - 4-9.2 - https://doi.org/10.1351/goldbook.W06668 +me -> interpreter +cat -> object (in Peirce semiotics) +the cat perceived by my mind -> interpretant +"Cat!" -> sign, the produced sign - + + - + - Any interaction that, when unopposed, will change the motion of an object - Force - Force - http://qudt.org/vocab/quantitykind/Force - 4-9.1 - Any interaction that, when unopposed, will change the motion of an object - https://doi.org/10.1351/goldbook.F02480 + Electric field strength divided by the current density. + ElectricResistivity + Resistivity + ElectricResistivity + http://qudt.org/vocab/quantitykind/Resistivity + https://www.wikidata.org/wiki/Q108193 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 + 6-44 + https://doi.org/10.1351/goldbook.R05316 - - - - - - + + + + + Rotation + Rotation + https://www.wikidata.org/wiki/Q76435127 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 + 3-16 + + + + - - + + T-1 L-2 M0 I0 Θ0 N+1 J0 - + + - Differential quotient of the cross section for a process and the energy of the scattered particle. - EnergyDistributionOfCrossSection - EnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralCrossSection - https://www.wikidata.org/wiki/Q98267245 - 10-40 - Differential quotient of the cross section for a process and the energy of the scattered particle. + AmountPerAreaTimeUnit + AmountPerAreaTimeUnit - + - - - - - - - + + - - + + - - + + - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - - ProbeSampleInteraction - ProbeSampleInteraction - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + CharacterisationMeasurementInstrument + CharacterisationMeasurementInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + In nanoindentation is the nanoindenter + Measuring instrument - - - - - - - - - - - - - An objective comparative measure of hot or cold. + + + + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + TensileForming + Zugdruckumformen + TensileForming + -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - CelsiusTemperature - CelsiusTemperature - http://qudt.org/vocab/quantitykind/CelciusTemperature - 5-2 - An objective comparative measure of hot or cold. + + + + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. + It has a shape, so we conclude that it is solid + Object that is processed with a machine + Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product + The raw material or partially finished piece that is shaped by performing various operations. + They are not powders or threads + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + fili e polveri non sono compresi + it seems to be an intermediate product, that has to reach the final shape. + it seems to be solid, so it has a proper shape + powder is not workpiece because it has the shape of the recipient containing them + WorkPiece + Werkstück + WorkPiece + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - https://doi.org/10.1351/goldbook.T06261 + + + + + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Emulsion + Emulsion + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Mayonnaise, milk. - - - - - T-1 L0 M-1 I0 Θ0 N+1 J0 - - - - - AmountPerMassTimeUnit - AmountPerMassTimeUnit + + + + + + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + Liquid + Liquid + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. - - - - - - - - - - - - A measurement unit symbol that do not have a metric prefix as a direct spatial part. - NonPrefixedUnit - NonPrefixedUnit - A measurement unit symbol that do not have a metric prefix as a direct spatial part. + + + + The corresponding Celsius temperature is denoted td and is also called dew point. + Thermodynamic temperature at which vapour in air reaches saturation. + DewPointTemperature + DewPointTemperature + https://www.wikidata.org/wiki/Q178828 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 + 5-36 + Thermodynamic temperature at which vapour in air reaches saturation. + https://doi.org/10.1351/goldbook.D01652 - - + + + + + + - - - - - - + + - - A computer language used to describe simulations. - SimulationLanguage - SimulationLanguage - A computer language used to describe simulations. - https://en.wikipedia.org/wiki/Simulation_language + + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + ThermodynamicTemperature + ThermodynamicTemperature + http://qudt.org/vocab/quantitykind/ThermodynamicTemperature + 5-1 + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + https://doi.org/10.1351/goldbook.T06321 - - - - An artificial computer language used to express information or knowledge, often for use in computer system design. - ModellingLanguage - ModellingLanguage - An artificial computer language used to express information or knowledge, often for use in computer system design. - Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. - Hardware description language – used to model integrated circuits. - -Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. - -Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. - https://en.wikipedia.org/wiki/Modeling_language + + + + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + OpticalMicroscopy + OpticalMicroscopy + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - - - - - T-3 L+2 M0 I0 Θ0 N0 J0 - - - - - AbsorbedDoseRateUnit - AbsorbedDoseRateUnit + + + + DropForging + DropForging - - - - MesoscopicSubstance - MesoscopicSubstance + + + + + ElementaryFermion + ElementaryFermion - - - + + + - + - + - - A composite physical object made of fermions (i.e. having mass and occupying space). - Substance - Substance - A composite physical object made of fermions (i.e. having mass and occupying space). - - - - - + - - - - - - - + + - - A boson that is a single elementary particle. - A particle with integer spin that follows Bose–Einstein statistics. - FundamentalBoson - FundamentalBoson - A particle with integer spin that follows Bose–Einstein statistics. - A boson that is a single elementary particle. - https://en.wikipedia.org/wiki/Boson#Elementary_bosons + + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + CausalSystem + CausalSystem + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + A electron binded by a nucleus. - - - - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - MesoscopicModel - MesoscopicModel - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. + + + + + Arctan of the loss factor + LossAngle + LossAngle + https://www.qudt.org/vocab/quantitykind/LossAngle + https://www.wikidata.org/wiki/Q20820438 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 + 6-55 + Arctan of the loss factor - - + + + + + + + + + + + + - + - - - - + + + - - - - - - - - - - - - + - - - - - A solvable set of one Physics Equation and one or more Materials Relations. - MaterialsModel - https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 - MaterialsModel - A solvable set of one Physics Equation and one or more Materials Relations. + + + + + + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. + +On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. + Interpreter + Interpreter + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). + +The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). - - + + + + + + + + + + + + + + + + + + + + + - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - Cognised - Cognised - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - A physical phenomenon that is connected to an equation by a scientist. + Semiotic subclasse are defined using Peirce's semiotic theory. + +"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). + +The triadic elements: +- 'sign': the sign A (e.g. a name) +- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) +- 'object': the object C (e.g. the entity to which the sign A and B refer to) + +This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + SemioticEntity + SemioticEntity + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - + - T+1 L+1 M0 I+1 Θ0 N0 J0 + T+3 L0 M-1 I0 Θ+1 N0 J0 - - LengthTimeCurrentUnit - LengthTimeCurrentUnit + + PerThermalTransmittanceUnit + PerThermalTransmittanceUnit - - + + + + + - - + + - - - - - - - - - - - - - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. -ISO 80000-1 - Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. - -Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. - Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. - -For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. - -However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. - -For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. - -As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). - — quantities of the same kind have the same quantity dimension, -— quantities of different quantity dimensions are always of different kinds, and -— quantities having the same quantity dimension are not necessarily of the same kind. -ISO 80000-1 - PhysicalQuantity - PhysicalQuantity - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + + + quotient of Thomson heat power developed, and the electric current and temperature difference + ThomsonCoefficient + ThomsonCoefficient + https://qudt.org/vocab/quantitykind/ThomsonCoefficient + https://www.wikidata.org/wiki/Q105801233 + 12-23 + quotient of Thomson heat power developed, and the electric current and temperature difference - - - - - - - - - - - - - - - - - - - - - - - - - - - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - A metrological reference for a physical quantity. - MeasurementUnit - MeasurementUnit - A metrological reference for a physical quantity. - kg -m/s -km - measurement unit (VIM3 1.9) - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - "Unit symbols are mathematical entities and not abbreviations." - -"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." - -https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf - Measurement units and procedure units are disjoint. - Quantitative value are expressed as a multiple of the 'MeasurementUnit'. + + + + + + + + + + + + + JouleThomsonCoefficient + JouleThomsonCoefficient + https://www.wikidata.org/wiki/Q93946998 + 5-24 - - - - An holistic spatial part of a whole. - NonTemporalRole - HolisticSpatialPart - NonTemporalRole - An holistic spatial part of a whole. + + + + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + Mixture + Mixture + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - - - - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - - ScanningKelvinProbe - SKB - ScanningKelvinProbe - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + + + + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + URL + URL + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - - - - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy - Microscopy - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + + + + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + ApplicationSpecificScript + ApplicationSpecificScript + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - CausalPath - CausalChain - Elementary - CausalPath - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - An electron with at least one causal interaction with another particle. - hasTemporalPart min 2 (Elementary or Quantum) + + + + A real vector with 3 elements. + Shape3Vector + Shape3Vector + A real vector with 3 elements. + The quantity value of physical quantities if real space is a Shape3Vector. - - + + + - - / + + - Division - Division - - - - - - ArithmeticOperator - ArithmeticOperator + 1-dimensional array who's spatial direct parts are numbers. + Vector + 1DArray + LinearArray + Vector + 1-dimensional array who's spatial direct parts are numbers. - - - - A participant that is the driver of the process. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. - Agent - Agent - A participant that is the driver of the process. - A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. + + + + + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + FermiEnergy + FermiEnergy + https://qudt.org/vocab/quantitykind/FermiEnergy + https://www.wikidata.org/wiki/Q431335 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 + 12-27.1 + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + https://doi.org/10.1351/goldbook.F02340 - - - + + + + + + + + + + + - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - PartialPressure - PartialPressure - https://qudt.org/vocab/quantitykind/PartialPressure - https://www.wikidata.org/wiki/Q27165 - 9-19 - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - https://doi.org/10.1351/goldbook.P04420 + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + MagneticFlux + MagneticFlux + http://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q177831 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 + https://dbpedia.org/page/Magnetic_flux + 6-22.1 + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + https://en.wikipedia.org/wiki/Magnetic_flux + https://doi.org/10.1351/goldbook.M03684 - - - - - A type of sol in the form of one solid dispersed in another continuous solid. - SolidSol - SolidSol - A type of sol in the form of one solid dispersed in another continuous solid. + + + + + + + + + + + + + Number of ions per volume. + IonNumberDensity + IonDensity + IonNumberDensity + https://www.wikidata.org/wiki/Q98831218 + 10-62.2 + Number of ions per volume. - - - - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - Sol - Sol - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + + + + + + + + + + + + + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + CoefficientOfHeatTransfer + ThermalTransmittance + CoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q634340 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 + 5-10.1 + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - - - - - OpticalTesting - OpticalTesting + + + + + T0 L+5 M0 I0 Θ0 N0 J0 + + + + + SectionAreaIntegralUnit + SectionAreaIntegralUnit @@ -7795,645 +7039,622 @@ An agent is a participant of a process that would not occur without it.Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. - - - - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - DifferentialPulseVoltammetry - DPV - DifferentialPulseVoltammetry - https://www.wikidata.org/wiki/Q5275361 - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - https://en.wikipedia.org/wiki/Differential_pulse_voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - - An object which is an holistic temporal part of a process. - Status - State - Status - An object which is an holistic temporal part of a process. - A semi-naked man is a status in the process of a man's dressing. - - - - - - An holistic temporal part of a whole. - TemporalRole - HolisticTemporalPart - TemporalRole - An holistic temporal part of a whole. - - - - - - A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). -However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. -In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. -To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - Object - Continuant - Endurant - Object - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - - - - - - FormingFromChip - FormingFromChip - - - - - - From Powder, from liquid, from gas - da una forma non propria ad una forma propria - FromNotProperShapeToWorkPiece - FromNotProperShapeToWorkPiece - From Powder, from liquid, from gas - Powder: -particles that are usually less than 1 mm in size + + + + Specific heat capacity at saturated vaport pressure. + SpecificHeatCapacityAtSaturatedVaporPressure + SpecificHeatCapacityAtSaturatedVaporPressure + https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation + https://www.wikidata.org/wiki/Q75775005 + 5-16.4 + Specific heat capacity at saturated vaport pressure. - + - + + - + - Time derivative of exposure. - ExposureRate - ExposureRate - https://qudt.org/vocab/quantitykind/ExposureRate - https://www.wikidata.org/wiki/Q99720212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 - 10-89 - Time derivative of exposure. + Heat capacity divided by mass. + SpecificHeatCapacity + SpecificHeatCapacity + https://qudt.org/vocab/quantitykind/SpecificHeatCapacity + https://www.wikidata.org/wiki/Q487756 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 + https://dbpedia.org/page/Specific_heat_capacity + 5-16.1 + Heat capacity divided by mass. + https://en.wikipedia.org/wiki/Specific_heat_capacity + https://doi.org/10.1351/goldbook.S05800 - - - - - T-3 L0 M+1 I0 Θ-1 N0 J0 - - - + + + - ThermalTransmittanceUnit - ThermalTransmittanceUnit + Partition function of a molecule. + MolecularPartitionFunction + MolecularPartitionFunction + https://www.wikidata.org/wiki/Q96192064 + 9-35.4 + Partition function of a molecule. - + - T-4 L0 M+1 I0 Θ0 N0 J0 + T-2 L+1 M+1 I0 Θ0 N0 J0 - MassPerQuarticTimeUnit - MassPerQuarticTimeUnit + ForceUnit + ForceUnit - + + + + Real part of the impedance. + ResistanceToAlternativeCurrent + ResistanceToAlternativeCurrent + https://www.wikidata.org/wiki/Q1048490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 + 6-51.2 + Real part of the impedance. + + + - + - + - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - Exposure - Exposure - https://qudt.org/vocab/quantitykind/Exposure - https://www.wikidata.org/wiki/Q336938 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 - 10-88 - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - - - - - - StandardAbsoluteActivityOfSolvent - StandardAbsoluteActivityOfSolvent - https://www.wikidata.org/wiki/Q89556185 - 9-27.3 - - - - - - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - PhotoluminescenceMicroscopy - PhotoluminescenceMicroscopy - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - - - - - - FromWorkPIecetoWorkPiece - FromWorkPIecetoWorkPiece - - - - - - A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. - WorkpieceForming - ArchetypeForming - PrimitiveForming - WorkpieceForming - - - - - - - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - CyclotronAngularFrequency - CyclotronAngularFrequency - https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency - https://www.wikidata.org/wiki/Q97708211 - 10-16 - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + Inverse of 'ElectricalConductance'. + Measure of the difficulty to pass an electric current through a material. + ElectricResistance + Resistance + ElectricResistance + http://qudt.org/vocab/quantitykind/Resistance + https://www.wikidata.org/wiki/Q25358 + 6-46 + Measure of the difficulty to pass an electric current through a material. + https://doi.org/10.1351/goldbook.E01936 - + - - - - + + + + + - - - - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - StrictFundamental - StrictFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - - - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - TemporallyFundamental - TemporallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - - - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - SpatiallyFundamental - SpatiallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - + + + A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. - - - - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. - DigitalData - BinaryData - DigitalData - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. - +A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). - - - - - RedDownQuark - RedDownQuark - +Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. + According to Peirce, 'Sign' includes three subcategories: +- symbols: that stand for an object through convention +- indeces: that stand for an object due to causal continguity +- icons: that stand for an object due to similitudes e.g. in shape or composition + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + Sign + Sign + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). - - - - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - GasAdsorptionPorosimetry - GasAdsorptionPorosimetry - GasAdsorptionPorosimetry - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - +Each of them are 'sign'-s. - - - - - Porosimetry - Porosimetry - +A character can be the a-tomistic 'sign' for the class of texts. - - - - A quantity that is the result of a well-defined measurement procedure. - The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. +The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. --- VIM - MeasuredProperty - MeasuredProperty - A quantity that is the result of a well-defined measurement procedure. +For plain text we can propose the ASCII symbols, for math the fundamental math symbols. - - - - - A quantity that is obtained from a well-defined procedure. - Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - ObjectiveProperty - PhysicalProperty - QuantitativeProperty - ObjectiveProperty - A quantity that is obtained from a well-defined procedure. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + + + + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + This must be a mathematical function v(t), x(t). +A dataset as solution is a conventional sign. + PhysicsEquationSolution + PhysicsEquationSolution + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. - - - - - + + + + + + + + + + + + + + + + + + + + - - + + - - Time derivative of kerma. - KermaRate - KermaRate - https://qudt.org/vocab/quantitykind/KermaRate - https://www.wikidata.org/wiki/Q99713105 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 - 10-86.2 - Time derivative of kerma. + + Analysis of the sample in order to determine information that are relevant for the characterisation method. + + SampleInspection + SampleInspection + Analysis of the sample in order to determine information that are relevant for the characterisation method. + In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. - - - - - RedUpQuark - RedUpQuark + + + + Parameter used for the sample inspection process + + SampleInspectionParameter + SampleInspectionParameter + Parameter used for the sample inspection process - - - - FormingJoin - FormingJoin + + + + + + + + + + + + + + Any physical or virtual component of limited availability within a computer system. + SystemResource + Resource + SystemResource + Any physical or virtual component of limited availability within a computer system. - - - + + - + - A flow of electric charge. - ElectricCurrent - ElectricCurrent - http://qudt.org/vocab/quantitykind/ElectricCurrent - 6-1 - A flow of electric charge. - https://doi.org/10.1351/goldbook.E01927 - + For an atom or nucleus, this energy is quantized and can be written as: - - - - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - AnodicStrippingVoltammetry - AnodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q939328 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - https://doi.org/10.1515/pac-2018-0109 - + W = g μ M B - - - - Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. - Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. - Often the product of the electrochemical stripping is identical to the analyte before the accumulation. - Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. - Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - - StrippingVoltammetry - StrippingVoltammetry - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis - https://doi.org/10.1515/pac-2018-0109 - +where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. - - - - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - - ThermochemicalTesting - TMA - ThermochemicalTesting - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. +-- ISO 80000 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + MagneticDipoleMoment + MagneticDipoleMoment + http://qudt.org/vocab/quantitykind/MagneticDipoleMoment + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 + 10-9.1 + 6-30 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + http://goldbook.iupac.org/terms/view/M03688 - + + - + - + - Number of ions per volume. - IonNumberDensity - IonDensity - IonNumberDensity - https://www.wikidata.org/wiki/Q98831218 - 10-62.2 - Number of ions per volume. + Energy required to move a unit charge through an electric field from a reference point. + The electric potential is not unique, since any constant scalar +field quantity can be added to it without changing its gradient. + ElectricPotential + ElectroStaticPotential + ElectricPotential + http://qudt.org/vocab/quantitykind/ElectricPotential + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 + https://dbpedia.org/page/Electric_potential + 6-11.1 + Energy required to move a unit charge through an electric field from a reference point. + https://en.wikipedia.org/wiki/Electric_potential + https://doi.org/10.1351/goldbook.E01935 - - - - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - CharacterisationProtocol - CharacterisationProtocol - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + + + + + + + + + + + + + + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + Uncoded + Uncoded + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + A random generated id for a product. - - - - - + + + + + + + + + + - - + + + + + + + + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. + Conventional + Conventional + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + + + + + + + T+1 L0 M-1 I0 Θ0 N0 J0 + + + + + MechanicalMobilityUnit + MechanicalMobilityUnit + + + + + - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - VolumeFlowRate - VolumetricFlowRate - VolumeFlowRate - https://qudt.org/vocab/quantitykind/VolumeFlowRate - https://www.wikidata.org/wiki/Q1134348 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 - 4-31 - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - https://en.wikipedia.org/wiki/Volumetric_flow_rate + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + RatioOfSpecificHeatCapacities + RatioOfSpecificHeatCapacities + https://qudt.org/vocab/quantitykind/HeatCapacityRatio + https://www.wikidata.org/wiki/Q503869 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 + 5-17.1 + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + + + + + + + + + + + + + + + + + The class of entities that have no spatial structure. + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + CausalParticle + CausalParticle + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + The class of entities that have no spatial structure. - - - - - - - - - - - - - - + + - + - + - - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - Molecule - ChemicalSubstance - Molecule - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - H₂0, C₆H₁₂O₆, CH₄ - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. -Removing an atom from the state will result in another type of atom_based state. -e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). + + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + A self-connected composition of more than one quantum entities. + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + CausalStructure + CausalObject + CausalStructure + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + A self-connected composition of more than one quantum entities. + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - - - - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - https://goldbook.iupac.org/terms/view/M03986 - MolecularEntity - ChemicalEntity - MolecularEntity - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. - Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). - + + + + + + + + + + + + + + + + + + + + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - - - - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - ThermalCutting - Thermisches Abtragen - ThermalCutting - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The class of individuals standing for direct causally self-connected world entities. + The disjoint union of Elementary, Quantum and CausalSystem classes. + Item + Item + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. + +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The disjoint union of Elementary, Quantum and CausalSystem classes. + The class of individuals standing for direct causally self-connected world entities. - - - - - RedTopQuark - RedTopQuark + + + + + + + + + + + + + + + + + + + + + + A computation that provides a data output following the elaboration of some input data, using a data processing application. + DataProcessing + DataProcessing + A computation that provides a data output following the elaboration of some input data, using a data processing application. - + - T0 L0 M+1 I0 Θ0 N-1 J0 + T-1 L+2 M0 I0 Θ0 N0 J0 - MassPerAmountUnit - MassPerAmountUnit - - - - - - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - NormalPulseVoltammetry - NPV - NormalPulseVoltammetry - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - https://doi.org/10.1515/pac-2018-0109 + AreaPerTimeUnit + AreaPerTimeUnit - - - + + - + - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - DiffusionArea - DiffusionArea - https://qudt.org/vocab/quantitykind/DiffusionArea - https://www.wikidata.org/wiki/Q98966292 - 10-72.2 - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - - - - - - Arctan of the loss factor - LossAngle - LossAngle - https://www.qudt.org/vocab/quantitykind/LossAngle - https://www.wikidata.org/wiki/Q20820438 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 - 6-55 - Arctan of the loss factor - - - - - - MaterialRelationComputation - MaterialRelationComputation + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + MagneticTension + MagneticTension + https://qudt.org/vocab/quantitykind/MagneticTension + https://www.wikidata.org/wiki/Q77993836 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 + 6-37.2 + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - - - - - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. - PhysicsMathematicalComputation - PhysicsMathematicalComputation - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + + + + + T0 L+2 M0 I0 Θ0 N0 J0 + + + + + AreaUnit + AreaUnit - - - - - Resistance quantum. - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. - VonKlitzingConstant - VonKlitzingConstant - http://qudt.org/vocab/constant/VonKlitzingConstant - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + + + + + T+2 L-5 M-1 I0 Θ0 N0 J0 + + + + + EnergyDensityOfStatesUnit + EnergyDensityOfStatesUnit - - - - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - SIExactConstant - SIExactConstant - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + + + + + Service + IntangibleProduct + Service + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 - + + + + + + + + + + + + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + IntentionalProcess + Project + IntentionalProcess + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + + + + - - BlueDownAntiQuark - BlueDownAntiQuark + BlueBottomAntiQuark + BlueBottomAntiQuark - - - + + + + + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + LowerCriticalMagneticFluxDensity + LowerCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127355 + 12-36.2 + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + + + + - + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + @@ -8441,62 +7662,24 @@ Note that the name of a compound may refer to the respective molecular entity or - DownAntiQuark - DownAntiQuark - - - - - - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - AtomProbeTomography - 3D Atom Probe - APT - AtomProbeTomography - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - - - - - - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - Tomography - Tomography - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - - - - - - - T-1 L+3 M0 I-1 Θ0 N0 J0 - - - - - ReciprocalElectricChargeDensityUnit - ReciprocalElectricChargeDensityUnit - - - - - - - AntiMuon - AntiMuon + The class of individuals that stand for gluons elementary particles. + Gluon + Gluon + The class of individuals that stand for gluons elementary particles. + https://en.wikipedia.org/wiki/Gluon - - + + - + - + - + @@ -8505,1347 +7688,1508 @@ Note that the name of a compound may refer to the respective molecular entity or - AntiElectronType - AntiElectronType + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + GaugeBoson + GaugeBoson + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + Gauge bosons can carry any of the four fundamental interactions of nature. + https://en.wikipedia.org/wiki/Gauge_boson - - + + + + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + StandardUnit + ReferenceMaterial + StandardUnit + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + + - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - Tempering - QuenchingAndTempering - Vergüten - Tempering - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + FlexuralForming + Biegeumformen + FlexuralForming - - - - A programming language that is executed through runtime interpretation. - ScriptingLanguage - ScriptingLanguage - A programming language that is executed through runtime interpretation. + + + + StandardEquilibriumConstant + ThermodynamicEquilibriumConstant + StandardEquilibriumConstant + https://www.wikidata.org/wiki/Q95993378 + 9-32 + https://doi.org/10.1351/goldbook.S05915 + + + + + + + The physical dimension can change based on the stoichiometric numbers of the substances involved. + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + EquilibriumConstant + EquilibriumConstantConcentrationBasis + EquilibriumConstant + https://qudt.org/vocab/quantitykind/EquilibriumConstant + https://www.wikidata.org/wiki/Q857809 + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + https://en.wikipedia.org/wiki/Equilibrium_constant + https://doi.org/10.1351/goldbook.E02177 + + + + + + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + DataAnalysis + DataAnalysis + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + + + + + + + T-3 L-1 M+1 I0 Θ+1 N0 J0 + + + + + TemperaturePressurePerTimeUnit + TemperaturePressurePerTimeUnit + + + + + + + T-2 L0 M0 I0 Θ0 N0 J0 + + + + + AngularFrequencyUnit + AngularFrequencyUnit - - - - A language object that follows syntactic rules of a programming language. - A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. - ProgrammingLanguage - Code - SoftwareCode - ProgrammingLanguage - A language object that follows syntactic rules of a programming language. - A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. - Entities are not necessarily digital data, but can be code fragments printed on paper. + + + + Describes what is needed to repeat the experiment + AccessConditions + AccessConditions + Describes what is needed to repeat the experiment + In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? - - + + + + + + + + + + - + - + - - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Deducer - Deducer - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Someone who deduces an emotional status of a persona according to facial expression. - Someone who deduces the occurring of a physical phenomenon through other phenomena. + + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + Role + HolisticPart + Part + Role + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - + - - + + + + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + Holistic + Wholistic + Holistic + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. + A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. + + + + - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - A perspective in which entities are represented according to the variation of their properties. - Data - Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 - Contrast - Dedomena - Pattern - Data - A perspective in which entities are represented according to the variation of their properties. - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. + Data that are non-quantitatively interpreted (e.g., qualitative data, types). + NonNumericalData + NonNumericalData + Data that are non-quantitatively interpreted (e.g., qualitative data, types). - - - - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. +Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). +A data object may be used as the physical basis for a sign, under Semiotics perspective. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + EncodedData + EncodedVariation + EncodedData + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + A Radio Morse Code transmission can be addressed by combination of perspectives. -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. +Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). +Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. +Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. +Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). + A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + https://no.wikipedia.org/wiki/Data + -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - DimensionalUnit - DimensionalUnit - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + + + + KineticFrictionFactor + DynamicFrictionFactor + KineticFrictionFactor + https://www.wikidata.org/wiki/Q73695445 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 + 4-23.2 + -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + + + + + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + CoefficientOfFriction + FrictionCoefficient + FrictionFactor + CoefficientOfFriction + https://www.wikidata.org/wiki/Q1932524 + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + https://doi.org/10.1351/goldbook.F02530 + -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + + + + Characterisation procedure may refer to the full characterisation process or just a part of the full process. + The process of performing characterisation by following some existing formalised operative rules. + CharacterisationProcedure + CharacterisationProcedure + The process of performing characterisation by following some existing formalised operative rules. + Sample preparation +Sample inspection +Calibration +Microscopy +Viscometry +Data sampling + Characterisation procedure may refer to the full characterisation process or just a part of the full process. - - - - - - - - - - - - - - Measure of a material's ability to conduct an electric current. + + + + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. -Conductivity is equeal to the resiprocal of resistivity. - ElectricConductivity - Conductivity - ElectricConductivity - http://qudt.org/vocab/quantitykind/ElectricConductivity - https://www.wikidata.org/wiki/Q4593291 - 6-43 - https://doi.org/10.1351/goldbook.C01245 +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + PhaseOfMatter + Phase + PhaseOfMatter + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + + + + + + A command must be interpretable by the computer system. + An instruction to a computer system to perform a given task. + Command + Command + From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. + A command must be interpretable by the computer system. + Commands are typically performed from a shell or a shell script, but not limited to them. - - + + + + + + - - T0 L0 M0 I0 Θ-1 N0 J0 + + - - + - PerTemperatureUnit - PerTemperatureUnit + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. + Coercivity + Coercivity + https://qudt.org/vocab/quantitykind/Coercivity + https://www.wikidata.org/wiki/Q432635 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 + 6-31 + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - - - - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - Peening - ShotPeening - Verfestigungsstrahlen - Peening - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + + + A measurement unit for a derived quantity. +-- VIM + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + DerivedUnit + DerivedUnit + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + derived unit + A measurement unit for a derived quantity. +-- VIM - + - - - T0 L0 M+1 I0 Θ0 N0 J0 - + + + + + + - - - MassUnit - MassUnit + + + A measurement unit symbol that do not have a metric prefix as a direct spatial part. + NonPrefixedUnit + NonPrefixedUnit + A measurement unit symbol that do not have a metric prefix as a direct spatial part. - - - - - A neutrino belonging to the third generation of leptons. - TauNeutrino - TauNeutrino - A neutrino belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_neutrino + + + + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + AnalyticalElectronMicroscopy + AnalyticalElectronMicroscopy + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - - - - - - - - - - - - - One-dimensional subspace of space-time, which is locally orthogonal to space. - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - Time can be seen as the duration of an event or, more operationally, as "what clocks read". - Time - Time - http://qudt.org/vocab/quantitykind/Time - One-dimensional subspace of space-time, which is locally orthogonal to space. - 3-7 - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - https://doi.org/10.1351/goldbook.T06375 + + + + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + AdditiveManufacturing + GenerativeManufacturing + AdditiveManufacturing + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - + - + - + - Quotient of the total linear stopping power S and the mass density ρ of the material. - TotalMassStoppingPower - MassStoppingPower - TotalMassStoppingPower - https://qudt.org/vocab/quantitykind/TotalMassStoppingPower - https://www.wikidata.org/wiki/Q98642795 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 - 10-55 - Quotient of the total linear stopping power S and the mass density ρ of the material. + The derivative of the electric charge of a system with respect to the length. + LinearDensityOfElectricCharge + LinearDensityOfElectricCharge + https://www.wikidata.org/wiki/Q77267838 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 + 6-5 + The derivative of the electric charge of a system with respect to the length. - - - - - A coarse dispersion of solid in a solid continuum phase. - SolidSolidSuspension - SolidSolidSuspension - A coarse dispersion of solid in a solid continuum phase. - Granite, sand, dried concrete. + + + + Broadcast + Broadcast - - - - - + + - - + + - - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - ElectromagneticEnergyDensity - VolumicElectromagneticEnergy - ElectromagneticEnergyDensity - https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity - https://www.wikidata.org/wiki/Q77989624 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 - 6-33 - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + + A well formed tessellation with at least a junction tile. + MixedTiling + MixedTiling + A well formed tessellation with at least a junction tile. - - - + + + - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - VolumeFraction - VolumeFraction - http://qudt.org/vocab/quantitykind/VolumeFraction - 9-14 - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - https://doi.org/10.1351/goldbook.V06643 + Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + GrueneisenParamter + GrueneisenParamter + https://www.wikidata.org/wiki/Q444656 + 12-14 + Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. - - - - - T-2 L+3 M+1 I0 Θ0 N-1 J0 - - - - - EnergyLengthPerAmountUnit - EnergyLengthPerAmountUnit + + + + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + Welding + Schweißen + Welding - - - - - - - - - - + + - Force per unit oriented surface area . - Measure of the internal forces that neighboring particles of a continuous material exert on each other. - Stress - Stress - http://qudt.org/vocab/quantitykind/Stress - 4-15 + Complex representation of an oscillating voltage. + VoltagePhasor + VoltagePhasor + https://qudt.org/vocab/quantitykind/VoltagePhasor + https://www.wikidata.org/wiki/Q78514605 + 6-50 + Complex representation of an oscillating voltage. - - + + + + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + QuantumData + QuantumData + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + + + + - + - + - - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - The union of all classes categorising elementary particles according to the Standard Model. - StandardModelParticle - ElementaryParticle - StandardModelParticle - The union of all classes categorising elementary particles according to the Standard Model. - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. - This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). -In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). - - - - - - - Quantity characterizing the deviation of a solvent from ideal behavior. - OsmoticCoefficientOfSolvent - OsmoticFactorOfSolvent - OsmoticCoefficientOfSolvent - https://qudt.org/vocab/quantitykind/OsmoticCoefficient - https://www.wikidata.org/wiki/Q5776102 - 9-27.2 - Quantity characterizing the deviation of a solvent from ideal behavior. - https://doi.org/10.1351/goldbook.O04342 - - - - - - - - - - - - - - - Mean number of particles per volume. - ParticleNumberDensity - ParticleNumberDensity - https://qudt.org/vocab/quantitykind/ParticleNumberDensity - https://www.wikidata.org/wiki/Q98601569 - 10-62.1 - Mean number of particles per volume. - https://doi.org/10.1351/goldbook.N04262 - - - - - - The class of individuals that stand for photons elementary particles. - Photon - Photon - The class of individuals that stand for photons elementary particles. - https://en.wikipedia.org/wiki/Photon + + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + PhysicalObject + PhysicalObject + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - - + + - + - - - - - - - + + - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - GaugeBoson - GaugeBoson - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - Gauge bosons can carry any of the four fundamental interactions of nature. - https://en.wikipedia.org/wiki/Gauge_boson + PhysicallyInteractingConvex + PhysicallyInteractingConvex - - - - - T-4 L+3 M+1 I-2 Θ0 N0 J0 - - - + + + - InversePermittivityUnit - InversePermittivityUnit + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + EffectiveMass + EffectiveMass + https://qudt.org/vocab/quantitykind/EffectiveMass + https://www.wikidata.org/wiki/Q1064434 + 12-30 + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - - + + + + - - + - - Ngative quotient of Gibbs energy and temperature. - PlanckFunction - PlanckFunction - https://qudt.org/vocab/quantitykind/PlanckFunction - https://www.wikidata.org/wiki/Q76364998 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 - 5-23 - Ngative quotient of Gibbs energy and temperature. - - - - - - - - - + + + + + + - The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. - Thermodynamic temperature difference divided by heat flow rate. - ThermalResistance - ThermalResistance - https://qudt.org/vocab/quantitykind/ThermalResistance - https://www.wikidata.org/wiki/Q899628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 - 5-12 - Thermodynamic temperature difference divided by heat flow rate. - - - - - - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - HydrodynamicVoltammetry - HydrodynamicVoltammetry - https://www.wikidata.org/wiki/Q17028237 - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - Data whose variations are decoded according to a discrete schema. - DiscreteData - DiscreteData - Data whose variations are decoded according to a discrete schema. - A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - - - - - - The derivative of the electric charge of a system with respect to the area. - SurfaceDensityOfElectricCharge - AreicElectricCharge - SurfaceChargeDensity - SurfaceDensityOfElectricCharge - https://www.wikidata.org/wiki/Q12799324 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 - 6-4 - The derivative of the electric charge of a system with respect to the area. - https://doi.org/10.1351/goldbook.S06159 + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + Mass + Mass + http://qudt.org/vocab/quantitykind/Mass + 4-1 + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + https://doi.org/10.1351/goldbook.M03709 - - - - - - - - - - - + + - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - ElectricFluxDensity - ElectricDisplacement - ElectricFluxDensity - https://qudt.org/vocab/quantitykind/ElectricDisplacementField - https://www.wikidata.org/wiki/Q371907 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 - 6-12 - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - - - - - - A whole with temporal parts of its same type. - TemporallyRedundant - TemporallyRedundant - A whole with temporal parts of its same type. + StandardAbsoluteActivityOfSolvent + StandardAbsoluteActivityOfSolvent + https://www.wikidata.org/wiki/Q89556185 + 9-27.3 - - - - - T+3 L-2 M-1 I0 Θ+1 N0 J0 - - - + + + - ThermalResistanceUnit - ThermalResistanceUnit + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + AbsoluteActivity + AbsoluteActivity + https://qudt.org/vocab/quantitykind/AbsoluteActivity + https://www.wikidata.org/wiki/Q56638155 + 9-18 + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + https://goldbook.iupac.org/terms/view/A00019 - + - T0 L+1 M+1 I0 Θ0 N0 J0 + T+2 L-1 M-1 I+1 Θ0 N0 J0 - LengthMassUnit - LengthMassUnit + MagneticReluctivityUnit + MagneticReluctivityUnit - - + + - duration of one cycle of a periodic event - PeriodDuration - Period - PeriodDuration - https://qudt.org/vocab/quantitykind/Period - https://www.wikidata.org/wiki/Q2642727 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 - 3-14 - duration of one cycle of a periodic event - https://doi.org/10.1351/goldbook.P04493 + Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. + The difference in electric potential between two points. + Voltage + ElectricPotentialDifference + ElectricTension + Voltage + http://qudt.org/vocab/quantitykind/Voltage + 6-11.3 + The difference in electric potential between two points. + https://doi.org/10.1351/goldbook.V06635 + https://doi.org/10.1351/goldbook.A00424 - - + + - Physical quantity for describing the temporal distance between events. - Duration - Duration - https://www.wikidata.org/wiki/Q2199864 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 - 3-9 - Physical quantity for describing the temporal distance between events. + Ratio of area on a sphere to its radius squared. + SolidAngle + SolidAngle + http://qudt.org/vocab/quantitykind/SolidAngle + 3-6 + Ratio of area on a sphere to its radius squared. + https://doi.org/10.1351/goldbook.S05732 - - - - + + + + + + + + + + + + + + + + + + + + + StrangeQuark + StrangeQuark + https://en.wikipedia.org/wiki/Strange_quark - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + GreenQuark + GreenQuark + + + + - IntermediateSample - IntermediateSample + ChargeDistribution + ChargeDistribution - - - - A 'conventional' that stand for a 'physical'. - The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. + + + + + + + 2 + + + + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + Collection + Collection + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. + -It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. + + + + + + + + + + + + Energy per unit change in amount of substance. + ChemicalPotential + ChemicalPotential + http://qudt.org/vocab/quantitykind/ChemicalPotential + 9-17 + https://doi.org/10.1351/goldbook.C01032 + -In Peirce semiotics: legisign-symbol-argument - Theory - Theory - A 'conventional' that stand for a 'physical'. + + + + + BlueDownQuark + BlueDownQuark - - - - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - Drilling - Bohren - Drilling + + + + + + + + + + + + + + + + + + + + + DownQuark + DownQuark + https://en.wikipedia.org/wiki/Down_quark - - - - - For particle X, mass of that particle at rest in an inertial frame. - RestMass - InvariantMass - ProperMass - RestMass - https://qudt.org/vocab/quantitykind/RestMass - https://www.wikidata.org/wiki/Q96941619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 - https://dbpedia.org/page/Mass_in_special_relativity - 10-2 - For particle X, mass of that particle at rest in an inertial frame. - https://en.wikipedia.org/wiki/Invariant_mass + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BlueQuark + BlueQuark - - - + + - + - - - - - - - - - - - + - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - Mass - Mass - http://qudt.org/vocab/quantitykind/Mass - 4-1 - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - https://doi.org/10.1351/goldbook.M03709 - - - - - - Data that occurs naturally without an encoding agent producing it. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - NonEncodedData - EnvironmentalData - NonEncodedData - Data that occurs naturally without an encoding agent producing it. - A cloud in the sky. The radiative spectrum of a star. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - - - - - - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. - Welding - Schweißen - Welding - - - - - - ISO80000Categorised - ISO80000Categorised + Charge number is a quantity of dimension one defined in ChargeNumber. + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + IonicStrength + IonicStrength + https://qudt.org/vocab/quantitykind/IonicStrength + https://www.wikidata.org/wiki/Q898396 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 + 9-42 + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + https://doi.org/10.1351/goldbook.I03180 - - - - - + + + - ThermodynamicCriticalMagneticFluxDensity - ThermodynamicCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106103200 - 12-36.1 + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + AverageEnergyLossPerElementaryChargeProduced + AverageEnergyLossPerElementaryChargeProduced + https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced + https://www.wikidata.org/wiki/Q98793042 + 10-60 + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - - - - - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - UpperCriticalMagneticFluxDensity - UpperCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127634 - 12-36.3 - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + + + + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + Organisation + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + Organisation + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - - - - - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - LowerCriticalMagneticFluxDensity - LowerCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127355 - 12-36.2 - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + + + + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + IonMobilitySpectrometry + IMS + IonMobilitySpectrometry + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - - - - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). - Nailing - Nageln - Nailing + + + + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + + Spectrometry + Spectrometry + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - + - + - + - Coefficient in the law of recombination, - RecombinationCoefficient - RecombinationCoefficient - https://qudt.org/vocab/quantitykind/RecombinationCoefficient - https://www.wikidata.org/wiki/Q98842099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 - 10-63 - Coefficient in the law of recombination, + inverse of the mass density ρ, thus v = 1/ρ. + SpecificVolume + MassicVolume + SpecificVolume + https://qudt.org/vocab/quantitykind/SpecificVolume + https://www.wikidata.org/wiki/Q683556 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 + 4-3 + inverse of the mass density ρ, thus v = 1/ρ. + https://doi.org/10.1351/goldbook.S05807 - - - - - - - - - - - - - - - - - - - - - - - - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Determination - Characterisation - Determination - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. + + + + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + Thickness + Thickness + https://www.wikidata.org/wiki/Q3589038 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 + 3-1.4 + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - - - - - - - - - - - - - - - - - - - - - - + + + + + + - - + + - - Declaration - ConventionalSemiosis - Declaration + + Extend of a spatial dimension. + Length is a non-negative additive quantity attributed to a one-dimensional object in space. + Length + Length + http://qudt.org/vocab/quantitykind/Length + 3-1.1 + Extend of a spatial dimension. + https://doi.org/10.1351/goldbook.L03498 - + - - - - - - - + + + T-1 L+1 M0 I0 Θ0 N0 J0 + - - - A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. + + + SpeedUnit + SpeedUnit + -A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). + + + + UndefinedEdgeCutting + Spanen mit geometrisch unbestimmten Schneiden + UndefinedEdgeCutting + -Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. - According to Peirce, 'Sign' includes three subcategories: -- symbols: that stand for an object through convention -- indeces: that stand for an object due to causal continguity -- icons: that stand for an object due to similitudes e.g. in shape or composition - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - Sign - Sign - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). + + + + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + SeparateManufacturing + DIN 8580:2020 + CuttingManufacturing + Trennen + SeparateManufacturing + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + -Each of them are 'sign'-s. + + + + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + RadialDistance + RadialDistance + https://qudt.org/vocab/quantitykind/RadialDistance + https://www.wikidata.org/wiki/Q1578234 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 + 3-1.9 + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + -A character can be the a-tomistic 'sign' for the class of texts. + + + + Distance is the norm of Displacement. + Shortest path length between two points in a metric space. + Distance + Distance + https://qudt.org/vocab/quantitykind/Distance + https://www.wikidata.org/wiki/Q126017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 + https://dbpedia.org/page/Distance + 3-1.8 + Shortest path length between two points in a metric space. + https://en.wikipedia.org/wiki/Distance + -The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. + + + + + Average distance that electrons travel between two successive interactions. + MeanFreePathOfElectrons + MeanFreePathOfElectrons + https://qudt.org/vocab/quantitykind/ElectronMeanFreePath + https://www.wikidata.org/wiki/Q105672307 + 12-15.2 + Average distance that electrons travel between two successive interactions. + -For plain text we can propose the ASCII symbols, for math the fundamental math symbols. + + + + From Powder, from liquid, from gas + da una forma non propria ad una forma propria + FromNotProperShapeToWorkPiece + FromNotProperShapeToWorkPiece + From Powder, from liquid, from gas + Powder: +particles that are usually less than 1 mm in size - - - + + + - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - BetaDisintegrationEnergy - BetaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98148340 - 10-34 - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + Critical thermodynamic temperature of a ferromagnet. + CurieTemperature + CurieTemperature + https://qudt.org/vocab/quantitykind/CurieTemperature + https://www.wikidata.org/wiki/Q191073 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 + 12-35.1 + Critical thermodynamic temperature of a ferromagnet. - - - + + - Reciprocal of the wavelength. - Wavenumber - Repetency - Wavenumber - https://qudt.org/vocab/quantitykind/Wavenumber - https://www.wikidata.org/wiki/Q192510 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 - https://dbpedia.org/page/Wavenumber - 3-20 - Reciprocal of the wavelength. - https://en.wikipedia.org/wiki/Wavenumber - https://doi.org/10.1351/goldbook.W06664 + Temperature below which quantum effects dominate. + CriticalTemperature + CriticalTemperature + https://www.wikidata.org/wiki/Q1450516 + Temperature below which quantum effects dominate. - + + - - + - - SecondPolarMomentOfArea - SecondPolarMomentOfArea - https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea - https://www.wikidata.org/wiki/Q1049636 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 - 4-21.2 + Time derivative of exposure. + ExposureRate + ExposureRate + https://qudt.org/vocab/quantitykind/ExposureRate + https://www.wikidata.org/wiki/Q99720212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 + 10-89 + Time derivative of exposure. - - - - - - - - - - - + + - SecondAxialMomentOfArea - SecondAxialMomentOfArea - https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea - https://www.wikidata.org/wiki/Q91405496 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 - 4-21.1 + ModulusOfImpedance + ModulusOfImpedance + https://qudt.org/vocab/quantitykind/ModulusOfImpedance + https://www.wikidata.org/wiki/Q25457909 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 + 6-51.4 - - + + - Person - Person + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + GammaSpectrometry + GammaSpectrometry + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + + + + + + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + LandeFactor + GFactorOfAtom + LandeFactor + https://qudt.org/vocab/quantitykind/LandeGFactor + https://www.wikidata.org/wiki/Q1191684 + 10-14.1 + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + + + + + + + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + GFactor + GFactor + https://www.wikidata.org/wiki/Q1951266 + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + + + + + + + A process which is an holistic temporal part of a process. + Stage + Stage + A process which is an holistic temporal part of a process. + Moving a leg is a stage of the process of running. + + + + + + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). + +For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. + Process + Occurrent + Perdurant + Process + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - - - - A simulation in which more than one model are solved together with a coupled method. - TightlyCoupledModelsSimulation - TightlyCoupledModelsSimulation - A simulation in which more than one model are solved together with a coupled method. - Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. + + + + + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + ResonanceEscapeProbability + ResonanceEscapeProbability + https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability + https://www.wikidata.org/wiki/Q4108072 + 10-68 + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - - - - - - - - - - - - - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - Fundamental - Lifetime - Maximal - Fundamental - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - -On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. + + + + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. + Probability + Probability + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + https://doi.org/10.1351/goldbook.P04855 + -Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. + + + + Calendering + Calendering - - - - The laboratory where the whole characterisation process or some of its stages take place. - Laboratory - Laboratory - The laboratory where the whole characterisation process or some of its stages take place. + + + + FormingFromPlastic + FormingFromPlastic - - - - - T+3 L-2 M-1 I+2 Θ0 N0 J0 - - - - - ElectricConductanceUnit - ElectricConductanceUnit + + + + + For a particle, electric charge q divided by elementary charge e. + The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. + The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. + ChargeNumber + IonizationNumber + ChargeNumber + https://qudt.org/vocab/quantitykind/ChargeNumber + https://www.wikidata.org/wiki/Q1800063 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 + https://dbpedia.org/page/Charge_number + 10-5.2 + For a particle, electric charge q divided by elementary charge e. + https://en.wikipedia.org/wiki/Charge_number + https://doi.org/10.1351/goldbook.C00993 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. -A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. -A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. + + + + A pure number, typically the number of something. + According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. -For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. -An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) -Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). -This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. -This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. - Coded - Coded - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. - The name "red" that stands for the color of an object. +This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + +There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. + PureNumberQuantity + PureNumberQuantity + A pure number, typically the number of something. + 1, +i, +π, +the number of protons in the nucleus of an atom - - - - - - Dimensionless multiplicative unit prefix. - MetricPrefix - https://en.wikipedia.org/wiki/Metric_prefix - MetricPrefix - Dimensionless multiplicative unit prefix. + + + + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + ClassicalData + ClassicalData + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - - - - - - - - - - - + + + + An product that is ready for commercialisation. + CommercialProduct + Product + CommercialProduct + An product that is ready for commercialisation. + + + + + + - - - - - - + + - - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - MetrologicalSymbol - MetrologicalSymbol - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + + For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + SolubilityProduct + SolubilityProductConstant + SolubilityProduct + https://www.wikidata.org/wiki/Q11229788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + https://doi.org/10.1351/goldbook.S05742 - - - - - - - - - - - - - - - - - - - - - - - - MathematicalSymbol - MathematicalSymbol + + + + + Inverse of the time constant of an exponentially varying quantity. + DampingCoefficient + DampingCoefficient + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 + 3-24 + Inverse of the time constant of an exponentially varying quantity. - - - - A variable that stand for a numerical constant, even if it is unknown. - Constant - Constant - A variable that stand for a numerical constant, even if it is unknown. + + + + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + PhysicalLaw + PhysicalLaw + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - - - - - T0 L-3 M0 I0 Θ0 N0 J0 - - - - - PerVolumeUnit - PerVolumeUnit + + + + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + NaturalLaw + NaturalLaw + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - - + + + + - - = + + - - The equals symbol. - Equals - Equals - The equals symbol. + + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + DissociationConstant + DissociationConstant + https://www.wikidata.org/wiki/Q898254 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - + + - + - Perceived power of light. - LuminousFlux - LuminousFlux - http://qudt.org/vocab/quantitykind/LuminousFlux - 7-13 - Perceived power of light. - https://doi.org/10.1351/goldbook.L03646 + Ngative quotient of Gibbs energy and temperature. + PlanckFunction + PlanckFunction + https://qudt.org/vocab/quantitykind/PlanckFunction + https://www.wikidata.org/wiki/Q76364998 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 + 5-23 + Ngative quotient of Gibbs energy and temperature. - - - + + + + + A coarse dispersion of solids in a liquid continuum phase. + LiquidSolidSuspension + LiquidSolidSuspension + A coarse dispersion of solids in a liquid continuum phase. + Mud + + + + + - + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + - - AntiNeutrinoType - AntiNeutrinoType - - - - - - - - - - - - - - - Ratio of shear stress to the shear strain. - ModulusOfRigidity - ShearModulus - ModulusOfRigidity - https://qudt.org/vocab/quantitykind/ShearModulus - https://www.wikidata.org/wiki/Q461466 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 - 4-19.2 - Ratio of shear stress to the shear strain. - https://doi.org/10.1351/goldbook.S05635 - - - - - - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - Metrological - Metrological - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + Suspensions show no significant effect on light. + Suspension + Suspension + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - - + + + + - A language used to describe what a computer system should do. - SpecificationLanguage - SpecificationLanguage - A language used to describe what a computer system should do. - ACSL, VDM, LOTUS, MML, ... - https://en.wikipedia.org/wiki/Specification_language + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + Path + Path + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + /etc/fstab (UNIX-like path) +C:\\Users\\John\\Desktop (DOS-like path) - - + + - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - GalvanostaticIntermittentTitrationTechnique - GITT - GalvanostaticIntermittentTitrationTechnique - https://www.wikidata.org/wiki/Q120906986 - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + Chromatography + Chromatography + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + https://en.wikipedia.org/wiki/Chromatography - - + + + + ArithmeticEquation + ArithmeticEquation + 1 + 1 = 2 + + + + + - - - - - - + + - - A causal object that is direct part of a tessellation. - Tile - Tile - A causal object that is direct part of a tessellation. + + An equation with variables can always be represented as: + +f(v0, v1, ..., vn) = g(v0, v1, ..., vn) + +where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + Equation + Equation + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + 2+3 = 5 +x^2 +3x = 5x +dv/dt = a +sin(x) = y + + + + + + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + Milling + Fräsen + Milling - - - - - - + + + + + A coarse dispersion of liquid in a gas continuum phase. + GasLiquidSuspension + GasLiquidSuspension + A coarse dispersion of liquid in a gas continuum phase. + Rain, spray. + + + + - - + + T0 L0 M-1 I0 Θ0 N+1 J0 - + + - Ratio of magnetic dipole moment to total angular momentum. - GyromagneticRatio - GyromagneticCoefficient - MagnetogyricRatio - GyromagneticRatio - https://qudt.org/vocab/quantitykind/GyromagneticRatio - https://www.wikidata.org/wiki/Q634552 - 10-12.1 - Ratio of magnetic dipole moment to total angular momentum. - https://doi.org/10.1351/goldbook.M03693 + AmountPerMassUnit + AmountPerMassUnit - - - - Broadcast - Broadcast + + + + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + NormalPulseVoltammetry + NPV + NormalPulseVoltammetry + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - A well formed tessellation with at least a junction tile. - MixedTiling - MixedTiling - A well formed tessellation with at least a junction tile. + + + + Heat treatment process that generally produces martensite in the matrix. + Hardening + Hardening + Heat treatment process that generally produces martensite in the matrix. - + + + + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + HeatTreatment + wärmebehandeln + HeatTreatment + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + + @@ -9853,530 +9197,642 @@ This can be used in material characterization, to define exactly the type of mea - + - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - ElectricDipoleMoment - ElectricDipoleMoment - http://qudt.org/vocab/quantitykind/ElectricDipoleMoment - https://www.wikidata.org/wiki/Q735135 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 - 6-6 - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - https://doi.org/10.1351/goldbook.E01929 + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + ElectricInductance + Inductance + ElectricInductance + http://qudt.org/vocab/quantitykind/Inductance + https://www.wikidata.org/wiki/Q177897 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 + 6-41.1 + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + https://doi.org/10.1351/goldbook.M04076 - - + + + + + - - - - - - + + - - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - Manufacturer - Manufacturer - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - - - - - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - TotalCrossSection - TotalCrossSection - https://qudt.org/vocab/quantitykind/TotalCrossSection - https://www.wikidata.org/wiki/Q98206553 - 10-38.2 - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + Activity per unit volume of the sample. + ActivityDensity + ActivityConcentration + VolumetricActivity + VolumicActivity + ActivityDensity + https://qudt.org/vocab/quantitykind/ActivityConcentration + https://www.wikidata.org/wiki/Q423263 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 + 10-29 + Activity per unit volume of the sample. - - - - A Material occurring in nature, without the need of human intervention. - NaturalMaterial - NaturalMaterial - A Material occurring in nature, without the need of human intervention. + + + + + + + + + + + + + + + + + + + + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. + AntiMatter + AntiMatter + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. - - - + + + + + + + + + + + + + + + + + + - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - Material - Material - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + A physical object made of fermionic quantum parts. + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + Matter + PhysicalSubstance + Matter + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + A physical object made of fermionic quantum parts. + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. - - - - - T-3 L+2 M+1 I-1 Θ0 N0 J0 - - - - - ElectricPotentialUnit - ElectricPotentialUnit + + + + A computer language by which a human can specify an executable problem solution to a computer. + ConstructionLanguage + ConstructionLanguage + A computer language by which a human can specify an executable problem solution to a computer. + https://en.wikipedia.org/wiki/Software_construction#Construction_languages - - - - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - DifferentialLinearPulseVoltammetry - DifferentialLinearPulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - + + + + A formal language used to communicate with a computer. + The categorisation of computer languages is based on - - - - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - GammaSpectrometry - GammaSpectrometry - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. +Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. +https://www.computer.org/education/bodies-of-knowledge/software-engineering + ComputerLanguage + ComputerLanguage + A formal language used to communicate with a computer. + The categorisation of computer languages is based on + +Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. +https://www.computer.org/education/bodies-of-knowledge/software-engineering + https://en.wikipedia.org/wiki/Computer_language - - - - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - - Spectrometry - Spectrometry - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + + + + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + PhysicallyNonInteracting + PhysicallyNonInteracting + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - - + + + - - T0 L+2 M0 I0 Θ0 N0 J0 + + - - - - AreaUnit - AreaUnit - - - - - - - - - - - - - - + - - + + - - - - - - + + - - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. + + Deals with entities that have a defined shape. + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + Manufacturing + DIN 8580:2020 + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + Manufacturing + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + Deals with entities that have a defined shape. + https://de.wikipedia.org/wiki/Fertigungsverfahren + -On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. - Interpreter - Interpreter - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). + + + + + Atomic number (proton number) plus neutron number equals mass number. + Number of neutrons in an atomic nucleus. + NeutronNumber + NeutronNumber + https://www.wikidata.org/wiki/Q970319 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 + 10-1.2 + Number of neutrons in an atomic nucleus. + Atomic number (proton number) plus neutron number equals mass number. + https://en.wikipedia.org/wiki/Neutron_number + https://doi.org/10.1351/goldbook.N04119 + -The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + The class of individuals that stand for quarks elementary particles. + Quark + Quark + The class of individuals that stand for quarks elementary particles. + https://en.wikipedia.org/wiki/Quark - + - - - - - - - + + + T-3 L+2 M+1 I-1 Θ-1 N0 J0 + - - - Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. - -The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. - -In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). - The object, in Peirce semiotics, as participant to a semiotic process. - SemioticObject - Object - SemioticObject - The object, in Peirce semiotics, as participant to a semiotic process. + + + ElectricPotentialPerTemperatureUnit + ElectricPotentialPerTemperatureUnit - - - + + - Relative change of length with respect the original length. - RelativeLinearStrain - RelativeLinearStrain - https://qudt.org/vocab/quantitykind/LinearStrain - https://www.wikidata.org/wiki/Q1990546 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 - 4-17.2 - Relative change of length with respect the original length. - https://doi.org/10.1351/goldbook.L03560 + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + GFactorOfNucleusOrNuclearParticle + NuclearGFactor + GFactorOfNucleusOrNuclearParticle + https://qudt.org/vocab/quantitykind/GFactorOfNucleus + https://www.wikidata.org/wiki/Q97591250 + 10-14.2 + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - - - - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - CyclicVoltammetry - CV - CyclicVoltammetry - https://www.wikidata.org/wiki/Q1147647 - https://dbpedia.org/page/Cyclic_voltammetry - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - https://en.wikipedia.org/wiki/Cyclic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + RedBottomQuark + RedBottomQuark - - - - - A coarse dispersion of liquid in a liquid continuum phase. - LiquidLiquidSuspension - LiquidLiquidSuspension - A coarse dispersion of liquid in a liquid continuum phase. + + + + + T-2 L-1 M+1 I0 Θ0 N0 J0 + + + + + PressureUnit + PressureUnit - - - - - - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. - Liquid - Liquid - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + + + + + Energy of the electron in a hydrogen atom in its ground state + HartreeEnergy + HartreeEnergy + https://qudt.org/vocab/unit/E_h.html + https://www.wikidata.org/wiki/Q476572 + https://dbpedia.org/page/Hartree + 10-8 + Energy of the electron in a hydrogen atom in its ground state + https://en.wikipedia.org/wiki/Hartree + https://doi.org/10.1351/goldbook.H02748 - - - - JavaScript - JavaScript + + + + + + + + + + + + + ThermalDiffusivity + ThermalDiffusionCoefficient + ThermalDiffusivity + https://qudt.org/vocab/quantitykind/ThermalDiffusivity + https://www.wikidata.org/wiki/Q3381809 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 + 5-14 - - - - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. - WorkpieceManufacturing - DIN 8580:2020 - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. - ISO 8887-1:2017 -manufacturing: production of components - DiscreteManufacturing - Werkstücke - WorkpieceManufacturing - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + + + + + A process which is an holistic temporal part of an object. + Behaviour + Behaviour + A process which is an holistic temporal part of an object. + Accelerating is a behaviour of a car. - + + + + - - + + - - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - CharacterisationEnvironment - CharacterisationEnvironment - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - - - - - - HelmholtzEnergy - HelmholtzFreeEnergy - HelmholtzEnergy - https://www.wikidata.org/wiki/Q865821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 - 5-20.4 - https://doi.org/10.1351/goldbook.H02772 + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + ElectricCharge + Charge + ElectricCharge + http://qudt.org/vocab/quantitykind/ElectricCharge + https://www.wikidata.org/wiki/Q1111 + 6-2 + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + https://doi.org/10.1351/goldbook.E01923 - + - + - Number describing a particular state of a quantum system. - QuantumNumber - QuantumNumber - https://qudt.org/vocab/quantitykind/QuantumNumber - https://www.wikidata.org/wiki/Q232431 - 10-13.1 - Number describing a particular state of a quantum system. + For particle X, mass of that particle at rest in an inertial frame. + RestMass + InvariantMass + ProperMass + RestMass + https://qudt.org/vocab/quantitykind/RestMass + https://www.wikidata.org/wiki/Q96941619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 + https://dbpedia.org/page/Mass_in_special_relativity + 10-2 + For particle X, mass of that particle at rest in an inertial frame. + https://en.wikipedia.org/wiki/Invariant_mass - - + + - A pure number, typically the number of something. - According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. - -This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + The imaginary part of the impedance. + The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. + ElectricReactance + Reactance + ElectricReactance + http://qudt.org/vocab/quantitykind/Reactance + https://www.wikidata.org/wiki/Q193972 + 6-51.3 + The imaginary part of the impedance. + https://en.wikipedia.org/wiki/Electrical_reactance + https://doi.org/10.1351/goldbook.R05162 + -There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. - PureNumberQuantity - PureNumberQuantity - A pure number, typically the number of something. - 1, -i, -π, -the number of protons in the nucleus of an atom + + + + + + + + + + + + + + + + + + + + + UpQuark + UpQuark + https://en.wikipedia.org/wiki/Up_quark - + - T0 L-1 M0 I+1 Θ0 N0 J0 + T+1 L0 M0 I+1 Θ0 N-1 J0 - - MagneticFieldStrengthUnit - MagneticFieldStrengthUnit + + ElectricChargePerAmountUnit + ElectricChargePerAmountUnit - - - - A coded that is not atomic with respect to a code of description. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. - Description - Description - A coded that is not atomic with respect to a code of description. - A biography. - A sentence about some object, depticting its properties. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + + + + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + Modeller + Modeller + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - - - - - - - - - - - - - - - A charged vector boson that mediate the weak interaction. - WBoson - ChargedWeakBoson - IntermediateVectorBoson - WBoson - A charged vector boson that mediate the weak interaction. - https://en.wikipedia.org/wiki/W_and_Z_bosons + + + + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + Estimator + Estimator + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + + + + + + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + An icon that mimics the spatial or temporal shape of the object. + The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). + ResemblanceIcon + ResemblanceIcon + An icon that mimics the spatial or temporal shape of the object. + A geographical map that imitates the shape of the landscape and its properties at a specific historical time. + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + + + + + + + T+1 L-1 M0 I+1 Θ0 N0 J0 + + + + + ElectricChargePerLengthUnit + ElectricChargePerLengthUnit + + + + + + A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. + Parameter + Parameter + Viscosity in the Navier-Stokes equation - - - - - - - - - - - - - - - WeakBoson - WeakBoson + + + + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedSimulation + PhysicsBasedSimulation + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - - - - - - - - - - - + + + + DieCasting + DieCasting + + + + + + Casting + Casting + + + + - - - - - - + + - - Semiotic subclasse are defined using Peirce's semiotic theory. - -"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). - -The triadic elements: -- 'sign': the sign A (e.g. a name) -- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) -- 'object': the object C (e.g. the entity to which the sign A and B refer to) + + Gradient + Gradient + -This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - SemioticEntity - SemioticEntity - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + + + + DifferentialOperator + DifferentialOperator - - - - - - + + - - + + - - Energy required to move a unit charge through an electric field from a reference point. - The electric potential is not unique, since any constant scalar -field quantity can be added to it without changing its gradient. - ElectricPotential - ElectroStaticPotential - ElectricPotential - http://qudt.org/vocab/quantitykind/ElectricPotential - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 - https://dbpedia.org/page/Electric_potential - 6-11.1 - Energy required to move a unit charge through an electric field from a reference point. - https://en.wikipedia.org/wiki/Electric_potential - https://doi.org/10.1351/goldbook.E01935 - - - - - - - + + - - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - Result of a measurement. - -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + + + + + + + + + + + + + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + Molecule + ChemicalSubstance + Molecule + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + H₂0, C₆H₁₂O₆, CH₄ + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. +Removing an atom from the state will result in another type of atom_based state. +e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). + --- VIM - MeasurementResult - MeasurementResult - Result of a measurement. + + + + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + https://goldbook.iupac.org/terms/view/M03986 + MolecularEntity + ChemicalEntity + MolecularEntity + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. + Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). + -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + + + + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + DirectCurrentInternalResistance + DirectCurrentInternalResistance + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + --- VIM - measurement result - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. + + + + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Chronopotentiometry + Chronopotentiometry + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + https://doi.org/10.1515/pac-2018-0109 - - - - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + + + + Encoded data made of more than one datum. + DataSet + DataSet + Encoded data made of more than one datum. + -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - Objective - Objective - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + + + + An object which supports the specimen in the correct position for the characterisation process. + Holder + Holder + An object which supports the specimen in the correct position for the characterisation process. - - - - A well-formed finite combination of mathematical symbols according to some specific rules. - Expression - Expression - A well-formed finite combination of mathematical symbols according to some specific rules. + + + + + Efficiency of an ideal heat engine operating according to the Carnot process. + MaximumEfficiency + CarnotEfficiency + MaximumEfficiency + https://www.wikidata.org/wiki/Q93949862 + 5-25.2 + Efficiency of an ideal heat engine operating according to the Carnot process. - - - - - - - - - - - - - - - - - - - MathematicalConstruct - MathematicalConstruct + + + + GluonType6 + GluonType6 @@ -10393,2340 +9849,2664 @@ This class refers to what is commonly known as physical property, i.e. a measura An icon that focusing WHAT the object does. - - - - + + + + + + + + + + + - - + + + + + + + + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. +For example, when a Boeing 747 is used as a sign for another Boeing 747. + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] + Icon + Model + Simulacrum + Icon + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + A picture that reproduces the aspect of a person. + An equation that reproduces the logical connection of the properties of a physical entity. + + + + + - For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - SolubilityProduct - SolubilityProductConstant - SolubilityProduct - https://www.wikidata.org/wiki/Q11229788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - https://doi.org/10.1351/goldbook.S05742 + Conventional radius of sphere in which the nuclear matter is included, + NuclearRadius + NuclearRadius + https://qudt.org/vocab/quantitykind/NuclearRadius + https://www.wikidata.org/wiki/Q3535676 + 10-19.1 + Conventional radius of sphere in which the nuclear matter is included, - - + + + + + + + + + + + + + + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + Task + Job + Task + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + + + + + + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + QuantumDecay + QuantumDecay + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + + + + + + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + CausalExpansion + CausalExpansion + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + + + + - The physical dimension can change based on the stoichiometric numbers of the substances involved. - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - EquilibriumConstant - EquilibriumConstantConcentrationBasis - EquilibriumConstant - https://qudt.org/vocab/quantitykind/EquilibriumConstant - https://www.wikidata.org/wiki/Q857809 - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - https://en.wikipedia.org/wiki/Equilibrium_constant - https://doi.org/10.1351/goldbook.E02177 + StoichiometricNumberOfSubstance + StoichiometricNumberOfSubstance + https://qudt.org/vocab/quantitykind/StoichiometricNumber + https://www.wikidata.org/wiki/Q95443720 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 + 9-29 + https://doi.org/10.1351/goldbook.S06025 - - + + + + + T-2 L-2 M+1 I0 Θ0 N0 J0 + + + - Minimum length of a straight line segment between a point and a reference line or reference surface. - Height - Height - https://qudt.org/vocab/quantitykind/Height - https://www.wikidata.org/wiki/Q208826 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 - https://dbpedia.org/page/Height - 3-1.3 - Minimum length of a straight line segment between a point and a reference line or reference surface. - https://en.wikipedia.org/wiki/Height + MassPerSquareLengthSquareTimeUnit + MassPerSquareLengthSquareTimeUnit - - - - - In nuclear physics, energy imparted per mass. - SpecificEnergyImparted - SpecificEnergyImparted - https://qudt.org/vocab/quantitykind/SpecificEnergyImparted - https://www.wikidata.org/wiki/Q99566195 - 10-81.2 - In nuclear physics, energy imparted per mass. + + + + + T+1 L+1 M0 I+1 Θ0 N0 J0 + + + + + LengthTimeCurrentUnit + LengthTimeCurrentUnit - + - + - - + - Energy per unit mass - SpecificEnergy - SpecificEnergy - https://qudt.org/vocab/quantitykind/SpecificEnergy - https://www.wikidata.org/wiki/Q3023293 - https://dbpedia.org/page/Specific_energy - 5-21.1 - Energy per unit mass - https://en.wikipedia.org/wiki/Specific_energy + In nuclear physics, product of the number density of atoms of a given type and the cross section. + VolumicCrossSection + MacroscopicCrossSection + VolumicCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicCrossSection + https://www.wikidata.org/wiki/Q98280520 + 10-42.1 + In nuclear physics, product of the number density of atoms of a given type and the cross section. + https://doi.org/10.1351/goldbook.M03674 - - - - ConcreteOrPlasterPouring - ConcreteOrPlasterPouring + + + + + RedDownAntiQuark + RedDownAntiQuark + + + + + + + Quantity characterizing the deviation of a solvent from ideal behavior. + OsmoticCoefficientOfSolvent + OsmoticFactorOfSolvent + OsmoticCoefficientOfSolvent + https://qudt.org/vocab/quantitykind/OsmoticCoefficient + https://www.wikidata.org/wiki/Q5776102 + 9-27.2 + Quantity characterizing the deviation of a solvent from ideal behavior. + https://doi.org/10.1351/goldbook.O04342 + + + + + + + + + + + + + + + + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + Property + Property + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + Hardness is a subclass of properties. +Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. + The name "red" which is atomic in the code made of the list of colors. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + + + + + + + + + + + + + + + + + + + + + + + + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. + Determiner + Determiner + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - + - FormingFromPulp - FormingFromPulp + Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. + Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. +Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. + Sintering + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + https://www.twi-global.com/technical-knowledge/faqs/what-is-sintering + Sintern + Sintering + Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. + Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. +Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - - - - A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - MaterialRelation - MaterialRelation - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - The Lennard-Jones potential. -A force field. -An Hamiltonian. + + + + + RedTopQuark + RedTopQuark - - - + + + + + + + + + + + + + + + + + + + - Positron - Positron + TopQuark + TopQuark + https://en.wikipedia.org/wiki/Top_quark - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - FirstGenerationFermion - FirstGenerationFermion + RedQuark + RedQuark - - - - - T-3 L+2 M+1 I-1 Θ-1 N0 J0 - - - - - ElectricPotentialPerTemperatureUnit - ElectricPotentialPerTemperatureUnit + + + + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + BaseQuantity + BaseQuantity + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + base quantity - - + + - Imaginary part of the complex power. - ReactivePower - ReactivePower - https://qudt.org/vocab/quantitykind/ReactivePower - https://www.wikidata.org/wiki/Q2144613 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 - 6-60 - Imaginary part of the complex power. + Quantities declared under the ISO 80000. + InternationalSystemOfQuantity + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 + InternationalSystemOfQuantity + Quantities declared under the ISO 80000. + https://en.wikipedia.org/wiki/International_System_of_Quantities - - - + + - Atomic number (proton number) plus neutron number equals mass number. - Number of neutrons in an atomic nucleus. - NeutronNumber - NeutronNumber - https://www.wikidata.org/wiki/Q970319 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 - 10-1.2 - Number of neutrons in an atomic nucleus. - Atomic number (proton number) plus neutron number equals mass number. - https://en.wikipedia.org/wiki/Neutron_number - https://doi.org/10.1351/goldbook.N04119 + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + GyromagneticRatioOfTheElectron + GyromagneticCoefficientOfTheElectron + MagnetogyricRatioOfTheElectron + GyromagneticRatioOfTheElectron + https://www.wikidata.org/wiki/Q97543076 + 10-12.2 + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - - + + + + + - - + + - - A workflow whose steps (iterative steps) are the repetition of the same workflow type. - IterativeWorkflow - IterativeWorkflow - A workflow whose steps (iterative steps) are the repetition of the same workflow type. - - - - - - - A workflow whose tasks are tiles of a sequence. - SerialWorkflow - SerialWorkflow - A workflow whose tasks are tiles of a sequence. + + Ratio of magnetic dipole moment to total angular momentum. + GyromagneticRatio + GyromagneticCoefficient + MagnetogyricRatio + GyromagneticRatio + https://qudt.org/vocab/quantitykind/GyromagneticRatio + https://www.wikidata.org/wiki/Q634552 + 10-12.1 + Ratio of magnetic dipole moment to total angular momentum. + https://doi.org/10.1351/goldbook.M03693 - - - - - - - 1 - - - - - - - 1 - - - - A measurement unit that is made of a metric prefix and a unit symbol. - PrefixedUnit - PrefixedUnit - A measurement unit that is made of a metric prefix and a unit symbol. + + + + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + NumericalVariable + NumericalVariable + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - - + + + + + + - - T-1 L-1 M0 I0 Θ0 N0 J0 + + - - + - PerLengthTimeUnit - PerLengthTimeUnit + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + Mobility + Mobility + https://qudt.org/vocab/quantitykind/Mobility + https://www.wikidata.org/wiki/Q900648 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 + 10-61 + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + https://doi.org/10.1351/goldbook.M03955 - - - - - Measure of the tendency of a solution to take in pure solvent by osmosis. - OsmoticPressure - OsmoticPressure - https://qudt.org/vocab/quantitykind/OsmoticPressure - https://www.wikidata.org/wiki/Q193135 - 9-28 - Measure of the tendency of a solution to take in pure solvent by osmosis. - https://doi.org/10.1351/goldbook.O04344 + + + + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + + ScanningAugerElectronMicroscopy + AES + ScanningAugerElectronMicroscopy + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - - - - ModulusOfImpedance - ModulusOfImpedance - https://qudt.org/vocab/quantitykind/ModulusOfImpedance - https://www.wikidata.org/wiki/Q25457909 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 - 6-51.4 + + + + SizeDefinedMaterial + SizeDefinedMaterial - + + + + + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + Material + Material + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. + + + + + - - + - + - - - - ParticleConcentration - ParticleConcentration - https://www.wikidata.org/wiki/Q39078574 - 9-9.1 + Electric current divided by the cross-sectional area it is passing through. + ElectricCurrentDensity + AreicElectricCurrent + CurrentDensity + ElectricCurrentDensity + http://qudt.org/vocab/quantitykind/ElectricCurrentDensity + https://www.wikidata.org/wiki/Q234072 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 + 6-8 + https://en.wikipedia.org/wiki/Current_density + https://doi.org/10.1351/goldbook.E01928 - - - - - A process which is an holistic temporal part of an object. - Behaviour - Behaviour - A process which is an holistic temporal part of an object. - Accelerating is a behaviour of a car. + + + + A self-consistent encoded data entity. + Datum + Datum + A self-consistent encoded data entity. + A character, a bit, a song in a CD. - - + + - DippingForms - DippingForms + ConcreteOrPlasterPouring + ConcreteOrPlasterPouring - + - FormingFromLiquid - FormingFromLiquid + FormingFromPulp + FormingFromPulp - + + + + + T-2 L+2 M+1 I-2 Θ0 N0 J0 + + + + + InductanceUnit + InductanceUnit + + + + + + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + + ScanningElectronMicroscopy + SEM + ScanningElectronMicroscopy + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + + + + + + + Relative change of length with respect the original length. + RelativeLinearStrain + RelativeLinearStrain + https://qudt.org/vocab/quantitykind/LinearStrain + https://www.wikidata.org/wiki/Q1990546 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 + 4-17.2 + Relative change of length with respect the original length. + https://doi.org/10.1351/goldbook.L03560 + + + - - - - + + + + + - - + + + + A step is part of a specific granularity level for the workflow description, as composition of tasks. + A task that is a well formed tile of a workflow, according to a reductionistic description. + Step + Step + A task that is a well formed tile of a workflow, according to a reductionistic description. + A step is part of a specific granularity level for the workflow description, as composition of tasks. + + + + - - + + + + + + - - A characterisation procedure that has at least two characterisation tasks as proper parts. - CharacterisationWorkflow - CharacterisationWorkflow - A characterisation procedure that has at least two characterisation tasks as proper parts. + + A causal object that is direct part of a tessellation. + Tile + Tile + A causal object that is direct part of a tessellation. - + + - + + + + + + + + - In nuclear physics, fraction of interacting particles per distance traversed in a given material. - LinearAttenuationCoefficient - LinearAttenuationCoefficient - https://www.wikidata.org/wiki/Q98583077 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 - 10-49 - In nuclear physics, fraction of interacting particles per distance traversed in a given material. + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + LinearEnergyTransfer + LinearEnergyTransfer + https://qudt.org/vocab/quantitykind/LinearEnergyTransfer + https://www.wikidata.org/wiki/Q1699996 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 + 10-85 + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + https://doi.org/10.1351/goldbook.L03550 + + + + + + + for metals, the resistivity extrapolated to zero thermodynamic temperature + ResidualResistivity + ResidualResistivity + https://qudt.org/vocab/quantitykind/ResidualResistivity + https://www.wikidata.org/wiki/Q25098876 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 + 12-17 + for metals, the resistivity extrapolated to zero thermodynamic temperature - + + + - - + - Fundamental translation vectors for the reciprocal lattice. - FundamentalReciprocalLatticeVector - FundamentalReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475399 - 12-2.2 - Fundamental translation vectors for the reciprocal lattice. + Coefficient in the law of recombination, + RecombinationCoefficient + RecombinationCoefficient + https://qudt.org/vocab/quantitykind/RecombinationCoefficient + https://www.wikidata.org/wiki/Q98842099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 + 10-63 + Coefficient in the law of recombination, - - + + - Folding - Folding - - - - - - An analytical technique used for the elemental analysis or chemical characterization of a sample. - EnergyDispersiveXraySpectroscopy - EDS - EDX - EnergyDispersiveXraySpectroscopy - https://www.wikidata.org/wiki/Q386334 - An analytical technique used for the elemental analysis or chemical characterization of a sample. - https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + Sawing + Sägen + Sawing + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - - - + + + - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - PhaseDifference - DisplacementAngle - PhaseDifference - https://www.wikidata.org/wiki/Q97222919 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 - 6-48 - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + Position vector of a particle. + ParticlePositionVector + ParticlePositionVector + https://qudt.org/vocab/quantitykind/ParticlePositionVector + https://www.wikidata.org/wiki/Q105533324 + 12-7.1 + Position vector of a particle. - - + + + + + - - T+3 L-1 M-1 I0 Θ+1 N0 J0 + + - - - - ThermalResistivityUnit - ThermalResistivityUnit - - - - - + - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - RadiantEnergy - RadiantEnergy - https://www.wikidata.org/wiki/Q1259526 - 10-45 - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - + The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - - - - A standalone simulation, where a single physics equation is solved. - StandaloneModelSimulation - StandaloneModelSimulation - A standalone simulation, where a single physics equation is solved. - +It defines the base unit mole in the SI system. + AvogadroConstant + AvogadroConstant + http://qudt.org/vocab/constant/AvogadroConstant + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - - - - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedSimulation - PhysicsBasedSimulation - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. +It defines the base unit mole in the SI system. + https://doi.org/10.1351/goldbook.A00543 - - - - + + - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. - ThermalDiffusionFactor - ThermalDiffusionFactor - https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor - https://www.wikidata.org/wiki/Q96249629 - 9-40.2 - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + SIExactConstant + SIExactConstant + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - + - - - ThermalDiffusionRatio - ThermalDiffusionRatio - https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio - https://www.wikidata.org/wiki/Q96249433 - 9-40.1 - - - - - - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - URL - URL - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - - - - - + - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - MolarGasConstant - MolarGasConstant - http://qudt.org/vocab/constant/MolarGasConstant - 9-37.1 - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - https://doi.org/10.1351/goldbook.G02579 + Faction of electrical current carried by given ionic species. + IonTransportNumber + CurrentFraction + TransferrenceNumber + IonTransportNumber + https://qudt.org/vocab/quantitykind/IonTransportNumber + https://www.wikidata.org/wiki/Q331854 + 9-46 + Faction of electrical current carried by given ionic species. + https://doi.org/10.1351/goldbook.I03181 + https://doi.org/10.1351/goldbook.T06489 - - - - - - + + - - + + T-6 L+4 M+2 I-2 Θ0 N0 J0 - + + - SpecificGasConstant - SpecificGasConstant - https://www.wikidata.org/wiki/Q94372268 - 5-26 + LorenzNumberUnit + LorenzNumberUnit - - - - - - - - - - - - - quotient of number of acceptor levels and volume. - AcceptorDensity - AcceptorDensity - https://qudt.org/vocab/quantitykind/AcceptorDensity - https://www.wikidata.org/wiki/Q105979968 - 12-29.5 - quotient of number of acceptor levels and volume. + + + + Process for removing unwanted residual or waste material from a given product or material + Cleaning + Cleaning - - - - AmorphousMaterial - NonCrystallineMaterial - AmorphousMaterial + + + + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Osmometry + Osmometry + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - - - - - Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. - GrueneisenParamter - GrueneisenParamter - https://www.wikidata.org/wiki/Q444656 - 12-14 - Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedAntiQuark + RedAntiQuark - - - - - Gibbs energy per amount of substance. - MolarGibbsEnergy - MolarGibbsEnergy - https://www.wikidata.org/wiki/Q88863324 - 9-6.4 - Gibbs energy per amount of substance. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + AntiQuark + AntiQuark - - - - - - - - - - - - Energy per amount of substance. - MolarEnergy - MolarEnergy - https://qudt.org/vocab/quantitykind/MolarEnergy - https://www.wikidata.org/wiki/Q69427512 - Energy per amount of substance. + + + + BlowMolding + BlowMolding - - - - Heat capacity at constant pressure. - IsobaricHeatCapacity - HeatCapacityAtConstantPressure - IsobaricHeatCapacity - https://www.wikidata.org/wiki/Q112187490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 - 5-16.2 - Heat capacity at constant pressure. + + + + An interpreter who assigns a name to an object without any motivations related to the object characters. + Namer + Namer + An interpreter who assigns a name to an object without any motivations related to the object characters. - - - - - - - - - - - - - Examples of condition might be constant volume or constant pressure for a gas. - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - HeatCapacity - HeatCapacity - https://qudt.org/vocab/quantitykind/HeatCapacity - https://www.wikidata.org/wiki/Q179388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 - https://dbpedia.org/page/Heat_capacity - 5-15 - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - https://en.wikipedia.org/wiki/Heat_capacity - https://doi.org/10.1351/goldbook.H02753 + + + + Removal of material by means of rigid or flexible discs or belts containing abrasives. + Grinding + Schleifen + Grinding - - + + - + - + - - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - PhysicalObject - PhysicalObject - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + FundamentalFermion + FundamentalFermion + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - - - - - - - - - - - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - CharacterisationSystem - CharacterisationSystem - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Measuring system + + + + + + + + + + + + + + + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + The union of all classes categorising elementary particles according to the Standard Model. + StandardModelParticle + ElementaryParticle + StandardModelParticle + The union of all classes categorising elementary particles according to the Standard Model. + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. + This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). +In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). - + - - + - - + + - - A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - HolisticSystem - HolisticSystem - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - - - - - - + + - - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - MeasuringSystem - MeasuringSystem - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - measuring system - - - - - - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - DataAnalysis - DataAnalysis - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - - - - - - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - OpenCircuitHold - OCVHold - OpenCircuitHold - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - - - - - - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - Potentiometry - Potentiometry - https://www.wikidata.org/wiki/Q900632 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - + + - - Physical quantity of dimension energy × time. - Action - Action - https://qudt.org/vocab/quantitykind/Action - https://www.wikidata.org/wiki/Q846785 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 - 4-32 - Physical quantity of dimension energy × time. - - - - - - - BlueUpQuark - BlueUpQuark - - - - - - Unit for quantities of dimension one that are the fraction of two lengths. - LengthFractionUnit - LengthFractionUnit - Unit for quantities of dimension one that are the fraction of two lengths. - Unit for plane angle. - - - - - - Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this -is desirable (μm/m, nmol/mol). --- SI Brochure - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - FractionUnit - RatioUnit - FractionUnit - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - - - - - - - T+1 L0 M0 I0 Θ+1 N0 J0 - - - - - TemperatureTimeUnit - TemperatureTimeUnit - - - - - - - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - LatentHeatOfPhaseTransition - LatentHeatOfPhaseTransition - https://www.wikidata.org/wiki/Q106553458 - 9-16 - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - - - - - - - LatentHeat - LatentHeat - https://www.wikidata.org/wiki/Q207721 - 5-6.2 + + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + + ProbeSampleInteraction + ProbeSampleInteraction + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - - - - - + + - - - - + + + + + + - - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - DensityOfVibrationalStates - DensityOfVibrationalStates - https://qudt.org/vocab/quantitykind/DensityOfStates - https://www.wikidata.org/wiki/Q105637294 - 12-12 - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - - - - - - - Critical thermodynamic temperature of a superconductor. - SuperconductionTransitionTemperature - SuperconductionTransitionTemperature - https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature - https://www.wikidata.org/wiki/Q106103037 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 - 12-35.3 - Critical thermodynamic temperature of a superconductor. + + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + PhysicsOfInteraction + PhysicsOfInteraction + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - - + - - + + - + - - The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. - --- IEC, note 2 - The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. - --- IEC, note 1 - Vector quantity giving the rate of change of a position vector. - --- ISO 80000-3 - Velocity - Velocity - http://qudt.org/vocab/quantitykind/Velocity - https://www.wikidata.org/wiki/Q11465 - Vector quantity giving the rate of change of a position vector. - --- ISO 80000-3 - 3-8.1 - 3‑10.1 - - - - - - - - - - - - - 1-dimensional array who's spatial direct parts are numbers. - Vector - 1DArray - LinearArray - Vector - 1-dimensional array who's spatial direct parts are numbers. + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + ExtentOfReaction + ExtentOfReaction + https://qudt.org/vocab/quantitykind/ExtentOfReaction + https://www.wikidata.org/wiki/Q899046 + 9-31 + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + https://doi.org/10.1351/goldbook.E02283 - + + + + + Kinetic energy released per mass. + Kerma + Kerma + https://qudt.org/vocab/quantitykind/Kerma + https://www.wikidata.org/wiki/Q1739288 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 + 10-86.1 + Kinetic energy released per mass. + + + + + - + - Length per unit time. + Energy per unit mass + SpecificEnergy + SpecificEnergy + https://qudt.org/vocab/quantitykind/SpecificEnergy + https://www.wikidata.org/wiki/Q3023293 + https://dbpedia.org/page/Specific_energy + 5-21.1 + Energy per unit mass + https://en.wikipedia.org/wiki/Specific_energy + -Speed in the absolute value of the velocity. - Speed - Speed - http://qudt.org/vocab/quantitykind/Speed - 3-8.2 - https://doi.org/10.1351/goldbook.S05852 + + + + + T+1 L0 M0 I0 Θ0 N0 J0 + + + + + TimeUnit + TimeUnit - + + + + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + AnodicStrippingVoltammetry + AnodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q939328 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + https://doi.org/10.1515/pac-2018-0109 + + + + + + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + Deduced + Deduced + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + + + - T-6 L+4 M+2 I-2 Θ-2 N0 J0 + T0 L+2 M-1 I0 Θ0 N0 J0 - SquareElectricPotentialPerSquareTemperatureUnit - SquareElectricPotentialPerSquareTemperatureUnit + AreaPerMassUnit + AreaPerMassUnit - + + + + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + DifferentialScanningCalorimetry + DSC + DifferentialScanningCalorimetry + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + + + + + + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + + ThermochemicalTesting + TMA + ThermochemicalTesting + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + + + + + + + Discrete quantity; number of entities of a given kind in a system. + NumberOfEntities + NumberOfEntities + https://www.wikidata.org/wiki/Q614112 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 + 9-1 + Discrete quantity; number of entities of a given kind in a system. + https://doi.org/10.1351/goldbook.N04266 + + + + + + FormingFromLiquid + FormingFromLiquid + + + + + + Whatever hardware is used during the characterisation process. + CharacterisationHardware + CharacterisationHardware + Whatever hardware is used during the characterisation process. + + + + + + A group of machineries used to process a group of similar parts. + Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. + MachineCell + MachineCell + A group of machineries used to process a group of similar parts. + + + + + + A system arranged to setup a specific manufacturing process. + ManufacturingSystem + ManufacturingSystem + A system arranged to setup a specific manufacturing process. + + + + - - + - - RelativePressureCoefficient - RelativePressureCoefficient - https://qudt.org/vocab/quantitykind/RelativePressureCoefficient - https://www.wikidata.org/wiki/Q74761852 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 - 5-3.3 + Mass increment per time. + MassChangeRate + MassChangeRate + https://www.wikidata.org/wiki/Q92020547 + 4-30.3 + Mass increment per time. - + + - - + - Change of pressure per change of temperature at constant volume. - PressureCoefficient - PressureCoefficient - https://qudt.org/vocab/quantitykind/PressureCoefficient - https://www.wikidata.org/wiki/Q74762732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 - 5-4 - Change of pressure per change of temperature at constant volume. + Electric charge per volume. + ElectricChargeDensity + VolumeElectricCharge + ElectricChargeDensity + https://qudt.org/vocab/quantitykind/ElectricChargeDensity + https://www.wikidata.org/wiki/Q69425629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 + 6-3 + Electric charge per volume. + https://doi.org/10.1351/goldbook.C00988 - + + + - - - 2 + + - - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - Collection - Collection - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. + + Electric field strength multiplied by magnetic field strength. + PoyntingVector + PoyntingVector + https://qudt.org/vocab/quantitykind/PoyntingVector + https://www.wikidata.org/wiki/Q504186 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 + 6-34 + Electric field strength multiplied by magnetic field strength. + + + + + + + Ratio of the mass of water to the mass of dry matter in a given volume of matter. + The mass concentration of water at saturation is denoted usat. + MassRatioOfWaterToDryMatter + MassRatioOfWaterToDryMatter + https://www.wikidata.org/wiki/Q76378860 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 + 5-29 + Ratio of the mass of water to the mass of dry matter in a given volume of matter. + + + + + + + Electric polarization divided by electric constant and electric field strength. + ElectricSusceptibility + ElectricSusceptibility + https://qudt.org/vocab/quantitykind/ElectricSusceptibility + https://www.wikidata.org/wiki/Q598305 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 + 6-16 + Electric polarization divided by electric constant and electric field strength. + https://en.wikipedia.org/wiki/Electric_susceptibility + + + + + + + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + DebyeAngularFrequency + DebyeAngularFrequency + https://qudt.org/vocab/quantitykind/DebyeAngularFrequency + https://www.wikidata.org/wiki/Q105580986 + 12-10 + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - - - - - - - - - - + + - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - DissociationConstant - DissociationConstant - https://www.wikidata.org/wiki/Q898254 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + Rate of change of the phase angle. + AngularFrequency + AngularFrequency + https://qudt.org/vocab/quantitykind/AngularFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 + https://dbpedia.org/page/Angular_frequency + 3-18 + Rate of change of the phase angle. + https://en.wikipedia.org/wiki/Angular_frequency + https://doi.org/10.1351/goldbook.A00352 - - - - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - ClassicalData - ClassicalData - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + + + + + An object that has been designed and manufactured for a particular purpose. + ManufacturedProduct + Artifact + Engineered + TangibleProduct + ManufacturedProduct + An object that has been designed and manufactured for a particular purpose. + Car, tire, composite material. - - - - RightHandedParticle - RightHandedParticle + + + + A construction language used to make queries in databases and information systems. + QueryLanguage + QueryLanguage + A construction language used to make queries in databases and information systems. + SQL, SPARQL + https://en.wikipedia.org/wiki/Query_language - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + Analysis, that allows one to calculate the final material property from the calibrated primary data. + DataPostProcessing + DataPostProcessing + Analysis, that allows one to calculate the final material property from the calibrated primary data. + + + + + - + - + - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - FundamentalFermion - FundamentalFermion - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion + A chausal chain whose quantum parts are of the same standard model fundamental type. + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + ElementaryParticle + SingleParticleChain + ElementaryParticle + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + A chausal chain whose quantum parts are of the same standard model fundamental type. - + + + + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + Pressing + Anpressen + Pressing + + + + + + A property that is associated to an object by convention, or assumption. + A quantitative property attributed by agreement to a quantity for a given purpose. + ConventionalProperty + ConventionalProperty + A quantitative property attributed by agreement to a quantity for a given purpose. + The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. + +If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. + +Then I have two different physical quantities that are properties thanks to two different semiotic processes. + + + - + - + - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - LorenzCoefficient - LorenzNumber - LorenzCoefficient - https://qudt.org/vocab/quantitykind/LorenzCoefficient - https://www.wikidata.org/wiki/Q105728754 - 12-18 - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + Vector potential of the magnetic flux density. + MagneticVectorPotential + MagneticVectorPotential + https://qudt.org/vocab/quantitykind/MagneticVectorPotential + https://www.wikidata.org/wiki/Q2299100 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 + 6-32 + Vector potential of the magnetic flux density. - - - - Presses - Presses + + + + + + + + + + + + + Magnetic tension divided by magnetic flux. + MagneticReluctance + Reluctance + MagneticReluctance + https://qudt.org/vocab/quantitykind/Reluctance + https://www.wikidata.org/wiki/Q863390 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 + 6-39 + Magnetic tension divided by magnetic flux. - - - - FormingFromPowder - FormingFromPowder + + + + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + Data whose variations are decoded according to a discrete schema. + DiscreteData + DiscreteData + Data whose variations are decoded according to a discrete schema. + A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - - - - - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Emulsion - Emulsion - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Mayonnaise, milk. + + + + + The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. + RybergConstant + RybergConstant + http://qudt.org/vocab/constant/RydbergConstant + https://doi.org/10.1351/goldbook.R05430 - - - - - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. - Colloid - Colloid - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. + + + + + + + + + + + + + + + + + + FirstGenerationFermion + FirstGenerationFermion - - + + - A quantity obtained from a well-defined modelling procedure. - ModelledProperty - ModelledProperty - A quantity obtained from a well-defined modelling procedure. + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + CategorizedPhysicalQuantity + https://physics.nist.gov/cuu/Constants + CategorizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - - + + + + + T-3 L0 M+1 I0 Θ0 N0 J0 + + + - Inverse of the impendance. - Admittance - ComplexAdmittance - Admittance - https://qudt.org/vocab/quantitykind/Admittance - https://www.wikidata.org/wiki/Q214518 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 - https://dbpedia.org/page/Admittance - 6-52.1 - Inverse of the impendance. + PowerDensityUnit + PowerDensityUnit - - - + + + + + + + + + + - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - InternalConversionFactor - InternalConversionCoefficient - InternalConversionFactor - https://qudt.org/vocab/quantitykind/InternalConversionFactor - https://www.wikidata.org/wiki/Q6047819 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 - 10-35 - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. + ReciprocalVolume + ReciprocalVolume - + + + + + + + + + + + + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + CondensedMatter + CondensedMatter + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + + + + + + + A coarse dispersion of solid in a gas continuum phase. + GasSolidSuspension + GasSolidSuspension + A coarse dispersion of solid in a gas continuum phase. + Dust, sand storm. + + + - T0 L-3 M+1 I0 Θ0 N0 J0 + T0 L+1 M0 I0 Θ-1 N0 J0 - DensityUnit - DensityUnit + LengthPerTemperatureUnit + LengthPerTemperatureUnit - - - - ThermomechanicalTreatment - ThermomechanicalTreatment + + + + + GreenCharmQuark + GreenCharmQuark - - - - - Has shaped bodies as input and output. - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - esce workpiece - MaterialTreatment - DIN 8580:2020 - Stoffeigenschaft ändern - WorkPieceTreatment - MaterialTreatment - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - Has shaped bodies as input and output. - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + + + + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + AtomProbeTomography + 3D Atom Probe + APT + AtomProbeTomography + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - - - - - Quotient of Larmor angular frequency and 2π. - LarmonFrequency - LarmonFrequency - 10-15.2 - Quotient of Larmor angular frequency and 2π. + + + + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + Tomography + Tomography + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - - - - WPositiveBoson - WPositiveBoson + + + + + + + + + + + + Fundamental translation vector for the crystal lattice. + FundamentalLatticeVector + FundamentalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalLatticeVector + https://www.wikidata.org/wiki/Q105451063 + 12-1.2 + Fundamental translation vector for the crystal lattice. - - - + + + + + + + + + + + - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - The mixing ratio at saturation is denoted xsat. - MixingRatio - MassRatioOfWaterVapourToDryGas - MixingRatio - https://www.wikidata.org/wiki/Q76378940 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 - 5-30 - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + DirectionAndEnergyDistributionOfCrossSection + DirectionAndEnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection + https://www.wikidata.org/wiki/Q98269571 + 10-41 + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - - + + + - - T-3 L-1 M+1 I0 Θ+1 N0 J0 + + + 1 - - - - TemperaturePressurePerTimeUnit - TemperaturePressurePerTimeUnit + + + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + IRI + IRI + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + https://en.wiktionary.org/wiki/Ῥόδος + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier - - - - - A coarse dispersion of liquid in a solid continuum phase. - SolidLiquidSuspension - SolidLiquidSuspension - A coarse dispersion of liquid in a solid continuum phase. + + + + + + + + + + + + + + A formal computer-interpretable identifier of a system resource. + ResourceIdentifier + ResourceIdentifier + A formal computer-interpretable identifier of a system resource. - - - + - - - - - - + + - Material property which describes how the size of an object changes with a change in temperature. - CoefficientOfThermalExpansion - ThermalExpansionCoefficient - CoefficientOfThermalExpansion - https://www.wikidata.org/wiki/Q45760 - Material property which describes how the size of an object changes with a change in temperature. + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + The relative humidity is often expressed in per cent. + RelativeHumidity + RelativeHumidity + https://qudt.org/vocab/quantitykind/RelativeHumidity + https://www.wikidata.org/wiki/Q2499617 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 + 5-33 + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + https://en.wikipedia.org/wiki/Humidity#Relative_humidity - - - - The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - - ACVoltammetry - ACV - ACVoltammetry - https://www.wikidata.org/wiki/Q120895154 - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - https://doi.org/10.1515/pac-2018-0109 + + + + + For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + RelativeMassConcentrationOfWaterVapour + RelativeMassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour + https://www.wikidata.org/wiki/Q76379357 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - - + + + + + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. + EndStep + EndStep + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. + + + + + + + + EndTile + EndTile + + + + - A standalone atom with an unbalanced number of electrons with respect to its atomic number. - The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, - IonAtom - IonAtom - A standalone atom with an unbalanced number of electrons with respect to its atomic number. + MetallicMaterial + MetallicMaterial - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + - A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. - An atom that does not share electrons with other atoms. - StandaloneAtom - StandaloneAtom - An atom that does not share electrons with other atoms. + ClassicallyDefinedMaterial + ClassicallyDefinedMaterial - - - + + + - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - ComptonWavelength - ComptonWavelength - https://qudt.org/vocab/constant/ComptonWavelength - https://www.wikidata.org/wiki/Q1145377 - 10-20 - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - https://en.wikipedia.org/wiki/Compton_wavelength + HelmholtzEnergy + HelmholtzFreeEnergy + HelmholtzEnergy + https://www.wikidata.org/wiki/Q865821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 + 5-20.4 + https://doi.org/10.1351/goldbook.H02772 - - + + + - Length of the repetition interval of a wave. - Wavelength - Wavelength - https://qudt.org/vocab/quantitykind/Wavelength - https://www.wikidata.org/wiki/Q41364 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 - https://dbpedia.org/page/Wavelength - 3-19 - Length of the repetition interval of a wave. - https://en.wikipedia.org/wiki/Wavelength - https://doi.org/10.1351/goldbook.W06659 + In condensed matter physics, quotient of momentum and the reduced Planck constant. + AngularWaveNumber + AngularRepetency + AngularWaveNumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q105542089 + 12-9.1 + In condensed matter physics, quotient of momentum and the reduced Planck constant. - - - - - - - - - - - - - An icon that not only resembles the object, but also can express some of the object's functions. - Replica - Replica - An icon that not only resembles the object, but also can express some of the object's functions. - A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. - Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). + + + + FiberReinforcePlasticManufacturing + FiberReinforcePlasticManufacturing - - - - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. - An icon that mimics the spatial or temporal shape of the object. - The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). - ResemblanceIcon - ResemblanceIcon - An icon that mimics the spatial or temporal shape of the object. - A geographical map that imitates the shape of the landscape and its properties at a specific historical time. - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + + + + + BlueCharmAntiQuark + BlueCharmAntiQuark - - - - + + + + + - - + + - - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - Theorisation - Theorization - Theorisation - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + + Number of electrons in conduction band per volume. + ElectronDensity + ElectronDensity + https://qudt.org/vocab/quantitykind/ElectronDensity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 + 12-29.1 + Number of electrons in conduction band per volume. + + + + + + + + + + + + + + + The relation between electric field strength and current density in an isotropic conductor. + HallCoefficient + HallCoefficient + https://qudt.org/vocab/quantitykind/HallCoefficient + https://www.wikidata.org/wiki/Q997439 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 + 12-19 + The relation between electric field strength and current density in an isotropic conductor. - - - + + - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - PropagationCoefficient - PropagationCoefficient - https://qudt.org/vocab/quantitykind/PropagationCoefficient.html - https://www.wikidata.org/wiki/Q1434913 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 - 3-26.3 - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + Helmholtz energy per unit mass. + SpecificHelmholtzEnergy + SpecificHelmholtzEnergy + https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy + https://www.wikidata.org/wiki/Q76359554 + 5-21.4 + Helmholtz energy per unit mass. - - - - Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. - Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. -Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - Sintering - ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - https://www.twi-global.com/technical-knowledge/faqs/what-is-sintering - Sintern - Sintering - Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. - Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. -Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. + + + + + Mass of the contained water vapour per volume. + AbsoluteHumidity + MassConcentrationOfWaterVapour + AbsoluteHumidity + https://qudt.org/vocab/quantitykind/AbsoluteHumidity + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + 5-28 + Mass of the contained water vapour per volume. - - - - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - A well-formed formula that follows the syntactic rules of computer science. - ComputerScience - ComputerScience - A well-formed formula that follows the syntactic rules of computer science. - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + + + + Filling + Filling - - - - - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - ActivityOfSolvent - ActivityOfSolvent - https://www.wikidata.org/wiki/Q89486193 - 9-27.1 - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + + + + + + + + + + + + + + + + + + + + + + Cognition + IconSemiosis + Cognition - - - - + + + + + + + + + + + - The abstract notion of angle. - AngularMeasure - AngularMeasure - https://qudt.org/vocab/quantitykind/Angle - https://www.wikidata.org/wiki/Q1357788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 - 3-5 - The abstract notion of angle. - https://doi.org/10.1351/goldbook.A00346 + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + CatalyticActivity + CatalyticActivity + http://qudt.org/vocab/quantitykind/CatalyticActivity + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + https://doi.org/10.1351/goldbook.C00881 - + - T+2 L0 M-1 I+1 Θ+1 N0 J0 + T-2 L+2 M0 I0 Θ0 N0 J0 - TemperaturePerMagneticFluxDensityUnit - TemperaturePerMagneticFluxDensityUnit + AbsorbedDoseUnit + AbsorbedDoseUnit - - - - - - - - - - - - - - + + + + + + + + + + + - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - CompositePhysicalParticle - CompositePhysicalParticle - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - - - - - - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - ElectrochemicalPiezoelectricMicrogravimetry - ElectrochemicalPiezoelectricMicrogravimetry - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - https://doi.org/10.1515/pac-2018-0109 + ParticulateMatter + ParticulateMatter - + - + - + - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - MagneticFlux - MagneticFlux - http://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q177831 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 - https://dbpedia.org/page/Magnetic_flux - 6-22.1 - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - https://en.wikipedia.org/wiki/Magnetic_flux - https://doi.org/10.1351/goldbook.M03684 + Measure of the relative volume change of a fluid or solid as a response to a pressure change. + Compressibility + Compressibility + https://qudt.org/vocab/quantitykind/Compressibility + https://www.wikidata.org/wiki/Q8067817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 + 4-20 + Measure of the relative volume change of a fluid or solid as a response to a pressure change. + + + + + + + Written as pOH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) + POH + POH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) + + + + + + Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. + The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + IonActivity + IonActivity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + + + + + + At about 25 °C aqueous solutions with: +pH < 7 are acidic; +pH = 7 are neutral; +pH > 7 are alkaline. +At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + Written as pH + PH + PH + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 + For more details, see ISO 80000-9:2009, Annex C + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + https://doi.org/10.1351/goldbook.P04524 + + + + + + + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + LevelWidth + LevelWidth + https://qudt.org/vocab/quantitykind/LevelWidth + https://www.wikidata.org/wiki/Q98082340 + 10-26 + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + https://doi.org/10.1351/goldbook.L03507 - - - - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - HardnessTesting - HardnessTesting - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + + + + + + + + + + + + + + + + + + + + + DownAntiQuark + DownAntiQuark - + - - + + - - - Coupled - Coupled + + + Structural + Structural - - - - A physics based simulation with multiple physics based models. - MultiSimulation - MultiSimulation - A physics based simulation with multiple physics based models. - + + + + + + + + + + + + + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + Fundamental + Lifetime + Maximal + Fundamental + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - - - - Width of the forbidden energy band in a superconductor. - SuperconductorEnergyGap - SuperconductorEnergyGap - https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap - https://www.wikidata.org/wiki/Q106127898 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 - 12-37 - Width of the forbidden energy band in a superconductor. - +On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. - - - - - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - GapEnergy - BandgapEnergy - GapEnergy - https://www.wikidata.org/wiki/Q103982939 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 - 12-27.2 - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - https://doi.org/10.1351/goldbook.B00593 +Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. - - - - - + + + - - + + - - Reciprocal of the coefficient of heat transfer. - ThermalInsulance - CoefficientOfThermalInsulance - ThermalInsulance - https://qudt.org/vocab/quantitykind/ThermalInsulance - https://www.wikidata.org/wiki/Q2596212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 - 5-11 - Reciprocal of the coefficient of heat transfer. + + 2-dimensional array who's spatial direct parts are vectors. + Matrix + 2DArray + Matrix + 2-dimensional array who's spatial direct parts are vectors. - - - - - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - MassDefect - MassDefect - https://qudt.org/vocab/quantitykind/MassDefect - https://www.wikidata.org/wiki/Q26897126 - 10-21.2 - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + + + + A function defined using functional notation. + A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). + MathematicalFunction + FunctionDefinition + MathematicalFunction + A function defined using functional notation. + y = f(x) - - - - - T0 L0 M-1 I+1 Θ0 N0 J0 - - - - - ElectricCurrentPerMassUnit - ElectricCurrentPerMassUnit + + + + An equation that define a new variable in terms of other mathematical entities. + DefiningEquation + DefiningEquation + An equation that define a new variable in terms of other mathematical entities. + The definition of velocity as v = dx/dt. + +The definition of density as mass/volume. + +y = f(x) - - + + - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - - ReferenceSample - Certified Reference Material - Reference material - ReferenceSpecimen - ReferenceSample - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + FieldEmissionScanningElectronMicroscopy + FE-SEM + FieldEmissionScanningElectronMicroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + --- International Vocabulary of Metrology(VIM) - Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - Reference material + + + + A language used to describe what a computer system should do. + SpecificationLanguage + SpecificationLanguage + A language used to describe what a computer system should do. + ACSL, VDM, LOTUS, MML, ... + https://en.wikipedia.org/wiki/Specification_language - + - + - + - Product of the mean linear range R and the mass density ρ of the material. - MeanMassRange - MeanMassRange - https://qudt.org/vocab/quantitykind/MeanMassRange - https://www.wikidata.org/wiki/Q98681670 - 10-57 - Product of the mean linear range R and the mass density ρ of the material. - https://doi.org/10.1351/goldbook.M03783 + Strength of a magnetic field. Commonly denoted H. + MagneticFieldStrength + MagnetizingFieldStrength + MagneticFieldStrength + http://qudt.org/vocab/quantitykind/MagneticFieldStrength + https://www.wikidata.org/wiki/Q28123 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 + 6-25 + https://doi.org/10.1351/goldbook.M03683 - + + + + chronopotentiometry where the applied current is changed in steps + + StepChronopotentiometry + StepChronopotentiometry + chronopotentiometry where the applied current is changed in steps + + + + - - + - Negative quotient of Helmholtz energy and temperature. - MassieuFunction - MassieuFunction - https://qudt.org/vocab/quantitykind/MassieuFunction - https://www.wikidata.org/wiki/Q3077625 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 - 5-22 - Negative quotient of Helmholtz energy and temperature. + Entropy per amount of substance. + MolarEntropy + MolarEntropy + https://qudt.org/vocab/quantitykind/MolarEntropy + https://www.wikidata.org/wiki/Q68972876 + 9-8 + Entropy per amount of substance. - - - - - - - - - - - - - - Number of nucleons in an atomic nucleus. - MassNumber - AtomicMassNumber - NucleonNumber - MassNumber - http://qudt.org/vocab/quantitykind/MassNumber - Number of nucleons in an atomic nucleus. + + + + A software application to process characterisation data + CharacterisationSoftware + CharacterisationSoftware + A software application to process characterisation data + In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. - - - - - A estimation of a property using a functional icon. - Simulation - Modelling - Simulation - A estimation of a property using a functional icon. - I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. + + + + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + ApplicationProgram + App + Application + ApplicationProgram + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + Word processors, graphic image processing programs, database management systems, numerical simulation software and games. - + - + + - Helmholtz energy per amount of substance. - MolarHelmholtzEnergy - MolarHelmholtzEnergy - https://www.wikidata.org/wiki/Q88862986 - 9-6.3 - Helmholtz energy per amount of substance. + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + ThermalDiffusionFactor + ThermalDiffusionFactor + https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor + https://www.wikidata.org/wiki/Q96249629 + 9-40.2 + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. - - - - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Detector - Detector - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM - Displacement and force sensors for mechanical testing + + + + + ThermalDiffusionRatio + ThermalDiffusionRatio + https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio + https://www.wikidata.org/wiki/Q96249433 + 9-40.1 - - + + + + + - - T-2 L+2 M0 I0 Θ0 N0 J0 + + - - + - AbsorbedDoseUnit - AbsorbedDoseUnit + A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. + FineStructureConstant + FineStructureConstant + http://qudt.org/vocab/constant/FineStructureConstant + https://doi.org/10.1351/goldbook.F02389 - - - - - T0 L+3 M-1 I0 Θ0 N0 J0 - - - - - VolumePerMassUnit - VolumePerMassUnit + + + + + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + IterativeStep + IterativeStep + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. - - - - - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - ReactionEnergy - ReactionEnergy - https://qudt.org/vocab/quantitykind/ReactionEnergy - https://www.wikidata.org/wiki/Q98164745 - 10-37.1 - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + + + + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + InteractionVolume + InteractionVolume + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - + + + + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + Peening + ShotPeening + Verfestigungsstrahlen + Peening + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + + + + + ContinuousCasting + ContinuousCasting + + + - - - T0 L-2 M+1 I0 Θ0 N0 J0 - + + + + + + - - - AreaDensityUnit - AreaDensityUnit + + + + CompositeBoson + CompositeBoson + Examples of composite particles with integer spin: +spin 0: H1 and He4 in ground state, pion +spin 1: H1 and He4 in first excited state, meson +spin 2: O15 in ground state. - - - + + - The amount of a constituent divided by the total amount of all constituents in a mixture. - AmountFraction - MoleFraction - AmountFraction - http://qudt.org/vocab/quantitykind/MoleFraction - The amount of a constituent divided by the total amount of all constituents in a mixture. - https://doi.org/10.1351/goldbook.A00296 + Vector quantity from the origin of a coordinate system to a point in space. + PositionVector + PositionVector + https://www.wikidata.org/wiki/Q192388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 + https://dbpedia.org/page/Position_(geometry) + 3-1.10 + Vector quantity from the origin of a coordinate system to a point in space. + https://en.wikipedia.org/wiki/Position_(geometry) - - - - - ThermodynamicGrueneisenParameter - ThermodynamicGrueneisenParameter - https://www.wikidata.org/wiki/Q105658620 - 12-13 + + + + + + + + + + + + + + + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + PhysicallyInteracting + PhysicallyInteracting + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - - - - - Inverse of the radius of curvature. - Curvature - Curvature - https://qudt.org/vocab/quantitykind/CurvatureFromRadius - https://www.wikidata.org/wiki/Q214881 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 - https://dbpedia.org/page/Curvature - 3-2 - Inverse of the radius of curvature. + + + + PolymericMaterial + PolymericMaterial - - - - - - - - - - - - - - + + + + + + - - - 1 + + - - An integer number. - Integer - Integer - An integer number. - - - - - - - A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. - A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). - A numerical data value. - In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. -More than one numeral stands for the same number. -In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). -Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). -The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. -For these reasons, the EMMO will consider numerals and numbers as the same concept. - Number - Numeral - Number - A numerical data value. + + Measure for how the magnetization of material is affected by the application of an external magnetic field . + Permeability + ElectromagneticPermeability + Permeability + http://qudt.org/vocab/quantitykind/ElectromagneticPermeability + 6-26.2 + https://doi.org/10.1351/goldbook.P04503 - - - - - - A scientific theory is a description, objective and observed, produced with scientific methodology. - ScientificTheory - ScientificTheory - A scientific theory is a description, objective and observed, produced with scientific methodology. + + + + + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + AtomicScatteringFactor + AtomicScatteringFactor + https://qudt.org/vocab/quantitykind/AtomScatteringFactor + https://www.wikidata.org/wiki/Q837866 + 12-5.3 + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + https://en.wikipedia.org/wiki/Atomic_form_factor - - + + - FormingFromPlastic - FormingFromPlastic + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + Dismantling + Demontage + Dismantling + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - - - - - - - - + + + + - - + + - - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. - -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - Atom - ChemicalElement - Atom - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. - -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - - - - - - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - ProcessingReproducibility - ProcessingReproducibility - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - - - - - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - Calorimetry - Calorimetry - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - - - - - - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. - CausalCollapse - CausalCollapse - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + AngularVelocity + AngularVelocity + https://qudt.org/vocab/quantitykind/AngularVelocity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 + https://dbpedia.org/page/Angular_velocity + 3-12 + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + https://en.wikipedia.org/wiki/Angular_velocity - + - T+1 L-3 M0 I0 Θ0 N0 J0 + T+2 L-3 M-1 I0 Θ0 N+1 J0 - TimePerVolumeUnit - TimePerVolumeUnit + AmountSquareTimePerMassVolumeUnit + AmountSquareTimePerMassVolumeUnit - + + + - - + - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - MagneticTension - MagneticTension - https://qudt.org/vocab/quantitykind/MagneticTension - https://www.wikidata.org/wiki/Q77993836 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 - 6-37.2 - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + DirectionDistributionOfCrossSection + DirectionDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/AngularCrossSection + https://www.wikidata.org/wiki/Q98266630 + 10-39 + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + + + + + + + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + ElectronBackscatterDiffraction + EBSD + ElectronBackscatterDiffraction + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + + + + + + + ScatteringAndDiffraction + ScatteringAndDiffraction + + + + + + A process occurring by natural (non-intentional) laws. + NaturalProcess + NonIntentionalProcess + NaturalProcess + A process occurring by natural (non-intentional) laws. - - - - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - NeutronSpinEchoSpectroscopy - NSE - NeutronSpinEchoSpectroscopy - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + + + + GluonType7 + GluonType7 - - + + - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - FormingBlasting - Umformstrahlen - FormingBlasting + Application of additive manufacturing intended for reducing the time needed for producing prototypes. + RapidPrototyping + RapidPrototyping + Application of additive manufacturing intended for reducing the time needed for producing prototypes. - - - - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) - Crystal - Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - + + + + + Porosimetry + Porosimetry + -H=∑ni=1hia∗i (n≥3) + + + + Represents every type of data that is produced during a characterisation process + CharacterisationData + CharacterisationData + Represents every type of data that is produced during a characterisation process - - - - - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - MeanLinearRange - MeanLinearRange - https://qudt.org/vocab/quantitykind/MeanLinearRange - https://www.wikidata.org/wiki/Q98681589 - 10-56 - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - https://doi.org/10.1351/goldbook.M03782 + + + + PhotochemicalProcesses + PhotochemicalProcesses - - - - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + + + + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + Assignment + Assignment + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. + -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - PhaseOfMatter - Phase - PhaseOfMatter - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + + + + + + BeginTile + BeginTile + -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + + + + + + + + + + + + + + + + + + + + + + + https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a + SpatioTemporalTile + WellFormedTile + SpatioTemporalTile - - - - - - - - - - - + + - SpecificEntropy - SpecificEntropy - https://qudt.org/vocab/quantitykind/SpecificEntropy - https://www.wikidata.org/wiki/Q69423705 - 5-19 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + ElectricPolarization + ElectricPolarization + https://qudt.org/vocab/quantitykind/ElectricPolarization + https://www.wikidata.org/wiki/Q1050425 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 + 6-7 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - + - + - + - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - PeltierCoefficient - PeltierCoefficient - https://qudt.org/vocab/quantitykind/PeltierCoefficient - https://www.wikidata.org/wiki/Q105801003 - 12-22 - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - - - - - - PaperManufacturing - PaperManufacturing - - - - - - - T-1 L-2 M0 I0 Θ0 N0 J0 - - - - - PerAreaTimeUnit - PerAreaTimeUnit + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. + ElectricFluxDensity + ElectricDisplacement + ElectricFluxDensity + https://qudt.org/vocab/quantitykind/ElectricDisplacementField + https://www.wikidata.org/wiki/Q371907 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 + 6-12 + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - - - - - ElementaryFermion - ElementaryFermion + + + + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Electrogravimetry + Electrogravimetry + https://www.wikidata.org/wiki/Q902953 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + https://en.wikipedia.org/wiki/Electrogravimetry - - - + + - Quotient of mass excess and the unified atomic mass constant. - RelativeMassExcess - RelativeMassExcess - https://qudt.org/vocab/quantitykind/RelativeMassExcess - https://www.wikidata.org/wiki/Q98038610 - 10-22.1 - Quotient of mass excess and the unified atomic mass constant. - - - - - - - - - - - - - - - - - - - - - - - TopQuark - TopQuark - https://en.wikipedia.org/wiki/Top_quark + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + TotalCrossSection + TotalCrossSection + https://qudt.org/vocab/quantitykind/TotalCrossSection + https://www.wikidata.org/wiki/Q98206553 + 10-38.2 + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - - - + + + + + + + + + + - Angular frequency divided by angular wavenumber. - PhaseSpeedOfElectromagneticWaves - PhaseSpeedOfElectromagneticWaves - https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed - https://www.wikidata.org/wiki/Q77990619 - 6-35.1 - Angular frequency divided by angular wavenumber. - - - - - - Foaming - Foaming + Measure of probability that a specific process will take place in a collision of two particles. + AtomicPhysicsCrossSection + AtomicPhysicsCrossSection + https://qudt.org/vocab/quantitykind/Cross-Section.html + https://www.wikidata.org/wiki/Q17128025 + 10-38.1 + Measure of probability that a specific process will take place in a collision of two particles. - - - - Parameter used for the sample inspection process - - SampleInspectionParameter - SampleInspectionParameter - Parameter used for the sample inspection process + + + + Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. + Heat + AmountOfHeat + Heat + http://qudt.org/vocab/quantitykind/Heat + 5-6.1 + https://doi.org/10.1351/goldbook.H02752 - - - - A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. - Parameter - Parameter - Viscosity in the Navier-Stokes equation + + + + + Decrease in magnitude of any kind of flux through a medium. + Attenuation + Extinction + Attenuation + 3-26.1 + Decrease in magnitude of any kind of flux through a medium. + https://en.wikipedia.org/wiki/Attenuation + https://doi.org/10.1351/goldbook.A00515 - - - - A meson with spin two. - TensorMeson - TensorMeson - A meson with spin two. + + + + + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + NuclearPrecessionAngularFrequency + NuclearPrecessionAngularFrequency + https://www.wikidata.org/wiki/Q97641779 + 10-15.3 + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. @@ -12760,1207 +12540,1351 @@ The term phase is sometimes used as a synonym for state of matter, but there can https://en.wikipedia.org/wiki/Meson - - - - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - Language - Language - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + + + + Matter composed of both matter and antimatter fundamental particles. + HybridMatter + HybridMatter + Matter composed of both matter and antimatter fundamental particles. - - - - - average distance that phonons travel between two successive interactions - MeanFreePathOfPhonons - MeanFreePathOfPhonons - https://qudt.org/vocab/quantitykind/PhononMeanFreePath - https://www.wikidata.org/wiki/Q105672255 - 12-15.1 - average distance that phonons travel between two successive interactions + + + + + + + + + + + + Particles composed of two or more quarks. + Hadron + Hadron + Particles composed of two or more quarks. + https://en.wikipedia.org/wiki/Hadron - - - + + + + Data that are decoded retaining its continuous variations characteristic. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + AnalogData + AnalogData + Data that are decoded retaining its continuous variations characteristic. + A vynil contain continuous information about the recorded sound. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + + + + + + + + + + + + + - The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - MeanFreePath - MeanFreePath - https://qudt.org/vocab/quantitykind/MeanFreePath - https://www.wikidata.org/wiki/Q756307 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 - 9-38 - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - https://doi.org/10.1351/goldbook.M03778 + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. + AtomicAttenuationCoefficient + AtomicAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592911 + 10-52 + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - + + + + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + Soldering + Löten + Soldering + + + - T-3 L+2 M+1 I0 Θ-1 N0 J0 + T0 L-2 M0 I+1 Θ-2 N0 J0 - ThermalConductanceUnit - ThermalConductanceUnit - - - - - - Calendering - Calendering + RichardsonConstantUnit + RichardsonConstantUnit - - + + + - + - + - - - - - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - A self-connected composition of more than one quantum entities. - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - CausalStructure - CausalObject - CausalStructure - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - A self-connected composition of more than one quantum entities. - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - - - - - - - - - - - - - - - - A set of units that correspond to the base quantities in a system of units. - BaseUnit - BaseUnit - A set of units that correspond to the base quantities in a system of units. - base unit - - - - - - Encoded data made of more than one datum. - DataSet - DataSet - Encoded data made of more than one datum. + + + + + A composite physical object made of fermions (i.e. having mass and occupying space). + Substance + Substance + A composite physical object made of fermions (i.e. having mass and occupying space). - - - - A self-consistent encoded data entity. - Datum - Datum - A self-consistent encoded data entity. - A character, a bit, a song in a CD. + + + + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + CompositePhysicalObject + CompositePhysicalObject + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - + - T+1 L0 M-1 I+1 Θ0 N0 J0 + T+2 L0 M-1 I+1 Θ+1 N0 J0 - ElectricChargePerMassUnit - ElectricChargePerMassUnit - - - - - - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - Modeller - Modeller - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + TemperaturePerMagneticFluxDensityUnit + TemperaturePerMagneticFluxDensityUnit - - - - A meson with spin zero and even parity. - ScalarMeson - ScalarMeson - A meson with spin zero and even parity. - https://en.wikipedia.org/wiki/Scalar_meson + + + + + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + MolarGasConstant + MolarGasConstant + http://qudt.org/vocab/constant/MolarGasConstant + 9-37.1 + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + https://doi.org/10.1351/goldbook.G02579 - - + + - + - Product of mass and velocity. - Momentum - Momentum - http://qudt.org/vocab/quantitykind/Momentum - 4-8 - https://doi.org/10.1351/goldbook.M04007 - - - - - - Voltage between the two terminals of a voltage source when there is no electric current through the source. - SourceVoltage - SourceTension - SourceVoltage - https://qudt.org/vocab/quantitykind/SourceVoltage - https://www.wikidata.org/wiki/Q185329 - 6-36 - Voltage between the two terminals of a voltage source when there is no electric current through the source. - - - - - - Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. - The difference in electric potential between two points. - Voltage - ElectricPotentialDifference - ElectricTension - Voltage - http://qudt.org/vocab/quantitykind/Voltage - 6-11.3 - The difference in electric potential between two points. - https://doi.org/10.1351/goldbook.V06635 - https://doi.org/10.1351/goldbook.A00424 + SpecificGasConstant + SpecificGasConstant + https://www.wikidata.org/wiki/Q94372268 + 5-26 - - - + + - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - Lethargy - Lethargy - https://qudt.org/vocab/quantitykind/Lethargy - https://www.wikidata.org/wiki/Q25508781 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 - 10-69 - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + ElectricCurrentPhasor + ElectricCurrentPhasor + https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor + https://www.wikidata.org/wiki/Q78514596 + 6-49 - - + + + + - + - The total luminous flux incident on a surface, per unit area. - Illuminance - Illuminance - http://qudt.org/vocab/quantitykind/Illuminance - The total luminous flux incident on a surface, per unit area. - https://doi.org/10.1351/goldbook.I02941 + A flow of electric charge. + ElectricCurrent + ElectricCurrent + http://qudt.org/vocab/quantitykind/ElectricCurrent + 6-1 + A flow of electric charge. + https://doi.org/10.1351/goldbook.E01927 - + + + + + T0 L+4 M0 I0 Θ0 N0 J0 + + + + + QuarticLengthUnit + QuarticLengthUnit + + + + + + Width of the forbidden energy band in a superconductor. + SuperconductorEnergyGap + SuperconductorEnergyGap + https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap + https://www.wikidata.org/wiki/Q106127898 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 + 12-37 + Width of the forbidden energy band in a superconductor. + + + - + - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - GibbsEnergy - GibbsFreeEnergy - GibbsEnergy - https://www.wikidata.org/wiki/Q334631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 - 5-20.5 - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - https://doi.org/10.1351/goldbook.G02629 + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + GapEnergy + BandgapEnergy + GapEnergy + https://www.wikidata.org/wiki/Q103982939 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 + 12-27.2 + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + https://doi.org/10.1351/goldbook.B00593 - - - - - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - SubjectiveProperty - SubjectiveProperty - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - The measure of beauty on a scale from 1 to 10. + + + + A simulation in which more than one model are solved together with a coupled method. + TightlyCoupledModelsSimulation + TightlyCoupledModelsSimulation + A simulation in which more than one model are solved together with a coupled method. + Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. - - - - - - - - - - + + + + + - - - 1 + + - - - - - - - - - - - - - A quantifiable property of a phenomenon, body, or substance. - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - Quantity - Measurand - Quantity - https://qudt.org/schema/qudt/Quantity - A quantifiable property of a phenomenon, body, or substance. - length -Rockwell C hardness -electric resistance - measurand - quantity - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". + + Mechanical property of linear elastic solid materials. + ModulusOfElasticity + YoungsModulus + ModulusOfElasticity + https://www.wikidata.org/wiki/Q2091584 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 + 4-19.1 + Mechanical property of linear elastic solid materials. + https://doi.org/10.1351/goldbook.M03966 + -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + + + + + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + PropagationCoefficient + PropagationCoefficient + https://qudt.org/vocab/quantitykind/PropagationCoefficient.html + https://www.wikidata.org/wiki/Q1434913 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 + 3-26.3 + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - - - - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. + + + + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + Fractography + Fractography + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + -This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. + + + + + OpticalTesting + OpticalTesting + -A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. + + + + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + CyclicChronopotentiometry + CyclicChronopotentiometry + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + chronopotentiometry where the change in applied current undergoes a cyclic current reversal + -e.g. you cannot evaluate the beauty of a person on objective basis. - Subjective - Subjective - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The beauty of that girl. -The style of your clothing. + + + + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + ElectrochemicalImpedanceSpectroscopy + EIS + ElectrochemicalImpedanceSpectroscopy + https://www.wikidata.org/wiki/Q3492904 + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + https://doi.org/10.1515/pac-2018-0109 - - + + - - SampleExtractionInstrument - SampleExtractionInstrument + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Impedimetry + Impedimetry + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + https://doi.org/10.1515/pac-2018-0109 - - - - Ruby - Ruby + + + + A meson with spin two. + TensorMeson + TensorMeson + A meson with spin two. - - - + + + + + + + + + + + - angular wavenumber of electrons in states on the Fermi sphere - FermiAnglularWaveNumber - FermiAnglularRepetency - FermiAnglularWaveNumber - https://qudt.org/vocab/quantitykind/FermiAngularWavenumber - https://www.wikidata.org/wiki/Q105554303 - 12-9.2 - angular wavenumber of electrons in states on the Fermi sphere + Mass per length. + LinearMassDensity + LinearDensity + LineicMass + LinearMassDensity + https://qudt.org/vocab/quantitykind/LinearDensity + https://www.wikidata.org/wiki/Q56298294 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 + 4-6 + Mass per length. - - - - - Magnitude of the wave vector. - AngularWavenumber - AngularRepetency - AngularWavenumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q30338487 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 - 3-22 - Magnitude of the wave vector. + + + + + SamplePreparationInstrument + SamplePreparationInstrument - + - T+1 L+2 M0 I0 Θ+1 N0 J0 + T-2 L0 M+1 I-1 Θ0 N0 J0 + + MagneticFluxDensityUnit + MagneticFluxDensityUnit + + + + - AreaTimeTemperatureUnit - AreaTimeTemperatureUnit + Unit for quantities of dimension one that are the fraction of two lengths. + LengthFractionUnit + LengthFractionUnit + Unit for quantities of dimension one that are the fraction of two lengths. + Unit for plane angle. - - + + + + + + + + + - Describes how raw data are corrected and/or modified through calibrations. - DataProcessingThroughCalibration - DataProcessingThroughCalibration - Describes how raw data are corrected and/or modified through calibrations. + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + CharacterisationSystem + CharacterisationSystem + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Measuring system - - - - - - - - - - - - - - - - - - - - A continuum that has no fixed shape and yields easily to external pressure. - Fluid - Fluid - A continuum that has no fixed shape and yields easily to external pressure. - Gas, liquid, plasma, - + + + + + + + + + + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - - - - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - ContinuumSubstance - ContinuumSubstance - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). +-- VIM + MeasuringSystem + MeasuringSystem + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. -A single continuum individual can be the whole fluid in a pipe. - A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. +-- VIM + measuring system - - - - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - CausalExpansion - CausalExpansion - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + + + + + Quotient of electron and hole mobility. + MobilityRatio + MobilityRatio + https://qudt.org/vocab/quantitykind/MobilityRatio + https://www.wikidata.org/wiki/Q106010255 + 12-31 + Quotient of electron and hole mobility. - - + + - + - - - - - - - + + - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - FundamentalInteraction - FundamentalInteraction - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + FundamentalAntiMatterParticle + FundamentalAntiMatterParticle - - + + + + - - + + - - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - SymbolicConstruct - SymbolicConstruct - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + + At a point in a fluid, the product of mass density and velocity. + MassFlow + MassFlow + https://www.wikidata.org/wiki/Q3265048 + 4-30.1 + At a point in a fluid, the product of mass density and velocity. - - - - In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - CentreOfMass - CentreOfMass - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - https://en.wikipedia.org/wiki/Center_of_mass + + + + + + + + + + + + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + A perspective in which entities are represented according to the variation of their properties. + Data + Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 + Contrast + Dedomena + Pattern + Data + A perspective in which entities are represented according to the variation of their properties. + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. - - + + + + A declaration that provides a sign for an object that is independent from any assignment rule. + Naming + Naming + A declaration that provides a sign for an object that is independent from any assignment rule. + A unique id attached to an entity. + + + + + - + - In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. - --- IEC - Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. - --- ISO 80000-3 - Vector r characterizing a point P in a point space with a given origin point O. - PositionVector - Position - PositionVector - http://qudt.org/vocab/quantitykind/PositionVector - Vector r characterizing a point P in a point space with a given origin point O. + Mass per unit area. + AreaDensity + AreaDensity + http://qudt.org/vocab/quantitykind/SurfaceDensity + https://doi.org/10.1351/goldbook.S06167 - - - - - - - - - - - - - + + + + + + - + + - - - - - - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. - Conventional - Conventional - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + + + + + FundamentalMatterParticle + FundamentalMatterParticle - - - - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - DerivedQuantity - DerivedQuantity - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - derived quantity + + + + + Factor taking into account health effects in the determination of the dose equivalent. + QualityFactor + QualityFactor + https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor + https://www.wikidata.org/wiki/Q2122099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 + 10-82 + Factor taking into account health effects in the determination of the dose equivalent. - - + + + + + Matter composed of only matter particles, excluding anti-matter particles. + OrdinaryMatter + OrdinaryMatter + Matter composed of only matter particles, excluding anti-matter particles. + + + + - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - Polishing - Polishing - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + + Probe + Probe + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. + In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. + In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) + In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). + In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry + + + + + + + + + + + + + + + + + + + + + + DownAntiQuarkType + DownAntiQuarkType - - - - - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. - BeginStep - BeginStep - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. + + + + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + ContinuumSubstance + ContinuumSubstance + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). + +A single continuum individual can be the whole fluid in a pipe. + A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. - - - - - - - - - - - + + - Charge number is a quantity of dimension one defined in ChargeNumber. - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - IonicStrength - IonicStrength - https://qudt.org/vocab/quantitykind/IonicStrength - https://www.wikidata.org/wiki/Q898396 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 - 9-42 - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - https://doi.org/10.1351/goldbook.I03180 + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. + NuclearSpinQuantumNumber + NuclearSpinQuantumNumber + https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber + https://www.wikidata.org/wiki/Q97577403 + 10-13.7 + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - - - + + + - for metals, the resistivity extrapolated to zero thermodynamic temperature - ResidualResistivity - ResidualResistivity - https://qudt.org/vocab/quantitykind/ResidualResistivity - https://www.wikidata.org/wiki/Q25098876 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 - 12-17 - for metals, the resistivity extrapolated to zero thermodynamic temperature + Number describing a particular state of a quantum system. + QuantumNumber + QuantumNumber + https://qudt.org/vocab/quantitykind/QuantumNumber + https://www.wikidata.org/wiki/Q232431 + 10-13.1 + Number describing a particular state of a quantum system. - - + - + - + - Electric field strength divided by the current density. - ElectricResistivity - Resistivity - ElectricResistivity - http://qudt.org/vocab/quantitykind/Resistivity - https://www.wikidata.org/wiki/Q108193 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 - 6-44 - https://doi.org/10.1351/goldbook.R05316 + quotient of number of acceptor levels and volume. + AcceptorDensity + AcceptorDensity + https://qudt.org/vocab/quantitykind/AcceptorDensity + https://www.wikidata.org/wiki/Q105979968 + 12-29.5 + quotient of number of acceptor levels and volume. - + - - - T0 L-1 M+1 I0 Θ0 N0 J0 - + + + + + + - - - MassPerLengthUnit - MassPerLengthUnit - + + + The interest is on the 4D object as it extends in time (process) or as it persists in time (object): +- object (focus on spatial configuration) +- process (focus on temporal evolution) - - - - Average power over a period. - ActivePower - ActivePower - https://qudt.org/vocab/quantitykind/ActivePower - https://www.wikidata.org/wiki/Q20820042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 - 6-56 - Average power over a period. - +The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. - - - - Represents every type of data that is produced during a characterisation process - CharacterisationData - CharacterisationData - Represents every type of data that is produced during a characterisation process - +For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. - - - - - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - PureParallelWorkflow - EmbarassinglyParallelWorkflow - PureParallelWorkflow - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - +Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. - - - - A causal object which is tessellated with only spatial direct parts. - The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. -This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. - The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. - Arrangement - MereologicalState - Arrangement - A causal object which is tessellated with only spatial direct parts. - e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. +This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). -If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. +The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. + The union of the object or process classes. + Persistence + Persistence + The union of the object or process classes. - - - - ParallelWorkflow - ParallelWorkflow + + + + DrawForms + DrawForms - - - + + + + + - - + + - - Subatomic particle which contains an odd number of valence quarks, at least 3. - Baryon - Baryon - Subatomic particle which contains an odd number of valence quarks, at least 3. - https://en.wikipedia.org/wiki/Baryon + + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + File + File + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - - - - - - - - - - - - - CompositeFermion - CompositeFermion - Examples of composite particles with half-integer spin: -spin 1/2: He3 in ground state, proton, neutron -spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) + + + + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + DigitalData + BinaryData + DigitalData + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + + + + + + + ShearOrTorsionTesting + ShearOrTorsionTesting + + + + + + + + + + + + + + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + Theorisation + Theorization + Theorisation + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - + - - + + - - - Particles composed of two or more quarks. - Hadron - Hadron - Particles composed of two or more quarks. - https://en.wikipedia.org/wiki/Hadron - - - - - - - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. - RatioOfSpecificHeatCapacities - RatioOfSpecificHeatCapacities - https://qudt.org/vocab/quantitykind/HeatCapacityRatio - https://www.wikidata.org/wiki/Q503869 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 - 5-17.1 - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. - - - - - - + - - + + + + + + + + + + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Determination + Characterisation + Determination + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. + + + + + - + + + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + A whole is categorized as fundamental (or maximal) or redundant (non-maximal). + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + Whole + Whole + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + + + + - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - CharacterisationMeasurementInstrument - CharacterisationMeasurementInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - In nanoindentation is the nanoindenter - Measuring instrument + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + DynamicMechanicalAnalysis + DynamicMechanicalAnalysis + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - - - - A measuring instrument that can be used alone is a measuring system. - Device used for making measurements, alone or in conjunction with one or more supplementary devices. + + + + Average power over a period. + ActivePower + ActivePower + https://qudt.org/vocab/quantitykind/ActivePower + https://www.wikidata.org/wiki/Q20820042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 + 6-56 + Average power over a period. + --- VIM - MeasuringInstrument - MeasuringInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary devices. + + + + A direct part that is obtained by partitioning a whole purely in temporal parts. + TemporalTile + TemporalTile + A direct part that is obtained by partitioning a whole purely in temporal parts. + --- VIM - measuring instrument + + + + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + PhotoluminescenceMicroscopy + PhotoluminescenceMicroscopy + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - - - - - Extrusion - Extrusion + + + + + + + + + + + + + + + + + + + + + CharmQuark + CharmQuark + https://en.wikipedia.org/wiki/Charm_quark - - - - - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. - ReshapeManufacturing - DIN 8580:2020 - Forming - Umformen - ReshapeManufacturing - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. + + + + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + CompressionTesting + CompressionTesting + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + + + + + + + Measure of the tendency of a solution to take in pure solvent by osmosis. + OsmoticPressure + OsmoticPressure + https://qudt.org/vocab/quantitykind/OsmoticPressure + https://www.wikidata.org/wiki/Q193135 + 9-28 + Measure of the tendency of a solution to take in pure solvent by osmosis. + https://doi.org/10.1351/goldbook.O04344 + + + + + + + Angle between the scattered ray and the lattice plane. + BraggAngle + BraggAngle + https://qudt.org/vocab/quantitykind/BraggAngle + https://www.wikidata.org/wiki/Q105488118 + 12-4 + Angle between the scattered ray and the lattice plane. + + + + + + + RedDownQuark + RedDownQuark + + + + + + Unit for quantities of dimension one that are the fraction of two areas. + AreaFractionUnit + AreaFractionUnit + Unit for quantities of dimension one that are the fraction of two areas. + Unit for solid angle. + + + + + + + + + + + + + + + SecondAxialMomentOfArea + SecondAxialMomentOfArea + https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea + https://www.wikidata.org/wiki/Q91405496 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 + 4-21.1 + + + + + + + Ratio of transverse strain to axial strain. + PoissonNumber + PoissonsRatio + PoissonNumber + https://www.wikidata.org/wiki/Q190453 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 + 4-18 + Ratio of transverse strain to axial strain. - - - - VaporDeposition - VaporDeposition + + + + + + + + + + + + + An icon that not only resembles the object, but also can express some of the object's functions. + Replica + Replica + An icon that not only resembles the object, but also can express some of the object's functions. + A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. + Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). - - - - FormingFromGas - FormingFromGas + + + + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + Coulometry + Coulometry + https://www.wikidata.org/wiki/Q1136979 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + https://en.wikipedia.org/wiki/Coulometry + https://doi.org/10.1515/pac-2018-0109 - - + + + + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + ElectrochemicalTesting + http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 + ElectrochemicalTesting + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + + + + + + + + - - T-2 L0 M+1 I0 Θ0 N0 J0 + + - - + - ForcePerLengthUnit - ForcePerLengthUnit + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + DoseEquivalent + DoseEquivalent + http://qudt.org/vocab/quantitykind/DoseEquivalent + 10-83.1 + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + https://doi.org/10.1351/goldbook.E02101 - - + + + + + + - - T-3 L-1 M+1 I0 Θ0 N0 J0 + + - - + - PressurePerTimeUnit - PressurePerTimeUnit - - - - - - GravitySintering - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder - Loose-powderSintering - PressurelessSintering - GravitySintering + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + DecayConstant + DisintegrationConstant + DecayConstant + https://qudt.org/vocab/quantitykind/DecayConstant + https://www.wikidata.org/wiki/Q11477200 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 + 10-24 + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + https://doi.org/10.1351/goldbook.D01538 - - - + + + - Square root of the slowing down area. - SlowingDownLength - SlowingDownLength - https://qudt.org/vocab/quantitykind/Slowing-DownLength - https://www.wikidata.org/wiki/Q98996963 - 10-73.1 - Square root of the slowing down area. + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + UpperCriticalMagneticFluxDensity + UpperCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127634 + 12-36.3 + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - - - + + + + + + + + + + - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - FastFissionFactor - FastFissionFactor - https://qudt.org/vocab/quantitykind/FastFissionFactor - https://www.wikidata.org/wiki/Q99197493 - 10-75 - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + GaugePressure + GaugePressure + https://www.wikidata.org/wiki/Q109594211 + 4-14.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The class of individuals that stand for gluons elementary particles. - Gluon - Gluon - The class of individuals that stand for gluons elementary particles. - https://en.wikipedia.org/wiki/Gluon + + + + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + Numerical + Numerical + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - + - - - T-1 L+4 M0 I0 Θ0 N0 J0 - + + + + + + - - - QuarticLengthPerTimeUnit - QuarticLengthPerTimeUnit - - - - - - An interpreted computer language for job control in computing. - CommandLanguage - CommandLanguage - An interpreted computer language for job control in computing. - Unix shell. -Batch programming languages. - https://en.wikipedia.org/wiki/Command_language + + + + + + + + + + + + + + MathematicalSymbol + MathematicalSymbol - - - - - - - - - - - - - - - FundamentalAntiMatterParticle - FundamentalAntiMatterParticle + + + + Quantities categorised according to ISO 80000-8. + AcousticQuantity + AcousticQuantity + Quantities categorised according to ISO 80000-8. - - - - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - - ScanningAugerElectronMicroscopy - AES - ScanningAugerElectronMicroscopy - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + + + + + + + + + + + + + + Number of direct parts of a Reductionistic. + Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. + NumberOfElements + NumberOfElements + Number of direct parts of a Reductionistic. - - - - Describes what is needed to repeat the experiment - AccessConditions - AccessConditions - Describes what is needed to repeat the experiment - In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? + + + + + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + MigrationArea + MigrationArea + https://qudt.org/vocab/quantitykind/MigrationArea + https://www.wikidata.org/wiki/Q98966325 + 10-72.3 + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - - - - - T0 L+2 M0 I0 Θ-1 N0 J0 - - - - - AreaPerTemperatureUnit - AreaPerTemperatureUnit + + + + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + Tempering + QuenchingAndTempering + Vergüten + Tempering + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - - - + + + - Chosen value of amount concentration, usually equal to 1 mol dm−3. - StandardAmountConcentration - StandardConcentration - StandardMolarConcentration - StandardAmountConcentration - https://www.wikidata.org/wiki/Q88871689 - Chosen value of amount concentration, usually equal to 1 mol dm−3. - 9-12.2 - https://doi.org/10.1351/goldbook.S05909 + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + MeanLinearRange + MeanLinearRange + https://qudt.org/vocab/quantitykind/MeanLinearRange + https://www.wikidata.org/wiki/Q98681589 + 10-56 + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + https://doi.org/10.1351/goldbook.M03782 - - + + + - - + - The amount of a constituent divided by the volume of the mixture. - AmountConcentration - Concentration - MolarConcentration - Molarity - AmountConcentration - http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB - https://doi.org/10.1351/goldbook.A00295 + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + TotalLinearStoppingPower + LinearStoppingPower + TotalLinearStoppingPower + https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower + https://www.wikidata.org/wiki/Q908474 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 + 10-54 + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + https://doi.org/10.1351/goldbook.S06035 - - - - - T0 L0 M0 I0 Θ0 N-1 J0 - - - - - PerAmountUnit - PerAmountUnit + + + + An analytical technique used for the elemental analysis or chemical characterization of a sample. + EnergyDispersiveXraySpectroscopy + EDS + EDX + EnergyDispersiveXraySpectroscopy + https://www.wikidata.org/wiki/Q386334 + An analytical technique used for the elemental analysis or chemical characterization of a sample. + https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy - - - - - T+4 L-1 M-1 I+2 Θ0 N0 J0 - - - + + + + + - CapacitancePerLengthUnit - CapacitancePerLengthUnit + ThermodynamicCriticalMagneticFluxDensity + ThermodynamicCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106103200 + 12-36.1 - + - T-2 L+2 M+1 I0 Θ0 N-1 J0 + T-3 L0 M+1 I0 Θ-4 N0 J0 - - EnergyPerAmountUnit - EnergyPerAmountUnit + + MassPerCubicTimeQuarticTemperatureUnit + MassPerCubicTimeQuarticTemperatureUnit - - - - - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - NuclearPrecessionAngularFrequency - NuclearPrecessionAngularFrequency - https://www.wikidata.org/wiki/Q97641779 - 10-15.3 - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + + + + + + + + + + + + + + + + + + + + UpQuarkType + UpQuarkType - - - - - + + + + + + + - + + - - - - - - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - Task - Job - Task - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + + + + + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + CompositePhysicalParticle + CompositePhysicalParticle + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - - - + + + + BPMNDiagram + BPMNDiagram + + + + + + + T-1 L-1 M+1 I0 Θ0 N0 J0 + + + - Expectation value of the energy imparted. - MeanEnergyImparted - MeanEnergyImparted - https://qudt.org/vocab/quantitykind/MeanEnergyImparted - https://www.wikidata.org/wiki/Q99526969 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 - 10-80.2 - Expectation value of the energy imparted. + MassPerLengthTimeUnit + MassPerLengthTimeUnit @@ -13977,1221 +13901,1282 @@ It means that you can declare that e.g. tightening a bolt is a task of building Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. - - - + + + - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - ExchangeIntegral - ExchangeIntegral - https://qudt.org/vocab/quantitykind/ExchangeIntegral - https://www.wikidata.org/wiki/Q10882959 - 12-34 - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - - - - - - - - - - - - - - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - CondensedMatter - CondensedMatter - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - - - - - - - - - - - - - - - - - - - - - - - - Deals with entities that have a defined shape. - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - Manufacturing - DIN 8580:2020 - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - Manufacturing - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - Deals with entities that have a defined shape. - https://de.wikipedia.org/wiki/Fertigungsverfahren - - - - - - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. - - SampledDCPolarography - TASTPolarography - SampledDCPolarography - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - https://doi.org/10.1515/pac-2018-0109 - - - - - - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - DCPolarography - DCPolarography - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - https://doi.org/10.1515/pac-2018-0109 + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + ReactorTimeConstant + ReactorTimeConstant + https://qudt.org/vocab/quantitykind/ReactorTimeConstant + https://www.wikidata.org/wiki/Q99518950 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 + 10-79 + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - - + + + - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - RotationalFrequency - RotationalFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 - 3-17.2 - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + angular wavenumber of electrons in states on the Fermi sphere + FermiAnglularWaveNumber + FermiAnglularRepetency + FermiAnglularWaveNumber + https://qudt.org/vocab/quantitykind/FermiAngularWavenumber + https://www.wikidata.org/wiki/Q105554303 + 12-9.2 + angular wavenumber of electrons in states on the Fermi sphere - - - - - - - - - - - + + + - Logarithmic measure of the number of available states of a system. - May also be referred to as a measure of order of a system. - Entropy - Entropy - http://qudt.org/vocab/quantitykind/Entropy - 5-18 - https://doi.org/10.1351/goldbook.E02149 + Magnitude of the wave vector. + AngularWavenumber + AngularRepetency + AngularWavenumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q30338487 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 + 3-22 + Magnitude of the wave vector. - - + + + - PermanentLiquidPhaseSintering - PermanentLiquidPhaseSintering - - - - - - - Partition function of a molecule. - MolecularPartitionFunction - MolecularPartitionFunction - https://www.wikidata.org/wiki/Q96192064 - 9-35.4 - Partition function of a molecule. + An object which is an holistic spatial part of a process. + Participant + Participant + An object which is an holistic spatial part of a process. + A student during an examination. - - - - - T-2 L+3 M0 I0 Θ0 N0 J0 - - - - - VolumePerSquareTimeUnit - VolumePerSquareTimeUnit + + + + An holistic spatial part of a whole. + NonTemporalRole + HolisticSpatialPart + NonTemporalRole + An holistic spatial part of a whole. - - - - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - Computation - Computation - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - A matematician that calculates 2+2. -A computation machine that calculate the average value of a dataset. + + + + + A coarse dispersion of liquid in a solid continuum phase. + SolidLiquidSuspension + SolidLiquidSuspension + A coarse dispersion of liquid in a solid continuum phase. - + - - + + - - - - - - CompositeBoson - CompositeBoson - Examples of composite particles with integer spin: -spin 0: H1 and He4 in ground state, pion -spin 1: H1 and He4 in first excited state, meson -spin 2: O15 in ground state. + + + + + + SolidMixture + SolidMixture - - - - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - Ellipsometry - Ellipsometry - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + + + + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + HyperfineStructureQuantumNumber + HyperfineStructureQuantumNumber + https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber + https://www.wikidata.org/wiki/Q97577449 + 10-13.8 + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - - - - - + + + + + + - + + + + + + + - - - - - - A 'Sign' that stands for an 'Object' due to causal continguity. - Index - Signal - Index - A 'Sign' that stands for an 'Object' due to causal continguity. - Smoke stands for a combustion process (a fire). -My facial expression stands for my emotional status. - - - - - - Unit for quantities of dimension one that are the fraction of two amount of substance. - AmountFractionUnit - AmountFractionUnit - Unit for quantities of dimension one that are the fraction of two amount of substance. - Unit for amount fraction. + + + + + A continuum that has no fixed shape and yields easily to external pressure. + Fluid + Fluid + A continuum that has no fixed shape and yields easily to external pressure. + Gas, liquid, plasma, - - + + + - - T+2 L0 M+1 I0 Θ0 N0 J0 + + - - - - MassSquareTimeUnit - MassSquareTimeUnit + + + An 'equation' that has parts two 'polynomial'-s + AlgebricEquation + AlgebricEquation + 2 * a - b = c - - - + + + - MicrocanonicalPartitionFunction - MicrocanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96106546 - 9-35.1 - - - - - - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - Milling - Fräsen - Milling + Square root of the migration area, M^2. + MigrationLength + MigrationLength + https://qudt.org/vocab/quantitykind/MigrationLength + https://www.wikidata.org/wiki/Q98998318 + 10-73.3 + Square root of the migration area, M^2. - + - + - + - At a point in a fluid, the product of mass density and velocity. - MassFlow - MassFlow - https://www.wikidata.org/wiki/Q3265048 - 4-30.1 - At a point in a fluid, the product of mass density and velocity. + Negative quotient of Helmholtz energy and temperature. + MassieuFunction + MassieuFunction + https://qudt.org/vocab/quantitykind/MassieuFunction + https://www.wikidata.org/wiki/Q3077625 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 + 5-22 + Negative quotient of Helmholtz energy and temperature. - - + + + + + - - + + + + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + PeltierCoefficient + PeltierCoefficient + https://qudt.org/vocab/quantitykind/PeltierCoefficient + https://www.wikidata.org/wiki/Q105801003 + 12-22 + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + + + + + + + - - + + - - + + + + + + - - Deduction - IndexSemiosis - Deduction + + Quantity representing the spatial distribution of mass in a continuous material. + Density + MassConcentration + MassDensity + Density + http://qudt.org/vocab/quantitykind/Density + Mass per volume. + 4-2 + 9-10 + https://doi.org/10.1351/goldbook.D01590 - - - - - An object which is an holistic spatial part of a process. - Participant - Participant - An object which is an holistic spatial part of a process. - A student during an examination. + + + + Folding + Folding - - - - - TauAntiNeutrino - TauAntiNeutrino + + + + FormingJoin + FormingJoin + + + + + + Voltage phasor multiplied by complex conjugate of the current phasor. + ComplexPower + ComplexApparentPower + ComplexPower + https://qudt.org/vocab/quantitykind/ComplexPower + https://www.wikidata.org/wiki/Q65239736 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 + 6-59 + Voltage phasor multiplied by complex conjugate of the current phasor. + + + + + + + T0 L-2 M0 I0 Θ0 N+1 J0 + + + + + AmountPerAreaUnit + AmountPerAreaUnit + + + + + + + T0 L-3 M0 I0 Θ0 N+1 J0 + + + + + AmountConcentrationUnit + AmountConcentrationUnit - - - - Matter composed of both matter and antimatter fundamental particles. - HybridMatter - HybridMatter - Matter composed of both matter and antimatter fundamental particles. + + + + + T0 L0 M+1 I0 Θ0 N0 J0 + + + + + MassUnit + MassUnit - - - - - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - DiffusionLength - DiffusionLength - https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength - https://www.wikidata.org/wiki/Q106097176 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 - 12-33 - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. + + + + A language object that follows syntactic rules of a programming language. + A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. + ProgrammingLanguage + Code + SoftwareCode + ProgrammingLanguage + A language object that follows syntactic rules of a programming language. + A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. + Entities are not necessarily digital data, but can be code fragments printed on paper. - - - - - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - FermiEnergy - FermiEnergy - https://qudt.org/vocab/quantitykind/FermiEnergy - https://www.wikidata.org/wiki/Q431335 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 - 12-27.1 - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - https://doi.org/10.1351/goldbook.F02340 + + + + Punctuation + Punctuation - - - - Observed - Observed - The biography of a person met by the author. + + + + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + Dilatometry + https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. + Dilatometry + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - - - - - - - - - - - - - - - - - - - - UpQuarkType - UpQuarkType + + + + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + Annealing + Annealing + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - + - T0 L+3 M0 I0 Θ-1 N0 J0 + T0 L0 M+1 I0 Θ+1 N0 J0 - VolumePerTemperatureUnit - VolumePerTemperatureUnit + MassTemperatureUnit + MassTemperatureUnit - + + + + + + + + + + + + + A material that is obtained through a manufacturing process. + ManufacturedMaterial + EngineeredMaterial + ProcessedMaterial + ManufacturedMaterial + A material that is obtained through a manufacturing process. + + + + + + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + Perspective + Perspective + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + + + - T-1 L-3 M0 I0 Θ0 N+1 J0 + T-1 L+3 M0 I0 Θ0 N0 J0 - AmountPerVolumeTimeUnit - AmountPerVolumeTimeUnit + VolumePerTimeUnit + VolumePerTimeUnit - - - - - A generic step in a workflow, that is not the begin or the end. - InternalStep - InternalStep - A generic step in a workflow, that is not the begin or the end. + + + + Diffusion coefficient through the pore space of a porous media. + EffectiveDiffusionCoefficient + EffectiveDiffusionCoefficient + https://www.wikidata.org/wiki/Q258852 + Diffusion coefficient through the pore space of a porous media. - - - - In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - MetrologicalUncertainty - A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. - MetrologicalUncertainty - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - - Standard deviation -- Half-width of an interval with a stated coverage probability - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + + + + + + + + + + + + + Proportionality constant in some physical laws. + DiffusionCoefficient + DiffusionCoefficient + Proportionality constant in some physical laws. - - - - - ShearOrTorsionTesting - ShearOrTorsionTesting + + + + ProductionEngineering + ProductionEngineering - - - + + + + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. + +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + ProcessEngineeringProcess + ProcessEngineeringProcess + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. + +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + https://de.wikipedia.org/wiki/Verfahrenstechnik + + + + + - Inverse of the quality factor. - LossFactor - LossFactor - https://qudt.org/vocab/quantitykind/LossFactor - https://www.wikidata.org/wiki/Q79468728 - 6-54 - Inverse of the quality factor. + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + DisplacementVector + DisplacementVector + https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon + https://www.wikidata.org/wiki/Q105533558 + 12-7.3 + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + + + + + + vector quantity between any two points in space + Displacement + Displacement + https://qudt.org/vocab/quantitykind/Displacement + https://www.wikidata.org/wiki/Q190291 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 + https://dbpedia.org/page/Displacement_(geometry) + 3-1.11 + vector quantity between any two points in space + https://en.wikipedia.org/wiki/Displacement_(geometry) - + - T+2 L+1 M-1 I0 Θ+1 N0 J0 + T+1 L+1 M0 I0 Θ+1 N0 J0 - TemperaturePerPressureUnit - TemperaturePerPressureUnit + LengthTimeTemperatureUnit + LengthTimeTemperatureUnit - - - - - A process which is an holistic spatial part of a process. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - SubProcess - SubProcess - A process which is an holistic spatial part of a process. - Breathing is a subprocess of living for a human being. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + + + + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + A material process requires the output to be classified as an individual of a material subclass. + MaterialsProcessing + ContinuumManufacturing + MaterialsProcessing + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. + A material process requires the output to be classified as an individual of a material subclass. - + + + - - + - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - LuminousIntensity - LuminousIntensity - http://qudt.org/vocab/quantitykind/LuminousIntensity - 7-14 - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - + "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." - - - - Quantities categorised according to ISO 80000-7. - LightAndRadiationQuantity - LightAndRadiationQuantity - Quantities categorised according to ISO 80000-7. +-- SI Brochure + The number of elementary entities present. + AmountOfSubstance + AmountOfSubstance + http://qudt.org/vocab/quantitykind/AmountOfSubstance + 9-2 + The number of elementary entities present. + https://doi.org/10.1351/goldbook.A00297 - - + + + + + + + + + + + + + + + + + + + + + + + + + 1 + + - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - DynamicMechanicalSpectroscopy - DMA - DynamicMechanicalSpectroscopy - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. + CalibrationProcess + CalibrationProcess + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - - + + + + + T-2 L+2 M0 I0 Θ-1 N0 J0 + + + - Inverse of the time constant of an exponentially varying quantity. - DampingCoefficient - DampingCoefficient - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 - 3-24 - Inverse of the time constant of an exponentially varying quantity. + EntropyPerMassUnit + EntropyPerMassUnit - - - - - Angle between the scattered ray and the lattice plane. - BraggAngle - BraggAngle - https://qudt.org/vocab/quantitykind/BraggAngle - https://www.wikidata.org/wiki/Q105488118 - 12-4 - Angle between the scattered ray and the lattice plane. + + + + + + + + + + + + Either a proton or a neutron. + Nucleon + Nucleon + Either a proton or a neutron. + https://en.wikipedia.org/wiki/Nucleon - - - + + + + + + + + + + + Subatomic particle which contains an odd number of valence quarks, at least 3. + Baryon + Baryon + Subatomic particle which contains an odd number of valence quarks, at least 3. + https://en.wikipedia.org/wiki/Baryon + + + + + + + + + + + + + - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - CoefficientOfFriction - FrictionCoefficient - FrictionFactor - CoefficientOfFriction - https://www.wikidata.org/wiki/Q1932524 - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - https://doi.org/10.1351/goldbook.F02530 + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + ElectricFieldStrength + ElectricFieldStrength + https://qudt.org/vocab/quantitykind/ElectricFieldStrength + https://www.wikidata.org/wiki/Q20989 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 + 6-10 + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - - - + + + + + + + + + + + + + + + + + + + - GreenBottomAntiQuark - GreenBottomAntiQuark + UpAntiQuark + UpAntiQuark - - - - - - - 1 - - - - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - IRI - IRI - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - https://en.wiktionary.org/wiki/Ῥόδος - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier + + + + + + + + + + + + + + + + + + + + UpAntiQuarkType + UpAntiQuarkType - + + - - + - Measure of how resistant to compressibility a substance is. - ModulusOfCompression - BulkModulus - ModulusOfCompression - https://qudt.org/vocab/quantitykind/BulkModulus - https://www.wikidata.org/wiki/Q900371 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 - 4-19.3 - Measure of how resistant to compressibility a substance is. + Number of slowed-down particles per time and volume. + SlowingDownDensity + SlowingDownDensity + https://qudt.org/vocab/quantitykind/Slowing-DownDensity + https://www.wikidata.org/wiki/Q98915830 + 10-67 + Number of slowed-down particles per time and volume. - - + + + - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - Plasma - Plasma - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + Solid + Solid + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - - - - Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. - NewtonianConstantOfGravity - NewtonianConstantOfGravity - http://qudt.org/vocab/constant/NewtonianConstantOfGravitation - https://doi.org/10.1351/goldbook.G02695 + + + + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + AtomicForceMicroscopy + AtomicForceMicroscopy + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - - - + + + - A process which is an holistic temporal part of a process. - Stage - Stage - A process which is an holistic temporal part of a process. - Moving a leg is a stage of the process of running. - - - - - - - T+1 L+2 M0 I0 Θ0 N0 J0 - - - - - AreaTimeUnit - AreaTimeUnit - - - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - TensileForming - Zugdruckumformen - TensileForming + An object which is an holistic spatial part of a object. + Constituent + ObjectPart + Constituent + An object which is an holistic spatial part of a object. + A tire is a constituent of a car. - - + + - - Conventional radius of sphere in which the nuclear matter is included, - NuclearRadius - NuclearRadius - https://qudt.org/vocab/quantitykind/NuclearRadius - https://www.wikidata.org/wiki/Q3535676 - 10-19.1 - Conventional radius of sphere in which the nuclear matter is included, - - - - - - Distance from the centre of a circle to the circumference. - Radius - Radius - https://qudt.org/vocab/quantitykind/Radius - https://www.wikidata.org/wiki/Q173817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 - https://dbpedia.org/page/Radius - 3-1.6 - Distance from the centre of a circle to the circumference. - https://en.wikipedia.org/wiki/Radius - - - - - - ArithmeticEquation - ArithmeticEquation - 1 + 1 = 2 - - - - - - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - HardeningByRolling - VerfestigendurchWalzen - HardeningByRolling - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - - - - - - HardeningByForming - Verfestigen durch Umformen - HardeningByForming - - - - - - - - - - - - - - - - + + - - + + - - Cognition - IconSemiosis - Cognition - - - - - - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. - ResonanceEnergy - ResonanceEnergy - https://qudt.org/vocab/quantitykind/ResonanceEnergy - https://www.wikidata.org/wiki/Q98165187 - 10-37.2 - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + Time derivative of kerma. + KermaRate + KermaRate + https://qudt.org/vocab/quantitykind/KermaRate + https://www.wikidata.org/wiki/Q99713105 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 + 10-86.2 + Time derivative of kerma. - + - T+3 L-3 M-1 I+2 Θ0 N-1 J0 + T0 L-2 M+1 I0 Θ0 N0 J0 - - - ElectricConductivityPerAmountUnit - ElectricConductivityPerAmountUnit - - - - - - GluonType1 - GluonType1 - - - - - - - In nuclear physics, the multiplication factor for an infinite medium. - InfiniteMultiplicationFactor - InfiniteMultiplicationFactor - https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor - https://www.wikidata.org/wiki/Q99440487 - 10-78.2 - In nuclear physics, the multiplication factor for an infinite medium. + + + AreaDensityUnit + AreaDensityUnit - - + + + - Quantities categorised according to ISO 80000-8. - AcousticQuantity - AcousticQuantity - Quantities categorised according to ISO 80000-8. + Proportionality constant between the particle current density J and the gradient of the particle number density n. + DiffusionCoefficientForParticleNumberDensity + DiffusionCoefficientForParticleNumberDensity + https://www.wikidata.org/wiki/Q98875545 + 10-64 + Proportionality constant between the particle current density J and the gradient of the particle number density n. - - + + - An object which supports the specimen in the correct position for the characterisation process. - Holder - Holder - An object which supports the specimen in the correct position for the characterisation process. + Chronopotentiometry where the applied current is changed linearly. + LinearChronopotentiometry + LinearChronopotentiometry + Chronopotentiometry where the applied current is changed linearly. + chronopotentiometry where the applied current is changed linearly - + + + + A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + MaterialRelation + MaterialRelation + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + The Lennard-Jones potential. +A force field. +An Hamiltonian. + + + + + + CompiledLanguage + CompiledLanguage + + + - T0 L+5 M0 I0 Θ0 N0 J0 + T+1 L-3 M0 I+1 Θ0 N0 J0 - - SectionAreaIntegralUnit - SectionAreaIntegralUnit + + ElectricChargeDensityUnit + ElectricChargeDensityUnit - - - + + - RedDownAntiQuark - RedDownAntiQuark + GluonType3 + GluonType3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - RedAntiQuark - RedAntiQuark + + + + A building or group of buildings where goods are manufactured or assembled. + Factory + IndustrialPlant + Factory + A building or group of buildings where goods are manufactured or assembled. - - + + - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Conductometry - Conductometry - https://www.wikidata.org/wiki/Q901180 - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Monitoring of the purity of deionized water. - https://en.wikipedia.org/wiki/Conductometry - https://doi.org/10.1515/pac-2018-0109 + + DifferentialRefractiveIndex + DifferentialRefractiveIndex - - - - - - - - - - - - - - - - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - Fermion - Fermion - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion - + + + + "The unit one is the neutral element of any system of units – necessary and present automatically." - - - - - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - TotalAngularMomentum - TotalAngularMomentum - https://qudt.org/vocab/quantitykind/TotalAngularMomentum - https://www.wikidata.org/wiki/Q97496506 - 10-11 - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. +-- SI Brochure + Represents the number 1, used as an explicit unit to say something has no units. + UnitOne + Unitless + UnitOne + http://qudt.org/vocab/unit/UNITLESS + Represents the number 1, used as an explicit unit to say something has no units. + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Refractive index or volume fraction. + Typically used for ratios of two units whos dimensions cancels out. - - - - - - - - - - - + + - The human operator who takes care of the whole characterisation method or sub-processes/stages. - Operator - Operator - The human operator who takes care of the whole characterisation method or sub-processes/stages. + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + DifferentialLinearPulseVoltammetry + DifferentialLinearPulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - - - - - T-2 L-1 M+1 I0 Θ0 N0 J0 - - - + + + - PressureUnit - PressureUnit + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + WaveVector + WaveVector + https://www.wikidata.org/wiki/Q657009 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 + 3-21 + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + https://en.wikipedia.org/wiki/Wave_vector - - - + + + - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - RelativePermeability - RelativePermeability - https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio - https://www.wikidata.org/wiki/Q77785645 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 - 6-27 - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - https://doi.org/10.1351/goldbook.R05272 + MolarEnthalpy + MolarEnthalpy + Enthalpy per amount of substance. + https://www.wikidata.org/wiki/Q88769977 + 9-6.2 + + + + + + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + HardeningByRolling + VerfestigendurchWalzen + HardeningByRolling + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + + + + Irradiate + Irradiate - - + + + - - + + - A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. - FineStructureConstant - FineStructureConstant - http://qudt.org/vocab/constant/FineStructureConstant - https://doi.org/10.1351/goldbook.F02389 - - - - - - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - NuclearSpinQuantumNumber - NuclearSpinQuantumNumber - https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber - https://www.wikidata.org/wiki/Q97577403 - 10-13.7 - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - - - - - - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - RadialDistance - RadialDistance - https://qudt.org/vocab/quantitykind/RadialDistance - https://www.wikidata.org/wiki/Q1578234 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 - 3-1.9 - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + Reciprocal of the thermal resistance. + ThermalConductance + ThermalConductance + https://qudt.org/vocab/quantitykind/ThermalConductance + https://www.wikidata.org/wiki/Q17176562 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 + 5-13 + Reciprocal of the thermal resistance. + https://doi.org/10.1351/goldbook.T06298 - + + - + - Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - Torque - Torque - http://qudt.org/vocab/quantitykind/Torque - 4-12.2 - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - https://doi.org/10.1351/goldbook.T06400 + Differential quotient of fluence Φ with respect to time. + ParticleFluenceRate + ParticleFluenceRate + https://qudt.org/vocab/quantitykind/ParticleFluenceRate + https://www.wikidata.org/wiki/Q98497410 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 + 10-44 + Differential quotient of fluence Φ with respect to time. - - + + + + + + + + + + - Sum of electric current and displacement current - TotalCurrent - TotalCurrent - https://qudt.org/vocab/quantitykind/TotalCurrent - https://www.wikidata.org/wiki/Q77679732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 - 6-19.2 - Sum of electric current and displacement current + Power transferred per unit area. + Intensity + Intensity + Power transferred per unit area. + https://en.wikipedia.org/wiki/Intensity_(physics) - - + + + - - T0 L0 M0 I0 Θ0 N0 J+1 + + + + + + - - + + + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + JunctionTile + JunctionTile + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + + + + + + Unit for quantities of dimension one that are the fraction of two volumes. + VolumeFractionUnit + VolumeFractionUnit + Unit for quantities of dimension one that are the fraction of two volumes. + Unit for volume fraction. + + + + + - LuminousIntensityUnit - LuminousIntensityUnit + Degenerency + Multiplicity + Degenerency + https://www.wikidata.org/wiki/Q902301 + 9-36.2 + https://doi.org/10.1351/goldbook.D01556 - - - - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - Pressing - Anpressen - Pressing + + + + + HardwareModel + HardwareModel - - - - - GreenCharmAntiQuark - GreenCharmAntiQuark + + + + + CharacterisationHardwareSpecification + CharacterisationHardwareSpecification - - - + + + + Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + Amperometry + Amperometry + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + https://doi.org/10.1515/pac-2018-0109 + + + + - + - - - - - - - + + - - CharmAntiQuark - CharmAntiQuark + + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + The union of hadron and lepton, or fermion and bosons. + PhysicalParticle + Particle + PhysicalParticle + The union of hadron and lepton, or fermion and bosons. + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + + + + + + Parameter for diffusion and fluid flow in porous media. + Tortuosity + Tortuosity + https://www.wikidata.org/wiki/Q2301683 + Parameter for diffusion and fluid flow in porous media. + + + + + + + ActivityCoefficient + ActivityCoefficient + https://qudt.org/vocab/quantitykind/ActivityCoefficient + https://www.wikidata.org/wiki/Q745224 + 9-25 + https://doi.org/10.1351/goldbook.A00116 + + + + + + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + +It is advisory to create a uniquely defined subclass these units for concrete usage. + LogarithmicUnit + LogarithmicUnit + http://qudt.org/schema/qudt/LogarithmicUnit + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Decibel + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + +It is advisory to create a uniquely defined subclass these units for concrete usage. + https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units + + + + + + + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + RelaxationTime + RelaxationTime + https://www.wikidata.org/wiki/Q106041085 + 12-32.1 + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - - - - Determined - Determined + + + + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + TimeConstant + TimeConstant + https://www.wikidata.org/wiki/Q1335249 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 + 3-15 + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - - - + + - - - - - - - - Mass increment per time. - MassChangeRate - MassChangeRate - https://www.wikidata.org/wiki/Q92020547 - 4-30.3 - Mass increment per time. + StaticFrictionForce + StaticFriction + StaticFrictionForce + https://qudt.org/vocab/quantitykind/StaticFriction + https://www.wikidata.org/wiki/Q90862568 + 4-9.3 - - - - - - - - - - - - - inverse of the mass density ρ, thus v = 1/ρ. - SpecificVolume - MassicVolume - SpecificVolume - https://qudt.org/vocab/quantitykind/SpecificVolume - https://www.wikidata.org/wiki/Q683556 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 - 4-3 - inverse of the mass density ρ, thus v = 1/ρ. - https://doi.org/10.1351/goldbook.S05807 + + + + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + LinearScanVoltammetry + LSV + LinearPolarization + LinearSweepVoltammetry + LinearScanVoltammetry + https://www.wikidata.org/wiki/Q620700 + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + https://en.wikipedia.org/wiki/Linear_sweep_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - + + + - Distance is the norm of Displacement. - Shortest path length between two points in a metric space. - Distance - Distance - https://qudt.org/vocab/quantitykind/Distance - https://www.wikidata.org/wiki/Q126017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 - https://dbpedia.org/page/Distance - 3-1.8 - Shortest path length between two points in a metric space. - https://en.wikipedia.org/wiki/Distance + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + LongRangeOrderParameter + LongRangeOrderParameter + https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter + https://www.wikidata.org/wiki/Q105496124 + 12-5.2 + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - - - - - + + + + A causal object which is tessellated with only spatial direct parts. + The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. +This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. + The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. + Arrangement + MereologicalState + Arrangement + A causal object which is tessellated with only spatial direct parts. + e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. + +If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. + + + + - - + + - - Vector potential of the magnetic flux density. - MagneticVectorPotential - MagneticVectorPotential - https://qudt.org/vocab/quantitykind/MagneticVectorPotential - https://www.wikidata.org/wiki/Q2299100 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 - 6-32 - Vector potential of the magnetic flux density. + + A well formed tessellation with tiles that all spatial. + SpatialTiling + SpatialTiling + A well formed tessellation with tiles that all spatial. - - + + + + GluonType5 + GluonType5 + + + + + - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - Thickness - Thickness - https://www.wikidata.org/wiki/Q3589038 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 - 3-1.4 - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + Displacement of one surface with respect to another divided by the distance between them. + ShearStrain + ShearStrain + https://qudt.org/vocab/quantitykind/ShearStrain + https://www.wikidata.org/wiki/Q7561704 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 + 4-17.3 + Displacement of one surface with respect to another divided by the distance between them. + https://doi.org/10.1351/goldbook.S05637 - - + + + - + - + - + @@ -15199,813 +15184,699 @@ Since topological connection means causality, then the only way for a real world - - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - A physical object made of fermionic quantum parts. - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - Matter - PhysicalSubstance - Matter - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - A physical object made of fermionic quantum parts. - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. - - - - - - - - - 1 - - - - - - - 1 - - - - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). - -So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. - -While the string "1 kg" is a 'QuantityValue'. - QuantityValue - QuantityValue - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - 6.8 m -0.9 km -8 K -6 MeV -43.5 HRC(150 kg) - quantity value - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + + BottomAntiQuark + BottomAntiQuark - - - - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - Numerical - Numerical - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BlueAntiQuark + BlueAntiQuark - + - - - + + - - - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - MetrologicalReference - MetrologicalReference - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - - - - - - A reference unit provided by a measurement procedure. - Procedure units and measurement units are disjoint. - ProcedureUnit - MeasurementProcedure - ProcedureUnit - A reference unit provided by a measurement procedure. - Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) - Procedure units and measurement units are disjoint. - - - - - - - - - - - - - - - Vector characterising a dislocation in a crystal lattice. - BurgersVector - BurgersVector - https://qudt.org/vocab/quantitykind/BurgersVector - https://www.wikidata.org/wiki/Q623093 - 12-6 - Vector characterising a dislocation in a crystal lattice. - - - - - - vector quantity between any two points in space - Displacement - Displacement - https://qudt.org/vocab/quantitykind/Displacement - https://www.wikidata.org/wiki/Q190291 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 - https://dbpedia.org/page/Displacement_(geometry) - 3-1.11 - vector quantity between any two points in space - https://en.wikipedia.org/wiki/Displacement_(geometry) - - - - - - - + - - + + + + + + - - Number of particles per time and area crossing a surface. - ParticleCurrentDensity - ParticleCurrentDensity - https://qudt.org/vocab/quantitykind/ParticleCurrent - https://www.wikidata.org/wiki/Q2400689 - 10-48 - Number of particles per time and area crossing a surface. + + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + Declarer + Declarer + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). + Someone who assigns a name to an object. - + - - + - + - Measure for how the magnetization of material is affected by the application of an external magnetic field . - Permeability - ElectromagneticPermeability - Permeability - http://qudt.org/vocab/quantitykind/ElectromagneticPermeability - 6-26.2 - https://doi.org/10.1351/goldbook.P04503 + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + Molality + AmountPerMass + Molality + https://www.wikidata.org/wiki/Q172623 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 + 9-15 + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + https://doi.org/10.1351/goldbook.M03970 - - + + - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Coulometry - Coulometry - https://www.wikidata.org/wiki/Q1136979 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - https://en.wikipedia.org/wiki/Coulometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Chronoamperometry + AmperiometricDetection + AmperometricCurrentTimeCurve + Chronoamperometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. https://doi.org/10.1515/pac-2018-0109 - + - T-2 L-1 M+1 I0 Θ-1 N0 J0 + T0 L0 M0 I0 Θ0 N0 J+1 - PressurePerTemperatureUnit - PressurePerTemperatureUnit + LuminousIntensityUnit + LuminousIntensityUnit - + - + - vector quantity giving the rate of change of angular velocity - AngularAcceleration - AngularAcceleration - https://qudt.org/vocab/quantitykind/AngularAcceleration - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 - https://dbpedia.org/page/Angular_acceleration - 3-13 - vector quantity giving the rate of change of angular velocity - https://en.wikipedia.org/wiki/Angular_acceleration + Length per unit time. + +Speed in the absolute value of the velocity. + Speed + Speed + http://qudt.org/vocab/quantitykind/Speed + 3-8.2 + https://doi.org/10.1351/goldbook.S05852 - - - + + + - Dimensionless quantity in electromagnetism. - QualityFactor - QualityFactor - https://qudt.org/vocab/quantitykind/QualityFactor - https://www.wikidata.org/wiki/Q79467569 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 - 6-53 - Dimensionless quantity in electromagnetism. + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + ReactionEnergy + ReactionEnergy + https://qudt.org/vocab/quantitykind/ReactionEnergy + https://www.wikidata.org/wiki/Q98164745 + 10-37.1 + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - - - - - - - - + + - An 'equation' that has parts two 'polynomial'-s - AlgebricEquation - AlgebricEquation - 2 * a - b = c + Polynomial + Polynomial + 2 * x^2 + x + 3 - - - - - ElectronAntiNeutrino - ElectronAntiNeutrino + + + + An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) + AlgebricExpression + AlgebricExpression + 2x+3 + + + + + + ThermalSprayingForming + ThermalSprayingForming + + + + + + FormingFromPowder + FormingFromPowder - - - - Complex representation of an oscillating voltage. - VoltagePhasor - VoltagePhasor - https://qudt.org/vocab/quantitykind/VoltagePhasor - https://www.wikidata.org/wiki/Q78514605 - 6-50 - Complex representation of an oscillating voltage. + + + + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + DataQuality + DataQuality + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) - - - - - T+3 L0 M-1 I+2 Θ0 N-1 J0 - - - + + + - AmountConductivityUnit - AmountConductivityUnit + IsothermalCompressibility + IsothermalCompressibility + https://qudt.org/vocab/quantitykind/IsothermalCompressibility + https://www.wikidata.org/wiki/Q2990696 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 + 5-5.1 - - - - ChipboardManufacturing - ChipboardManufacturing + + + + + A coarse dispersion of gas in a liquid continuum phase. + LiquidGasSuspension + LiquidGasSuspension + A coarse dispersion of gas in a liquid continuum phase. + Sparkling water - - - - - - - - - - - - - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - DecayConstant - DisintegrationConstant - DecayConstant - https://qudt.org/vocab/quantitykind/DecayConstant - https://www.wikidata.org/wiki/Q11477200 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 - 10-24 - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - https://doi.org/10.1351/goldbook.D01538 + + + + PhysicalyUnbonded + PhysicalyUnbonded - - - + + + + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Dielectrometry + Dielectrometry + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + https://doi.org/10.1515/pac-2018-0109 + + + + - + - + - - Number of protons in an atomic nucleus. - AtomicNumber - AtomicNumber - http://qudt.org/vocab/quantitykind/AtomicNumber - Number of protons in an atomic nucleus. - 10-1.1 - https://doi.org/10.1351/goldbook.A00499 - - - - - - - The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. - RybergConstant - RybergConstant - http://qudt.org/vocab/constant/RydbergConstant - https://doi.org/10.1351/goldbook.R05430 - - - - - - The number of waves per unit length along the direction of propagation. - Wavenumber - Wavenumber - http://qudt.org/vocab/quantitykind/Wavenumber - 3-18 - https://doi.org/10.1351/goldbook.W06664 + + A constituent of a system. + Component + Component + A constituent of a system. - - - - - + + - - + + - - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - ElectricFieldStrength - ElectricFieldStrength - https://qudt.org/vocab/quantitykind/ElectricFieldStrength - https://www.wikidata.org/wiki/Q20989 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 - 6-10 - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + + The sample is mounted on a holder. + The sample is mounted on a holder. + Mounting + Mounting + The sample is mounted on a holder. - - - + + - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - LinearIonization - LinearIonization - https://qudt.org/vocab/quantitykind/LinearIonization - https://www.wikidata.org/wiki/Q98690755 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 - 10-58 - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + Sum of electric current and displacement current + TotalCurrent + TotalCurrent + https://qudt.org/vocab/quantitykind/TotalCurrent + https://www.wikidata.org/wiki/Q77679732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 + 6-19.2 + Sum of electric current and displacement current - - - - - Mass of the contained water vapour per volume. - AbsoluteHumidity - MassConcentrationOfWaterVapour - AbsoluteHumidity - https://qudt.org/vocab/quantitykind/AbsoluteHumidity - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - 5-28 - Mass of the contained water vapour per volume. + + + + + RedUpQuark + RedUpQuark - + + + + A quantity obtained from a well-defined modelling procedure. + ModelledProperty + ModelledProperty + A quantity obtained from a well-defined modelling procedure. + + + - - - T-2 L+1 M+1 I0 Θ0 N0 J0 - + + + + + + - - - ForceUnit - ForceUnit + + + Coupled + Coupled + + + + + + + MuonAntiNeutrino + MuonAntiNeutrino + + + + + + + + + + + + + + + + + + + + + + + AntiNeutrinoType + AntiNeutrinoType - - - - - T-2 L+2 M0 I0 Θ-1 N0 J0 - - - + + + - EntropyPerMassUnit - EntropyPerMassUnit + CanonicalPartitionFunction + CanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96142389 + 9-35.2 - - - - - ElectrolyticConductivity - ElectrolyticConductivity - https://qudt.org/vocab/quantitykind/ElectrolyticConductivity - https://www.wikidata.org/wiki/Q907564 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 - 9-44 + + + + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + EnvironmentalScanningElectronMicroscopy + EnvironmentalScanningElectronMicroscopy + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - - - - - + + + + + + + + + + + + + + + + + + + + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + FundamentalInteraction + FundamentalInteraction + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + + + + + - - + + - - Number of slowed-down particles per time and volume. - SlowingDownDensity - SlowingDownDensity - https://qudt.org/vocab/quantitykind/Slowing-DownDensity - https://www.wikidata.org/wiki/Q98915830 - 10-67 - Number of slowed-down particles per time and volume. + + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + Result of a measurement. + +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + +-- VIM + MeasurementResult + MeasurementResult + Result of a measurement. + +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + +-- VIM + measurement result + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. - - - - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - CompositePhysicalObject - CompositePhysicalObject - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + + + + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + + XrayDiffraction + XRD + XrayDiffraction + https://www.wikidata.org/wiki/Q12101244 + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + https://en.wikipedia.org/wiki/X-ray_crystallography - - - - - T0 L-3 M0 I0 Θ0 N+1 J0 - - - - - AmountConcentrationUnit - AmountConcentrationUnit + + + + A chain of linked physics based model simulations solved iteratively, where equations are segregated. + IterativeCoupledModelsSimulation + IterativeCoupledModelsSimulation + A chain of linked physics based model simulations solved iteratively, where equations are segregated. - + + - - Kinetic energy released per mass. - Kerma - Kerma - https://qudt.org/vocab/quantitykind/Kerma - https://www.wikidata.org/wiki/Q1739288 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 - 10-86.1 - Kinetic energy released per mass. + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + BetaDisintegrationEnergy + BetaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98148340 + 10-34 + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - - - + + - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - WaveVector - WaveVector - https://www.wikidata.org/wiki/Q657009 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 - 3-21 - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - https://en.wikipedia.org/wiki/Wave_vector + Relative change of length per change of temperature. + LinearExpansionCoefficient + LinearExpansionCoefficient + https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient + https://www.wikidata.org/wiki/Q74760821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 + 5-3.1 + Relative change of length per change of temperature. - - + + - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - FibDic - FIBDICResidualStressAnalysis - FibDic - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - - - - - - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - ApplicationSpecificScript - ApplicationSpecificScript - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + MembraneOsmometry + MembraneOsmometry + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - - - - PlasticSintering - PlasticSintering + + + + + A solid solution made of two or more component substances. + SolidSolution + SolidSolution + A solid solution made of two or more component substances. - - - + + - - + + T-3 L+3 M+1 I-1 Θ0 N0 J0 - - - 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). - -'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. - -This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. - -e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. - A 'Physical' which is a tessellation of 'State' temporal direct parts. - An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. - -By definition, the tiles are represented by 'State'-s individual. - -Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. - Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. - -Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. - Existent - true - Existent - A 'Physical' which is a tessellation of 'State' temporal direct parts. + + + + ElectricFluxUnit + ElectricFluxUnit - - - - - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - BohrRadius - BohrRadius - https://qudt.org/vocab/constant/BohrRadius - https://www.wikidata.org/wiki/Q652571 - 10-6 - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - https://doi.org/10.1351/goldbook.B00693 + + + + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + IonChromatography + IonChromatography + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + https://en.wikipedia.org/wiki/Ion_chromatography - - - - A standalone atom that has no net charge. - NeutralAtom - NeutralAtom - A standalone atom that has no net charge. + + + + + + + + + + + + Semiotics + Semiotics - - - - - - + + - - + + T-1 L0 M0 I0 Θ0 N0 J0 - + + - Scalar potential of an irrotational magnetic field strength. - ScalarMagneticPotential - ScalarMagneticPotential - https://www.wikidata.org/wiki/Q17162107 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 - 6-37.1 - Scalar potential of an irrotational magnetic field strength. + FrequencyUnit + FrequencyUnit - - - - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. - StandardAbsoluteActivity - StandardAbsoluteActivityInAMixture - StandardAbsoluteActivity - https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89406159 - 9-23 - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + + + + Flanging + Flanging - - - - - - - - - - - + + - For an atom or nucleus, this energy is quantized and can be written as: - - W = g μ M B - -where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. - --- ISO 80000 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - MagneticDipoleMoment - MagneticDipoleMoment - http://qudt.org/vocab/quantitykind/MagneticDipoleMoment - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 - 10-9.1 - 6-30 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - http://goldbook.iupac.org/terms/view/M03688 + Sum of electric current density and displacement current density. + TotalCurrentDensity + TotalCurrentDensity + https://qudt.org/vocab/quantitykind/TotalCurrentDensity + https://www.wikidata.org/wiki/Q77680811 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 + 6-20 + Sum of electric current density and displacement current density. - - - - - - - - - - - - - - - - - - - - - - - - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - Hyperon - Hyperon - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - https://en.wikipedia.org/wiki/Hyperon + + + + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + DirectCoulometryAtControlledPotential + DirectCoulometryAtControlledPotential + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + https://doi.org/10.1515/pac-2018-0109 - - + + + - Radius of the osculating circle of a planar curve at a particular point of the curve. - RadiusOfCurvature - RadiusOfCurvature - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 - https://dbpedia.org/page/Radius_of_curvature - 3-1.12 - Radius of the osculating circle of a planar curve at a particular point of the curve. - https://en.wikipedia.org/wiki/Radius_of_curvature + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + ThermalUtilizationFactor + ThermalUtilizationFactor + https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor + https://www.wikidata.org/wiki/Q99197650 + 10-76 + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. - - + + - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. - LandeFactor - GFactorOfAtom - LandeFactor - https://qudt.org/vocab/quantitykind/LandeGFactor - https://www.wikidata.org/wiki/Q1191684 - 10-14.1 - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + imaginary part of the admittance + Susceptance + Susceptance + https://qudt.org/vocab/quantitykind/Susceptance + https://www.wikidata.org/wiki/Q509598 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 + 6-52.3 + imaginary part of the admittance - - - - - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. - GFactor - GFactor - https://www.wikidata.org/wiki/Q1951266 - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + + + + A liquid solution in which the solvent is water. + AqueousSolution + AqueousSolution + A liquid solution in which the solvent is water. - - - - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - - AbrasiveStrippingVoltammetry - AbrasiveStrippingVoltammetry - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + + + A liquid solution made of two or more component substances. + LiquidSolution + LiquidSolution + A liquid solution made of two or more component substances. - - - - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - - ScanningTunnelingMicroscopy - STM - ScanningTunnelingMicroscopy - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + + + + + + + + + + + + + + + WeakBoson + WeakBoson - - + + + + + + - - T-1 L0 M0 I0 Θ0 N0 J0 + + - - + + + + - FrequencyUnit - FrequencyUnit - - - - - - The overall time needed to acquire the measurement data. - The overall time needed to acquire the measurement data. - MeasurementTime - MeasurementTime - The overall time needed to acquire the measurement data. + ParticleConcentration + ParticleConcentration + https://www.wikidata.org/wiki/Q39078574 + 9-9.1 - - + + + + + + - - T-1 L+2 M+1 I0 Θ0 N0 J0 + + - - - - AngularMomentumUnit - AngularMomentumUnit + + + Number of molecules of a substance in a mixture per volume. + MolecularConcentration + MolecularConcentration + https://qudt.org/vocab/quantitykind/MolecularConcentration + https://www.wikidata.org/wiki/Q88865973 + 9-9.2 + Number of molecules of a substance in a mixture per volume. - + + + + Count per volume. + VolumetricNumberDensity + VolumetricNumberDensity + Count per volume. + + + @@ -16013,1447 +15884,1369 @@ where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear m - + - Activity per unit volume of the sample. - ActivityDensity - ActivityConcentration - VolumetricActivity - VolumicActivity - ActivityDensity - https://qudt.org/vocab/quantitykind/ActivityConcentration - https://www.wikidata.org/wiki/Q423263 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 - 10-29 - Activity per unit volume of the sample. + Mean number of particles per volume. + ParticleNumberDensity + ParticleNumberDensity + https://qudt.org/vocab/quantitykind/ParticleNumberDensity + https://www.wikidata.org/wiki/Q98601569 + 10-62.1 + Mean number of particles per volume. + https://doi.org/10.1351/goldbook.N04262 - - + + - - + - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - ElectricCharge - Charge - ElectricCharge - http://qudt.org/vocab/quantitykind/ElectricCharge - https://www.wikidata.org/wiki/Q1111 - 6-2 - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - https://doi.org/10.1351/goldbook.E01923 + Quotient of the total linear stopping power S and the mass density ρ of the material. + TotalMassStoppingPower + MassStoppingPower + TotalMassStoppingPower + https://qudt.org/vocab/quantitykind/TotalMassStoppingPower + https://www.wikidata.org/wiki/Q98642795 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 + 10-55 + Quotient of the total linear stopping power S and the mass density ρ of the material. - - - + + + + + + + + + + + + + + + + + + + + A boson that is a single elementary particle. + A particle with integer spin that follows Bose–Einstein statistics. + FundamentalBoson + FundamentalBoson + A particle with integer spin that follows Bose–Einstein statistics. + A boson that is a single elementary particle. + https://en.wikipedia.org/wiki/Boson#Elementary_bosons + + + + - Dimensionless parameter to quantify fluid resistance. - DragCoefficient - DragFactor - DragCoefficient - https://qudt.org/vocab/quantitykind/DragCoefficient - https://www.wikidata.org/wiki/Q1778961 - 4-23.4 - Dimensionless parameter to quantify fluid resistance. + Speed with which the envelope of a wave propagates in space. + GroupVelocity + GroupSpeed + GroupVelocity + https://www.wikidata.org/wiki/Q217361 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 + https://dbpedia.org/page/Group_velocity + 3-23.2 + Speed with which the envelope of a wave propagates in space. + https://en.wikipedia.org/wiki/Group_velocity - - - - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - ElectrochemicalImpedanceSpectroscopy - EIS - ElectrochemicalImpedanceSpectroscopy - https://www.wikidata.org/wiki/Q3492904 - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. + +-- IEC, note 2 + The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. + +-- IEC, note 1 + Vector quantity giving the rate of change of a position vector. + +-- ISO 80000-3 + Velocity + Velocity + http://qudt.org/vocab/quantitykind/Velocity + https://www.wikidata.org/wiki/Q11465 + Vector quantity giving the rate of change of a position vector. + +-- ISO 80000-3 + 3-8.1 + 3‑10.1 - - + + - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Impedimetry - Impedimetry - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - https://doi.org/10.1515/pac-2018-0109 + Mathematical model used to process data. + Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. + PostProcessingModel + PostProcessingModel + Mathematical model used to process data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. - + + + + + + + + + + + + + A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. + +Abramowitz and Stegun, 1968 + An analogical icon expressed in mathematical language. + MathematicalModel + MathematicalModel + An analogical icon expressed in mathematical language. + + + - + - - + - "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." - --- SI Brochure - The number of elementary entities present. - AmountOfSubstance - AmountOfSubstance - http://qudt.org/vocab/quantitykind/AmountOfSubstance - 9-2 - The number of elementary entities present. - https://doi.org/10.1351/goldbook.A00297 - - - - - - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - ComputerSystem - Computer - ComputerSystem - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - https://en.wikipedia.org/wiki/Computer + Decays per unit time. + Radioactivity + RadioactiveActivity + Radioactivity + http://qudt.org/vocab/quantitykind/SpecificActivity + Decays per unit time. + https://doi.org/10.1351/goldbook.A00114 - - + + - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - CompressionTesting - CompressionTesting - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. + + OutlierRemoval + OutlierRemoval + Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - - + + - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - BrunauerEmmettTellerMethod - BET - BrunauerEmmettTellerMethod - https://www.wikidata.org/wiki/Q795838 - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - https://en.wikipedia.org/wiki/BET_theory + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + DataFiltering + DataFiltering + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - - + + + + + T0 L+1 M0 I0 Θ0 N0 J0 + + + - Atomic quantum number related to the orbital angular momentum l of a one-electron state. - OrbitalAngularMomentumQuantumNumber - OrbitalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1916324 - 10-13.3 - Atomic quantum number related to the orbital angular momentum l of a one-electron state. - - - - - - LowPressureCasting - LowPressureCasting + LengthUnit + LengthUnit - - - - Casting - Casting + + + + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + HPPC + HybridPulsePowerCharacterisation + HybridPulsePowerCharacterization + HPPC + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - - - - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - -It is advisory to create a uniquely defined subclass these units for concrete usage. - LogarithmicUnit - LogarithmicUnit - http://qudt.org/schema/qudt/LogarithmicUnit - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Decibel - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - -It is advisory to create a uniquely defined subclass these units for concrete usage. - https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units + + + + An observer that makes use of a measurement tool and provides a quantitative property. + Measurer + Measurer + An observer that makes use of a measurement tool and provides a quantitative property. - + + - - number of nucleons in an atomic nucleus - NucleonNumber - MassNumber - NucleonNumber - https://qudt.org/vocab/quantitykind/NucleonNumber - https://www.wikidata.org/wiki/Q101395 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 - https://dbpedia.org/page/Mass_number - 10-1.3 - number of nucleons in an atomic nucleus - https://en.wikipedia.org/wiki/Mass_number - https://doi.org/10.1351/goldbook.M03726 + Expectation value of the energy imparted. + MeanEnergyImparted + MeanEnergyImparted + https://qudt.org/vocab/quantitykind/MeanEnergyImparted + https://www.wikidata.org/wiki/Q99526969 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 + 10-80.2 + Expectation value of the energy imparted. - - - - - A constitutive process is a process that is holistically relevant for the definition of the whole. - A process which is an holistic spatial part of an object. - ConstitutiveProcess - ConstitutiveProcess - A process which is an holistic spatial part of an object. - Blood circulation in a human body. - A constitutive process is a process that is holistically relevant for the definition of the whole. + + + + + T0 L-1 M0 I+1 Θ0 N0 J0 + + + + + MagneticFieldStrengthUnit + MagneticFieldStrengthUnit - - + + - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - Sawing - Sägen - Sawing - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - - - - - - - - HardwareManufacturer - HardwareManufacturer - - - - - - - HardwareModel - HardwareModel + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + Nailing + Nageln + Nailing - - - - - - - - - - - - - In nuclear physics, product of the number density of atoms of a given type and the cross section. - VolumicCrossSection - MacroscopicCrossSection - VolumicCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicCrossSection - https://www.wikidata.org/wiki/Q98280520 - 10-42.1 - In nuclear physics, product of the number density of atoms of a given type and the cross section. - https://doi.org/10.1351/goldbook.M03674 + + + + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + Software + Software + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - - + - - - - - - - - + - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - LinearEnergyTransfer - LinearEnergyTransfer - https://qudt.org/vocab/quantitykind/LinearEnergyTransfer - https://www.wikidata.org/wiki/Q1699996 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 - 10-85 - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - https://doi.org/10.1351/goldbook.L03550 + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + MassDefect + MassDefect + https://qudt.org/vocab/quantitykind/MassDefect + https://www.wikidata.org/wiki/Q26897126 + 10-21.2 + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - + - T+2 L-2 M-1 I+2 Θ0 N0 J0 + T0 L+3 M0 I0 Θ0 N-1 J0 - MagneticReluctanceUnit - MagneticReluctanceUnit + VolumePerAmountUnit + VolumePerAmountUnit - - + + - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - Grinding - Grinding - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + CharacterisationProperty + CharacterisationProperty + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - - - + + + + A quantity that is the result of a well-defined measurement procedure. + The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. + +-- VIM + MeasuredProperty + MeasuredProperty + A quantity that is the result of a well-defined measurement procedure. + + + + + + GravityCasting + GravityCasting + + + + - - - - - - + + T+4 L-4 M-2 I0 Θ0 N0 J0 - - - A constituent of a system. - Component - Component - A constituent of a system. + + + + ReciprocalSquareEnergyUnit + ReciprocalSquareEnergyUnit - + + + + + Gibbs energy per amount of substance. + MolarGibbsEnergy + MolarGibbsEnergy + https://www.wikidata.org/wiki/Q88863324 + 9-6.4 + Gibbs energy per amount of substance. + + + - + - A neutrino belonging to the first generation of leptons. - ElectronNeutrino - ElectronNeutrino - A neutrino belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron_neutrino + ElectronAntiNeutrino + ElectronAntiNeutrino - + + + + + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + HalfValueThickness + HalfValueThickness + https://qudt.org/vocab/quantitykind/Half-ValueThickness + https://www.wikidata.org/wiki/Q127526 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 + 10-53 + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + + + + + + GluonType1 + GluonType1 + + + + + + + Square root of the slowing down area. + SlowingDownLength + SlowingDownLength + https://qudt.org/vocab/quantitykind/Slowing-DownLength + https://www.wikidata.org/wiki/Q98996963 + 10-73.1 + Square root of the slowing down area. + + + + + + Rest mass of a nuclide X in the ground state. + NuclidicMass + NuclidicMass + https://www.wikidata.org/wiki/Q97010809 + 10-4.2 + Rest mass of a nuclide X in the ground state. + https://doi.org/10.1351/goldbook.N04258 + + + - T+4 L-3 M-1 I+2 Θ0 N0 J0 + T-2 L+3 M+1 I-1 Θ0 N0 J0 - PermittivityUnit - PermittivityUnit + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - - - - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - The act of connecting together the parts of something - Assemblying - Assemblying - The act of connecting together the parts of something - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + + + + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + Sol + Sol + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - - - - - Ratio of the mass of water to the mass of dry matter in a given volume of matter. - The mass concentration of water at saturation is denoted usat. - MassRatioOfWaterToDryMatter - MassRatioOfWaterToDryMatter - https://www.wikidata.org/wiki/Q76378860 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 - 5-29 - Ratio of the mass of water to the mass of dry matter in a given volume of matter. + + + + + A process which is an holistic spatial part of a process. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + SubProcess + SubProcess + A process which is an holistic spatial part of a process. + Breathing is a subprocess of living for a human being. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - + - T0 L-2 M0 I0 Θ0 N0 J0 + T-1 L+2 M0 I0 Θ0 N0 J0 - PerAreaUnit - PerAreaUnit + AreicSpeedUnit + AreicSpeedUnit - + + + + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + URN + URN + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + + + + + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + URI + URI + https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + + + + + + + in the free electron model, the Fermi energy divided by the Boltzmann constant + FermiTemperature + FermiTemperature + https://qudt.org/vocab/quantitykind/FermiTemperature + https://www.wikidata.org/wiki/Q105942324 + 12-28 + in the free electron model, the Fermi energy divided by the Boltzmann constant + + + - T0 L+1 M0 I0 Θ0 N-1 J0 + T-3 L+1 M0 I0 Θ0 N0 J0 - - LengthPerAmountUnit - LengthPerAmountUnit - - - - - - - - - - - - - - - - - FundamentalMatterParticle - FundamentalMatterParticle + + LengthPerCubeTimeUnit + LengthPerCubeTimeUnit - + + + + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + NeutronSpinEchoSpectroscopy + NSE + NeutronSpinEchoSpectroscopy + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + + + - T0 L-1 M0 I0 Θ-1 N0 J0 + T0 L-3 M0 I0 Θ0 N0 J0 - PerLengthTemperatureUnit - PerLengthTemperatureUnit - - - - - - - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - RotationalDisplacement - AngularDisplacement - RotationalDisplacement - https://www.wikidata.org/wiki/Q3305038 - 3-6 - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - https://en.wikipedia.org/wiki/Angular_displacement + PerVolumeUnit + PerVolumeUnit - - + + - + - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - TotalLinearStoppingPower - LinearStoppingPower - TotalLinearStoppingPower - https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower - https://www.wikidata.org/wiki/Q908474 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 - 10-54 - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - https://doi.org/10.1351/goldbook.S06035 - - - - - - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - CausalInteraction - CausalInteraction - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - - - - - - The imaginary part of the impedance. - The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. - ElectricReactance - Reactance - ElectricReactance - http://qudt.org/vocab/quantitykind/Reactance - https://www.wikidata.org/wiki/Q193972 - 6-51.3 - The imaginary part of the impedance. - https://en.wikipedia.org/wiki/Electrical_reactance - https://doi.org/10.1351/goldbook.R05162 - - - - - - - IsentropicCompressibility - IsentropicCompressibility - https://qudt.org/vocab/quantitykind/IsentropicCompressibility - https://www.wikidata.org/wiki/Q2990695 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 - 5-5.2 + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + UnifiedAtomicMassConstant + UnifiedAtomicMassConstant + https://www.wikidata.org/wiki/Q4817337 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 + 10-4.3 + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + https://doi.org/10.1351/goldbook.A00497 - - - - Sum of electric current density and displacement current density. - TotalCurrentDensity - TotalCurrentDensity - https://qudt.org/vocab/quantitykind/TotalCurrentDensity - https://www.wikidata.org/wiki/Q77680811 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 - 6-20 - Sum of electric current density and displacement current density. - + + + + + + + + + + + + + + + Physical constants are categorised into "exact" and measured constants. - - - - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - QuantumAnnihilation - QuantumAnnihilation - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + PhysicalConstant + PhysicalConstant + Physical constants are categorised into "exact" and measured constants. - - - - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. - EmpiricalSimulationSoftware - EmpiricalSimulationSoftware - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + https://en.wikipedia.org/wiki/List_of_physical_constants - - - + + - The sample after a preparation process. - PreparedSample - PreparedSample - The sample after a preparation process. + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + + PulsedElectroacousticMethod + PulsedElectroacousticMethod + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + https://doi.org/10.1007/s10832-023-00332-y - - - - - The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. - The value of magnetic permeability in a classical vacuum. - VacuumMagneticPermeability - PermeabilityOfVacuum - VacuumMagneticPermeability - http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum - 6-26.1 + + + + ElectroSinterForging + ElectroSinterForging - - - - - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - alpha_V = (1/V) * (dV/dT) - CubicExpansionCoefficient - CubicExpansionCoefficient - https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient - https://www.wikidata.org/wiki/Q74761076 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 - 5-3.2 - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + + + + + T-2 L+1 M0 I0 Θ0 N0 J0 + + + + + AccelerationUnit + AccelerationUnit - - - - Relative change of length per change of temperature. - LinearExpansionCoefficient - LinearExpansionCoefficient - https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient - https://www.wikidata.org/wiki/Q74760821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 - 5-3.1 - Relative change of length per change of temperature. + + + + + RedBottomAntiQuark + RedBottomAntiQuark - - - + + + - The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - ElementaryCharge - ElementaryCharge - http://qudt.org/vocab/quantitykind/ElementaryCharge - 10-5.1 - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - https://doi.org/10.1351/goldbook.E02032 - - - - - - A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - AdsorptiveStrippingVoltammetry - AdSV - AdsorptiveStrippingVoltammetry - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - https://doi.org/10.1515/pac-2018-0109 - - - - - - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - PrimaryData - PrimaryData - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - Baseline subtraction, noise reduction , X and Y axes correction. + Sum of energies deposited by ionizing radiation in a given volume. + EnergyImparted + EnergyImparted + https://qudt.org/vocab/quantitykind/EnergyImparted + https://www.wikidata.org/wiki/Q99526944 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 + 10-80.1 + Sum of energies deposited by ionizing radiation in a given volume. - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - FlexuralForming - Biegeumformen - FlexuralForming + + + + + Number of donor levels per volume. + DonorDensity + DonorDensity + https://qudt.org/vocab/quantitykind/DonorDensity + https://www.wikidata.org/wiki/Q105979886 + 12-29.4 + Number of donor levels per volume. - - - - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - AnalyticalElectronMicroscopy - AnalyticalElectronMicroscopy - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + + + + + A type of sol in the form of one solid dispersed in another continuous solid. + SolidSol + SolidSol + A type of sol in the form of one solid dispersed in another continuous solid. - - - - FORTRAN - FORTRAN + + + + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + SupplyChain + SupplyChain + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - - - - CompiledLanguage - CompiledLanguage + + + + A system whose is mainly characterised by the way in which elements are interconnected. + Network + Network + A system whose is mainly characterised by the way in which elements are interconnected. - - - - - - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - The relative humidity is often expressed in per cent. - RelativeHumidity - RelativeHumidity - https://qudt.org/vocab/quantitykind/RelativeHumidity - https://www.wikidata.org/wiki/Q2499617 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 - 5-33 - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - https://en.wikipedia.org/wiki/Humidity#Relative_humidity + + + + + A neutrino belonging to the third generation of leptons. + TauNeutrino + TauNeutrino + A neutrino belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_neutrino - - - + + - For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - RelativeMassConcentrationOfWaterVapour - RelativeMassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour - https://www.wikidata.org/wiki/Q76379357 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - - - - - - Polynomial - Polynomial - 2 * x^2 + x + 3 + Property of a solute in a solution. + StandardAbsoluteActivity + StandardAbsoluteActivityInASolution + StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89485936 + 9-26 + Property of a solute in a solution. - - - - An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) - AlgebricExpression - AlgebricExpression - 2x+3 + + + + + GreenUpQuark + GreenUpQuark - + + - - + - The derivative of the electric charge of a system with respect to the length. - LinearDensityOfElectricCharge - LinearDensityOfElectricCharge - https://www.wikidata.org/wiki/Q77267838 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 - 6-5 - The derivative of the electric charge of a system with respect to the length. + Quotient of the activity A of a sample and the total area S of the surface of that sample. + SurfaceActivityDensity + SurfaceActivityDensity + https://qudt.org/vocab/quantitykind/SurfaceActivityDensity + https://www.wikidata.org/wiki/Q98103005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 + 10-30 + Quotient of the activity A of a sample and the total area S of the surface of that sample. - - - - UTF8 - UTF8 + + + + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + DataBasedSimulationSoftware + DataBasedSimulationSoftware + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - - - - GluonType5 - GluonType5 + + + + + An application aimed to functionally reproduce an object. + SimulationApplication + SimulationApplication + An application aimed to functionally reproduce an object. + An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. - - - - - - - - - - - - - - - - - - - - - DownQuark - DownQuark - https://en.wikipedia.org/wiki/Down_quark + + + + + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + FastFissionFactor + FastFissionFactor + https://qudt.org/vocab/quantitykind/FastFissionFactor + https://www.wikidata.org/wiki/Q99197493 + 10-75 + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - - - - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - HiggsBoson - HiggsBoson - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - https://en.wikipedia.org/wiki/Higgs_boson + + + + + IsentropicCompressibility + IsentropicCompressibility + https://qudt.org/vocab/quantitykind/IsentropicCompressibility + https://www.wikidata.org/wiki/Q2990695 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 + 5-5.2 + + + + + + + T-2 L-1 M+1 I0 Θ-1 N0 J0 + + + + + PressurePerTemperatureUnit + PressurePerTemperatureUnit + + + + + + + T+3 L-1 M-1 I0 Θ0 N0 J+1 + + + + + LuminousEfficacyUnit + LuminousEfficacyUnit + + + + + + Person + Person - + - + + - + - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - DirectionAndEnergyDistributionOfCrossSection - DirectionAndEnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection - https://www.wikidata.org/wiki/Q98269571 - 10-41 - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + In an anisotropic medium, thermal conductivity is a tensor quantity. + ThermalConductivity + ThermalConductivity + https://qudt.org/vocab/quantitykind/ThermalConductivity + https://www.wikidata.org/wiki/Q487005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 + https://dbpedia.org/page/Thermal_conductivity + 5-9 + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - + - + - + - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - BohrMagneton - BohrMagneton - https://www.wikidata.org/wiki/Q737120 - 10-9.2 - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + SurfaceMassDensity + AreicMass + SurfaceDensity + SurfaceMassDensity + https://www.wikidata.org/wiki/Q1907514 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 + 4-5 + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + https://doi.org/10.1351/goldbook.S06167 - + + + + + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + PhysicsEquation + PhysicsEquation + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + The Newton's equation of motion. +The Schrödinger equation. +The Navier-Stokes equation. + + + + + + + + + + + + + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedModel + PhysicsBasedModel + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + + + + + + A whole with spatial parts of its same type. + SpatiallyRedundant + SpatiallyRedundant + A whole with spatial parts of its same type. + + + - T-1 L+2 M0 I0 Θ0 N0 J0 + T-2 L0 M0 I0 Θ+1 N0 J0 - - AreicSpeedUnit - AreicSpeedUnit + + TemperaturePerSquareTimeUnit + TemperaturePerSquareTimeUnit - - - - - - + + - - + + T+1 L+2 M0 I0 Θ0 N0 J0 - + + - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - DirectionDistributionOfCrossSection - DirectionDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/AngularCrossSection - https://www.wikidata.org/wiki/Q98266630 - 10-39 - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - - - - - - MetallicMaterial - MetallicMaterial + AreaTimeUnit + AreaTimeUnit - - - - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - IonMobilitySpectrometry - IMS - IonMobilitySpectrometry - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - + + + + A measuring instrument that can be used alone is a measuring system. + Device used for making measurements, alone or in conjunction with one or more supplementary devices. - - - - A mathematical string that express a relation between the elements in one set X to elements in another set Y. - The set X is called domain and the set Y range or codomain. - MathematicalFormula - MathematicalFormula - A mathematical string that express a relation between the elements in one set X to elements in another set Y. - +-- VIM + MeasuringInstrument + MeasuringInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary devices. - - - - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - Hazard - Hazard - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. +-- VIM + measuring instrument - - - + + - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - SlowingDownArea - SlowingDownArea - https://qudt.org/vocab/quantitykind/Slowing-DownArea - https://www.wikidata.org/wiki/Q98950918 - 10-72.1 - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - - - - - - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - CalibrationData - CalibrationData - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + CurrentLinkage + CurrentLinkage + https://qudt.org/vocab/quantitykind/CurrentLinkage + https://www.wikidata.org/wiki/Q77995703 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 + 6-37.4 + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - - - - Describes the main input parameters that are needed to acquire the signal. - Describes the main input parameters that are needed to acquire the signal. - MeasurementParameter - MeasurementParameter - Describes the main input parameters that are needed to acquire the signal. + + + + + BlueUpQuark + BlueUpQuark - - + + + + + + + + + + + - Quantities declared under the ISO 80000. - InternationalSystemOfQuantity - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 - InternationalSystemOfQuantity - Quantities declared under the ISO 80000. - https://en.wikipedia.org/wiki/International_System_of_Quantities + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + MassEnergyTransferCoefficient + MassEnergyTransferCoefficient + https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient + https://www.wikidata.org/wiki/Q99714619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 + 10-87 + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - - - - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - StandardizedPhysicalQuantity - StandardizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - + + + + Array subclasses with a specific shape can be constructed with cardinality restrictions. - - - - - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - ShearCutting - Scherschneiden - ShearCutting +See Shape4x3Matrix as an example. + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + Arrays are ordered objects, since they are a subclasses of Arrangement. + Array + Array + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + A Vector is a 1-dimensional Array with Number as spatial direct parts, +a Matrix is a 2-dimensional Array with Vector as spatial direct parts, +an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, +and so forth... - - - + + + + + + + + + + + - Matter composed of only matter particles, excluding anti-matter particles. - OrdinaryMatter - OrdinaryMatter - Matter composed of only matter particles, excluding anti-matter particles. + CompositeFermion + CompositeFermion + Examples of composite particles with half-integer spin: +spin 1/2: He3 in ground state, proton, neutron +spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) - - + + + + + T0 L+1 M+1 I0 Θ0 N0 J0 + + + - Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - MagneticPolarisation - MagneticPolarisation - https://qudt.org/vocab/quantitykind/MagneticPolarization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54 - 6-29 - Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. + LengthMassUnit + LengthMassUnit - - - - - The ratio of the binding energy of a nucleus to the atomic mass number. - BindingFraction - BindingFraction - https://qudt.org/vocab/quantitykind/BindingFraction - https://www.wikidata.org/wiki/Q98058362 - 10-23.2 - The ratio of the binding energy of a nucleus to the atomic mass number. + + + + A characteriser that declares a property for an object through the specific interaction required by the property definition. + Observer + Observer + A characteriser that declares a property for an object through the specific interaction required by the property definition. - - - + + + + + + + + + + + - Quotient of change of volume and original volume. - RelativeVolumeStrain - BulkStrain - VolumeStrain - RelativeVolumeStrain - https://qudt.org/vocab/quantitykind/VolumeStrain - https://www.wikidata.org/wiki/Q73432507 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 - 4-17.4 - Quotient of change of volume and original volume. - https://doi.org/10.1351/goldbook.V06648 + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + MassExcess + MassExcess + https://qudt.org/vocab/quantitykind/MassExcess + https://www.wikidata.org/wiki/Q1571163 + 10-21.1 + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + https://doi.org/10.1351/goldbook.M03719 - - - - HardeningByDrawing - HardeningByDrawing + + + + + + + + + + + + + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). + NuclearQuadrupoleMoment + NuclearQuadrupoleMoment + https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment + https://www.wikidata.org/wiki/Q97921226 + 10-18 + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - - + + + - Length of a rectifiable curve between two of its points. - PathLength - ArcLength - PathLength - https://www.wikidata.org/wiki/Q7144654 - https://dbpedia.org/page/Arc_length - 3-1.7 - Length of a rectifiable curve between two of its points. - https://en.wikipedia.org/wiki/Arc_length + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + RotationalDisplacement + AngularDisplacement + RotationalDisplacement + https://www.wikidata.org/wiki/Q3305038 + 3-6 + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + https://en.wikipedia.org/wiki/Angular_displacement - - - - A system whose is mainly characterised by the way in which elements are interconnected. - Network - Network - A system whose is mainly characterised by the way in which elements are interconnected. + + + + + + + + + + + + Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + Torque + Torque + http://qudt.org/vocab/quantitykind/Torque + 4-12.2 + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + https://doi.org/10.1351/goldbook.T06400 - - - - - Written as pOH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) - POH - POH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) + + + + + + + + + + + + + + + + + + + + + + + A measurement always implies a causal interaction between the object and the observer. + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + Measurement + Measurement + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + measurement - - + + + - At about 25 °C aqueous solutions with: -pH < 7 are acidic; -pH = 7 are neutral; -pH > 7 are alkaline. -At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - Written as pH - PH - PH - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 - For more details, see ISO 80000-9:2009, Annex C - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - https://doi.org/10.1351/goldbook.P04524 + The amount of a constituent divided by the total amount of all constituents in a mixture. + AmountFraction + MoleFraction + AmountFraction + http://qudt.org/vocab/quantitykind/MoleFraction + The amount of a constituent divided by the total amount of all constituents in a mixture. + https://doi.org/10.1351/goldbook.A00296 - - - - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - CharacterisationExperiment - CharacterisationExperiment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + + + + + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + Moulding + Gesenkformen + Moulding - - - - - + + + + + + + + + + + - - + + - - Magnetic tension divided by magnetic flux. - MagneticReluctance - Reluctance - MagneticReluctance - https://qudt.org/vocab/quantitykind/Reluctance - https://www.wikidata.org/wiki/Q863390 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 - 6-39 - Magnetic tension divided by magnetic flux. + + A characterisation procedure that has at least two characterisation tasks as proper parts. + CharacterisationWorkflow + CharacterisationWorkflow + A characterisation procedure that has at least two characterisation tasks as proper parts. - - - - Diffusion coefficient through the pore space of a porous media. - EffectiveDiffusionCoefficient - EffectiveDiffusionCoefficient - https://www.wikidata.org/wiki/Q258852 - Diffusion coefficient through the pore space of a porous media. + + + + HardeningByForging + HardeningByForging - + + - + - - Proportionality constant in some physical laws. - DiffusionCoefficient - DiffusionCoefficient - Proportionality constant in some physical laws. - - - - - - "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." -International vocabulary of metrology (VIM) - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - OrdinalQuantity - OrdinalQuantity - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - Hardness -Resilience - ordinal quantity + Scalar line integral of the magnetic field strength along a closed path. + MagnetomotiveForce + MagnetomotiveForce + https://qudt.org/vocab/quantitykind/MagnetomotiveForce + https://www.wikidata.org/wiki/Q1266982 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 + 6-37.3 + Scalar line integral of the magnetic field strength along a closed path. - - + + - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - Nexafs - Nexafs - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + VoltammetryAtARotatingDiskElectrode + VoltammetryAtARotatingDiskElectrode + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + https://doi.org/10.1515/pac-2018-0109 - - + + - The sample after having been subjected to a characterization process - CharacterisedSample - CharacterisedSample - The sample after having been subjected to a characterization process - - - - - - - CouplingFactor - InductiveCouplingFactor - CouplingFactor - https://www.wikidata.org/wiki/Q78101715 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 - 6-42.1 - - - - - - - For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. - IsentropicExponent - IsentropicExponent - https://qudt.org/vocab/quantitykind/IsentropicExponent - https://www.wikidata.org/wiki/Q75775739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 - 5-17.2 - - - - - - - - - - - - - - Either a proton or a neutron. - Nucleon - Nucleon - Either a proton or a neutron. - https://en.wikipedia.org/wiki/Nucleon + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + HydrodynamicVoltammetry + HydrodynamicVoltammetry + https://www.wikidata.org/wiki/Q17028237 + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - - BlueBottomQuark - BlueBottomQuark + + + + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + DirectCoulometryAtControlledCurrent + DirectCoulometryAtControlledCurrent + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - - - - - - - - - - - - - - - - - - - + + - BottomQuark - BottomQuark - https://en.wikipedia.org/wiki/Bottom_quark - - - - - - - T-1 L0 M+1 I0 Θ0 N0 J0 - - - - - MassPerTimeUnit - MassPerTimeUnit + GluonType4 + GluonType4 - - - - - - - - - - - - - - - - - - - - - - - Quantity representing the spatial distribution of mass in a continuous material. - Density - MassConcentration - MassDensity - Density - http://qudt.org/vocab/quantitykind/Density - Mass per volume. - 4-2 - 9-10 - https://doi.org/10.1351/goldbook.D01590 + + + + HandlingDevice + HandlingDevice - - - - - CanonicalPartitionFunction - CanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96142389 - 9-35.2 + + + + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + Device + Equipment + Machine + Device + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - + - + - Proportionality constant between the particle current density J and the gradient of the particle number density n. - DiffusionCoefficientForParticleNumberDensity - DiffusionCoefficientForParticleNumberDensity - https://www.wikidata.org/wiki/Q98875545 - 10-64 - Proportionality constant between the particle current density J and the gradient of the particle number density n. - - - - - - - T-3 L+3 M+1 I-1 Θ0 N0 J0 - - - - - ElectricFluxUnit - ElectricFluxUnit + Quotient of relative mass excess and the nucleon number. + PackingFraction + PackingFraction + https://qudt.org/vocab/quantitykind/PackingFraction + https://www.wikidata.org/wiki/Q98058276 + 10-23.1 + Quotient of relative mass excess and the nucleon number. - - - - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - Dilatometry - https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. - Dilatometry - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + + + + Exponent + Exponent - - - - The radiant energy emitted, reflected, transmitted or received, per unit time. - RadiantFlux - RadiantFlux - http://qudt.org/vocab/quantitykind/RadiantFlux - https://doi.org/10.1351/goldbook.R05046 + + + + AlgebricOperator + AlgebricOperator - - + + + + + - - + + - - - - - - - - - - - - - A procedure that has at least two procedures (tasks) as proper parts. - Workflow - Workflow - A procedure that has at least two procedures (tasks) as proper parts. + + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. + LuminousIntensity + LuminousIntensity + http://qudt.org/vocab/quantitykind/LuminousIntensity + 7-14 + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - - + + - The energy possessed by a body by virtue of its position or orientation in a potential field. - PotentialEnergy - PotentialEnergy - http://qudt.org/vocab/quantitykind/PotentialEnergy - 4-28.1 - The energy possessed by a body by virtue of its position or orientation in a potential field. - https://doi.org/10.1351/goldbook.P04778 + Quantities categorised according to ISO 80000-7. + LightAndRadiationQuantity + LightAndRadiationQuantity + Quantities categorised according to ISO 80000-7. - - + + + + + + - - T+1 L-1 M0 I0 Θ0 N0 J0 + + - - + + - TimePerLengthUnit - TimePerLengthUnit - - - - - - A 'process' that is recognized by physical sciences and is categorized accordingly. - While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist - PhysicalPhenomenon - PhysicalPhenomenon - A 'process' that is recognized by physical sciences and is categorized accordingly. + Quantity in condensed matter physics. + EnergyDensityOfStates + EnergyDensityOfStates + https://qudt.org/vocab/quantitykind/EnergyDensityOfStates + https://www.wikidata.org/wiki/Q105687031 + 12-16 + Quantity in condensed matter physics. - + - T0 L0 M-1 I0 Θ0 N+1 J0 + T+2 L+1 M-1 I0 Θ+1 N0 J0 - AmountPerMassUnit - AmountPerMassUnit - - - - - - - - - - - - - - - Reciprocal of the thermal resistance. - ThermalConductance - ThermalConductance - https://qudt.org/vocab/quantitykind/ThermalConductance - https://www.wikidata.org/wiki/Q17176562 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 - 5-13 - Reciprocal of the thermal resistance. - https://doi.org/10.1351/goldbook.T06298 + TemperaturePerPressureUnit + TemperaturePerPressureUnit - - - - A system which is mainly characterised by the spatial configuration of its elements. - HolisticArrangement - HolisticArrangement - A system which is mainly characterised by the spatial configuration of its elements. + + + + Presses + Presses @@ -17468,38 +17261,101 @@ Resilience Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - - + + + + + + + + + + + + + + + + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + SampleExtraction + SampleExtraction + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + + + + + + + + + + + + + + + Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. + The atomic mass is often expressed as an average of the commonly found isotopes. + The mass of an atom in the ground state. + AtomicMass + AtomicMass + The mass of an atom in the ground state. + 10-4.1 + https://en.wikipedia.org/wiki/Atomic_mass + https://doi.org/10.1351/goldbook.A00496 + + + + + + + LatentHeat + LatentHeat + https://www.wikidata.org/wiki/Q207721 + 5-6.2 + + + + + + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + FormingBlasting + Umformstrahlen + FormingBlasting + + + + + + + + - - T0 L+1 M0 I0 Θ+1 N0 J0 + + - - + - LengthTemperatureUnit - LengthTemperatureUnit - - - - - - - An object which is an holistic temporal part of another object. - Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. - SubObject - SubObject - An object which is an holistic temporal part of another object. - If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. + Measure of voltage induced by change of temperature. + SeebeckCoefficient + SeebeckCoefficient + https://qudt.org/vocab/quantitykind/SeebeckCoefficient + https://www.wikidata.org/wiki/Q1091448 + 12-21 + Measure of voltage induced by change of temperature. - - - - An aerosol composed of liquid droplets in air or another gas. - LiquidAerosol - LiquidAerosol - An aerosol composed of liquid droplets in air or another gas. + + + + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + CharacterisationProtocol + CharacterisationProtocol + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. @@ -17512,589 +17368,643 @@ Resilience A colloid composed of fine solid particles or liquid droplets in air or another gas. - - - - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] - URI - URI - https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + + + + The interpreter's internal representation of the object in a semiosis process. + Interpretant + Interpretant + The interpreter's internal representation of the object in a semiosis process. - + - T0 L+2 M-1 I0 Θ0 N0 J0 + T0 L+2 M0 I+1 Θ0 N0 J0 - - AreaPerMassUnit - AreaPerMassUnit - - - - - - - - - - - - - - - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - MomentOfIntertia - MomentOfIntertia - https://qudt.org/vocab/quantitykind/MomentOfInertia - https://www.wikidata.org/wiki/Q165618 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 - 4-7 - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - https://doi.org/10.1351/goldbook.M04006 + + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - + - T-1 L+2 M0 I0 Θ0 N0 J0 + T0 L0 M-1 I0 Θ0 N0 J0 - AreaPerTimeUnit - AreaPerTimeUnit + ReciprocalMassUnit + ReciprocalMassUnit - + + + + FromWorkPIecetoWorkPiece + FromWorkPIecetoWorkPiece + + + + + + A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. + WorkpieceForming + ArchetypeForming + PrimitiveForming + WorkpieceForming + + + + + + Inverse of the impendance. + Admittance + ComplexAdmittance + Admittance + https://qudt.org/vocab/quantitykind/Admittance + https://www.wikidata.org/wiki/Q214518 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 + https://dbpedia.org/page/Admittance + 6-52.1 + Inverse of the impendance. + + + - + - + - In condensed matter physics, position vector of an atom or ion in equilibrium. - EquilibriumPositionVector - EquilibriumPositionVector - https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon - https://www.wikidata.org/wiki/Q105533477 - 12-7.2 - In condensed matter physics, position vector of an atom or ion in equilibrium. - - - - - - - T-1 L-3 M0 I0 Θ0 N0 J0 - - - - - FrequencyPerVolumeUnit - FrequencyPerVolumeUnit - - - - - - FiberboardManufacturing - FiberboardManufacturing - - - - - - TransportationDevice - TransportationDevice - - - - - - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - Ablation - Abtragen - Ablation - - - - - - - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - Gas - Gas - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - - - - - - - - - - - - - - - - - - - - - - - - - - - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - StateOfMatter - StateOfMatter - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - https://en.wikipedia.org/wiki/State_of_matter - - - - - - CausallHairedSystem - CausallHairedSystem + Ratio of shear stress to the shear strain. + ModulusOfRigidity + ShearModulus + ModulusOfRigidity + https://qudt.org/vocab/quantitykind/ShearModulus + https://www.wikidata.org/wiki/Q461466 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 + 4-19.2 + Ratio of shear stress to the shear strain. + https://doi.org/10.1351/goldbook.S05635 - - - - - A foam of trapped gas in a solid. - SolidFoam - SolidFoam - A foam of trapped gas in a solid. - Aerogel + + + + A material that takes active part in a chemical reaction. + ReactiveMaterial + ReactiveMaterial + A material that takes active part in a chemical reaction. - - - - A colloid formed by trapping pockets of gas in a liquid or solid. - Foam - Foam - A colloid formed by trapping pockets of gas in a liquid or solid. + + + + ChemicallyDefinedMaterial + ChemicallyDefinedMaterial - - - - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. - Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. - AssemblyLine - AssemblyLine - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + + + + CompositeMaterial + CompositeMaterial - - - - A system arranged to setup a specific manufacturing process. - ManufacturingSystem - ManufacturingSystem - A system arranged to setup a specific manufacturing process. + + + + + Critical thermodynamic temperature of a superconductor. + SuperconductionTransitionTemperature + SuperconductionTransitionTemperature + https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature + https://www.wikidata.org/wiki/Q106103037 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 + 12-35.3 + Critical thermodynamic temperature of a superconductor. - - - - A physics-based model based on a physics equation describing the behaviour of continuum volume. - ContinuumModel - ContinuumModel - A physics-based model based on a physics equation describing the behaviour of continuum volume. + + + + + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + VolumeFraction + VolumeFraction + http://qudt.org/vocab/quantitykind/VolumeFraction + 9-14 + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + https://doi.org/10.1351/goldbook.V06643 - - + + + + + + + + + + + - imaginary part of the admittance - Susceptance - Susceptance - https://qudt.org/vocab/quantitykind/Susceptance - https://www.wikidata.org/wiki/Q509598 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 - 6-52.3 - imaginary part of the admittance + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + RichardsonConstant + RichardsonConstant + https://qudt.org/vocab/quantitykind/RichardsonConstant + https://www.wikidata.org/wiki/Q105883079 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 + 12-26 + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - + - T0 L0 M0 I+1 Θ0 N0 J0 + T+1 L+1 M0 I+1 Θ0 N0 J0 + + + + + ElectricDipoleMomentUnit + ElectricDipoleMomentUnit + + + + + + + T+2 L0 M-1 I+1 Θ0 N0 J0 - ElectricCurrentUnit - ElectricCurrentUnit + ElectricMobilityUnit + ElectricMobilityUnit - - - - - A solution is a homogeneous mixture composed of two or more substances. - Solutions are characterized by the occurrence of Rayleigh scattering on light, - Solution - Solution - A solution is a homogeneous mixture composed of two or more substances. + + + + + MicrocanonicalPartitionFunction + MicrocanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96106546 + 9-35.1 - - - - - - - - - - - - - - - - - - - - A material in which distributed particles of one phase are dispersed in a different continuous phase. - Dispersion - Dispersion - A material in which distributed particles of one phase are dispersed in a different continuous phase. + + + + + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + SubjectiveProperty + SubjectiveProperty + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + The measure of beauty on a scale from 1 to 10. - - - - A single phase mixture. - PhaseHomogeneousMixture - PhaseHomogeneousMixture - A single phase mixture. + + + + + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. + TotalIonization + TotalIonization + https://qudt.org/vocab/quantitykind/TotalIonization + https://www.wikidata.org/wiki/Q98690787 + 10-59 + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - - - - A device that is designed to participate to a manufacturing process. - ManufacturingDevice - ManufacturingDevice - A device that is designed to participate to a manufacturing process. + + + + + T+1 L0 M-1 I+1 Θ0 N0 J0 + + + + + ElectricChargePerMassUnit + ElectricChargePerMassUnit - + + + + + + ActivityFactor + ActivityFactor + https://www.wikidata.org/wiki/Q89335167 + 9-22 + + + - T+4 L-2 M-1 I+1 Θ0 N0 J0 + T0 L0 M+1 I0 Θ0 N+1 J0 - JosephsonConstantUnit - JosephsonConstantUnit + MassAmountOfSubstanceUnit + MassAmountOfSubstanceUnit + + + + + + + A unit symbol that stands for a derived unit. + Special units are semiotic shortcuts to more complex composed symbolic objects. + SpecialUnit + SpecialUnit + A unit symbol that stands for a derived unit. + Pa stands for N/m2 +J stands for N m + + + + + + + + + + + + + + + + + + + + + + + + + + A symbol that stands for a single unit. + UnitSymbol + UnitSymbol + A symbol that stands for a single unit. + Some examples are "Pa", "m" and "J". - + - + - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - ParticleEmissionRate - ParticleEmissionRate - https://www.wikidata.org/wiki/Q98153151 - 10-36 - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + In nuclear physics, energy imparted per mass. + SpecificEnergyImparted + SpecificEnergyImparted + https://qudt.org/vocab/quantitykind/SpecificEnergyImparted + https://www.wikidata.org/wiki/Q99566195 + 10-81.2 + In nuclear physics, energy imparted per mass. - - - - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - CreepTesting - CreepTesting - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + + + + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + DrawForming + DrawForming - + - T0 L0 M+1 I0 Θ0 N+1 J0 + T0 L-2 M0 I0 Θ0 N0 J+1 - - MassAmountOfSubstanceUnit - MassAmountOfSubstanceUnit - - - - - - Assigned - Assigned - - - - - - Estimated - Estimated - The biography of a person that the author have not met. + + LuminanceUnit + LuminanceUnit - - + + - ScatteringAndDiffraction - ScatteringAndDiffraction + ResourceIdentifier + ResourceIdentifier - - - - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - StandardUnit - ReferenceMaterial - StandardUnit - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + + CeramicSintering + CeramicSintering - + - T0 L-2 M0 I+1 Θ0 N0 J0 + T+3 L0 M-1 I+2 Θ0 N-1 J0 - - ElectricCurrentDensityUnit - ElectricCurrentDensityUnit - - - - - - - - - - - - - - - - - AntiLepton - AntiLepton + + AmountConductivityUnit + AmountConductivityUnit - - + + + + + + + - - T+1 L0 M0 I+1 Θ-1 N0 J0 + + - - + - ElectricChargePerTemperatureUnit - ElectricChargePerTemperatureUnit + Extent of an object in space. + Volume + Volume + http://qudt.org/vocab/quantitykind/Volume + https://www.wikidata.org/wiki/Q39297 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 + https://dbpedia.org/page/Volume + 3-4 - + - T-2 L0 M0 I0 Θ0 N0 J0 + T0 L0 M-1 I+1 Θ0 N0 J0 - AngularFrequencyUnit - AngularFrequencyUnit + ElectricCurrentPerMassUnit + ElectricCurrentPerMassUnit - + + + + A liquid aerosol composed of water droplets in air or another gas. + Vapor + Vapor + A liquid aerosol composed of water droplets in air or another gas. + + + + + + An aerosol composed of liquid droplets in air or another gas. + LiquidAerosol + LiquidAerosol + An aerosol composed of liquid droplets in air or another gas. + + + + + + + Deals with undefined shapes both input and output. + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + MaterialSynthesis + MaterialSynthesis + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + Deals with undefined shapes both input and output. + + + + + + Atomic quantum number related to the orbital angular momentum l of a one-electron state. + OrbitalAngularMomentumQuantumNumber + OrbitalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1916324 + 10-13.3 + Atomic quantum number related to the orbital angular momentum l of a one-electron state. + + + + + + MetallicPowderSintering + MetallicPowderSintering + + + + + + + ElementaryBoson + ElementaryBoson + + + + + + + Critical thermodynamic temperature of an antiferromagnet. + NeelTemperature + NeelTemperature + https://www.wikidata.org/wiki/Q830311 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 + 12-35.2 + Critical thermodynamic temperature of an antiferromagnet. + + + + + + A physics-based model based on a physics equation describing the behaviour of continuum volume. + ContinuumModel + ContinuumModel + A physics-based model based on a physics equation describing the behaviour of continuum volume. + + + + + + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + AbrasiveStrippingVoltammetry + AbrasiveStrippingVoltammetry + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + + + + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + + SecondaryIonMassSpectrometry + SIMS + SecondaryIonMassSpectrometry + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + + + - + - + + - Conductivity per molar concentration of electrolyte. - MolarConductivity - MolarConductivity - https://qudt.org/vocab/quantitykind/MolarConductivity - https://www.wikidata.org/wiki/Q1943278 - 9-45 - Conductivity per molar concentration of electrolyte. - https://doi.org/10.1351/goldbook.M03976 - - - - - - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - MutualInductance - MutualInductance - https://www.wikidata.org/wiki/Q78101401 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 - 6-41.2 - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - https://doi.org/10.1351/goldbook.M04076 + RelativePressureCoefficient + RelativePressureCoefficient + https://qudt.org/vocab/quantitykind/RelativePressureCoefficient + https://www.wikidata.org/wiki/Q74761852 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 + 5-3.3 - - + + - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - CathodicStrippingVoltammetry - CSV - CathodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q4016325 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - https://doi.org/10.1515/pac-2018-0109 - + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - - - - - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - NeutronYieldPerAbsorption - NeutronYieldPerAbsorption - https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption - https://www.wikidata.org/wiki/Q99159075 - 10-74.2 - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. +Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. + +Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + + RamanSpectroscopy + RamanSpectroscopy + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. + +Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. + +Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - - - - - T-1 L0 M0 I0 Θ+1 N0 J0 - - - + + + - TemperaturePerTimeUnit - TemperaturePerTimeUnit + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + PhaseDifference + DisplacementAngle + PhaseDifference + https://www.wikidata.org/wiki/Q97222919 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 + 6-48 + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - - - - - T-1 L+1 M+1 I0 Θ0 N0 J0 - - - - - MomentumUnit - MomentumUnit + + + + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Nanoindentation + Nanoindentation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - - - - - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - ResonanceEscapeProbability - ResonanceEscapeProbability - https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability - https://www.wikidata.org/wiki/Q4108072 - 10-68 - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + + + + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + 3DPrinting + 3DPrinting + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - - - - - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - HalfValueThickness - HalfValueThickness - https://qudt.org/vocab/quantitykind/Half-ValueThickness - https://www.wikidata.org/wiki/Q127526 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 - 10-53 - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + + + + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + FibDic + FIBDICResidualStressAnalysis + FibDic + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - + - - + - Scalar line integral of the magnetic field strength along a closed path. - MagnetomotiveForce - MagnetomotiveForce - https://qudt.org/vocab/quantitykind/MagnetomotiveForce - https://www.wikidata.org/wiki/Q1266982 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 - 6-37.3 - Scalar line integral of the magnetic field strength along a closed path. + vector quantity giving the rate of change of angular velocity + AngularAcceleration + AngularAcceleration + https://qudt.org/vocab/quantitykind/AngularAcceleration + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 + https://dbpedia.org/page/Angular_acceleration + 3-13 + vector quantity giving the rate of change of angular velocity + https://en.wikipedia.org/wiki/Angular_acceleration - - - - - Average value of the increment of the lethargy per collision. - AverageLogarithmicEnergyDecrement - AverageLogarithmicEnergyDecrement - https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html - https://www.wikidata.org/wiki/Q1940739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 - 10-70 - Average value of the increment of the lethargy per collision. + + + + + + + + + + + + + + + + A boolean number. + Boolean + Boolean + A boolean number. + + + + + + PermanentLiquidPhaseSintering + PermanentLiquidPhaseSintering @@ -18113,189 +18023,207 @@ For this reason graviton is an useful concept to homogenize the approach between https://en.wikipedia.org/wiki/Graviton - - + + + + + distance between successive lattice planes + LatticePlaneSpacing + LatticePlaneSpacing + https://qudt.org/vocab/quantitykind/LatticePlaneSpacing + https://www.wikidata.org/wiki/Q105488046 + 12-3 + distance between successive lattice planes + + + + + + + T-2 L0 M+2 I0 Θ0 N0 J0 + + + + + SquareMassPerSquareTimeUnit + SquareMassPerSquareTimeUnit + + + + + + + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + ShortRangeOrderParameter + ShortRangeOrderParameter + https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter + https://www.wikidata.org/wiki/Q105495979 + 12-5.1 + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + + + + - DataProcessingApplication - DataProcessingApplication + Observed + Observed + The biography of a person met by the author. - - - - - T0 L-2 M0 I0 Θ0 N+1 J0 - - - - - AmountPerAreaUnit - AmountPerAreaUnit + + + + Data that occurs naturally without an encoding agent producing it. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + NonEncodedData + EnvironmentalData + NonEncodedData + Data that occurs naturally without an encoding agent producing it. + A cloud in the sky. The radiative spectrum of a star. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - - - - The corresponding Celsius temperature is denoted td and is also called dew point. - Thermodynamic temperature at which vapour in air reaches saturation. - DewPointTemperature - DewPointTemperature - https://www.wikidata.org/wiki/Q178828 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 - 5-36 - Thermodynamic temperature at which vapour in air reaches saturation. - https://doi.org/10.1351/goldbook.D01652 + + + + A CausalSystem that includes quantum parts that are not bonded with the rest. + PhysicalPhenomena + PhysicalPhenomena + A CausalSystem that includes quantum parts that are not bonded with the rest. - - - - - - - - - - - - - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - SurfaceMassDensity - AreicMass - SurfaceDensity - SurfaceMassDensity - https://www.wikidata.org/wiki/Q1907514 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 - 4-5 - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - https://doi.org/10.1351/goldbook.S06167 - + + + + An artificial computer language used to express information or knowledge, often for use in computer system design. + ModellingLanguage + ModellingLanguage + An artificial computer language used to express information or knowledge, often for use in computer system design. + Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + Hardware description language – used to model integrated circuits. - - - - - A coarse dispersion of liquid in a gas continuum phase. - GasLiquidSuspension - GasLiquidSuspension - A coarse dispersion of liquid in a gas continuum phase. - Rain, spray. +Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + +Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. + https://en.wikipedia.org/wiki/Modeling_language - - + + + + - - + + - - - - - GasMixture - GasMixture + + + The human operator who takes care of the whole characterisation method or sub-processes/stages. + Operator + Operator + The human operator who takes care of the whole characterisation method or sub-processes/stages. - - - - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - - ScanningElectronMicroscopy - SEM - ScanningElectronMicroscopy - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + + + + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + IntentionalAgent + IntentionalAgent + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - + - + - BlueUpAntiQuark - BlueUpAntiQuark + RedUpAntiQuark + RedUpAntiQuark - - - - - - - - - - - - - - - - - - - - - UpAntiQuark - UpAntiQuark + + + + + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. + NeutronYieldPerAbsorption + NeutronYieldPerAbsorption + https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption + https://www.wikidata.org/wiki/Q99159075 + 10-74.2 + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - - - - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - DynamicLightScattering - DLS - DynamicLightScattering - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + + + + + Number of holes in valence band per volume. + HoleDensity + HoleDensity + https://qudt.org/vocab/quantitykind/HoleDensity + https://www.wikidata.org/wiki/Q105971101 + 12-29.2 + Number of holes in valence band per volume. - - - - Unit for quantities of dimension one that are the fraction of two speeds. - SpeedFractionUnit - SpeedFractionUnit - Unit for quantities of dimension one that are the fraction of two speeds. - Unit for refractive index. + + + + + T-1 L0 M0 I0 Θ0 N+1 J0 + + + + + CatalyticActivityUnit + CatalyticActivityUnit - - - - Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. - The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped - The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - - SquareWaveVoltammetry - OSWV - OsteryoungSquareWaveVoltammetry - SWV - SquareWaveVoltammetry - https://www.wikidata.org/wiki/Q4016323 - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - https://en.wikipedia.org/wiki/Squarewave_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + + A scientific theory is a description, objective and observed, produced with scientific methodology. + ScientificTheory + ScientificTheory + A scientific theory is a description, objective and observed, produced with scientific methodology. - - - - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - FreezingPointDepressionOsmometry - FreezingPointDepressionOsmometry - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + + + + + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + PureParallelWorkflow + EmbarassinglyParallelWorkflow + PureParallelWorkflow + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - - - - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - Osmometry - Osmometry - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + + + + ParallelWorkflow + ParallelWorkflow + + + + + + RMS value voltage multiplied by rms value of electric current. + ApparentPower + ApparentPower + https://qudt.org/vocab/quantitykind/ApparentPower + https://www.wikidata.org/wiki/Q1930258 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 + 6-57 + RMS value voltage multiplied by rms value of electric current. @@ -18318,337 +18246,358 @@ For this reason graviton is an useful concept to homogenize the approach between https://doi.org/10.1351/goldbook.S06192 - - - - - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - MultiplicationFactor - MultiplicationFactor - https://qudt.org/vocab/quantitykind/MultiplicationFactor - https://www.wikidata.org/wiki/Q99440471 - 10-78.1 - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + + + + + BlueTopQuark + BlueTopQuark - - - - - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature - CoherenceLength - CoherenceLength - https://www.wikidata.org/wiki/Q1778793 - 12-38.2 - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + + + + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + MercuryPorosimetry + MercuryPorosimetry + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - - - + + + + A computer language that expresses the presentation of structured documents. + StyleSheetLanguage + StyleSheetLanguage + A computer language that expresses the presentation of structured documents. + CSS + https://en.wikipedia.org/wiki/Style_sheet_language + + + + + + + T+4 L-2 M-1 I+2 Θ0 N0 J0 + + + - ThermodynamicEfficiency - ThermalEfficiency - ThermodynamicEfficiency - https://qudt.org/vocab/quantitykind/ThermalEfficiency - https://www.wikidata.org/wiki/Q1452104 - 5-25.1 + CapacitanceUnit + CapacitanceUnit - + + + + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. + CausalInteraction + CausalInteraction + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. + + + - + - Decrease in magnitude of any kind of flux through a medium. - Attenuation - Extinction - Attenuation - 3-26.1 - Decrease in magnitude of any kind of flux through a medium. - https://en.wikipedia.org/wiki/Attenuation - https://doi.org/10.1351/goldbook.A00515 + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. + PhaseAngle + PhaseAngle + https://www.wikidata.org/wiki/Q415829 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 + 3-7 + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - - - - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - Chronoamperometry - AmperiometricDetection - AmperometricCurrentTimeCurve - Chronoamperometry - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - https://doi.org/10.1515/pac-2018-0109 + + + + A 'process' that is recognized by physical sciences and is categorized accordingly. + While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist + PhysicalPhenomenon + PhysicalPhenomenon + A 'process' that is recognized by physical sciences and is categorized accordingly. - - - - Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - Amperometry - Amperometry - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - https://doi.org/10.1515/pac-2018-0109 + + + + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + Drilling + Bohren + Drilling - - - - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - - Profilometry - Profilometry - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + + + + Characteristic quantum number s of a particle, related to its spin. + SpinQuantumNumber + SpinQuantumNumber + https://qudt.org/vocab/quantitykind/SpinQuantumNumber + https://www.wikidata.org/wiki/Q3879445 + 10-13.5 + Characteristic quantum number s of a particle, related to its spin. - - - + + + - BlueStrangeAntiQuark - BlueStrangeAntiQuark + RedCharmAntiQuark + RedCharmAntiQuark - - + + + - - T+3 L-1 M-1 I0 Θ0 N0 J+1 + + + 1 - - - - LuminousEfficacyUnit - LuminousEfficacyUnit - - - - - - HardeningByForging - HardeningByForging - - - - - - - + - - + + + 2 + + An uncharged subatomic particle found in the atomic nucleus. + Neutron + Neutron + An uncharged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Neutron + + + + + - Electric charge per volume. - ElectricChargeDensity - VolumeElectricCharge - ElectricChargeDensity - https://qudt.org/vocab/quantitykind/ElectricChargeDensity - https://www.wikidata.org/wiki/Q69425629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 - 6-3 - Electric charge per volume. - https://doi.org/10.1351/goldbook.C00988 + Dissociation may occur stepwise. + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + DegreeOfDissociation + DissociationFraction + DegreeOfDissociation + https://qudt.org/vocab/quantitykind/DegreeOfDissociation + https://www.wikidata.org/wiki/Q907334 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 + 9-43 + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + https://doi.org/10.1351/goldbook.D01566 + + + + + + + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + Electron + Electron + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron + + + + + + + + + + + + + + + + + + + + + + ElectronType + ElectronType - - - - - Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. - least energy required for the emission of a conduction electron. - WorkFunction - ElectronWorkFunction - WorkFunction - https://www.wikidata.org/wiki/Q783800 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 - 12-24.1 - least energy required for the emission of a conduction electron. - https://doi.org/10.1351/goldbook.E02015 + + + + Cementing + Cementing - - - - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - InteractionVolume - InteractionVolume - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + + + + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + ArchetypeJoin + ArchetypeJoin + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - - - - - T-6 L-2 M+2 I0 Θ0 N0 J0 - - - + + + - SquarePressurePerSquareTimeUnit - SquarePressurePerSquareTimeUnit + In nuclear physics, the multiplication factor for an infinite medium. + InfiniteMultiplicationFactor + InfiniteMultiplicationFactor + https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor + https://www.wikidata.org/wiki/Q99440487 + 10-78.2 + In nuclear physics, the multiplication factor for an infinite medium. - - - + + + - For a particle, electric charge q divided by elementary charge e. - The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. - The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. - ChargeNumber - IonizationNumber - ChargeNumber - https://qudt.org/vocab/quantitykind/ChargeNumber - https://www.wikidata.org/wiki/Q1800063 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 - https://dbpedia.org/page/Charge_number - 10-5.2 - For a particle, electric charge q divided by elementary charge e. - https://en.wikipedia.org/wiki/Charge_number - https://doi.org/10.1351/goldbook.C00993 + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + NonLeakageProbability + NonLeakageProbability + https://qudt.org/vocab/quantitykind/Non-LeakageProbability + https://www.wikidata.org/wiki/Q99415566 + 10-77 + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - - - - A process occurring by natural (non-intentional) laws. - NaturalProcess - NonIntentionalProcess - NaturalProcess - A process occurring by natural (non-intentional) laws. + + + + A suspension of liquid droplets dispersed in a gas through an atomization process. + Spray + Spray + A suspension of liquid droplets dispersed in a gas through an atomization process. - + - T+2 L0 M-1 I+1 Θ0 N0 J0 + T+2 L-2 M-1 I+2 Θ0 N0 J0 - ElectricMobilityUnit - ElectricMobilityUnit + MagneticReluctanceUnit + MagneticReluctanceUnit - - - - - - - - - - + + + + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + The act of connecting together the parts of something + Assemblying + Assemblying + The act of connecting together the parts of something + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + + + + + - The measure of the resistance of a fluid to flow when an external force is applied. - DynamicViscosity - Viscosity - DynamicViscosity - https://qudt.org/vocab/quantitykind/DynamicViscosity - https://www.wikidata.org/wiki/Q15152757 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 - 4-24 - The measure of the resistance of a fluid to flow when an external force is applied. - https://doi.org/10.1351/goldbook.D01877 + Square root of the product of electron and hole density in a semiconductor. + IntrinsicCarrierDensity + IntrinsicCarrierDensity + https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity + https://www.wikidata.org/wiki/Q1303188 + 12-29.3 + Square root of the product of electron and hole density in a semiconductor. - + - T0 L+6 M0 I0 Θ0 N0 J0 + T-4 L0 M+1 I0 Θ0 N0 J0 - SexticLengthUnit - SexticLengthUnit + MassPerQuarticTimeUnit + MassPerQuarticTimeUnit - - - - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - - ThreePointBendingTesting - ThreePointFlexuralTest - ThreePointBendingTesting - https://www.wikidata.org/wiki/Q2300905 - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - https://en.wikipedia.org/wiki/Three-point_flexural_test + + + + A well-formed finite combination of mathematical symbols according to some specific rules. + Expression + Expression + A well-formed finite combination of mathematical symbols according to some specific rules. - - - - - GreenUpAntiQuark - GreenUpAntiQuark + + + + The derivative of the electric charge of a system with respect to the area. + SurfaceDensityOfElectricCharge + AreicElectricCharge + SurfaceChargeDensity + SurfaceDensityOfElectricCharge + https://www.wikidata.org/wiki/Q12799324 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 + 6-4 + The derivative of the electric charge of a system with respect to the area. + https://doi.org/10.1351/goldbook.S06159 - - - + + - Radius of the circular movement of an electrically charged particle in a magnetic field. - Gyroradius - LarmorRadius - Gyroradius - https://www.wikidata.org/wiki/Q1194458 - 10-17 - Radius of the circular movement of an electrically charged particle in a magnetic field. + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + The diameter of a circle or a sphere is twice its radius. + Diameter + Diameter + https://qudt.org/vocab/quantitykind/Diameter + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 + https://dbpedia.org/page/Diameter + 3-1.5 + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + https://en.wikipedia.org/wiki/Diameter - - - - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - MassSpectrometry - MassSpectrometry - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + + + + A tile that has next and is next of other tiles within the same tessellation. + ThroughTile + ThroughTile + A tile that has next and is next of other tiles within the same tessellation. - - - - - - + + - - + + T-1 L-2 M+1 I0 Θ0 N0 J0 - + + - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - CoefficientOfHeatTransfer - ThermalTransmittance - CoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q634340 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 - 5-10.1 - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + MassFluxUnit + MassFluxUnit - - - - GluonType7 - GluonType7 + + + + + A coarse dispersion of liquid in a liquid continuum phase. + LiquidLiquidSuspension + LiquidLiquidSuspension + A coarse dispersion of liquid in a liquid continuum phase. - + @@ -18656,1357 +18605,1295 @@ For this reason graviton is an useful concept to homogenize the approach between - + - Quotient of the activity A of a sample and the total area S of the surface of that sample. - SurfaceActivityDensity - SurfaceActivityDensity - https://qudt.org/vocab/quantitykind/SurfaceActivityDensity - https://www.wikidata.org/wiki/Q98103005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 - 10-30 - Quotient of the activity A of a sample and the total area S of the surface of that sample. - - - - - - - The speed of light in vacuum. Defines the base unit metre in the SI system. - SpeedOfLightInVacuum - SpeedOfLightInVacuum - http://qudt.org/vocab/constant/SpeedOfLight_Vacuum - 6-35.2 - The speed of light in vacuum. Defines the base unit metre in the SI system. - https://doi.org/10.1351/goldbook.S05854 - - - - - - - - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - RollingResistance - RollingDrag - RollingFrictionForce - RollingResistance - https://www.wikidata.org/wiki/Q914921 - 4-9.5 - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - - - - - - - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - RollingResistanceFactor - RollingResistanceFactor - https://www.wikidata.org/wiki/Q91738044 - 4-23.3 - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + BohrMagneton + BohrMagneton + https://www.wikidata.org/wiki/Q737120 + 10-9.2 + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - - - - - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - ShortRangeOrderParameter - ShortRangeOrderParameter - https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter - https://www.wikidata.org/wiki/Q105495979 - 12-5.1 - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + + + + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + SparkErosion + elektrochemisches Abtragen + SparkErosion - - + + - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - Widening - Weiten - Widening + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + Ablation + Abtragen + Ablation - - - - - GreenTopQuark - GreenTopQuark + + + + + + + + + + + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + CharacterisationEnvironment + CharacterisationEnvironment + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - - - - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - Dismantling - Demontage - Dismantling - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + + + + + GreenTopAntiQuark + GreenTopAntiQuark - - + + + + + T-3 L+1 M+1 I0 Θ0 N0 J0 + + + - Enthalpy per unit mass. - SpecificEnthalpy - SpecificEnthalpy - https://qudt.org/vocab/quantitykind/SpecificEnthalpy - https://www.wikidata.org/wiki/Q21572993 - 5-21.3 - Enthalpy per unit mass. - https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy + MassLengthPerCubicTimeUnit + MassLengthPerCubicTimeUnit - - - - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - NanoMaterial - NanoMaterial - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + + + + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + PrimaryData + PrimaryData + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + Baseline subtraction, noise reduction , X and Y axes correction. - - - - SizeDefinedMaterial - SizeDefinedMaterial + + + + + + + + + + + + + Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. + +The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. + +In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). + The object, in Peirce semiotics, as participant to a semiotic process. + SemioticObject + Object + SemioticObject + The object, in Peirce semiotics, as participant to a semiotic process. - - - - - Quotient of mechanical output and input power. - MechanicalEfficiency - MechanicalEfficiency - https://www.wikidata.org/wiki/Q2628085 - 4-29 - Quotient of mechanical output and input power. + + + + + + + + + + + + + + + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + Lepton + Lepton + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + https://en.wikipedia.org/wiki/Lepton - - - - A direct part that is obtained by partitioning a whole purely in spatial parts. - SpatialTile - SpatialTile - A direct part that is obtained by partitioning a whole purely in spatial parts. + + + + The dependent variable for which an equation has been written. + Unknown + Unknown + The dependent variable for which an equation has been written. + Velocity, for the Navier-Stokes equation. - - + + - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - MembraneOsmometry - MembraneOsmometry - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - - - - - - - The charge of an electron. - The negative of ElementaryCharge. - ElectronCharge - ElectronCharge - The charge of an electron. - https://doi.org/10.1351/goldbook.E01982 + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + CharacterisationExperiment + CharacterisationExperiment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - - - - - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - ReactorTimeConstant - ReactorTimeConstant - https://qudt.org/vocab/quantitykind/ReactorTimeConstant - https://www.wikidata.org/wiki/Q99518950 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 - 10-79 - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + + + + + + + + + + + + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + Experiment + Experiment + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - - - - A group of machineries used to process a group of similar parts. - Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. - MachineCell - MachineCell - A group of machineries used to process a group of similar parts. + + + + + BlueCharmQuark + BlueCharmQuark - - + - + - Surface density of electric charge multiplied by velocity - LinearElectricCurrentDensity - LinearElectricCurrentDensity - https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity - https://www.wikidata.org/wiki/Q2356741 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 - 6-9 - Surface density of electric charge multiplied by velocity + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + MagneticMoment + MagneticAreaMoment + MagneticMoment + https://qudt.org/vocab/quantitykind/MagneticMoment + https://www.wikidata.org/wiki/Q242657 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 + 6-23 + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + https://doi.org/10.1351/goldbook.M03688 - + - T-3 L-2 M+2 I0 Θ0 N0 J0 + T0 L-1 M+1 I0 Θ0 N0 J0 - SquarePressureTimeUnit - SquarePressureTimeUnit + MassPerLengthUnit + MassPerLengthUnit - - - - - - + + - - + + T-3 L+3 M+1 I-2 Θ0 N0 J0 - + + - Derivative of velocity with respect to time. - Acceleration - Acceleration - http://qudt.org/vocab/quantitykind/Acceleration - 3-9.1 - https://doi.org/10.1351/goldbook.A00051 + ElectricResistivityUnit + ElectricResistivityUnit - - - - A meson with total spin 1 and even parit. - PseudovectorMeson - PseudovectorMeson - A meson with total spin 1 and even parit. - https://en.wikipedia.org/wiki/Pseudovector_meson + + + + + DebyeTemperature + DebyeTemperature + https://qudt.org/vocab/quantitykind/DebyeTemperature + https://www.wikidata.org/wiki/Q3517821 + 12-11 - + - T+10 L-2 M-3 I+4 Θ0 N0 J0 + T-1 L+2 M+1 I0 Θ0 N-1 J0 - - QuarticElectricDipoleMomentPerCubicEnergyUnit - QuarticElectricDipoleMomentPerCubicEnergyUnit + + EnergyTimePerAmountUnit + EnergyTimePerAmountUnit - - - - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - MagneticQuantumNumber - MagneticQuantumNumber - https://qudt.org/vocab/quantitykind/MagneticQuantumNumber - https://www.wikidata.org/wiki/Q2009727 - 10-13.4 - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + + + + + RedStrangeAntiQuark + RedStrangeAntiQuark - - + + + + SandMolds + SandMolds + + + + + + WNegativeBoson + WNegativeBoson + + + + + + + + + + + + + + + + + A charged vector boson that mediate the weak interaction. + WBoson + ChargedWeakBoson + IntermediateVectorBoson + WBoson + A charged vector boson that mediate the weak interaction. + https://en.wikipedia.org/wiki/W_and_Z_bosons + + + + + + GravitySintering + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder + Loose-powderSintering + PressurelessSintering + GravitySintering + + + + - + - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - RichardsonConstant - RichardsonConstant - https://qudt.org/vocab/quantitykind/RichardsonConstant - https://www.wikidata.org/wiki/Q105883079 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 - 12-26 - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + translation vector that maps the crystal lattice on itself + LatticeVector + LatticeVector + https://qudt.org/vocab/quantitykind/LatticeVector + https://www.wikidata.org/wiki/Q105435234 + 12-1.1 + translation vector that maps the crystal lattice on itself - - - - - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - The mass concentration of water at saturation is denoted wsat. - MassConcentrationOfWater - MassConcentrationOfWater - https://qudt.org/vocab/quantitykind/MassConcentrationOfWater - https://www.wikidata.org/wiki/Q76378758 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 - 5-27 - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + + + + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + ThermalCutting + Thermisches Abtragen + ThermalCutting + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - - - - - - - 1 - - - - - - - 2 - - - - A positive charged subatomic particle found in the atomic nucleus. - Proton - Proton - A positive charged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Proton + + + + + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + CoherenceLength + CoherenceLength + https://www.wikidata.org/wiki/Q1778793 + 12-38.2 + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature - + + + + + Extrusion + Extrusion + + + - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - RelativeMassDensity - RelativeDensity - RelativeMassDensity - https://www.wikidata.org/wiki/Q11027905 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 - 4-4 - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - https://doi.org/10.1351/goldbook.R05262 + Quotient of change of volume and original volume. + RelativeVolumeStrain + BulkStrain + VolumeStrain + RelativeVolumeStrain + https://qudt.org/vocab/quantitykind/VolumeStrain + https://www.wikidata.org/wiki/Q73432507 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 + 4-17.4 + Quotient of change of volume and original volume. + https://doi.org/10.1351/goldbook.V06648 - - - - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - AlphaSpectrometry - AlphaSpectrometry - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + + + + + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. + HyperfineTransitionFrequencyOfCs + HyperfineTransitionFrequencyOfCs + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. - - - + + + - Quotient of relative mass excess and the nucleon number. - PackingFraction - PackingFraction - https://qudt.org/vocab/quantitykind/PackingFraction - https://www.wikidata.org/wiki/Q98058276 - 10-23.1 - Quotient of relative mass excess and the nucleon number. + Voltage between substances a and b caused by the thermoelectric effect. + ThermoelectricVoltage + ThermoelectricVoltage + https://www.wikidata.org/wiki/Q105761637 + 12-20 + Voltage between substances a and b caused by the thermoelectric effect. - - - - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - DirectCurrentInternalResistance - DirectCurrentInternalResistance - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + + + + + GreenUpAntiQuark + GreenUpAntiQuark - - - - A physics-based model based on a physics equation describing the behaviour of electrons. - ElectronicModel - ElectronicModel - A physics-based model based on a physics equation describing the behaviour of electrons. - Density functional theory. -Hartree-Fock. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + GreenAntiQuark + GreenAntiQuark - - - - - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - PowerFactor - PowerFactor - https://qudt.org/vocab/quantitykind/PowerFactor - https://www.wikidata.org/wiki/Q750454 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 - 6-58 - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + + + + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + BrunauerEmmettTellerMethod + BET + BrunauerEmmettTellerMethod + https://www.wikidata.org/wiki/Q795838 + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + https://en.wikipedia.org/wiki/BET_theory - - - - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - PrecipitationHardening - PrecipitationHardening - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + + + + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + GasAdsorptionPorosimetry + GasAdsorptionPorosimetry + GasAdsorptionPorosimetry + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - - - - HandlingDevice - HandlingDevice + + + + + For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. + IsentropicExponent + IsentropicExponent + https://qudt.org/vocab/quantitykind/IsentropicExponent + https://www.wikidata.org/wiki/Q75775739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 + 5-17.2 - - - - - T0 L+2 M0 I0 Θ+1 N0 J0 - - - + + + - AreaTemperatureUnit - AreaTemperatureUnit + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + RadiantEnergy + RadiantEnergy + https://www.wikidata.org/wiki/Q1259526 + 10-45 + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - - - - A property that is associated to an object by convention, or assumption. - A quantitative property attributed by agreement to a quantity for a given purpose. - ConventionalProperty - ConventionalProperty - A quantitative property attributed by agreement to a quantity for a given purpose. - The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. - -If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. + + + + + + + + + + + + + + + + + + + + + CharmAntiQuark + CharmAntiQuark + -Then I have two different physical quantities that are properties thanks to two different semiotic processes. + + + + Describes the level of expertise required to carry out a process (the entire test or the data processing). + LevelOfExpertise + LevelOfExpertise + Describes the level of expertise required to carry out a process (the entire test or the data processing). - + - T0 L0 M0 I0 Θ+1 N0 J0 + T-4 L+2 M0 I0 Θ0 N0 J0 - TemperatureUnit - TemperatureUnit + AreaPerQuarticTimeUnit + AreaPerQuarticTimeUnit - - + + + + + + - - T-2 L+3 M+1 I-1 Θ+1 N0 J0 + + - - - - NewtonSquareMetrePerAmpereUnit - NewtonSquareMetrePerAmpereUnit - - - - + - The energy of an object due to its motion. - KineticEnergy - KineticEnergy - http://qudt.org/vocab/quantitykind/KineticEnergy - 4-28.2 - The energy of an object due to its motion. - https://doi.org/10.1351/goldbook.K03402 + Measure of the tendency of a substance to leave a phase. + Fugacity + Fugacity + https://qudt.org/vocab/quantitykind/Fugacity + https://www.wikidata.org/wiki/Q898412 + 9-20 + Measure of the tendency of a substance to leave a phase. + https://doi.org/10.1351/goldbook.F02543 - - + + + + + + - - T+3 L-2 M-1 I0 Θ0 N0 J+1 + + - - - - LuminousEfficacyUnit - LuminousEfficacyUnit - - - - - - - In condensed matter physics, quotient of momentum and the reduced Planck constant. - AngularWaveNumber - AngularRepetency - AngularWaveNumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q105542089 - 12-9.1 - In condensed matter physics, quotient of momentum and the reduced Planck constant. - - - - - - - DebyeTemperature - DebyeTemperature - https://qudt.org/vocab/quantitykind/DebyeTemperature - https://www.wikidata.org/wiki/Q3517821 - 12-11 - - - - - - Removal of material by means of rigid or flexible discs or belts containing abrasives. - Grinding - Schleifen - Grinding - - - - - + - Permittivity divided by electric constant. - RelativePermittivity - RelativePermittivity - https://qudt.org/vocab/unit/PERMITTIVITY_REL - https://www.wikidata.org/wiki/Q4027242 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 - 6-15 - Permittivity divided by electric constant. + Reciprocal of the coefficient of heat transfer. + ThermalInsulance + CoefficientOfThermalInsulance + ThermalInsulance + https://qudt.org/vocab/quantitykind/ThermalInsulance + https://www.wikidata.org/wiki/Q2596212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 + 5-11 + Reciprocal of the coefficient of heat transfer. - - - + + + + + - - - - - - + + - - A variable that stand for a well known numerical constant (a known number). - KnownConstant - KnownConstant - A variable that stand for a well known numerical constant (a known number). - π refers to the constant number ~3.14 + + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. + DiffusionArea + DiffusionArea + https://qudt.org/vocab/quantitykind/DiffusionArea + https://www.wikidata.org/wiki/Q98966292 + 10-72.2 + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - - - - SampleInspectionInstrument - SampleInspectionInstrument + + + + + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + Plasma + Plasma + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - - + - + - translation vector that maps the crystal lattice on itself - LatticeVector - LatticeVector - https://qudt.org/vocab/quantitykind/LatticeVector - https://www.wikidata.org/wiki/Q105435234 - 12-1.1 - translation vector that maps the crystal lattice on itself + Fundamental translation vectors for the reciprocal lattice. + FundamentalReciprocalLatticeVector + FundamentalReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475399 + 12-2.2 + Fundamental translation vectors for the reciprocal lattice. - - + + - StaticFrictionCoefficient - CoefficientOfStaticFriction - StaticFrictionFactor - StaticFrictionCoefficient - https://www.wikidata.org/wiki/Q73695673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 - 4-23.1 + Length in a given direction regarded as horizontal. + The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. + Width + Breadth + Width + https://qudt.org/vocab/quantitykind/Width + https://www.wikidata.org/wiki/Q35059 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 + 3-1.2 + Length in a given direction regarded as horizontal. - - + + + + + + + + + + + + + + + Number of protons in an atomic nucleus. + AtomicNumber + AtomicNumber + http://qudt.org/vocab/quantitykind/AtomicNumber + Number of protons in an atomic nucleus. + 10-1.1 + https://doi.org/10.1351/goldbook.A00499 + + + + + + + + + + + + + + + + - - + + + 1 - - The small, dense region at the centre of an atom consisting of protons and neutrons. - Nucleus - Nucleus - The small, dense region at the centre of an atom consisting of protons and neutrons. - - - - - - - - - - - - - - - ParticulateMatter - ParticulateMatter - - - - - - Cementing - Cementing - - - - - - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - ArchetypeJoin - ArchetypeJoin - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - - - - - - - GrandCanonicalPartionFunction - GrandPartionFunction - GrandCanonicalPartionFunction - https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96176022 - 9-35.3 + + An integer number. + Integer + Integer + An integer number. - - + + - Rest mass of a nuclide X in the ground state. - NuclidicMass - NuclidicMass - https://www.wikidata.org/wiki/Q97010809 - 10-4.2 - Rest mass of a nuclide X in the ground state. - https://doi.org/10.1351/goldbook.N04258 + Ratio of void volume and total volume of a porous material. + Porosity + Porosity + https://www.wikidata.org/wiki/Q622669 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 + Ratio of void volume and total volume of a porous material. + https://doi.org/10.1351/goldbook.P04762 - - - - - Deals with undefined shapes both input and output. - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - MaterialSynthesis - MaterialSynthesis - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - Deals with undefined shapes both input and output. + + + + Describes the main input parameters that are needed to acquire the signal. + Describes the main input parameters that are needed to acquire the signal. + MeasurementParameter + MeasurementParameter + Describes the main input parameters that are needed to acquire the signal. - - - - ProductionEngineering - ProductionEngineering + + + + + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + Quantum + Quantum + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. +However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. - - - - TransientLiquidPhaseSintering - TransientLiquidPhaseSintering + + + + + T+1 L-2 M0 I+1 Θ0 N0 J0 + + + + + ElectricDisplacementFieldUnit + ElectricDisplacementFieldUnit - + - T-3 L-3 M+1 I0 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ0 N0 J0 - PowerPerAreaVolumeUnit - PowerPerAreaVolumeUnit + EnergyUnit + EnergyUnit - - - - Describes the level of automation of the test. - LevelOfAutomation - LevelOfAutomation - Describes the level of automation of the test. + + + + + T+4 L-3 M-1 I+2 Θ0 N0 J0 + + + + + PermittivityUnit + PermittivityUnit - - - - MultiParticlePath - MultiParticlePath + + + + A standalone simulation, where a single physics equation is solved. + StandaloneModelSimulation + StandaloneModelSimulation + A standalone simulation, where a single physics equation is solved. - - - + + - in the free electron model, the Fermi energy divided by the Boltzmann constant - FermiTemperature - FermiTemperature - https://qudt.org/vocab/quantitykind/FermiTemperature - https://www.wikidata.org/wiki/Q105942324 - 12-28 - in the free electron model, the Fermi energy divided by the Boltzmann constant + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + NonActivePower + NonActivePower + https://qudt.org/vocab/quantitykind/NonActivePower + https://www.wikidata.org/wiki/Q79813060 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 + 6-61 + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - + - - - BlueTopQuark - BlueTopQuark - - - - - - - - - - - - - - - - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - Uncoded - Uncoded - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - A random generated id for a product. - - - - - - - - - - - - - - - + - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - PhysicallyInteracting - PhysicallyInteracting - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - - - - - - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - NuclearMagneticResonance - Magnetic resonance spectroscopy (MRS) - NMR - NuclearMagneticResonance - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + GreenTopQuark + GreenTopQuark - - - - - A liquid solution made of two or more component substances. - LiquidSolution - LiquidSolution - A liquid solution made of two or more component substances. + + + + + GreenDownAntiQuark + GreenDownAntiQuark - - - - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - - Thermogravimetry - TGA - Thermogravimetry - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + + + + + + + + + + + + + Inverse of the reluctance. + Permeance + Permeance + https://qudt.org/vocab/quantitykind/Permeance + https://www.wikidata.org/wiki/Q77997985 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 + 6-40 + Inverse of the reluctance. - + + - + - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - AngularVelocity - AngularVelocity - https://qudt.org/vocab/quantitykind/AngularVelocity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 - https://dbpedia.org/page/Angular_velocity - 3-12 - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - https://en.wikipedia.org/wiki/Angular_velocity + The derivative of the electric charge of a system with respect to the electric potential. + Capacitance + ElectricCapacitance + Capacitance + http://qudt.org/vocab/quantitykind/Capacitance + 6-13 + The derivative of the electric charge of a system with respect to the electric potential. + https://doi.org/10.1351/goldbook.C00791 - + + + + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + CausalCollapse + CausalCollapse + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + + + + + + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + DifferentialPulseVoltammetry + DPV + DifferentialPulseVoltammetry + https://www.wikidata.org/wiki/Q5275361 + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + https://en.wikipedia.org/wiki/Differential_pulse_voltammetry + https://doi.org/10.1515/pac-2018-0109 + + + + + + Gibbs energy per unit mass. + SpecificGibbsEnergy + SpecificGibbsEnergy + https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy + https://www.wikidata.org/wiki/Q76360636 + 5-21.5 + Gibbs energy per unit mass. + + + + + + + AntiTau + AntiTau + + + - T-4 L+2 M+1 I-1 Θ0 N0 J0 + T0 L+2 M0 I0 Θ+1 N0 J0 - ElectricPotentialPerTimeUnit - ElectricPotentialPerTimeUnit - - - - - - - - - - - - - - - - - - - - - - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. - AntiMatter - AntiMatter - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. + AreaTemperatureUnit + AreaTemperatureUnit - + - T-2 L0 M+2 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ+1 N0 J0 - SquareMassPerSquareTimeUnit - SquareMassPerSquareTimeUnit + TemperatureUnit + TemperatureUnit - - - - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - DrawForming - DrawForming + + + + A command language designed to be run by a command-line interpreter, like a Unix shell. + ShellScript + ShellScript + A command language designed to be run by a command-line interpreter, like a Unix shell. + https://en.wikipedia.org/wiki/Shell_script - - - - - Average distance that electrons travel between two successive interactions. - MeanFreePathOfElectrons - MeanFreePathOfElectrons - https://qudt.org/vocab/quantitykind/ElectronMeanFreePath - https://www.wikidata.org/wiki/Q105672307 - 12-15.2 - Average distance that electrons travel between two successive interactions. + + + + An interpreted computer language for job control in computing. + CommandLanguage + CommandLanguage + An interpreted computer language for job control in computing. + Unix shell. +Batch programming languages. + https://en.wikipedia.org/wiki/Command_language - - - + + + + + T0 L+1 M0 I0 Θ+1 N0 J0 + + + - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - AlphaDisintegrationEnergy - AlphaDisintegrationEnergy - http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98146025 - 10-32 - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + LengthTemperatureUnit + LengthTemperatureUnit - - - - - MolarEnthalpy - MolarEnthalpy - Enthalpy per amount of substance. - https://www.wikidata.org/wiki/Q88769977 - 9-6.2 + + + + Python + Python - - - - - - + + - - - - - - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - Mobility - Mobility - https://qudt.org/vocab/quantitykind/Mobility - https://www.wikidata.org/wiki/Q900648 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 - 10-61 - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - https://doi.org/10.1351/goldbook.M03955 - - - - - - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - Chromatography - Chromatography - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - https://en.wikipedia.org/wiki/Chromatography + + T0 L0 M0 I+1 Θ-1 N0 J0 + + + + + ElectricCurrentPerTemperatureUnit + ElectricCurrentPerTemperatureUnit - - - - - The rest mass of an electron. - ElectronMass - ElectronMass - http://qudt.org/vocab/constant/ElectronMass - https://doi.org/10.1351/goldbook.E02008 + + + + + A type of sol in the form of one solid dispersed in liquid. + LiquidSol + LiquidSol + A type of sol in the form of one solid dispersed in liquid. - - - - - distance between successive lattice planes - LatticePlaneSpacing - LatticePlaneSpacing - https://qudt.org/vocab/quantitykind/LatticePlaneSpacing - https://www.wikidata.org/wiki/Q105488046 - 12-3 - distance between successive lattice planes + + + + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + QuantumAnnihilation + QuantumAnnihilation + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - - - - - + + - - + + T-1 L+3 M0 I0 Θ0 N-1 J0 - + + - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - MagneticMoment - MagneticAreaMoment - MagneticMoment - https://qudt.org/vocab/quantitykind/MagneticMoment - https://www.wikidata.org/wiki/Q242657 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 - 6-23 - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - https://doi.org/10.1351/goldbook.M03688 + VolumePerAmountTimeUnit + VolumePerAmountTimeUnit - + - - T0 L-3 M0 I0 Θ0 N-1 J0 + + - - - ReciprocalAmountPerVolumeUnit - ReciprocalAmountPerVolumeUnit + + + + + + + + + + + + 1 + + + + A real number. + Real + Real + A real number. - - - - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Dielectrometry - Dielectrometry - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - https://doi.org/10.1515/pac-2018-0109 + + + + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + MutualInductance + MutualInductance + https://www.wikidata.org/wiki/Q78101401 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 + 6-41.2 + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + https://doi.org/10.1351/goldbook.M04076 - - - - + + + + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + ArchetypeManufacturing + DIN 8580:2020 + PrimitiveForming + Urformen + ArchetypeManufacturing + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - - + - + - + - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - ElectricFlux - ElectricFlux - https://qudt.org/vocab/quantitykind/ElectricFlux - https://www.wikidata.org/wiki/Q501267 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 - 6-17 - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + Mathematical description in crystallography. + StructureFactor + StructureFactor + https://qudt.org/vocab/quantitykind/StructureFactor + https://www.wikidata.org/wiki/Q900684 + 12-5.4 + Mathematical description in crystallography. - - - + + + + A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + AdsorptiveStrippingVoltammetry + AdSV + AdsorptiveStrippingVoltammetry + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + https://doi.org/10.1515/pac-2018-0109 + + + + + + A physical made of more than one symbol sequentially arranged. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + String + String + A physical made of more than one symbol sequentially arranged. + The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. + +In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). + +If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + A string is not requested to respect any syntactic rule: it's simply directly made of symbols. + + + + - - - + + - - Differential quotient of fluence Φ with respect to time. - ParticleFluenceRate - ParticleFluenceRate - https://qudt.org/vocab/quantitykind/ParticleFluenceRate - https://www.wikidata.org/wiki/Q98497410 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 - 10-44 - Differential quotient of fluence Φ with respect to time. + + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + SymbolicConstruct + SymbolicConstruct + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - - - - - StoichiometricNumberOfSubstance - StoichiometricNumberOfSubstance - https://qudt.org/vocab/quantitykind/StoichiometricNumber - https://www.wikidata.org/wiki/Q95443720 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 - 9-29 - https://doi.org/10.1351/goldbook.S06025 + + + + + BlueStrangeAntiQuark + BlueStrangeAntiQuark + + + + + + A single phase mixture. + PhaseHomogeneousMixture + PhaseHomogeneousMixture + A single phase mixture. + + + + + + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + Conversion of materials and assembly of components for the manufacture of products + Technology is the application of knowledge for achieving practical goals in a reproducible way. + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + TechnologyProcess + ProductionEngineeringProcess + TechnologyProcess + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + + + + + + + CharacterisationEnvironmentProperty + CharacterisationEnvironmentProperty - - - - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - Mixture - Mixture - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + + + + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + FourierTransformInfraredSpectroscopy + FTIR + FourierTransformInfraredSpectroscopy + https://www.wikidata.org/wiki/Q901559 + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy - + + - - + - The relation between electric field strength and current density in an isotropic conductor. - HallCoefficient - HallCoefficient - https://qudt.org/vocab/quantitykind/HallCoefficient - https://www.wikidata.org/wiki/Q997439 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 - 12-19 - The relation between electric field strength and current density in an isotropic conductor. + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms + VolumicTotalCrossSection + MacroscopicTotalCrossSection + VolumicTotalCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection + https://www.wikidata.org/wiki/Q98280548 + 10-42.2 + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - - - - - - - - - - - + + - Quotient of linear attenuation coefficient µ and the amount c of the medium. - MolarAttenuationCoefficient - MolarAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592828 - 10-51 - Quotient of linear attenuation coefficient µ and the amount c of the medium. + Defines the Candela base unit in the SI system. + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + LuminousEfficacyOf540THzRadiation + LuminousEfficacyOf540THzRadiation + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - + + + + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + CoulometricTitration + CoulometricTitration + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + + + - T+2 L-2 M-1 I+1 Θ0 N0 J0 + T0 L0 M0 I+1 Θ0 N0 J0 - ElectricCurrentPerEnergyUnit - ElectricCurrentPerEnergyUnit - - - - - - - The quantum of action. It defines the kg base unit in the SI system. - PlanckConstant - PlanckConstant - http://qudt.org/vocab/constant/PlanckConstant - The quantum of action. It defines the kg base unit in the SI system. - https://doi.org/10.1351/goldbook.P04685 - - - - - - - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - SourceCode - SourceCode - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - - - - A molecule composed of only one element type. - Homonuclear - ElementalMolecule - Homonuclear - A molecule composed of only one element type. - Hydrogen molecule (H₂). - - - - - - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. - QuantumData - QuantumData - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. - - - - - - BPMNDiagram - BPMNDiagram - - - - - - ReactionSintering - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - ReactionSintering - - - - - - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - - XrayDiffraction - XRD - XrayDiffraction - https://www.wikidata.org/wiki/Q12101244 - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - https://en.wikipedia.org/wiki/X-ray_crystallography - - - - - - CeramicSintering - CeramicSintering + ElectricCurrentUnit + ElectricCurrentUnit - + - - - - + + + + - - - - A gaseous solution made of more than one component type. - GasSolution - GasMixture - GasSolution - A gaseous solution made of more than one component type. - - - - - - A software application to process characterisation data - CharacterisationSoftware - CharacterisationSoftware - A software application to process characterisation data - In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. + + + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + A set of instructions that tell a computer what to do. + Program + Executable + Program + A set of instructions that tell a computer what to do. + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - - - - - - - - - - - - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - Molality - AmountPerMass - Molality - https://www.wikidata.org/wiki/Q172623 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 - 9-15 - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - https://doi.org/10.1351/goldbook.M03970 + + + + ElectricCurrentAssistedSintering + ElectricCurrentAssistedSintering - - + + - - CriticalAndSupercriticalChromatography - CriticalAndSupercriticalChromatography - - - - - - A real vector with 3 elements. - Shape3Vector - Shape3Vector - A real vector with 3 elements. - The quantity value of physical quantities if real space is a Shape3Vector. + A set of reasons or a logical basis for a decision or belief + Rationale + Rationale + A set of reasons or a logical basis for a decision or belief - - - + + + - + - + - + @@ -20015,47 +19902,20 @@ reaction sintering: process wherein at least two constituents of a powder mixtur - TopAntiQuark - TopAntiQuark - - - - - - - - - - - - - - - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - VolumicTotalCrossSection - MacroscopicTotalCrossSection - VolumicTotalCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection - https://www.wikidata.org/wiki/Q98280548 - 10-42.2 - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms + StrangeAntiQuark + StrangeAntiQuark - - - - - The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. - The value of the absolute dielectric permittivity of classical vacuum. - VacuumElectricPermittivity - PermittivityOfVacuum - VacuumElectricPermittivity - http://qudt.org/vocab/constant/PermittivityOfVacuum - 6-14.1 - https://doi.org/10.1351/goldbook.P04508 + + + + A colloid formed by trapping pockets of gas in a liquid or solid. + Foam + Foam + A colloid formed by trapping pockets of gas in a liquid or solid. - + @@ -20064,325 +19924,412 @@ reaction sintering: process wherein at least two constituents of a powder mixtur - + - Measure for how the polarization of a material is affected by the application of an external electric field. - Permittivity - Permittivity - http://qudt.org/vocab/quantitykind/Permittivity - 6-14.1 - 6-14.2 - https://doi.org/10.1351/goldbook.P04507 - + Measure of a material's ability to conduct an electric current. - - - - Suggestion of Rickard Armiento - CrystallineMaterial - CrystallineMaterial +Conductivity is equeal to the resiprocal of resistivity. + ElectricConductivity + Conductivity + ElectricConductivity + http://qudt.org/vocab/quantitykind/ElectricConductivity + https://www.wikidata.org/wiki/Q4593291 + 6-43 + https://doi.org/10.1351/goldbook.C01245 - - + - - - - - - - - + - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - NuclearQuadrupoleMoment - NuclearQuadrupoleMoment - https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment - https://www.wikidata.org/wiki/Q97921226 - 10-18 - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + Lethargy + Lethargy + https://qudt.org/vocab/quantitykind/Lethargy + https://www.wikidata.org/wiki/Q25508781 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 + 10-69 + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - - - - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - Fractography - Fractography - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + + + + A suspension of fine particles in the atmosphere. + Dust + Dust + A suspension of fine particles in the atmosphere. - - + + - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - Signal - Signal - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + SampleExtractionInstrument + SampleExtractionInstrument - - - - Characteristic quantum number s of a particle, related to its spin. - SpinQuantumNumber - SpinQuantumNumber - https://qudt.org/vocab/quantitykind/SpinQuantumNumber - https://www.wikidata.org/wiki/Q3879445 - 10-13.5 - Characteristic quantum number s of a particle, related to its spin. + + + + + T-2 L+2 M+1 I0 Θ0 N-1 J0 + + + + + EnergyPerAmountUnit + EnergyPerAmountUnit - + + + + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + DifferentialThermalAnalysis + DTA + DifferentialThermalAnalysis + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + + + - T-3 L+2 M+1 I0 Θ0 N0 J0 + T-1 L+2 M+1 I0 Θ0 N0 J0 - - PowerUnit - PowerUnit + + AngularMomentumUnit + AngularMomentumUnit - - - - A tile that has next and is next of other tiles within the same tessellation. - ThroughTile - ThroughTile - A tile that has next and is next of other tiles within the same tessellation. + + + + A device that is designed to participate to a manufacturing process. + ManufacturingDevice + ManufacturingDevice + A device that is designed to participate to a manufacturing process. - - - - - BlueTopAntiQuark - BlueTopAntiQuark + + + + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + DeepDrawing + Tiefziehen + DeepDrawing - - - + + + + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + DCPolarography + DCPolarography + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + + + + + + + + + + - A coarse dispersion of gas in a liquid continuum phase. - LiquidGasSuspension - LiquidGasSuspension - A coarse dispersion of gas in a liquid continuum phase. - Sparkling water + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + Hyperon + Hyperon + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + https://en.wikipedia.org/wiki/Hyperon - - + + + - Parameter for diffusion and fluid flow in porous media. - Tortuosity - Tortuosity - https://www.wikidata.org/wiki/Q2301683 - Parameter for diffusion and fluid flow in porous media. + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + GibbsEnergy + GibbsFreeEnergy + GibbsEnergy + https://www.wikidata.org/wiki/Q334631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 + 5-20.5 + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + https://doi.org/10.1351/goldbook.G02629 - - + + + + + + + + + + + + - GravityCasting - GravityCasting + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + Manufacturer + Manufacturer + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - - - - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - DataExchangeLanguage - DataExchangeLanguage - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - JSON, YAML, XML - https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages + + + + + T+1 L0 M0 I0 Θ+1 N0 J0 + + + + + TemperatureTimeUnit + TemperatureTimeUnit - + + + + + GreenCharmAntiQuark + GreenCharmAntiQuark + + + - T0 L+2 M+1 I0 Θ0 N0 J0 + T+4 L-1 M-1 I+2 Θ0 N0 J0 - MassAreaUnit - MassAreaUnit + CapacitancePerLengthUnit + CapacitancePerLengthUnit - - + + - - CharacterisationComponent - CharacterisationComponent + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + Exafs + Exafs + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - - - - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - Screwing - Schrauben - Screwing + + + + + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + SolidAngularMeasure + SolidAngle + SolidAngularMeasure + https://qudt.org/vocab/quantitykind/SolidAngle + https://www.wikidata.org/wiki/Q208476 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 + https://dbpedia.org/page/Solid_angle + 3-8 + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + https://en.wikipedia.org/wiki/Solid_angle - - - - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - Tool - Tool - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + + + + Time derivative of the dose equivalent. + DoseEquivalentRate + DoseEquivalentRate + https://www.wikidata.org/wiki/Q99604810 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-02 + 10-83.2 + Time derivative of the dose equivalent. - - + + + + + - - - - - - + + - - A determination of an object without any actual interaction. - Estimation - Estimation - A determination of an object without any actual interaction. + + Differential quotient of the absorbed dose with respect to time. + AbsorbedDoseRate + AbsorbedDoseRate + https://qudt.org/vocab/quantitykind/AbsorbedDoseRate + https://www.wikidata.org/wiki/Q69428958 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 + 10-84 + Differential quotient of the absorbed dose with respect to time. - - - - - Mean duration required for the decay of one half of the atoms or nuclei. - HalfLife - HalfLife - https://qudt.org/vocab/quantitykind/Half-Life - https://www.wikidata.org/wiki/Q98118544 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 - 10-31 - Mean duration required for the decay of one half of the atoms or nuclei. + + + + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + + ThreePointBendingTesting + ThreePointFlexuralTest + ThreePointBendingTesting + https://www.wikidata.org/wiki/Q2300905 + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + https://en.wikipedia.org/wiki/Three-point_flexural_test - - + + - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + Parameter used for the sample preparation process - TransmissionElectronMicroscopy - TEM - TransmissionElectronMicroscopy - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + SamplePreparationParameter + SamplePreparationParameter + Parameter used for the sample preparation process - - + + + + - - + + - - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. - -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - PhaseHeterogeneousMixture - PhaseHeterogeneousMixture - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. + + Describes elements' or compounds' readiness to form bonds. + AffinityOfAChemicalReaction + ChemicalAffinity + AffinityOfAChemicalReaction + https://qudt.org/vocab/quantitykind/ChemicalAffinity + https://www.wikidata.org/wiki/Q382783 + 9-30 + Describes elements' or compounds' readiness to form bonds. + https://doi.org/10.1351/goldbook.A00178 + -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + + + + + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + Muon + Muon + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon - - - - - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - Moulding - Gesenkformen - Moulding + + + + + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + AlphaDisintegrationEnergy + AlphaDisintegrationEnergy + http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98146025 + 10-32 + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - - - + + + + + T-1 L+1 M0 I0 Θ+1 N0 J0 + + + - Ratio of transverse strain to axial strain. - PoissonNumber - PoissonsRatio - PoissonNumber - https://www.wikidata.org/wiki/Q190453 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 - 4-18 - Ratio of transverse strain to axial strain. + TemperatureLengthPerTimeUnit + TemperatureLengthPerTimeUnit - - - - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - ArchetypeManufacturing - DIN 8580:2020 - PrimitiveForming - Urformen - ArchetypeManufacturing - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + + + + + Inverse of the quality factor. + LossFactor + LossFactor + https://qudt.org/vocab/quantitykind/LossFactor + https://www.wikidata.org/wiki/Q79468728 + 6-54 + Inverse of the quality factor. - - - - - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - DisplacementVector - DisplacementVector - https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon - https://www.wikidata.org/wiki/Q105533558 - 12-7.3 - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + + + + + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + SourceCode + SourceCode + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - - - - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - Solid - Solid - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + + + + + + = + + + + The equals symbol. + Equals + Equals + The equals symbol. - - + + - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - XpsVariableKinetic - Electron spectroscopy for chemical analysis (ESCA) - X-ray photoelectron spectroscopy (XPS) - XpsVariableKinetic - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + + ACVoltammetry + ACV + ACVoltammetry + https://www.wikidata.org/wiki/Q120895154 + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + https://doi.org/10.1515/pac-2018-0109 @@ -20395,143 +20342,225 @@ For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture 9-36.1 - - + + + + GluonType2 + GluonType2 + + + + + + + A coarse dispersion of gas in a solid continuum phase. + SolidGasSuspension + SolidGasSuspension + A coarse dispersion of gas in a solid continuum phase. + + + + + + CSharp + C# + CSharp + + + + + + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + HiggsBoson + HiggsBoson + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + https://en.wikipedia.org/wiki/Higgs_boson + + + + + + + Resistance quantum. + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + VonKlitzingConstant + VonKlitzingConstant + http://qudt.org/vocab/constant/VonKlitzingConstant + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + + + + + + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + MassSpectrometry + MassSpectrometry + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + + + + + + + + - - T+2 L-1 M-1 I+1 Θ0 N0 J0 + + - - + - MagneticReluctivityUnit - MagneticReluctivityUnit + Measure of how resistant to compressibility a substance is. + ModulusOfCompression + BulkModulus + ModulusOfCompression + https://qudt.org/vocab/quantitykind/BulkModulus + https://www.wikidata.org/wiki/Q900371 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 + 4-19.3 + Measure of how resistant to compressibility a substance is. - - - + + + + + + + + + + - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - SolidAngularMeasure - SolidAngle - SolidAngularMeasure - https://qudt.org/vocab/quantitykind/SolidAngle - https://www.wikidata.org/wiki/Q208476 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 - https://dbpedia.org/page/Solid_angle - 3-8 - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - https://en.wikipedia.org/wiki/Solid_angle + Perceived power of light. + LuminousFlux + LuminousFlux + http://qudt.org/vocab/quantitykind/LuminousFlux + 7-13 + Perceived power of light. + https://doi.org/10.1351/goldbook.L03646 - - + + + - Measure of the opposition that a circuit presents to a current when a voltage is applied. - ElectricImpedance - Impedance - ElectricImpedance - http://qudt.org/vocab/quantitykind/Impedance - https://www.wikidata.org/wiki/Q179043 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 - 6-51.1 - https://en.wikipedia.org/wiki/Electrical_impedance + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + MassFractionOfWater + MassFractionOfWater + https://qudt.org/vocab/quantitykind/MassFractionOfWater + https://www.wikidata.org/wiki/Q76379025 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 + 5-31 + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - - - - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - Assignment - Assignment - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. + + + + + Positron + Positron + + + + + + + + + + + + + + + The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. + Thermodynamic temperature difference divided by heat flow rate. + ThermalResistance + ThermalResistance + https://qudt.org/vocab/quantitykind/ThermalResistance + https://www.wikidata.org/wiki/Q899628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 + 5-12 + Thermodynamic temperature difference divided by heat flow rate. - - - - - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - IterativeStep - IterativeStep - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. + + + + Quantum number in an atom describing the magnitude of total angular momentum J. + TotalAngularMomentumQuantumNumber + TotalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1141095 + 10-13.6 + Quantum number in an atom describing the magnitude of total angular momentum J. - - - - - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - Muon - Muon - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon + + + + + T-1 L0 M0 I0 Θ+1 N0 J0 + + + + + TemperaturePerTimeUnit + TemperaturePerTimeUnit - - - - - - - - - - - - - - - - - - - - ElectronType - ElectronType + + + + + T+3 L-2 M-1 I0 Θ+1 N0 J0 + + + + + ThermalResistanceUnit + ThermalResistanceUnit - - - - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - Strain - Strain - http://qudt.org/vocab/quantitykind/Strain - 4-17.1 - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + + + + + A workflow whose tasks are tiles of a sequence. + SerialWorkflow + SerialWorkflow + A workflow whose tasks are tiles of a sequence. - - - + + + + + T-3 L+2 M+1 I0 Θ-1 N0 J0 + + + - Position vector of a particle. - ParticlePositionVector - ParticlePositionVector - https://qudt.org/vocab/quantitykind/ParticlePositionVector - https://www.wikidata.org/wiki/Q105533324 - 12-7.1 - Position vector of a particle. + ThermalConductanceUnit + ThermalConductanceUnit - + - T+3 L0 M-1 I0 Θ+1 N0 J0 + T0 L+6 M0 I0 Θ0 N0 J0 - PerThermalTransmittanceUnit - PerThermalTransmittanceUnit + SexticLengthUnit + SexticLengthUnit - + @@ -20539,292 +20568,287 @@ For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture - + - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - MassExcess - MassExcess - https://qudt.org/vocab/quantitykind/MassExcess - https://www.wikidata.org/wiki/Q1571163 - 10-21.1 - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - https://doi.org/10.1351/goldbook.M03719 + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. + ParticleFluence + ParticleFluence + https://qudt.org/vocab/quantitykind/ParticleFluence + https://www.wikidata.org/wiki/Q82965908 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 + 10-43 + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - - + + + + + The quantum of action. It defines the kg base unit in the SI system. + PlanckConstant + PlanckConstant + http://qudt.org/vocab/constant/PlanckConstant + The quantum of action. It defines the kg base unit in the SI system. + https://doi.org/10.1351/goldbook.P04685 + + + + + + + + - - T-1 L-2 M+1 I0 Θ0 N0 J0 + + - - + - MassFluxUnit - MassFluxUnit + Quotient of the activity A of a sample and the mass m of that sample. + SpecificActivity + MassicActivity + SpecificActivity + https://qudt.org/vocab/quantitykind/SpecificActivity + https://www.wikidata.org/wiki/Q2823748 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 + 10-28 + Quotient of the activity A of a sample and the mass m of that sample. + https://doi.org/10.1351/goldbook.S05790 - - - - InterferenceFitting - InterferenceFitting + + + + + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. + BeginStep + BeginStep + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. - + - + - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - ElectronAffinity - ElectronAffinity - https://qudt.org/vocab/quantitykind/ElectronAffinity - https://www.wikidata.org/wiki/Q105846486 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 - 12-25 - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - - - - - - Parameter used for the sample preparation process - - SamplePreparationParameter - SamplePreparationParameter - Parameter used for the sample preparation process - - - - - - - RedUpAntiQuark - RedUpAntiQuark + The integral over a time interval of the instantaneous power. + ActiveEnergy + ActiveEnergy + https://qudt.org/vocab/quantitykind/ActiveEnergy + https://www.wikidata.org/wiki/Q79813678 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 + 6-62 + The integral over a time interval of the instantaneous power. - - - - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - InternalEnergy - ThermodynamicEnergy - InternalEnergy - http://qudt.org/vocab/quantitykind/InternalEnergy - 5.20-2 - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - https://doi.org/10.1351/goldbook.I03103 + + + + A participant that is the driver of the process. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. + Agent + Agent + A participant that is the driver of the process. + A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. - - - - - - - - - - - - Electric field strength multiplied by magnetic field strength. - PoyntingVector - PoyntingVector - https://qudt.org/vocab/quantitykind/PoyntingVector - https://www.wikidata.org/wiki/Q504186 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 - 6-34 - Electric field strength multiplied by magnetic field strength. + + + + LowPressureCasting + LowPressureCasting - + - T-2 L+2 M+1 I0 Θ-1 N0 J0 + T-3 L-1 M+1 I0 Θ0 N0 J0 - - EntropyUnit - EntropyUnit + + PressurePerTimeUnit + PressurePerTimeUnit - - + + + + + BlueBottomQuark + BlueBottomQuark + + + + + + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + CoatingManufacturing + DIN 8580:2020 + Beschichten + CoatingManufacturing + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + + + + - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - HyperfineStructureQuantumNumber - HyperfineStructureQuantumNumber - https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber - https://www.wikidata.org/wiki/Q97577449 - 10-13.8 - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + PhaseVelocity + PhaseSpeed + PhaseVelocity + https://www.wikidata.org/wiki/Q13824 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 + https://dbpedia.org/page/Phase_velocity + 3-23.1 + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + https://en.wikipedia.org/wiki/Phase_velocity - - - + + + - RedStrangeAntiQuark - RedStrangeAntiQuark + GreenBottomAntiQuark + GreenBottomAntiQuark - - - + + + - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - IonizationEnergy - IonizationEnergy - https://qudt.org/vocab/quantitykind/IonizationEnergy - https://www.wikidata.org/wiki/Q483769 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 - 12-24.2 - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - https://doi.org/10.1351/goldbook.I03199 + The charge of an electron. + The negative of ElementaryCharge. + ElectronCharge + ElectronCharge + The charge of an electron. + https://doi.org/10.1351/goldbook.E01982 - - + + - + - + - Mechanical property of linear elastic solid materials. - ModulusOfElasticity - YoungsModulus - ModulusOfElasticity - https://www.wikidata.org/wiki/Q2091584 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 - 4-19.1 - Mechanical property of linear elastic solid materials. - https://doi.org/10.1351/goldbook.M03966 + Vector characterising a dislocation in a crystal lattice. + BurgersVector + BurgersVector + https://qudt.org/vocab/quantitykind/BurgersVector + https://www.wikidata.org/wiki/Q623093 + 12-6 + Vector characterising a dislocation in a crystal lattice. - - - - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - AtomicForceMicroscopy - AtomicForceMicroscopy - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + + + + + Chosen value of amount concentration, usually equal to 1 mol dm−3. + StandardAmountConcentration + StandardConcentration + StandardMolarConcentration + StandardAmountConcentration + https://www.wikidata.org/wiki/Q88871689 + Chosen value of amount concentration, usually equal to 1 mol dm−3. + 9-12.2 + https://doi.org/10.1351/goldbook.S05909 - - + + + + + - - T0 L+1 M0 I0 Θ0 N0 J0 + + - - - - LengthUnit - LengthUnit - - - - - - - Electric polarization divided by electric constant and electric field strength. - ElectricSusceptibility - ElectricSusceptibility - https://qudt.org/vocab/quantitykind/ElectricSusceptibility - https://www.wikidata.org/wiki/Q598305 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 - 6-16 - Electric polarization divided by electric constant and electric field strength. - https://en.wikipedia.org/wiki/Electric_susceptibility - - - - + - Length in a given direction regarded as horizontal. - The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. - Width - Breadth - Width - https://qudt.org/vocab/quantitykind/Width - https://www.wikidata.org/wiki/Q35059 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 - 3-1.2 - Length in a given direction regarded as horizontal. + The total luminous flux incident on a surface, per unit area. + Illuminance + Illuminance + http://qudt.org/vocab/quantitykind/Illuminance + The total luminous flux incident on a surface, per unit area. + https://doi.org/10.1351/goldbook.I02941 - + - T+1 L+1 M0 I0 Θ+1 N0 J0 + T+2 L+1 M-2 I0 Θ0 N+1 J0 - LengthTimeTemperatureUnit - LengthTimeTemperatureUnit + AmountPerMassPressureUnit + AmountPerMassPressureUnit - - - - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - Smoke - Smoke - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + + + + HotDipGalvanizing + Hot-dipGalvanizing + HotDipGalvanizing - - - - An aerosol composed of fine solid particles in air or another gas. - SolidAerosol - SolidAerosol - An aerosol composed of fine solid particles in air or another gas. + + + + PlasticSintering + PlasticSintering - - - - - RedBottomQuark - RedBottomQuark + + + + + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + The mixing ratio at saturation is denoted xsat. + MixingRatio + MassRatioOfWaterVapourToDryGas + MixingRatio + https://www.wikidata.org/wiki/Q76378940 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 + 5-30 + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - + - T+1 L0 M0 I+1 Θ0 N-1 J0 + T-2 L+2 M+1 I0 Θ-1 N0 J0 - - ElectricChargePerAmountUnit - ElectricChargePerAmountUnit - - - - - Unit for quantities of dimension one that are the fraction of two areas. - AreaFractionUnit - AreaFractionUnit - Unit for quantities of dimension one that are the fraction of two areas. - Unit for solid angle. + EntropyUnit + EntropyUnit - + @@ -20832,888 +20856,854 @@ For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture - + - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - ParticleFluence - ParticleFluence - https://qudt.org/vocab/quantitykind/ParticleFluence - https://www.wikidata.org/wiki/Q82965908 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 - 10-43 - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - - - - - - Array subclasses with a specific shape can be constructed with cardinality restrictions. - -See Shape4x3Matrix as an example. - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - Arrays are ordered objects, since they are a subclasses of Arrangement. - Array - Array - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - A Vector is a 1-dimensional Array with Number as spatial direct parts, -a Matrix is a 2-dimensional Array with Vector as spatial direct parts, -an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, -and so forth... - - - - - - - InjectionMolding - InjectionMolding - - - - - - - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. - -It defines the base unit second in the SI system. - HyperfineTransitionFrequencyOfCs - HyperfineTransitionFrequencyOfCs - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. - -It defines the base unit second in the SI system. + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + MassAttenuationCoefficient + MassAttenuationCoefficient + https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient + https://www.wikidata.org/wiki/Q98591983 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 + 10-50 + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - + - T+1 L+1 M0 I+1 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ-1 N-1 J0 - - ElectricDipoleMomentUnit - ElectricDipoleMomentUnit - - - - - - Factor taking into account health effects in the determination of the dose equivalent. - QualityFactor - QualityFactor - https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor - https://www.wikidata.org/wiki/Q2122099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 - 10-82 - Factor taking into account health effects in the determination of the dose equivalent. + EntropyPerAmountUnit + EntropyPerAmountUnit - - + + + + + T-3 L+2 M+1 I-2 Θ0 N0 J0 + + + - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - ElectricPolarization - ElectricPolarization - https://qudt.org/vocab/quantitykind/ElectricPolarization - https://www.wikidata.org/wiki/Q1050425 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 - 6-7 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + ElectricResistanceUnit + ElectricResistanceUnit - - - - Product of force and displacement. - Work - Work - http://qudt.org/vocab/quantitykind/Work - Product of force and displacement. - 4-28.4 - https://doi.org/10.1351/goldbook.W06684 + + + + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + DielectricAndImpedanceSpectroscopy + DielectricAndImpedanceSpectroscopy + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - - - - - StaticFrictionForce - StaticFriction - StaticFrictionForce - https://qudt.org/vocab/quantitykind/StaticFriction - https://www.wikidata.org/wiki/Q90862568 - 4-9.3 + + + + + + + + + + + + + + A characterisation of an object with an actual interaction. + Observation + Observation + A characterisation of an object with an actual interaction. - - + + + - Helmholtz energy per unit mass. - SpecificHelmholtzEnergy - SpecificHelmholtzEnergy - https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy - https://www.wikidata.org/wiki/Q76359554 - 5-21.4 - Helmholtz energy per unit mass. - - - - - - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - Organisation - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - Organisation - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + MultiplicationFactor + MultiplicationFactor + https://qudt.org/vocab/quantitykind/MultiplicationFactor + https://www.wikidata.org/wiki/Q99440471 + 10-78.1 + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - - - + + + - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - Electron - Electron - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron + RedTopAntiQuark + RedTopAntiQuark - - - - CeramicMaterial - CeramicMaterial + + + + + + + + + + + + + + + + + + + + + TopAntiQuark + TopAntiQuark - - - - WNegativeBoson - WNegativeBoson + + + + C + C - - - - A meson with spin zero and odd parity. - PseudoscalarMeson - PseudoscalarMeson - A meson with spin zero and odd parity. - https://en.wikipedia.org/wiki/Pseudoscalar_meson + + + + + number of nucleons in an atomic nucleus + NucleonNumber + MassNumber + NucleonNumber + https://qudt.org/vocab/quantitykind/NucleonNumber + https://www.wikidata.org/wiki/Q101395 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 + https://dbpedia.org/page/Mass_number + 10-1.3 + number of nucleons in an atomic nucleus + https://en.wikipedia.org/wiki/Mass_number + https://doi.org/10.1351/goldbook.M03726 - + - T-2 L+3 M+1 I-1 Θ0 N0 J0 + T-2 L-2 M0 I0 Θ0 N0 J0 - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit - - - - - - DifferentialOperator - DifferentialOperator + + FrequencyPerAreaTimeUnit + FrequencyPerAreaTimeUnit - - - - A mapping that acts on elements of one space and produces elements of another space. - MathematicalOperator - MathematicalOperator - A mapping that acts on elements of one space and produces elements of another space. - The algebraic operator '+' that acts on two real numbers and produces one real number. - The differential operator that acts on a C1 real function and produces another real function. - + + + + + E_0 = m_0 * c_0^2 - - - - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - - PseudoOpenCircuitVoltageMethod - PseudoOCV - PseudoOpenCircuitVoltageMethod - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + Product of the rest mass and the square of the speed of light in vacuum. + RestEnergy + RestEnergy + https://www.wikidata.org/wiki/Q11663629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 + 10-3 + Product of the rest mass and the square of the speed of light in vacuum. + E_0 = m_0 * c_0^2 - - - - A system of independent elements that are assembled together to perform a function. - Assembled - Assembled - A system of independent elements that are assembled together to perform a function. +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy - - - - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - NumericalVariable - NumericalVariable - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + + + + + The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + ElementaryCharge + ElementaryCharge + http://qudt.org/vocab/quantitykind/ElementaryCharge + 10-5.1 + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + https://doi.org/10.1351/goldbook.E02032 - - - - Describes the level of expertise required to carry out a process (the entire test or the data processing). - LevelOfExpertise - LevelOfExpertise - Describes the level of expertise required to carry out a process (the entire test or the data processing). + + + + A physics-based model based on a physics equation describing the behaviour of electrons. + ElectronicModel + ElectronicModel + A physics-based model based on a physics equation describing the behaviour of electrons. + Density functional theory. +Hartree-Fock. - - - - - A coarse dispersion of solids in a liquid continuum phase. - LiquidSolidSuspension - LiquidSolidSuspension - A coarse dispersion of solids in a liquid continuum phase. - Mud + + + + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + ExactConstant + ExactConstant + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - - - - - - + + - - + + T0 L+3 M0 I0 Θ-1 N0 J0 - - - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - MassAttenuationCoefficient - MassAttenuationCoefficient - https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient - https://www.wikidata.org/wiki/Q98591983 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 - 10-50 - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - - - - - + + - Quotient of mass defect and the unified atomic mass constant. - RelativeMassDefect - RelativeMassDefect - https://qudt.org/vocab/quantitykind/RelativeMassDefect - https://www.wikidata.org/wiki/Q98038718 - 10-22.2 - Quotient of mass defect and the unified atomic mass constant. + VolumePerTemperatureUnit + VolumePerTemperatureUnit - - - - A computer language that expresses the presentation of structured documents. - StyleSheetLanguage - StyleSheetLanguage - A computer language that expresses the presentation of structured documents. - CSS - https://en.wikipedia.org/wiki/Style_sheet_language + + + + + BlueDownAntiQuark + BlueDownAntiQuark - - - - CompositeMaterial - CompositeMaterial + + + + + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. + DiffusionLength + DiffusionLength + https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength + https://www.wikidata.org/wiki/Q106097176 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 + 12-33 + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - - - - - - - - - - - 3-dimensional array who's spatial direct parts are matrices. - Array3D - 3DArray - Array3D - 3-dimensional array who's spatial direct parts are matrices. + + + + + Quotient of mechanical output and input power. + MechanicalEfficiency + MechanicalEfficiency + https://www.wikidata.org/wiki/Q2628085 + 4-29 + Quotient of mechanical output and input power. - - - - Unit for quantities of dimension one that are the fraction of two masses. - MassFractionUnit - MassFractionUnit - Unit for quantities of dimension one that are the fraction of two masses. - Unit for mass fraction. + + + + + Time constant for recombination or trapping of minority charge carriers in semiconductors + CarrierLifetime + CarrierLifetime + https://qudt.org/vocab/quantitykind/CarrierLifetime + https://www.wikidata.org/wiki/Q5046374 + 12-32.2 + Time constant for recombination or trapping of minority charge carriers in semiconductors - - - - A language object respecting the syntactic rules of C++. - CPlusPlus - C++ - CPlusPlus - A language object respecting the syntactic rules of C++. + + + + + XrdGrazingIncidence + XrdGrazingIncidence - - - - - PlasticModeling - PlasticModeling + + + + + Describes the level of automation of the test. + LevelOfAutomation + LevelOfAutomation + Describes the level of automation of the test. - - - - - BlueCharmQuark - BlueCharmQuark + + + + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + SystemProgram + SystemProgram + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + An operating system. A graphic driver. - - - - IsothermalConversion - IsothermalConversion + + + + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Potentiometry + Potentiometry + https://www.wikidata.org/wiki/Q900632 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + https://doi.org/10.1515/pac-2018-0109 - - - - + + - - + + + + + + + + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Deducer + Deducer + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Someone who deduces an emotional status of a persona according to facial expression. + Someone who deduces the occurring of a physical phenomenon through other phenomena. + + + + + - Describes elements' or compounds' readiness to form bonds. - AffinityOfAChemicalReaction - ChemicalAffinity - AffinityOfAChemicalReaction - https://qudt.org/vocab/quantitykind/ChemicalAffinity - https://www.wikidata.org/wiki/Q382783 - 9-30 - Describes elements' or compounds' readiness to form bonds. - https://doi.org/10.1351/goldbook.A00178 + Proportionality constant between the particle current density J and the gradient of the particle fluence rate. + DiffusionCoefficientForFluenceRate + DiffusionCoefficientForFluenceRate + https://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate + https://www.wikidata.org/wiki/Q98876254 + 10-65 + Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - - - - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - Soldering - Löten - Soldering + + + + ModulusOfAdmittance + ModulusOfAdmittance + https://qudt.org/vocab/quantitykind/ModulusOfAdmittance + https://www.wikidata.org/wiki/Q79466359 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 + 6-52.4 - - - - - - - - - + + - - + + T-6 L-2 M+2 I0 Θ0 N0 J0 - - + + + + SquarePressurePerSquareTimeUnit + SquarePressurePerSquareTimeUnit + + + + - - + + T+2 L+1 M-1 I0 Θ0 N0 J0 - + + + + PerPressureUnit + PerPressureUnit + + + + + + + - - - 1 + + - - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. - --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - CalibrationProcess - CalibrationProcess - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. - --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - - - - - - Degenerency - Multiplicity - Degenerency - https://www.wikidata.org/wiki/Q902301 - 9-36.2 - https://doi.org/10.1351/goldbook.D01556 + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + ElectromagneticEnergyDensity + VolumicElectromagneticEnergy + ElectromagneticEnergyDensity + https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity + https://www.wikidata.org/wiki/Q77989624 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 + 6-33 + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - - - - - Faction of electrical current carried by given ionic species. - IonTransportNumber - CurrentFraction - TransferrenceNumber - IonTransportNumber - https://qudt.org/vocab/quantitykind/IonTransportNumber - https://www.wikidata.org/wiki/Q331854 - 9-46 - Faction of electrical current carried by given ionic species. - https://doi.org/10.1351/goldbook.I03181 - https://doi.org/10.1351/goldbook.T06489 + + + + + A foam of trapped gas in a solid. + SolidFoam + SolidFoam + A foam of trapped gas in a solid. + Aerogel - - - - A function defined using functional notation. - A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). - MathematicalFunction - FunctionDefinition - MathematicalFunction - A function defined using functional notation. - y = f(x) + + + + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + + ScanningKelvinProbe + SKB + ScanningKelvinProbe + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - - - - An equation that define a new variable in terms of other mathematical entities. - DefiningEquation - DefiningEquation - An equation that define a new variable in terms of other mathematical entities. - The definition of velocity as v = dx/dt. + + + + + The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. + The value of magnetic permeability in a classical vacuum. + VacuumMagneticPermeability + PermeabilityOfVacuum + VacuumMagneticPermeability + http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum + 6-26.1 + -The definition of density as mass/volume. + + + + The laboratory where the whole characterisation process or some of its stages take place. + Laboratory + Laboratory + The laboratory where the whole characterisation process or some of its stages take place. + -y = f(x) + + + + Minimum length of a straight line segment between a point and a reference line or reference surface. + Height + Height + https://qudt.org/vocab/quantitykind/Height + https://www.wikidata.org/wiki/Q208826 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 + https://dbpedia.org/page/Height + 3-1.3 + Minimum length of a straight line segment between a point and a reference line or reference surface. + https://en.wikipedia.org/wiki/Height - - - + + - - Δ + + T+1 L0 M0 I+1 Θ-1 N0 J0 - - - Laplacian - Laplacian - - - - - - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - Rolling - Walzen - Rolling + + + + ElectricChargePerTemperatureUnit + ElectricChargePerTemperatureUnit - + - T+1 L-1 M0 I+1 Θ0 N0 J0 + T+1 L-2 M0 I0 Θ0 N0 J+1 - ElectricChargePerLengthUnit - ElectricChargePerLengthUnit + IlluminanceTimeUnit + IlluminanceTimeUnit - - + + - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - DifferentialThermalAnalysis - DTA - DifferentialThermalAnalysis - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + CyclicVoltammetry + CV + CyclicVoltammetry + https://www.wikidata.org/wiki/Q1147647 + https://dbpedia.org/page/Cyclic_voltammetry + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + https://en.wikipedia.org/wiki/Cyclic_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - GluonType8 - GluonType8 + + + + + + + + + + + + + Scalar potential of an irrotational magnetic field strength. + ScalarMagneticPotential + ScalarMagneticPotential + https://www.wikidata.org/wiki/Q17162107 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 + 6-37.1 + Scalar potential of an irrotational magnetic field strength. - - + + + + + + + + + + - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - NonActivePower - NonActivePower - https://qudt.org/vocab/quantitykind/NonActivePower - https://www.wikidata.org/wiki/Q79813060 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 - 6-61 - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + The measure of the resistance of a fluid to flow when an external force is applied. + DynamicViscosity + Viscosity + DynamicViscosity + https://qudt.org/vocab/quantitykind/DynamicViscosity + https://www.wikidata.org/wiki/Q15152757 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 + 4-24 + The measure of the resistance of a fluid to flow when an external force is applied. + https://doi.org/10.1351/goldbook.D01877 - - - + + + - At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - DensityOfHeatFlowRate - AreicHeatFlowRate - DensityOfHeatFlowRate - https://www.wikidata.org/wiki/Q1478382 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 - 5-8 - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - https://doi.org/10.1351/goldbook.H02755 + The rest mass of an electron. + ElectronMass + ElectronMass + http://qudt.org/vocab/constant/ElectronMass + https://doi.org/10.1351/goldbook.E02008 - - - - + + + + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + UserCase + UserCase + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + + + + - - + + + + + + + + A computer language used to describe simulations. + SimulationLanguage + SimulationLanguage + A computer language used to describe simulations. + https://en.wikipedia.org/wiki/Simulation_language + + + + + + + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + PhysicsMathematicalComputation + PhysicsMathematicalComputation + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + + + + + + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + Inequality + Inequality + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + f(x) > 0 + + + + + - Power transferred per unit area. - Intensity - Intensity - Power transferred per unit area. - https://en.wikipedia.org/wiki/Intensity_(physics) + Retarding force on a body moving in a fluid. + DragForce + DragForce + https://www.wikidata.org/wiki/Q206621 + 4-9.6 + Retarding force on a body moving in a fluid. - + - T+2 L+2 M-1 I+2 Θ0 N0 J0 + T0 L+2 M+1 I0 Θ0 N0 J0 - EnergyPerSquareMagneticFluxDensityUnit - EnergyPerSquareMagneticFluxDensityUnit + MassAreaUnit + MassAreaUnit - - + + + + + T+3 L-2 M-1 I+2 Θ0 N0 J0 + + + + + ElectricConductanceUnit + ElectricConductanceUnit + + + + + + ChipboardManufacturing + ChipboardManufacturing + + + + + - Quantum number in an atom describing the magnitude of total angular momentum J. - TotalAngularMomentumQuantumNumber - TotalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1141095 - 10-13.6 - Quantum number in an atom describing the magnitude of total angular momentum J. + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + SlowingDownArea + SlowingDownArea + https://qudt.org/vocab/quantitykind/Slowing-DownArea + https://www.wikidata.org/wiki/Q98950918 + 10-72.1 + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - + - - + - Extent of an object in space. - Volume - Volume - http://qudt.org/vocab/quantitykind/Volume - https://www.wikidata.org/wiki/Q39297 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 - https://dbpedia.org/page/Volume - 3-4 + Product of mass and velocity. + Momentum + Momentum + http://qudt.org/vocab/quantitykind/Momentum + 4-8 + https://doi.org/10.1351/goldbook.M04007 - - - - - - - - - - - - Mathematical description in crystallography. - StructureFactor - StructureFactor - https://qudt.org/vocab/quantitykind/StructureFactor - https://www.wikidata.org/wiki/Q900684 - 12-5.4 - Mathematical description in crystallography. + + + + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + GalvanostaticIntermittentTitrationTechnique + GITT + GalvanostaticIntermittentTitrationTechnique + https://www.wikidata.org/wiki/Q120906986 + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - - + + + - Critical thermodynamic temperature of an antiferromagnet. - NeelTemperature - NeelTemperature - https://www.wikidata.org/wiki/Q830311 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 - 12-35.2 - Critical thermodynamic temperature of an antiferromagnet. + Product of damping coefficient and period duration. + LogarithmicDecrement + LogarithmicDecrement + https://www.wikidata.org/wiki/Q1399446 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 + 3-25 + Product of damping coefficient and period duration. - - - - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - PhaseVelocity - PhaseSpeed - PhaseVelocity - https://www.wikidata.org/wiki/Q13824 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 - https://dbpedia.org/page/Phase_velocity - 3-23.1 - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - https://en.wikipedia.org/wiki/Phase_velocity + + + + ThermochemicalTreatment + ThermochemicalTreatment - - - - - StandardChemicalPotential - StandardChemicalPotential - https://qudt.org/vocab/quantitykind/StandardChemicalPotential - https://www.wikidata.org/wiki/Q89333468 - 9-21 - https://doi.org/10.1351/goldbook.S05908 + + + + + + + + + + + + + + ArithmeticExpression + ArithmeticExpression + 2+2 - - - - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - URN - URN - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + + + + + HardwareManufacturer + HardwareManufacturer - - - - - - - - - - - - - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - File - File - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + + + + + average distance that phonons travel between two successive interactions + MeanFreePathOfPhonons + MeanFreePathOfPhonons + https://qudt.org/vocab/quantitykind/PhononMeanFreePath + https://www.wikidata.org/wiki/Q105672255 + 12-15.1 + average distance that phonons travel between two successive interactions - - + + - + - + - - Any physical or virtual component of limited availability within a computer system. - SystemResource - Resource - SystemResource - Any physical or virtual component of limited availability within a computer system. - - - - - - A declaration that provides a sign for an object that is independent from any assignment rule. - Naming - Naming - A declaration that provides a sign for an object that is independent from any assignment rule. - A unique id attached to an entity. + + Number of nucleons in an atomic nucleus. + MassNumber + AtomicMassNumber + NucleonNumber + MassNumber + http://qudt.org/vocab/quantitykind/MassNumber + Number of nucleons in an atomic nucleus. - + - T0 L+3 M0 I0 Θ0 N-1 J0 + T0 L0 M+1 I0 Θ0 N-1 J0 - VolumePerAmountUnit - VolumePerAmountUnit - - - - - - A construction language used to make queries in databases and information systems. - QueryLanguage - QueryLanguage - A construction language used to make queries in databases and information systems. - SQL, SPARQL - https://en.wikipedia.org/wiki/Query_language - - - - - - - SerialStep - SerialStep - - - - - - - - A guess is a theory, estimated and subjective, since its premises are subjective. - Guess - Guess - A guess is a theory, estimated and subjective, since its premises are subjective. + MassPerAmountUnit + MassPerAmountUnit - - + + - CentrifugalCasting - CentrifugalCasting - - - - - - - Radius of a sphere such that the relativistic electron energy is distributed uniformly. - ElectronRadius - ElectronRadius - https://www.wikidata.org/wiki/Q2152581 - 10-19.2 - Radius of a sphere such that the relativistic electron energy is distributed uniformly. + IsothermalConversion + IsothermalConversion - - - - - - - + + - - + + T+3 L-1 M-1 I0 Θ+1 N0 J0 - + + - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - In an anisotropic medium, thermal conductivity is a tensor quantity. - ThermalConductivity - ThermalConductivity - https://qudt.org/vocab/quantitykind/ThermalConductivity - https://www.wikidata.org/wiki/Q487005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 - https://dbpedia.org/page/Thermal_conductivity - 5-9 - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + ThermalResistivityUnit + ThermalResistivityUnit - - - - A real bond between atoms is always something hybrid between covalent, metallic and ionic. + + + + A meson with spin zero and even parity. + ScalarMeson + ScalarMeson + A meson with spin zero and even parity. + https://en.wikipedia.org/wiki/Scalar_meson + -In general, metallic and ionic bonds have atoms sharing electrons. - An bonded atom that shares at least one electron to the atom-based entity of which is part of. - The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. - This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. - BondedAtom - BondedAtom - An bonded atom that shares at least one electron to the atom-based entity of which is part of. + + + + The overall time needed to acquire the measurement data. + The overall time needed to acquire the measurement data. + MeasurementTime + MeasurementTime + The overall time needed to acquire the measurement data. + + + + + + + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + AngularReciprocalLatticeVector + AngularReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475278 + 12-2.1 + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + + + + + + A variable that stand for a numerical constant, even if it is unknown. + Constant + Constant + A variable that stand for a numerical constant, even if it is unknown. @@ -21729,77 +21719,165 @@ In general, metallic and ionic bonds have atoms sharing electrons.Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. - - - - LeftHandedParticle - LeftHandedParticle + + + + Unit for quantities of dimension one that are the fraction of two masses. + MassFractionUnit + MassFractionUnit + Unit for quantities of dimension one that are the fraction of two masses. + Unit for mass fraction. - - - - - - - - - - - - - - - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - Lepton - Lepton - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - https://en.wikipedia.org/wiki/Lepton + + + + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + NumericalData + NumericalData + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - - + + + + An icon that focus on HOW the object works. + An icon that represents the internal logical structure of the object. + AnalogicalIcon + AnalogicalIcon + An icon that represents the internal logical structure of the object. + A physics equation is replicating the mechanisms internal to the object. + Electrical diagram is diagrammatic and resemblance + MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. + An icon that focus on HOW the object works. + The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). + + + + + - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - GyromagneticRatioOfTheElectron - GyromagneticCoefficientOfTheElectron - MagnetogyricRatioOfTheElectron - GyromagneticRatioOfTheElectron - https://www.wikidata.org/wiki/Q97543076 - 10-12.2 - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + The rest mass of a proton. + ProtonMass + ProtonMass + http://qudt.org/vocab/constant/ProtonMass + https://doi.org/10.1351/goldbook.P04914 - + + + + + TauAntiNeutrino + TauAntiNeutrino + + + + + + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Chronocoulometry + Chronocoulometry + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + https://doi.org/10.1515/pac-2018-0109 + + + + + + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + Viscometry + Viscosity + Viscometry + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + + + - + - Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). - a photometric measure of the luminous intensity per unit area of light travelling in a given direction. - Luminance - Luminance - http://qudt.org/vocab/quantitykind/Luminance - https://doi.org/10.1351/goldbook.L03640 + Mass per amount of substance. + MolarMass + MolarMass + https://qudt.org/vocab/quantitykind/MolarMass + https://www.wikidata.org/wiki/Q145623 + 9-4 + Mass per amount of substance. - - + + + + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + SurfaceCoefficientOfHeatTransfer + SurfaceCoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q74770365 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 + 5-10.2 + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + + + + + + + Helmholtz energy per amount of substance. + MolarHelmholtzEnergy + MolarHelmholtzEnergy + https://www.wikidata.org/wiki/Q88862986 + 9-6.3 + Helmholtz energy per amount of substance. + + + + + + In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + MetrologicalUncertainty + A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. + MetrologicalUncertainty + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + - Standard deviation +- Half-width of an interval with a stated coverage probability + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + + + + + + Internal energy per unit mass. + SpecificInternalEnergy + SpecificInternalEnergy + https://qudt.org/vocab/quantitykind/SpecificInternalEnergy + https://www.wikidata.org/wiki/Q76357367 + 5-21.2 + Internal energy per unit mass. + + + + + + + T-2 L+4 M0 I0 Θ0 N0 J0 + + + - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - CurrentLinkage - CurrentLinkage - https://qudt.org/vocab/quantitykind/CurrentLinkage - https://www.wikidata.org/wiki/Q77995703 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 - 6-37.4 - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + MassStoppingPowerUnit + MassStoppingPowerUnit @@ -21812,169 +21890,183 @@ In general, metallic and ionic bonds have atoms sharing electrons.A foam of trapped gas in a liquid. - - + + - RawSample - RawSample - - - - - - - - - - - - - 2-dimensional array who's spatial direct parts are vectors. - Matrix - 2DArray - Matrix - 2-dimensional array who's spatial direct parts are vectors. + Synchrotron + Synchrotron - - - - C - C + + + + A Material occurring in nature, without the need of human intervention. + NaturalMaterial + NaturalMaterial + A Material occurring in nature, without the need of human intervention. - - - - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - ShearForming - Schubumformen - ShearForming + + + + Gathering + Gathering - + - T0 L-3 M0 I+1 Θ0 N-1 J0 + T0 L+2 M0 I0 Θ-1 N0 J0 - ElectricCurrentPerAmountVolumeUnit - ElectricCurrentPerAmountVolumeUnit + AreaPerTemperatureUnit + AreaPerTemperatureUnit - - - - - - - - - - - - - Entropy per amount of substance. - MolarEntropy - MolarEntropy - https://qudt.org/vocab/quantitykind/MolarEntropy - https://www.wikidata.org/wiki/Q68972876 - 9-8 - Entropy per amount of substance. + + + + The sample after having been subjected to a characterization process + CharacterisedSample + CharacterisedSample + The sample after having been subjected to a characterization process - - - - A whole with spatial parts of its same type. - SpatiallyRedundant - SpatiallyRedundant - A whole with spatial parts of its same type. + + + + + T+1 L+2 M0 I0 Θ+1 N0 J0 + + + + + AreaTimeTemperatureUnit + AreaTimeTemperatureUnit - - + + - Factor by which the phase velocity of light is reduced in a medium. - RefractiveIndex - RefractiveIndex - http://qudt.org/vocab/quantitykind/RefractiveIndex - https://doi.org/10.1351/goldbook.R05240 + Force of gravity acting on a body. + Weight + Weight + http://qudt.org/vocab/quantitykind/Weight + 4-9.2 + https://doi.org/10.1351/goldbook.W06668 - - - - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - DataNormalisation - DataNormalisation - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + + + + + Radius of a sphere such that the relativistic electron energy is distributed uniformly. + ElectronRadius + ElectronRadius + https://www.wikidata.org/wiki/Q2152581 + 10-19.2 + Radius of a sphere such that the relativistic electron energy is distributed uniformly. - - - - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - PhysicalLaw - PhysicalLaw - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + + + + + T-6 L+4 M+2 I-2 Θ-2 N0 J0 + + + + + SquareElectricPotentialPerSquareTemperatureUnit + SquareElectricPotentialPerSquareTemperatureUnit - - - - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - IonChromatography - IonChromatography - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - https://en.wikipedia.org/wiki/Ion_chromatography + + + + MicrowaveSintering + MicrowaveSintering - + - T+3 L-2 M-1 I+1 Θ0 N0 J0 + T-3 L-2 M+2 I0 Θ0 N0 J0 - - ElectricCurrentPerUnitEnergyUnit - ElectricCurrentPerUnitEnergyUnit + + SquarePressureTimeUnit + SquarePressureTimeUnit - + + + + GrowingCrystal + GrowingCrystal + + + - T0 L+3 M0 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ0 N-1 J0 - VolumeUnit - VolumeUnit + PerAmountUnit + PerAmountUnit - - - - InspectionDevice - InspectionDevice + + + + Real part of the admittance. + ConductanceForAlternatingCurrent + ConductanceForAlternatingCurrent + https://www.wikidata.org/wiki/Q79464628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 + 6-52.2 + Real part of the admittance. - - - - - RedCharmAntiQuark - RedCharmAntiQuark + + + + A real matrix with shape 4x3. + Shape4x3Matrix + Shape4x3Matrix + A real matrix with shape 4x3. + + + + + + + + + + + + The small, dense region at the centre of an atom consisting of protons and neutrons. + Nucleus + Nucleus + The small, dense region at the centre of an atom consisting of protons and neutrons. + + + + + + + CriticalAndSupercriticalChromatography + CriticalAndSupercriticalChromatography @@ -21986,86 +22078,52 @@ liquid-phase sintering: sintering of a powder or compact containing at least two LiquidPhaseSintering - - - - - T-3 L+3 M+1 I-2 Θ0 N0 J0 - - - - - ElectricResistivityUnit - ElectricResistivityUnit - - - - - - Letter - Letter - - - - - + + - Retarding force on a body moving in a fluid. - DragForce - DragForce - https://www.wikidata.org/wiki/Q206621 - 4-9.6 - Retarding force on a body moving in a fluid. + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. + Solubility + Solubility + https://www.wikidata.org/wiki/Q170731 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + https://doi.org/10.1351/goldbook.S05740 - - - - - T-1 L-1 M+1 I0 Θ0 N0 J0 - - - - - MassPerLengthTimeUnit - MassPerLengthTimeUnit + + + + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + ScanningProbeMicroscopy + ScanningProbeMicroscopy + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - + - T-3 L+4 M+1 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ+2 N0 J0 - PowerAreaUnit - PowerAreaUnit - - - - - - - An object which is an holistic spatial part of a object. - Constituent - ObjectPart - Constituent - An object which is an holistic spatial part of a object. - A tire is a constituent of a car. + SquareTemperatureUnit + SquareTemperatureUnit - - - - A network of objects that implements a production process through a series of interconnected elements. - ProductionSystem - ProductionSystem - A network of objects that implements a production process through a series of interconnected elements. + + + + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. + MesoscopicModel + MesoscopicModel + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - + @@ -22073,967 +22131,933 @@ liquid-phase sintering: sintering of a powder or compact containing at least two - - - - - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - Coercivity - Coercivity - https://qudt.org/vocab/quantitykind/Coercivity - https://www.wikidata.org/wiki/Q432635 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 - 6-31 - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - - - - - - - - - - - + - - quotient of Thomson heat power developed, and the electric current and temperature difference - ThomsonCoefficient - ThomsonCoefficient - https://qudt.org/vocab/quantitykind/ThomsonCoefficient - https://www.wikidata.org/wiki/Q105801233 - 12-23 - quotient of Thomson heat power developed, and the electric current and temperature difference + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + ElectricFlux + ElectricFlux + https://qudt.org/vocab/quantitykind/ElectricFlux + https://www.wikidata.org/wiki/Q501267 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 + 6-17 + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - - - - - - - - - - - + + - JouleThomsonCoefficient - JouleThomsonCoefficient - https://www.wikidata.org/wiki/Q93946998 - 5-24 - - - - - - Mathematical model used to process data. - Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. - PostProcessingModel - PostProcessingModel - Mathematical model used to process data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. + The radiant energy emitted, reflected, transmitted or received, per unit time. + RadiantFlux + RadiantFlux + http://qudt.org/vocab/quantitykind/RadiantFlux + https://doi.org/10.1351/goldbook.R05046 - - - - - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - AverageEnergyLossPerElementaryChargeProduced - AverageEnergyLossPerElementaryChargeProduced - https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced - https://www.wikidata.org/wiki/Q98793042 - 10-60 - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + + + + MaterialRelationComputation + MaterialRelationComputation - + - T0 L-2 M0 I+1 Θ-1 N0 J0 + T-2 L+3 M+1 I0 Θ0 N0 J0 - ElectricCurrentDensityPerTemperatureUnit - ElectricCurrentDensityPerTemperatureUnit + ForceAreaUnit + ForceAreaUnit - + - T-1 L+1 M0 I0 Θ+1 N0 J0 + T+2 L+2 M0 I0 Θ0 N0 J0 - TemperatureLengthPerTimeUnit - TemperatureLengthPerTimeUnit - - - - - - GluonType6 - GluonType6 - - - - - - - - - - - - - - - - Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. - The atomic mass is often expressed as an average of the commonly found isotopes. - The mass of an atom in the ground state. - AtomicMass - AtomicMass - The mass of an atom in the ground state. - 10-4.1 - https://en.wikipedia.org/wiki/Atomic_mass - https://doi.org/10.1351/goldbook.A00496 - - - - - - Unit for quantities of dimension one that are the fraction of two pressures. - PressureFractionUnit - PressureFractionUnit - Unit for quantities of dimension one that are the fraction of two pressures. + AreaSquareTimeUnit + AreaSquareTimeUnit - + - T-1 L0 M0 I0 Θ0 N+1 J0 + T0 L0 M0 I0 Θ-1 N0 J0 - CatalyticActivityUnit - CatalyticActivityUnit - - - - - - A chain of linked physics based model simulations, where equations are solved sequentially. - LinkedModelsSimulation - LinkedModelsSimulation - A chain of linked physics based model simulations, where equations are solved sequentially. + PerTemperatureUnit + PerTemperatureUnit - + - T+2 L+1 M-1 I0 Θ0 N0 J0 + T+2 L0 M+1 I0 Θ0 N0 J0 - PerPressureUnit - PerPressureUnit + MassSquareTimeUnit + MassSquareTimeUnit - - - - KineticFrictionFactor - DynamicFrictionFactor - KineticFrictionFactor - https://www.wikidata.org/wiki/Q73695445 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 - 4-23.2 + + + + ThermomechanicalTreatment + ThermomechanicalTreatment - + + + + ArithmeticOperator + ArithmeticOperator + + + + + - - + + - The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - -It defines the base unit mole in the SI system. - AvogadroConstant - AvogadroConstant - http://qudt.org/vocab/constant/AvogadroConstant - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - -It defines the base unit mole in the SI system. - https://doi.org/10.1351/goldbook.A00543 + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + AbsorbedDose + AbsorbedDose + http://qudt.org/vocab/quantitykind/AbsorbedDose + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + 10-81.1 + https://doi.org/10.1351/goldbook.A00031 - - - - A command must be interpretable by the computer system. - An instruction to a computer system to perform a given task. - Command - Command - From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. - A command must be interpretable by the computer system. - Commands are typically performed from a shell or a shell script, but not limited to them. + + + + + T-2 L+3 M0 I0 Θ0 N0 J0 + + + + + VolumePerSquareTimeUnit + VolumePerSquareTimeUnit - - - + + - Reciprocal of the decay constant λ. - MeanDurationOfLife - MeanLifeTime - MeanDurationOfLife - https://qudt.org/vocab/quantitykind/MeanLifetime - https://www.wikidata.org/wiki/Q1758559 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 - 10-25 - Reciprocal of the decay constant λ. + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + RotationalFrequency + RotationalFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 + 3-17.2 + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - - - - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - ExactConstant - ExactConstant - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + + + + + T-2 L+4 M+1 I0 Θ0 N0 J0 + + + + + EnergyAreaUnit + EnergyAreaUnit - - + + + + + T+2 L-2 M-1 I0 Θ0 N0 J0 + + + - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - The diameter of a circle or a sphere is twice its radius. - Diameter - Diameter - https://qudt.org/vocab/quantitykind/Diameter - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 - https://dbpedia.org/page/Diameter - 3-1.5 - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - https://en.wikipedia.org/wiki/Diameter + PerEnergyUnit + PerEnergyUnit - - - - - Unit for dimensionless quantities that have the nature of count. - CountingUnit - CountingUnit - http://qudt.org/vocab/unit/NUM - 1 - Unit for dimensionless quantities that have the nature of count. - Unit of atomic number -Unit of number of cellular -Unit of degeneracy in quantum mechanics + + + + + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + LinearIonization + LinearIonization + https://qudt.org/vocab/quantitykind/LinearIonization + https://www.wikidata.org/wiki/Q98690755 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 + 10-58 + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - - - - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - SparkErosion - elektrochemisches Abtragen - SparkErosion + + + + CeramicMaterial + CeramicMaterial - - - - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - SystemProgram - SystemProgram - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - An operating system. A graphic driver. + + + + + Radius of the circular movement of an electrically charged particle in a magnetic field. + Gyroradius + LarmorRadius + Gyroradius + https://www.wikidata.org/wiki/Q1194458 + 10-17 + Radius of the circular movement of an electrically charged particle in a magnetic field. - - - - DieCasting - DieCasting + + + + + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + LarmonAngularFrequency + LarmonAngularFrequency + 10-15.1 + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - - + + + - Measurement of energy in a thermodynamic system. - Enthalpy - Enthalpy - http://qudt.org/vocab/quantitykind/Enthalpy - 5.20-3 - https://doi.org/10.1351/goldbook.E02141 + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + PhaseCoefficient + PhaseChangeCoefficient + PhaseCoefficient + https://qudt.org/vocab/quantitykind/PhaseCoefficient + https://www.wikidata.org/wiki/Q32745742 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 + 3-26.2 + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant - - - - - - - - - - - - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - PhysicsOfInteraction - PhysicsOfInteraction - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + + + + DataProcessingApplication + DataProcessingApplication + + + + + + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + StandardizedPhysicalQuantity + StandardizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - - - - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - DirectCoulometryAtControlledPotential - DirectCoulometryAtControlledPotential - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + Physical quantity of dimension energy × time. + Action + Action + https://qudt.org/vocab/quantitykind/Action + https://www.wikidata.org/wiki/Q846785 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 + 4-32 + Physical quantity of dimension energy × time. - - - + + + + + T0 L+3 M-1 I0 Θ0 N0 J0 + + + - Product of damping coefficient and period duration. - LogarithmicDecrement - LogarithmicDecrement - https://www.wikidata.org/wiki/Q1399446 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 - 3-25 - Product of damping coefficient and period duration. + VolumePerMassUnit + VolumePerMassUnit - + - T-1 L+2 M+1 I0 Θ0 N-1 J0 + T0 L-2 M0 I0 Θ0 N0 J0 - EnergyTimePerAmountUnit - EnergyTimePerAmountUnit + PerAreaUnit + PerAreaUnit - + + + + + RedCharmQuark + RedCharmQuark + + + + + + + + + + + + + + + Conductivity per molar concentration of electrolyte. + MolarConductivity + MolarConductivity + https://qudt.org/vocab/quantitykind/MolarConductivity + https://www.wikidata.org/wiki/Q1943278 + 9-45 + Conductivity per molar concentration of electrolyte. + https://doi.org/10.1351/goldbook.M03976 + + + - One minus the square of the coupling factor - LeakageFactor - LeakageFactor - https://www.wikidata.org/wiki/Q78102042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 - 6-42.2 - One minus the square of the coupling factor + CouplingFactor + InductiveCouplingFactor + CouplingFactor + https://www.wikidata.org/wiki/Q78101715 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 + 6-42.1 - + + + + + + + 1 + + + + + + + 2 + + + + A positive charged subatomic particle found in the atomic nucleus. + Proton + Proton + A positive charged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Proton + + + - T-2 L0 M+1 I-1 Θ0 N0 J0 + T+2 L+2 M-1 I+2 Θ0 N0 J0 - MagneticFluxDensityUnit - MagneticFluxDensityUnit + EnergyPerSquareMagneticFluxDensityUnit + EnergyPerSquareMagneticFluxDensityUnit - + + + + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + Milling + Milling + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + + + - + - Efficiency of an ideal heat engine operating according to the Carnot process. - MaximumEfficiency - CarnotEfficiency - MaximumEfficiency - https://www.wikidata.org/wiki/Q93949862 - 5-25.2 - Efficiency of an ideal heat engine operating according to the Carnot process. + ThermodynamicGrueneisenParameter + ThermodynamicGrueneisenParameter + https://www.wikidata.org/wiki/Q105658620 + 12-13 - - - - - - - - - - - - + + + + An aerosol composed of fine solid particles in air or another gas. + SolidAerosol + SolidAerosol + An aerosol composed of fine solid particles in air or another gas. + + + + + - Quantity in condensed matter physics. - EnergyDensityOfStates - EnergyDensityOfStates - https://qudt.org/vocab/quantitykind/EnergyDensityOfStates - https://www.wikidata.org/wiki/Q105687031 - 12-16 - Quantity in condensed matter physics. + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + ComptonWavelength + ComptonWavelength + https://qudt.org/vocab/constant/ComptonWavelength + https://www.wikidata.org/wiki/Q1145377 + 10-20 + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + https://en.wikipedia.org/wiki/Compton_wavelength - - - - TransferMolding - TransferMolding + + + + Length of the repetition interval of a wave. + Wavelength + Wavelength + https://qudt.org/vocab/quantitykind/Wavelength + https://www.wikidata.org/wiki/Q41364 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 + https://dbpedia.org/page/Wavelength + 3-19 + Length of the repetition interval of a wave. + https://en.wikipedia.org/wiki/Wavelength + https://doi.org/10.1351/goldbook.W06659 - - - - Java - Java + + + + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + CalibrationData + CalibrationData + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + + + + + + + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + ActivityOfSolvent + ActivityOfSolvent + https://www.wikidata.org/wiki/Q89486193 + 9-27.1 + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + + + + + + Measurement of energy in a thermodynamic system. + Enthalpy + Enthalpy + http://qudt.org/vocab/quantitykind/Enthalpy + 5.20-3 + https://doi.org/10.1351/goldbook.E02141 - - + + - UndefinedEdgeCutting - Spanen mit geometrisch unbestimmten Schneiden - UndefinedEdgeCutting - - - - - - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - IsothermalMicrocalorimetry - IMC - IsothermalMicrocalorimetry - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + Tool + Tool + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - + - T-3 L0 M+1 I0 Θ-4 N0 J0 + T-1 L0 M0 I0 Θ-1 N0 J0 - MassPerCubicTimeQuarticTemperatureUnit - MassPerCubicTimeQuarticTemperatureUnit + PerTemperatureTimeUnit + PerTemperatureTimeUnit - - - - PhotochemicalProcesses - PhotochemicalProcesses + + + + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. + + TensileTesting + TensionTest + TensileTesting + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - + + + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - DifferentialRefractiveIndex - DifferentialRefractiveIndex + XrayPowderDiffraction + XRPD + XrayPowderDiffraction + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + https://en.wikipedia.org/wiki/Powder_diffraction - - - - Process for joining two (base) materials by means of an adhesive polymer material - Gluing - Kleben - Gluing + + + + Assigned + Assigned - - + + - MicrowaveSintering - MicrowaveSintering - - - - - - - - Amount of heat through a surface during a time interval divided by the duration of this interval. - HeatFlowRate - HeatFlowRate - https://qudt.org/vocab/quantitykind/HeatFlowRate - https://www.wikidata.org/wiki/Q12160631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 - 5-7 - Amount of heat through a surface during a time interval divided by the duration of this interval. + PlasmaCutting + PlasmaCutting - + - T-1 L+2 M0 I0 Θ0 N-1 J0 + T-2 L+3 M+1 I0 Θ0 N-1 J0 - DiffusivityUnit - DiffusivityUnit - - - - - - Numeral - Numeral - - - - - - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - Nanoindentation - Nanoindentation - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - - - - - - - - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - Hypothesis - Hypothesis - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - - - - - - GluonType2 - GluonType2 + EnergyLengthPerAmountUnit + EnergyLengthPerAmountUnit - - - + + + - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - DebyeAngularFrequency - DebyeAngularFrequency - https://qudt.org/vocab/quantitykind/DebyeAngularFrequency - https://www.wikidata.org/wiki/Q105580986 - 12-10 - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + In nuclear physics, fraction of interacting particles per distance traversed in a given material. + LinearAttenuationCoefficient + LinearAttenuationCoefficient + https://www.wikidata.org/wiki/Q98583077 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 + 10-49 + In nuclear physics, fraction of interacting particles per distance traversed in a given material. - + - T-3 L+2 M+1 I-2 Θ0 N0 J0 + T-3 L0 M+1 I0 Θ-1 N0 J0 - ElectricResistanceUnit - ElectricResistanceUnit - - - - - - DropForging - DropForging - - - - - - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - GFactorOfNucleusOrNuclearParticle - NuclearGFactor - GFactorOfNucleusOrNuclearParticle - https://qudt.org/vocab/quantitykind/GFactorOfNucleus - https://www.wikidata.org/wiki/Q97591250 - 10-14.2 - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - - - - - - ChemicallyDefinedMaterial - ChemicallyDefinedMaterial + ThermalTransmittanceUnit + ThermalTransmittanceUnit - - - - - RedTopAntiQuark - RedTopAntiQuark + + + + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + DynamicLightScattering + DLS + DynamicLightScattering + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - + - T-3 L0 M+1 I-1 Θ0 N0 J0 + T+1 L0 M0 I+1 Θ0 N0 J0 - ElectricPotentialPerAreaUnit - ElectricPotentialPerAreaUnit - - - - - - - - - - - - - - - Mass per amount of substance. - MolarMass - MolarMass - https://qudt.org/vocab/quantitykind/MolarMass - https://www.wikidata.org/wiki/Q145623 - 9-4 - Mass per amount of substance. + ElectricChargeUnit + ElectricChargeUnit - - - - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - DifferentialScanningCalorimetry - DSC - DifferentialScanningCalorimetry - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + + + + A meson with total spin 1 and even parit. + PseudovectorMeson + PseudovectorMeson + A meson with total spin 1 and even parit. + https://en.wikipedia.org/wiki/Pseudovector_meson - - - + + + - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - LevelWidth - LevelWidth - https://qudt.org/vocab/quantitykind/LevelWidth - https://www.wikidata.org/wiki/Q98082340 - 10-26 - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - https://doi.org/10.1351/goldbook.L03507 + ThermodynamicEfficiency + ThermalEfficiency + ThermodynamicEfficiency + https://qudt.org/vocab/quantitykind/ThermalEfficiency + https://www.wikidata.org/wiki/Q1452104 + 5-25.1 - + - + - + - Differential quotient of the absorbed dose with respect to time. - AbsorbedDoseRate - AbsorbedDoseRate - https://qudt.org/vocab/quantitykind/AbsorbedDoseRate - https://www.wikidata.org/wiki/Q69428958 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 - 10-84 - Differential quotient of the absorbed dose with respect to time. + Volume per amount of substance. + MolarVolume + MolarVolume + https://qudt.org/vocab/quantitykind/MolarVolume + https://www.wikidata.org/wiki/Q487112 + 9-5 + Volume per amount of substance. - - + + + + + ElectrolyticConductivity + ElectrolyticConductivity + https://qudt.org/vocab/quantitykind/ElectrolyticConductivity + https://www.wikidata.org/wiki/Q907564 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 + 9-44 + + + + - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - - VaporPressureDepressionOsmometry - VPO - VaporPressureDepressionOsmometry - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Polishing + Polishing + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - - - + + - Voltage between substances a and b caused by the thermoelectric effect. - ThermoelectricVoltage - ThermoelectricVoltage - https://www.wikidata.org/wiki/Q105761637 - 12-20 - Voltage between substances a and b caused by the thermoelectric effect. + Measure of the opposition that a circuit presents to a current when a voltage is applied. + ElectricImpedance + Impedance + ElectricImpedance + http://qudt.org/vocab/quantitykind/Impedance + https://www.wikidata.org/wiki/Q179043 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 + 6-51.1 + https://en.wikipedia.org/wiki/Electrical_impedance - - - - A liquid aerosol composed of water droplets in air or another gas. - Vapor - Vapor - A liquid aerosol composed of water droplets in air or another gas. + + + + + Dimensionless parameter to quantify fluid resistance. + DragCoefficient + DragFactor + DragCoefficient + https://qudt.org/vocab/quantitykind/DragCoefficient + https://www.wikidata.org/wiki/Q1778961 + 4-23.4 + Dimensionless parameter to quantify fluid resistance. - - + + + + + SampleInspectionInstrument + SampleInspectionInstrument + + + - - - - - - - - - + - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - AbsorbedDose - AbsorbedDose - http://qudt.org/vocab/quantitykind/AbsorbedDose - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - 10-81.1 - https://doi.org/10.1351/goldbook.A00031 + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + TotalAngularMomentum + TotalAngularMomentum + https://qudt.org/vocab/quantitykind/TotalAngularMomentum + https://www.wikidata.org/wiki/Q97496506 + 10-11 + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - + + + + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + CathodicStrippingVoltammetry + CSV + CathodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q4016325 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + https://doi.org/10.1515/pac-2018-0109 + + + + + + + CharacterisationComponent + CharacterisationComponent + + + + + + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + Widening + Weiten + Widening + + + - T-1 L0 M0 I0 Θ+2 N0 J0 + T+1 L-1 M0 I0 Θ0 N0 J0 - SquareTemperaturePerTimeUnit - SquareTemperaturePerTimeUnit + TimePerLengthUnit + TimePerLengthUnit - - - - - T+2 L-5 M-1 I0 Θ0 N0 J0 - - - + + + + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + DataExchangeLanguage + DataExchangeLanguage + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + JSON, YAML, XML + https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages + + + + + - EnergyDensityOfStatesUnit - EnergyDensityOfStatesUnit + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + alpha_V = (1/V) * (dV/dT) + CubicExpansionCoefficient + CubicExpansionCoefficient + https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient + https://www.wikidata.org/wiki/Q74761076 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 + 5-3.2 + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - - + + + + + + - - T+1 L-3 M0 I+1 Θ0 N0 J0 + + - - + - ElectricChargeDensityUnit - ElectricChargeDensityUnit + Surface density of electric charge multiplied by velocity + LinearElectricCurrentDensity + LinearElectricCurrentDensity + https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity + https://www.wikidata.org/wiki/Q2356741 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 + 6-9 + Surface density of electric charge multiplied by velocity + + + + + + + Angular frequency divided by angular wavenumber. + PhaseSpeedOfElectromagneticWaves + PhaseSpeedOfElectromagneticWaves + https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed + https://www.wikidata.org/wiki/Q77990619 + 6-35.1 + Angular frequency divided by angular wavenumber. + + + + + + + Mean duration required for the decay of one half of the atoms or nuclei. + HalfLife + HalfLife + https://qudt.org/vocab/quantitykind/Half-Life + https://www.wikidata.org/wiki/Q98118544 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 + 10-31 + Mean duration required for the decay of one half of the atoms or nuclei. - - - - - T-2 L+2 M+1 I-1 Θ0 N0 J0 - - - - - MagneticFluxUnit - MagneticFluxUnit + + + + FiberboardManufacturing + FiberboardManufacturing - - - - - - - - - - - + + - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - Magnetization - Magnetization - https://qudt.org/vocab/quantitykind/Magnetization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 - 6-24 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + DisplacementCurrent + DisplacementCurrent + https://qudt.org/vocab/quantitykind/DisplacementCurrent + https://www.wikidata.org/wiki/Q853178 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 + 6-19.1 + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. - + - T0 L+4 M0 I0 Θ0 N0 J0 + T-2 L0 M+1 I0 Θ0 N0 J0 - QuarticLengthUnit - QuarticLengthUnit + ForcePerLengthUnit + ForcePerLengthUnit - - - - - T+1 L0 M0 I+1 Θ0 N0 J0 - - - - - ElectricChargeUnit - ElectricChargeUnit + + + + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + Ellipsometry + Ellipsometry + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - - - - Punctuation - Punctuation + + + + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. + AssemblyLine + AssemblyLine + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. - - + + + - Real part of the impedance. - ResistanceToAlternativeCurrent - ResistanceToAlternativeCurrent - https://www.wikidata.org/wiki/Q1048490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 - 6-51.2 - Real part of the impedance. + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + LondonPenetrationDepth + LondonPenetrationDepth + https://qudt.org/vocab/quantitykind/LondonPenetrationDepth + https://www.wikidata.org/wiki/Q3277853 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 + 12-38.1 + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - - - - - - ActivityFactor - ActivityFactor - https://www.wikidata.org/wiki/Q89335167 - 9-22 + + + + + BlueUpAntiQuark + BlueUpAntiQuark - - - + + - ActivityCoefficient - ActivityCoefficient - https://qudt.org/vocab/quantitykind/ActivityCoefficient - https://www.wikidata.org/wiki/Q745224 - 9-25 - https://doi.org/10.1351/goldbook.A00116 + Vector quantity equal to the time derivative of the electric flux density. + DisplacementCurrentDensity + DisplacementCurrentDensity + https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity + https://www.wikidata.org/wiki/Q77614612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 + 6-18 + Vector quantity equal to the time derivative of the electric flux density. - + - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - CausalConvexSystem - CausalConvexSystem - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - A CausalSystem whose quantum parts are all bonded to the rest of the system. - - - - - - A meson with total spin 1 and odd parit. - VectorMeson - VectorMeson - A meson with total spin 1 and odd parit. - https://en.wikipedia.org/wiki/Vector_meson + CausallHairedSystem + CausallHairedSystem - - - - Gibbs energy per unit mass. - SpecificGibbsEnergy - SpecificGibbsEnergy - https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy - https://www.wikidata.org/wiki/Q76360636 - 5-21.5 - Gibbs energy per unit mass. + + + + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + UltrasonicTesting + UltrasonicTesting + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - - - - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - OpticalMicroscopy - OpticalMicroscopy - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + + + + Magnetizing + Magnetizing - + @@ -23041,1475 +23065,1432 @@ So, a photon leaving a body is not part of the body as convex system, while a ph - + - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - AtomicAttenuationCoefficient - AtomicAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592911 - 10-52 - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. + Absolute value of the magnetic moment of a nucleus. + NuclearMagneton + NuclearMagneton + https://www.wikidata.org/wiki/Q1166093 + 10-9.3 + Absolute value of the magnetic moment of a nucleus. + https://doi.org/10.1351/goldbook.N04236 - - + + + + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + EmpiricalSimulationSoftware + EmpiricalSimulationSoftware + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + + + + - SparkPlasmaSintering - SparkPlasmaSintering + ElectrolyticDeposition + ElectrolyticDeposition - - - - - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - AtomicScatteringFactor - AtomicScatteringFactor - https://qudt.org/vocab/quantitykind/AtomScatteringFactor - https://www.wikidata.org/wiki/Q837866 - 12-5.3 - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - https://en.wikipedia.org/wiki/Atomic_form_factor + + + + FormingFromIonised + FormingFromIonised - - - + + + + A molecule composed of more than one element type. + Heteronuclear + Heteronuclear + A molecule composed of more than one element type. + Nitric oxide (NO) or carbon dioxide (CO₂). + + + + + - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - LongRangeOrderParameter - LongRangeOrderParameter - https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter - https://www.wikidata.org/wiki/Q105496124 - 12-5.2 - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + Reciprocal of the decay constant λ. + MeanDurationOfLife + MeanLifeTime + MeanDurationOfLife + https://qudt.org/vocab/quantitykind/MeanLifetime + https://www.wikidata.org/wiki/Q1758559 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 + 10-25 + Reciprocal of the decay constant λ. - + - T-2 L+2 M+1 I0 Θ-1 N-1 J0 + T-1 L-1 M0 I0 Θ0 N0 J0 - EntropyPerAmountUnit - EntropyPerAmountUnit - - - - - - - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - MaximumBetaParticleEnergy - MaximumBetaParticleEnergy - https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy - https://www.wikidata.org/wiki/Q98148038 - 10-33 - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + PerLengthTimeUnit + PerLengthTimeUnit - - - - Filling - Filling + + + + + + + + + + A workflow whose steps (iterative steps) are the repetition of the same workflow type. + IterativeWorkflow + IterativeWorkflow + A workflow whose steps (iterative steps) are the repetition of the same workflow type. - - - - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - FieldEmissionScanningElectronMicroscopy - FE-SEM - FieldEmissionScanningElectronMicroscopy - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + + + + + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + LatentHeatOfPhaseTransition + LatentHeatOfPhaseTransition + https://www.wikidata.org/wiki/Q106553458 + 9-16 + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - - - - ElectricCurrentAssistedSintering - ElectricCurrentAssistedSintering + + + + A language object respecting the syntactic rules of C++. + CPlusPlus + C++ + CPlusPlus + A language object respecting the syntactic rules of C++. - + - T-3 L0 M+1 I0 Θ0 N0 J0 + T+2 L-2 M-1 I+1 Θ0 N0 J0 - PowerDensityUnit - PowerDensityUnit - - - - - - Molds - Molds - - - - - - - Force opposing the motion of a body sliding on a surface. - KineticFrictionForce - DynamicFrictionForce - KineticFrictionForce - https://www.wikidata.org/wiki/Q91005629 - 4-9.4 - Force opposing the motion of a body sliding on a surface. + ElectricCurrentPerEnergyUnit + ElectricCurrentPerEnergyUnit - - - - - The integral over a time interval of the instantaneous power. - ActiveEnergy - ActiveEnergy - https://qudt.org/vocab/quantitykind/ActiveEnergy - https://www.wikidata.org/wiki/Q79813678 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 - 6-62 - The integral over a time interval of the instantaneous power. + + + + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + PhysicalBasedSimulationSoftware + PhysicalBasedSimulationSoftware + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - - - - - RedBottomAntiQuark - RedBottomAntiQuark + + + + + T0 L0 M-2 I0 Θ0 N0 J0 + + + + + InverseSquareMassUnit + InverseSquareMassUnit - + - T+2 L-2 M-1 I0 Θ0 N0 J0 + T0 L+1 M0 I0 Θ0 N-1 J0 - PerEnergyUnit - PerEnergyUnit + LengthPerAmountUnit + LengthPerAmountUnit - - + + + + + + + + + + + - Voltage phasor multiplied by complex conjugate of the current phasor. - ComplexPower - ComplexApparentPower - ComplexPower - https://qudt.org/vocab/quantitykind/ComplexPower - https://www.wikidata.org/wiki/Q65239736 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 - 6-59 - Voltage phasor multiplied by complex conjugate of the current phasor. - - - - - - Procedure to validate the characterisation data. - CharacterisationDataValidation - CharacterisationDataValidation - Procedure to validate the characterisation data. + Quotient of the mean rate of production of particles in a volume, and that volume. + ParticleSourceDensity + ParticleSourceDensity + https://qudt.org/vocab/quantitykind/ParticleSourceDensity + https://www.wikidata.org/wiki/Q98915762 + 10-66 + Quotient of the mean rate of production of particles in a volume, and that volume. - - + + - Energy of the electron in a hydrogen atom in its ground state - HartreeEnergy - HartreeEnergy - https://qudt.org/vocab/unit/E_h.html - https://www.wikidata.org/wiki/Q476572 - https://dbpedia.org/page/Hartree - 10-8 - Energy of the electron in a hydrogen atom in its ground state - https://en.wikipedia.org/wiki/Hartree - https://doi.org/10.1351/goldbook.H02748 - - - - - - - GreenDownAntiQuark - GreenDownAntiQuark + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + Activity + Activity + https://qudt.org/vocab/quantitykind/Activity + https://www.wikidata.org/wiki/Q317949 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 + 10-27 + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + https://goldbook.iupac.org/terms/view/A00114 - - - - - T-3 L+1 M+1 I0 Θ-1 N0 J0 - - - + + + - ThermalConductivityUnit - ThermalConductivityUnit - - - - - - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - PhysicallyNonInteracting - PhysicallyNonInteracting - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + Average number of fission neutrons, both prompt and delayed, emitted per fission event. + NeutronYieldPerFission + NeutronYieldPerFission + https://qudt.org/vocab/quantitykind/NeutronYieldPerFission + https://www.wikidata.org/wiki/Q99157909 + 10-74.1 + Average number of fission neutrons, both prompt and delayed, emitted per fission event. - + - T0 L0 M0 I0 Θ+2 N0 J0 + T+1 L+2 M0 I+1 Θ0 N0 J0 - SquareTemperatureUnit - SquareTemperatureUnit + ElectricChargeAreaUnit + ElectricChargeAreaUnit - - - - - T-3 L+1 M0 I0 Θ0 N0 J0 - - - - - LengthPerCubeTimeUnit - LengthPerCubeTimeUnit + + + + + BlueTopAntiQuark + BlueTopAntiQuark - + + + + + A constitutive process is a process that is holistically relevant for the definition of the whole. + A process which is an holistic spatial part of an object. + ConstitutiveProcess + ConstitutiveProcess + A process which is an holistic spatial part of an object. + Blood circulation in a human body. + A constitutive process is a process that is holistically relevant for the definition of the whole. + + + + + + LaserCutting + LaserCutting + + + + + + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + DerivedQuantity + DerivedQuantity + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + derived quantity + + + + + + A mapping that acts on elements of one space and produces elements of another space. + MathematicalOperator + MathematicalOperator + A mapping that acts on elements of one space and produces elements of another space. + The algebraic operator '+' that acts on two real numbers and produces one real number. + The differential operator that acts on a C1 real function and produces another real function. + + + + + + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + MarkupLanguage + MarkupLanguage + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + HTML + https://en.wikipedia.org/wiki/Markup_language + + + - - + - Number of electrons in conduction band per volume. - ElectronDensity - ElectronDensity - https://qudt.org/vocab/quantitykind/ElectronDensity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 - 12-29.1 - Number of electrons in conduction band per volume. - - - - - - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - TensileTesting - TensionTest - TensileTesting - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - - - - - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - ConductometricTitration - ConductometricTitration - https://www.wikidata.org/wiki/Q11778221 - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - https://doi.org/10.1515/pac-2018-0109 + Force per unit oriented surface area . + Measure of the internal forces that neighboring particles of a continuous material exert on each other. + Stress + Stress + http://qudt.org/vocab/quantitykind/Stress + 4-15 - + + - - + - Absolute value of the magnetic moment of a nucleus. - NuclearMagneton - NuclearMagneton - https://www.wikidata.org/wiki/Q1166093 - 10-9.3 - Absolute value of the magnetic moment of a nucleus. - https://doi.org/10.1351/goldbook.N04236 - - - - - - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - DeepDrawing - Tiefziehen - DeepDrawing - - - - - - - GreenDownQuark - GreenDownQuark + Logarithmic measure of the number of available states of a system. + May also be referred to as a measure of order of a system. + Entropy + Entropy + http://qudt.org/vocab/quantitykind/Entropy + 5-18 + https://doi.org/10.1351/goldbook.E02149 - - - - - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - ElectronBackscatterDiffraction - EBSD - ElectronBackscatterDiffraction - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + + + + A meson with spin zero and odd parity. + PseudoscalarMeson + PseudoscalarMeson + A meson with spin zero and odd parity. + https://en.wikipedia.org/wiki/Pseudoscalar_meson - + + - - + - Volume per amount of substance. - MolarVolume - MolarVolume - https://qudt.org/vocab/quantitykind/MolarVolume - https://www.wikidata.org/wiki/Q487112 - 9-5 - Volume per amount of substance. + An objective comparative measure of hot or cold. + +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + CelsiusTemperature + CelsiusTemperature + http://qudt.org/vocab/quantitykind/CelciusTemperature + 5-2 + An objective comparative measure of hot or cold. + +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + https://doi.org/10.1351/goldbook.T06261 - - - + + - Square root of the product of electron and hole density in a semiconductor. - IntrinsicCarrierDensity - IntrinsicCarrierDensity - https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity - https://www.wikidata.org/wiki/Q1303188 - 12-29.3 - Square root of the product of electron and hole density in a semiconductor. + The energy of an object due to its motion. + KineticEnergy + KineticEnergy + http://qudt.org/vocab/quantitykind/KineticEnergy + 4-28.2 + The energy of an object due to its motion. + https://doi.org/10.1351/goldbook.K03402 - - - - - - - - - - - - - - - PhysicallyInteractingConvex - PhysicallyInteractingConvex + + + + + T+2 L0 M0 I0 Θ0 N0 J0 + + + + + SquareTimeUnit + SquareTimeUnit + + + + + + + T-2 L+3 M+1 I-1 Θ+1 N0 J0 + + + + + NewtonSquareMetrePerAmpereUnit + NewtonSquareMetrePerAmpereUnit - + - + - + - Measure of voltage induced by change of temperature. - SeebeckCoefficient - SeebeckCoefficient - https://qudt.org/vocab/quantitykind/SeebeckCoefficient - https://www.wikidata.org/wiki/Q1091448 - 12-21 - Measure of voltage induced by change of temperature. + Derivative of velocity with respect to time. + Acceleration + Acceleration + http://qudt.org/vocab/quantitykind/Acceleration + 3-9.1 + https://doi.org/10.1351/goldbook.A00051 - - + + + - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. - SurfaceCoefficientOfHeatTransfer - SurfaceCoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q74770365 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 - 5-10.2 - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + PowerFactor + PowerFactor + https://qudt.org/vocab/quantitykind/PowerFactor + https://www.wikidata.org/wiki/Q750454 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 + 6-58 + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - - - - LaserCutting - LaserCutting + + + + + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + MassFractionOfDryMatter + MassFractionOfDryMatter + https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter + https://www.wikidata.org/wiki/Q76379189 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 + 5-32 + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - - - - - - - - + + + + + - - + + - - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - - SampleExtraction - SampleExtraction - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - - - - - - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - MigrationArea - MigrationArea - https://qudt.org/vocab/quantitykind/MigrationArea - https://www.wikidata.org/wiki/Q98966325 - 10-72.3 - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - - - - - - - T-2 L+1 M0 I0 Θ0 N0 J0 - - - - - AccelerationUnit - AccelerationUnit - - - - - - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - DeepFreezing - Cryogenic treatment, Deep-freeze - Tieftemperaturbehandeln - DeepFreezing - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + ElectricDipoleMoment + ElectricDipoleMoment + http://qudt.org/vocab/quantitykind/ElectricDipoleMoment + https://www.wikidata.org/wiki/Q735135 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 + 6-6 + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + https://doi.org/10.1351/goldbook.E01929 - - - - StandardEquilibriumConstant - ThermodynamicEquilibriumConstant - StandardEquilibriumConstant - https://www.wikidata.org/wiki/Q95993378 - 9-32 - https://doi.org/10.1351/goldbook.S05915 + + + + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + CausalConvexSystem + CausalConvexSystem + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + A CausalSystem whose quantum parts are all bonded to the rest of the system. - + - T0 L+1 M0 I0 Θ-1 N0 J0 + T0 L0 M0 I0 Θ+1 N+1 J0 - LengthPerTemperatureUnit - LengthPerTemperatureUnit - - - - - - - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - Gel - Gel - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + AmountTemperatureUnit + AmountTemperatureUnit - - - + + + - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - -It defines the Kelvin unit in the SI system. - The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. - BoltzmannConstant - BoltzmannConstant - http://qudt.org/vocab/constant/BoltzmannConstant - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - -It defines the Kelvin unit in the SI system. - https://doi.org/10.1351/goldbook.B00695 + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. + InternalConversionFactor + InternalConversionCoefficient + InternalConversionFactor + https://qudt.org/vocab/quantitykind/InternalConversionFactor + https://www.wikidata.org/wiki/Q6047819 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 + 10-35 + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - - - + + + - NumberOfTurnsInAWinding - NumberOfTurnsInAWinding - https://www.wikidata.org/wiki/Q77995997 - 6-38 - - - - - - A chain of linked physics based model simulations solved iteratively, where equations are segregated. - IterativeCoupledModelsSimulation - IterativeCoupledModelsSimulation - A chain of linked physics based model simulations solved iteratively, where equations are segregated. + ActivityOfSolute + RelativeActivityOfSolute + ActivityOfSolute + https://www.wikidata.org/wiki/Q89408862 + 9-24 - - - - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - CoulometricTitration - CoulometricTitration - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + + + + A tessellation in wich a tile has next two or more non spatially connected tiles. + Fork + Fork + A tessellation in wich a tile has next two or more non spatially connected tiles. - - - - Data that are decoded retaining its continuous variations characteristic. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - AnalogData - AnalogData - Data that are decoded retaining its continuous variations characteristic. - A vynil contain continuous information about the recorded sound. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + + + + + + + + + + + Plus + Plus - + + + + TransientLiquidPhaseSintering + TransientLiquidPhaseSintering + + + - T-2 L+4 M0 I0 Θ0 N0 J0 + T+2 L0 M-1 I0 Θ0 N0 J0 - MassStoppingPowerUnit - MassStoppingPowerUnit - - - - - - Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. - Heat - AmountOfHeat - Heat - http://qudt.org/vocab/quantitykind/Heat - 5-6.1 - https://doi.org/10.1351/goldbook.H02752 + SquareTimePerMassUnit + SquareTimePerMassUnit - - - - - - - - - - - - - Measure of the tendency of a substance to leave a phase. - Fugacity - Fugacity - https://qudt.org/vocab/quantitykind/Fugacity - https://www.wikidata.org/wiki/Q898412 - 9-20 - Measure of the tendency of a substance to leave a phase. - https://doi.org/10.1351/goldbook.F02543 + + + + Data resulting from the application of post-processing or model generation to other data. + + SecondaryData + Elaborated data + SecondaryData + Data resulting from the application of post-processing or model generation to other data. + Deconvoluted curves + Intensity maps - - - - - - - - - - - - - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - UnifiedAtomicMassConstant - UnifiedAtomicMassConstant - https://www.wikidata.org/wiki/Q4817337 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 - 10-4.3 - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - https://doi.org/10.1351/goldbook.A00497 + + + + "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." +International vocabulary of metrology (VIM) + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + OrdinalQuantity + OrdinalQuantity + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + Hardness +Resilience + ordinal quantity - - - - - + + - - + + - - - Inverse of the reluctance. - Permeance - Permeance - https://qudt.org/vocab/quantitykind/Permeance - https://www.wikidata.org/wiki/Q77997985 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 - 6-40 - Inverse of the reluctance. - - - - - - - GreenBottomQuark - GreenBottomQuark + + Minus + Minus - - - - Unit for quantities of dimension one that are the fraction of two volumes. - VolumeFractionUnit - VolumeFractionUnit - Unit for quantities of dimension one that are the fraction of two volumes. - Unit for volume fraction. + + + + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + NanoMaterial + NanoMaterial + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - - - - PlasmaCutting - PlasmaCutting + + + + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + + Signal + Signal + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - - - - - + + + - - + + + + + + - - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - CatalyticActivity - CatalyticActivity - http://qudt.org/vocab/quantitykind/CatalyticActivity - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - https://doi.org/10.1351/goldbook.C00881 + + A variable that stand for a well known numerical constant (a known number). + KnownConstant + KnownConstant + A variable that stand for a well known numerical constant (a known number). + π refers to the constant number ~3.14 - - - - - T+2 L0 M0 I0 Θ0 N0 J0 - - - - - SquareTimeUnit - SquareTimeUnit + + + + A standalone atom with an unbalanced number of electrons with respect to its atomic number. + The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, + IonAtom + IonAtom + A standalone atom with an unbalanced number of electrons with respect to its atomic number. - - - - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - MarkupLanguage - MarkupLanguage - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - HTML - https://en.wikipedia.org/wiki/Markup_language + + + + + + + + + + + + + + + A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. + An atom that does not share electrons with other atoms. + StandaloneAtom + StandaloneAtom + An atom that does not share electrons with other atoms. - - - - Application of additive manufacturing intended for reducing the time needed for producing prototypes. - RapidPrototyping - RapidPrototyping - Application of additive manufacturing intended for reducing the time needed for producing prototypes. + + + + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Nexafs + Nexafs + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - - + + + + + + - - T+1 L-2 M0 I+1 Θ0 N0 J0 + + - - + - ElectricDisplacementFieldUnit - ElectricDisplacementFieldUnit + SpecificEntropy + SpecificEntropy + https://qudt.org/vocab/quantitykind/SpecificEntropy + https://www.wikidata.org/wiki/Q69423705 + 5-19 - + - T-1 L-3 M+1 I0 Θ0 N0 J0 + T0 L-3 M0 I0 Θ0 N-1 J0 - MassPerVolumeTimeUnit - MassPerVolumeTimeUnit - - - - - - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Chronocoulometry - Chronocoulometry - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - https://doi.org/10.1515/pac-2018-0109 - - - - - - Specific heat capacity at saturated vaport pressure. - SpecificHeatCapacityAtSaturatedVaporPressure - SpecificHeatCapacityAtSaturatedVaporPressure - https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation - https://www.wikidata.org/wiki/Q75775005 - 5-16.4 - Specific heat capacity at saturated vaport pressure. - - - - - - FlameCutting - FlameCutting - - - - - - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - - SecondaryIonMassSpectrometry - SIMS - SecondaryIonMassSpectrometry - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - - - - - - Time derivative of the dose equivalent. - DoseEquivalentRate - DoseEquivalentRate - https://www.wikidata.org/wiki/Q99604810 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-02 - 10-83.2 - Time derivative of the dose equivalent. + ReciprocalAmountPerVolumeUnit + ReciprocalAmountPerVolumeUnit - - - + + + + + + + + + + + + - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - Activity - Activity - https://qudt.org/vocab/quantitykind/Activity - https://www.wikidata.org/wiki/Q317949 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 - 10-27 - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - https://goldbook.iupac.org/terms/view/A00114 - - - - - - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. - -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - ProcessEngineeringProcess - ProcessEngineeringProcess - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. - -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - https://de.wikipedia.org/wiki/Verfahrenstechnik - - - - - - Process for removing unwanted residual or waste material from a given product or material - Cleaning - Cleaning + SecondPolarMomentOfArea + SecondPolarMomentOfArea + https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea + https://www.wikidata.org/wiki/Q1049636 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 + 4-21.2 - - - + + - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - EffectiveMass - EffectiveMass - https://qudt.org/vocab/quantitykind/EffectiveMass - https://www.wikidata.org/wiki/Q1064434 - 12-30 - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + DebyeAngularWaveNumber + DebyeAngluarRepetency + DebyeAngularWaveNumber + https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber + https://www.wikidata.org/wiki/Q105554370 + 12-9.3 + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - + - T-2 L+3 M+1 I0 Θ0 N0 J0 + T+3 L-3 M-1 I+2 Θ0 N-1 J0 - ForceAreaUnit - ForceAreaUnit + ElectricConductivityPerAmountUnit + ElectricConductivityPerAmountUnit - - - - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - LightScattering - LightScattering - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + + + + + Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. + least energy required for the emission of a conduction electron. + WorkFunction + ElectronWorkFunction + WorkFunction + https://www.wikidata.org/wiki/Q783800 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 + 12-24.1 + least energy required for the emission of a conduction electron. + https://doi.org/10.1351/goldbook.E02015 - - + + + + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + DeepFreezing + Cryogenic treatment, Deep-freeze + Tieftemperaturbehandeln + DeepFreezing + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + + + + - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - ElectronProbeMicroanalysis - ElectronProbeMicroanalysis - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Detector + Detector + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM + Displacement and force sensors for mechanical testing - - - - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - OxidationNumber - OxidationState - OxidationNumber - https://www.wikidata.org/wiki/Q484152 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 - https://dbpedia.org/page/Oxidation_state - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - https://en.wikipedia.org/wiki/Oxidation_state - https://doi.org/10.1351/goldbook.O04363 + + + + + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + Tau + Tau + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_(particle) - - - - - - - - - - - - - - - - - - - 1 - - - - A real number. - Real - Real - A real number. + + + + + + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + Hypothesis + Hypothesis + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - - - - - - - - - - - - - - - - A boolean number. - Boolean - Boolean - A boolean number. + + + + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + ZBoson + NeutralWeakBoson + ZBoson + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + https://en.wikipedia.org/wiki/W_and_Z_bosons - - - - The dependent variable for which an equation has been written. - Unknown - Unknown - The dependent variable for which an equation has been written. - Velocity, for the Navier-Stokes equation. + + + + Unit for quantities of dimension one that are the fraction of two amount of substance. + AmountFractionUnit + AmountFractionUnit + Unit for quantities of dimension one that are the fraction of two amount of substance. + Unit for amount fraction. - - - - A suspension of liquid droplets dispersed in a gas through an atomization process. - Spray - Spray - A suspension of liquid droplets dispersed in a gas through an atomization process. + + + + JavaScript + JavaScript - - - - - T+4 L-4 M-2 I0 Θ0 N0 J0 - - - + + - ReciprocalSquareEnergyUnit - ReciprocalSquareEnergyUnit + Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. + NewtonianConstantOfGravity + NewtonianConstantOfGravity + http://qudt.org/vocab/constant/NewtonianConstantOfGravitation + https://doi.org/10.1351/goldbook.G02695 - + + + + + The ratio of the binding energy of a nucleus to the atomic mass number. + BindingFraction + BindingFraction + https://qudt.org/vocab/quantitykind/BindingFraction + https://www.wikidata.org/wiki/Q98058362 + 10-23.2 + The ratio of the binding energy of a nucleus to the atomic mass number. + + + + + + Inverse of the magnetic flux quantum. + The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. + JosephsonConstant + JosephsonConstant + http://qudt.org/vocab/constant/JosephsonConstant + Inverse of the magnetic flux quantum. + + + - T+2 L0 M-1 I0 Θ0 N0 J0 + T-1 L+3 M0 I-1 Θ0 N0 J0 - SquareTimePerMassUnit - SquareTimePerMassUnit + ReciprocalElectricChargeDensityUnit + ReciprocalElectricChargeDensityUnit - - + + - Data resulting from the application of post-processing or model generation to other data. + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - SecondaryData - Elaborated data - SecondaryData - Data resulting from the application of post-processing or model generation to other data. - Deconvoluted curves - Intensity maps - - - - - - - Discrete quantity; number of entities of a given kind in a system. - NumberOfEntities - NumberOfEntities - https://www.wikidata.org/wiki/Q614112 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 - 9-1 - Discrete quantity; number of entities of a given kind in a system. - https://doi.org/10.1351/goldbook.N04266 + TransmissionElectronMicroscopy + TEM + TransmissionElectronMicroscopy + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - - - - A command language designed to be run by a command-line interpreter, like a Unix shell. - ShellScript - ShellScript - A command language designed to be run by a command-line interpreter, like a Unix shell. - https://en.wikipedia.org/wiki/Shell_script + + + + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + Smoke + Smoke + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - + - T-2 L+4 M+1 I0 Θ0 N0 J0 + T-1 L+4 M0 I0 Θ0 N0 J0 - EnergyAreaUnit - EnergyAreaUnit - - - - - - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - - XrayPowderDiffraction - XRPD - XrayPowderDiffraction - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - https://en.wikipedia.org/wiki/Powder_diffraction + QuarticLengthPerTimeUnit + QuarticLengthPerTimeUnit - - - - Magnetizing - Magnetizing + + + + + + + + + + + + + Differential quotient of the cross section for a process and the energy of the scattered particle. + EnergyDistributionOfCrossSection + EnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralCrossSection + https://www.wikidata.org/wiki/Q98267245 + 10-40 + Differential quotient of the cross section for a process and the energy of the scattered particle. - - - - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. - DisplacementCurrent - DisplacementCurrent - https://qudt.org/vocab/quantitykind/DisplacementCurrent - https://www.wikidata.org/wiki/Q853178 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 - 6-19.1 - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + + + + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + DifferentialStaircasePulseVoltammetry + DifferentialStaircasePulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - + - T-3 L+1 M+1 I-1 Θ0 N0 J0 + T-2 L+1 M+1 I-1 Θ0 N0 J0 - ElectricFieldStrengthUnit - ElectricFieldStrengthUnit + MagneticPotentialUnit + MagneticPotentialUnit - - - - A construction language used to write configuration files. - ConfigurationLanguage - ConfigurationLanguage - A construction language used to write configuration files. - .ini files - Files in the standard .config directory on Unix systems. - https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages + + + + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + Calorimetry + Calorimetry + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - - - - - Square root of the migration area, M^2. - MigrationLength - MigrationLength - https://qudt.org/vocab/quantitykind/MigrationLength - https://www.wikidata.org/wiki/Q98998318 - 10-73.3 - Square root of the migration area, M^2. + + + + + T+3 L-2 M-1 I0 Θ0 N0 J+1 + + + + + LuminousEfficacyUnit + LuminousEfficacyUnit - + - T0 L-2 M0 I+1 Θ-2 N0 J0 + T+10 L-2 M-3 I+4 Θ0 N0 J0 - - RichardsonConstantUnit - RichardsonConstantUnit + + QuarticElectricDipoleMomentPerCubicEnergyUnit + QuarticElectricDipoleMomentPerCubicEnergyUnit - - - - - - - 1 - - + + + + + - - - 2 + + - - An uncharged subatomic particle found in the atomic nucleus. - Neutron - Neutron - An uncharged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Neutron + + In condensed matter physics, position vector of an atom or ion in equilibrium. + EquilibriumPositionVector + EquilibriumPositionVector + https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon + https://www.wikidata.org/wiki/Q105533477 + 12-7.2 + In condensed matter physics, position vector of an atom or ion in equilibrium. - - + + - ThermalSprayingForming - ThermalSprayingForming - - - - - - A liquid solution in which the solvent is water. - AqueousSolution - AqueousSolution - A liquid solution in which the solvent is water. - - - - - - Inverse of the magnetic flux quantum. - The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. - JosephsonConstant - JosephsonConstant - http://qudt.org/vocab/constant/JosephsonConstant - Inverse of the magnetic flux quantum. + PorcelainOrCeramicCasting + PorcelainOrCeramicCasting - + + - - + - Strength of a magnetic field. Commonly denoted H. - MagneticFieldStrength - MagnetizingFieldStrength - MagneticFieldStrength - http://qudt.org/vocab/quantitykind/MagneticFieldStrength - https://www.wikidata.org/wiki/Q28123 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 - 6-25 - https://doi.org/10.1351/goldbook.M03683 + Product of the mean linear range R and the mass density ρ of the material. + MeanMassRange + MeanMassRange + https://qudt.org/vocab/quantitykind/MeanMassRange + https://www.wikidata.org/wiki/Q98681670 + 10-57 + Product of the mean linear range R and the mass density ρ of the material. + https://doi.org/10.1351/goldbook.M03783 - - - - PhysicalyUnbonded - PhysicalyUnbonded + + + + + GreenDownQuark + GreenDownQuark - - + + - Internal energy per unit mass. - SpecificInternalEnergy - SpecificInternalEnergy - https://qudt.org/vocab/quantitykind/SpecificInternalEnergy - https://www.wikidata.org/wiki/Q76357367 - 5-21.2 - Internal energy per unit mass. + Voltage between the two terminals of a voltage source when there is no electric current through the source. + SourceVoltage + SourceTension + SourceVoltage + https://qudt.org/vocab/quantitykind/SourceVoltage + https://www.wikidata.org/wiki/Q185329 + 6-36 + Voltage between the two terminals of a voltage source when there is no electric current through the source. - + + + + + T-1 L+2 M0 I0 Θ0 N-1 J0 + + + + + DiffusivityUnit + DiffusivityUnit + + + + + + FORTRAN + FORTRAN + + + + - - + - SectionModulus - SectionModulus - https://qudt.org/vocab/quantitykind/SectionModulus - https://www.wikidata.org/wiki/Q1930808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 - 4-22 + Number of particles per time and area crossing a surface. + ParticleCurrentDensity + ParticleCurrentDensity + https://qudt.org/vocab/quantitykind/ParticleCurrent + https://www.wikidata.org/wiki/Q2400689 + 10-48 + Number of particles per time and area crossing a surface. - + - T-2 L+1 M+1 I-1 Θ0 N0 J0 + T-2 L+1 M+1 I-2 Θ0 N0 J0 - - MagneticPotentialUnit - MagneticPotentialUnit - - - - - - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - Milling - Milling - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - - - - - - ThermochemicalTreatment - ThermochemicalTreatment + + PermeabilityUnit + PermeabilityUnit - - + + - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - DifferentialStaircasePulseVoltammetry - DifferentialStaircasePulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + + Profilometry + Profilometry + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - - + + - Rotation - Rotation - https://www.wikidata.org/wiki/Q76435127 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 - 3-16 + One minus the square of the coupling factor + LeakageFactor + LeakageFactor + https://www.wikidata.org/wiki/Q78102042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 + 6-42.2 + One minus the square of the coupling factor - - - - - T0 L+2 M0 I0 Θ0 N-1 J0 - - - - - AreaPerAmountUnit - AreaPerAmountUnit + + + + + IntermediateSample + IntermediateSample - - - - GrowingCrystal - GrowingCrystal + + + + Product of force and displacement. + Work + Work + http://qudt.org/vocab/quantitykind/Work + Product of force and displacement. + 4-28.4 + https://doi.org/10.1351/goldbook.W06684 - + - T+1 L0 M0 I0 Θ0 N0 J0 + T-2 L+3 M-1 I0 Θ0 N0 J0 - - TimeUnit - TimeUnit + + NewtonianConstantOfGravityUnit + NewtonianConstantOfGravityUnit - - - - - - - - - - - - - In nuclear physics, time derivative of the energy fluence. - EnergyFluenceRate - EnergyFluenceRate - https://qudt.org/vocab/quantitykind/EnergyFluenceRate - https://www.wikidata.org/wiki/Q98538655 - 10-47 - In nuclear physics, time derivative of the energy fluence. + + + + TransportationDevice + TransportationDevice - - - - - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - TotalIonization - TotalIonization - https://qudt.org/vocab/quantitykind/TotalIonization - https://www.wikidata.org/wiki/Q98690787 - 10-59 - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. + + + + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + NuclearMagneticResonance + Magnetic resonance spectroscopy (MRS) + NMR + NuclearMagneticResonance + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - - - - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - SupplyChain - SupplyChain - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + + + + GluonType8 + GluonType8 - + - T+2 L+1 M-2 I0 Θ0 N+1 J0 + T0 L-3 M+1 I0 Θ0 N0 J0 - AmountPerMassPressureUnit - AmountPerMassPressureUnit + DensityUnit + DensityUnit - - + + - ElectrolyticDeposition - ElectrolyticDeposition + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + PrecipitationHardening + PrecipitationHardening + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - - + + - FormingFromIonised - FormingFromIonised + TransferMolding + TransferMolding - - + + + + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + DynamicMechanicalSpectroscopy + DMA + DynamicMechanicalSpectroscopy + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + + + + - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - QuantumDecay - QuantumDecay - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + LeftHandedParticle + LeftHandedParticle - - + + + + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + LightScattering + LightScattering + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + + + + + + + A coarse dispersion of solid in a solid continuum phase. + SolidSolidSuspension + SolidSolidSuspension + A coarse dispersion of solid in a solid continuum phase. + Granite, sand, dried concrete. + + + + + + HardeningByDrawing + HardeningByDrawing + + + + + - - T-2 L-2 M+1 I0 Θ0 N0 J0 + + - - - - MassPerSquareLengthSquareTimeUnit - MassPerSquareLengthSquareTimeUnit + + + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + MeasurementSystemAdjustment + MeasurementParameterAdjustment + MeasurementSystemAdjustment + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Adjustment - + - T-1 L+3 M0 I0 Θ0 N-1 J0 + T-3 L+4 M+1 I0 Θ0 N0 J0 - VolumePerAmountTimeUnit - VolumePerAmountTimeUnit + PowerAreaUnit + PowerAreaUnit + + + + + + Determined + Determined + + + + + + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + + PseudoOpenCircuitVoltageMethod + PseudoOCV + PseudoOpenCircuitVoltageMethod + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + + + + + + UTF8 + UTF8 + + + + + + + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. + +It defines the Kelvin unit in the SI system. + The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. + BoltzmannConstant + BoltzmannConstant + http://qudt.org/vocab/constant/BoltzmannConstant + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. + +It defines the Kelvin unit in the SI system. + https://doi.org/10.1351/goldbook.B00695 + + + + + + + BlueStrangeQuark + BlueStrangeQuark + + + + + + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + WearTesting + WearTesting + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + + + + + + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + Non la metterei + Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). + FreeForming + FreeForming + + + + + + A network of objects that implements a production process through a series of interconnected elements. + ProductionSystem + ProductionSystem + A network of objects that implements a production process through a series of interconnected elements. + + + + + + Enthalpy per unit mass. + SpecificEnthalpy + SpecificEnthalpy + https://qudt.org/vocab/quantitykind/SpecificEnthalpy + https://www.wikidata.org/wiki/Q21572993 + 5-21.3 + Enthalpy per unit mass. + https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy + + + + + + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + OpenCircuitHold + OCVHold + OpenCircuitHold + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). @@ -24521,646 +24502,736 @@ e.g. the fact that steel comes in sheets is not relevant for the definition of s 5-35 - - - - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - NumericalData - NumericalData - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + + + + + Permittivity divided by electric constant. + RelativePermittivity + RelativePermittivity + https://qudt.org/vocab/unit/PERMITTIVITY_REL + https://www.wikidata.org/wiki/Q4027242 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 + 6-15 + Permittivity divided by electric constant. - - - + + - GreenTopAntiQuark - GreenTopAntiQuark - - - - - - Spacing - Spacing - - - - - - Heat capacity at constant volume. - IsochoricHeatCapacity - HeatCapacityAtConstantVolume - IsochoricHeatCapacity - https://www.wikidata.org/wiki/Q112187521 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 - 5-16.3 - Heat capacity at constant volume. + The class of individuals that stand for photons elementary particles. + Photon + Photon + The class of individuals that stand for photons elementary particles. + https://en.wikipedia.org/wiki/Photon - - - - A estimator that uses its predefined knowledge to declare a property of an object. - Assigner - Assigner - A estimator that uses its predefined knowledge to declare a property of an object. - I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. + + + + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + IsothermalMicrocalorimetry + IMC + IsothermalMicrocalorimetry + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - + - T+1 L0 M-1 I0 Θ0 N0 J0 + T-1 L+2 M-1 I0 Θ+1 N0 J0 - - MechanicalMobilityUnit - MechanicalMobilityUnit + + TemperatureAreaPerMassTimeUnit + TemperatureAreaPerMassTimeUnit - + - T-6 L+4 M+2 I-2 Θ0 N0 J0 + T-1 L0 M-1 I0 Θ0 N0 J0 - LorenzNumberUnit - LorenzNumberUnit + PerTimeMassUnit + PerTimeMassUnit - - - - - T0 L-2 M+1 I0 Θ+1 N0 J0 - - - - - TemperatureMassPerAreaUnit - TemperatureMassPerAreaUnit + + + + VaporDeposition + VaporDeposition - + + + + FormingFromGas + FormingFromGas + + + - T+4 L-2 M-1 I+2 Θ0 N0 J0 + T+3 L-2 M-1 I+1 Θ0 N0 J0 - - CapacitanceUnit - CapacitanceUnit + + ElectricCurrentPerUnitEnergyUnit + ElectricCurrentPerUnitEnergyUnit - - - - An interpreter who assigns a name to an object without any motivations related to the object characters. - Namer - Namer - An interpreter who assigns a name to an object without any motivations related to the object characters. + + + + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + FatigueTesting + FatigueTesting + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - - - - GluonType4 - GluonType4 + + + + A system of independent elements that are assembled together to perform a function. + Assembled + Assembled + A system of independent elements that are assembled together to perform a function. - - + + + + Foaming + Foaming + + + + + + AmorphousMaterial + NonCrystallineMaterial + AmorphousMaterial + + + + - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - FourierTransformInfraredSpectroscopy - FTIR - FourierTransformInfraredSpectroscopy - https://www.wikidata.org/wiki/Q901559 - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. + + SampledDCPolarography + TASTPolarography + SampledDCPolarography + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + https://doi.org/10.1515/pac-2018-0109 - - - - - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - LarmonAngularFrequency - LarmonAngularFrequency - 10-15.1 - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + + + + A construction language used to write configuration files. + ConfigurationLanguage + ConfigurationLanguage + A construction language used to write configuration files. + .ini files + Files in the standard .config directory on Unix systems. + https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages - + + + + MesoscopicSubstance + MesoscopicSubstance + + + + + + FunctionallyDefinedMaterial + FunctionallyDefinedMaterial + + + + + + + + + + + + + + + + + + + + + + + + Deduction + IndexSemiosis + Deduction + + + - T+2 L+2 M0 I0 Θ0 N0 J0 + T-3 L+1 M+1 I-1 Θ0 N0 J0 - AreaSquareTimeUnit - AreaSquareTimeUnit + ElectricFieldStrengthUnit + ElectricFieldStrengthUnit - + + + + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + XpsVariableKinetic + Electron spectroscopy for chemical analysis (ESCA) + X-ray photoelectron spectroscopy (XPS) + XpsVariableKinetic + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + + + + + + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + + ScanningTunnelingMicroscopy + STM + ScanningTunnelingMicroscopy + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + + + + + + Radius of the osculating circle of a planar curve at a particular point of the curve. + RadiusOfCurvature + RadiusOfCurvature + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 + https://dbpedia.org/page/Radius_of_curvature + 3-1.12 + Radius of the osculating circle of a planar curve at a particular point of the curve. + https://en.wikipedia.org/wiki/Radius_of_curvature + + + + + + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + Screwing + Schrauben + Screwing + + + - T-1 L0 M-1 I0 Θ0 N0 J0 + T+3 L-3 M-1 I+2 Θ0 N0 J0 - - PerTimeMassUnit - PerTimeMassUnit - - - - - - - A type of sol in the form of one solid dispersed in liquid. - LiquidSol - LiquidSol - A type of sol in the form of one solid dispersed in liquid. - - - - - - - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. - ThermalUtilizationFactor - ThermalUtilizationFactor - https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor - https://www.wikidata.org/wiki/Q99197650 - 10-76 - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + + ElectricConductivityUnit + ElectricConductivityUnit - - + + - + / - Gradient - Gradient + Division + Division - - - - PowderCoating - PowderCoating + + + + A tessellation in wich a tile is next for two or more non spatially connected tiles. + Join + Join + A tessellation in wich a tile is next for two or more non spatially connected tiles. - - - + + + + + T-1 L-3 M0 I0 Θ0 N+1 J0 + + + - Quotient of electron and hole mobility. - MobilityRatio - MobilityRatio - https://qudt.org/vocab/quantitykind/MobilityRatio - https://www.wikidata.org/wiki/Q106010255 - 12-31 - Quotient of electron and hole mobility. + AmountPerVolumeTimeUnit + AmountPerVolumeTimeUnit - - - - - BlueCharmAntiQuark - BlueCharmAntiQuark + + + + A standalone atom that has no net charge. + NeutralAtom + NeutralAtom + A standalone atom that has no net charge. - - - - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - DebyeAngularWaveNumber - DebyeAngluarRepetency - DebyeAngularWaveNumber - https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber - https://www.wikidata.org/wiki/Q105554370 - 12-9.3 - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + + + + A law that provides a connection between a material property and other properties of the object. + MaterialLaw + MaterialLaw + A law that provides a connection between a material property and other properties of the object. - - - - Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - - OutlierRemoval - OutlierRemoval - Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. + + + + Unit for quantities of dimension one that are the fraction of two pressures. + PressureFractionUnit + PressureFractionUnit + Unit for quantities of dimension one that are the fraction of two pressures. - + + + + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + Strain + Strain + http://qudt.org/vocab/quantitykind/Strain + 4-17.1 + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + + + - T0 L0 M0 I0 Θ+1 N+1 J0 + T0 L-2 M0 I+1 Θ0 N0 J0 - - AmountTemperatureUnit - AmountTemperatureUnit + + ElectricCurrentDensityUnit + ElectricCurrentDensityUnit - - - + + + - GreenStrangeQuark - GreenStrangeQuark + GreenStrangeAntiQuark + GreenStrangeAntiQuark - - - + + - - - - - - + + T0 L+2 M0 I0 Θ0 N-1 J0 - + + - Number of direct parts of a Reductionistic. - Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. - NumberOfElements - NumberOfElements - Number of direct parts of a Reductionistic. + AreaPerAmountUnit + AreaPerAmountUnit + + + + + + Imaginary part of the complex power. + ReactivePower + ReactivePower + https://qudt.org/vocab/quantitykind/ReactivePower + https://www.wikidata.org/wiki/Q2144613 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 + 6-60 + Imaginary part of the complex power. + + + + + + A molecule composed of only one element type. + Homonuclear + ElementalMolecule + Homonuclear + A molecule composed of only one element type. + Hydrogen molecule (H₂). + + + + + + + The speed of light in vacuum. Defines the base unit metre in the SI system. + SpeedOfLightInVacuum + SpeedOfLightInVacuum + http://qudt.org/vocab/constant/SpeedOfLight_Vacuum + 6-35.2 + The speed of light in vacuum. Defines the base unit metre in the SI system. + https://doi.org/10.1351/goldbook.S05854 - - - - Riveting - Riveting + + + + + RedStrangeQuark + RedStrangeQuark - + + - BlowMolding - BlowMolding + InjectionMolding + InjectionMolding - + - T-2 L+3 M-1 I0 Θ0 N0 J0 + T+4 L0 M-1 I+2 Θ0 N0 J0 - - NewtonianConstantOfGravityUnit - NewtonianConstantOfGravityUnit + + SquareCurrentQuarticTimePerMassUnit + SquareCurrentQuarticTimePerMassUnit - - - - - T0 L-1 M0 I0 Θ+1 N0 J0 - - - - - TemperaturePerLengthUnit - TemperaturePerLengthUnit + + + + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + + VaporPressureDepressionOsmometry + VPO + VaporPressureDepressionOsmometry + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - - - + + - The rest mass of a proton. - ProtonMass - ProtonMass - http://qudt.org/vocab/constant/ProtonMass - https://doi.org/10.1351/goldbook.P04914 + Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. + LinkedFlux + LinkedFlux + https://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q4374882 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-77 + 6-22.2 + Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - - - - - T-2 L-2 M0 I0 Θ0 N0 J0 - - - - - FrequencyPerAreaTimeUnit - FrequencyPerAreaTimeUnit + + + + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + ElectrochemicalPiezoelectricMicrogravimetry + ElectrochemicalPiezoelectricMicrogravimetry + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - - - ArithmeticExpression - ArithmeticExpression - 2+2 + + + + DippingForms + DippingForms - - - - - - - - - - + + + - GaugePressure - GaugePressure - https://www.wikidata.org/wiki/Q109594211 - 4-14.2 + Internal energy per amount of substance. + MolarInternalEnergy + MolarInternalEnergy + https://www.wikidata.org/wiki/Q88523106 + 9-6.1 + Internal energy per amount of substance. - + - T-1 L-4 M+1 I0 Θ0 N0 J0 + T-1 L0 M+1 I0 Θ0 N0 J0 - MassPerQuarticLengthTimeUnit - MassPerQuarticLengthTimeUnit + MassPerTimeUnit + MassPerTimeUnit - - + + - Defines the Candela base unit in the SI system. - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - LuminousEfficacyOf540THzRadiation - LuminousEfficacyOf540THzRadiation - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - - - - - - SandMolds - SandMolds + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + OxidationNumber + OxidationState + OxidationNumber + https://www.wikidata.org/wiki/Q484152 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 + https://dbpedia.org/page/Oxidation_state + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + https://en.wikipedia.org/wiki/Oxidation_state + https://doi.org/10.1351/goldbook.O04363 - - + + + + + - - + + + - - Plus - Plus + + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + LorenzCoefficient + LorenzNumber + LorenzCoefficient + https://qudt.org/vocab/quantitykind/LorenzCoefficient + https://www.wikidata.org/wiki/Q105728754 + 12-18 + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - - - - A CausalSystem that includes quantum parts that are not bonded with the rest. - PhysicalPhenomena - PhysicalPhenomena - A CausalSystem that includes quantum parts that are not bonded with the rest. + + + + Procedure to validate the characterisation data. + CharacterisationDataValidation + CharacterisationDataValidation + Procedure to validate the characterisation data. - + - T+1 L+1 M-1 I0 Θ0 N0 J0 + T-1 L-3 M+1 I0 Θ0 N0 J0 - LengthTimePerMassUnit - LengthTimePerMassUnit - - - - - - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - ZBoson - NeutralWeakBoson - ZBoson - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - https://en.wikipedia.org/wiki/W_and_Z_bosons - - - - - - CSharp - C# - CSharp - - - - - - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - CyclicChronopotentiometry - CyclicChronopotentiometry - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - chronopotentiometry where the change in applied current undergoes a cyclic current reversal + MassPerVolumeTimeUnit + MassPerVolumeTimeUnit - - - + + - Internal energy per amount of substance. - MolarInternalEnergy - MolarInternalEnergy - https://www.wikidata.org/wiki/Q88523106 - 9-6.1 - Internal energy per amount of substance. + StaticFrictionCoefficient + CoefficientOfStaticFriction + StaticFrictionFactor + StaticFrictionCoefficient + https://www.wikidata.org/wiki/Q73695673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 + 4-23.1 - - - - Flanging - Flanging + + + + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + ElectronProbeMicroanalysis + ElectronProbeMicroanalysis + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - - - + + + + + SerialStep + SerialStep + + + + + + + T-1 L-4 M+1 I0 Θ0 N0 J0 + + + - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - MassFractionOfWater - MassFractionOfWater - https://qudt.org/vocab/quantitykind/MassFractionOfWater - https://www.wikidata.org/wiki/Q76379025 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 - 5-31 - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + MassPerQuarticLengthTimeUnit + MassPerQuarticLengthTimeUnit - - - - AlgebricOperator - AlgebricOperator + + + + CentrifugalCasting + CentrifugalCasting - - + + - Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - LinkedFlux - LinkedFlux - https://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q4374882 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-77 - 6-22.2 - Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + StandardAbsoluteActivity + StandardAbsoluteActivityInAMixture + StandardAbsoluteActivity + https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89406159 + 9-23 + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. - + - T0 L0 M-1 I0 Θ0 N0 J0 + T-1 L0 M0 I0 Θ+2 N0 J0 - ReciprocalMassUnit - ReciprocalMassUnit + SquareTemperaturePerTimeUnit + SquareTemperaturePerTimeUnit - - - + + - - * + + T-3 L+1 M+1 I0 Θ-1 N0 J0 - - - Multiplication - Multiplication + + + + ThermalConductivityUnit + ThermalConductivityUnit - - + + - ResourceIdentifier - ResourceIdentifier + RawSample + RawSample - + - T0 L0 M+1 I0 Θ+1 N0 J0 + T0 L-2 M0 I+1 Θ-1 N0 J0 - MassTemperatureUnit - MassTemperatureUnit - - - - - - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - DataBasedSimulationSoftware - DataBasedSimulationSoftware - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + ElectricCurrentDensityPerTemperatureUnit + ElectricCurrentDensityPerTemperatureUnit - - - + + + - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - RelaxationTime - RelaxationTime - https://www.wikidata.org/wiki/Q106041085 - 12-32.1 - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + NumberOfTurnsInAWinding + NumberOfTurnsInAWinding + https://www.wikidata.org/wiki/Q77995997 + 6-38 - - - - A tessellation in wich a tile is next for two or more non spatially connected tiles. - Join - Join - A tessellation in wich a tile is next for two or more non spatially connected tiles. + + + + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + CreepTesting + CreepTesting + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - + - T-4 L+2 M0 I0 Θ0 N0 J0 + T-4 L+3 M+1 I-2 Θ0 N0 J0 - AreaPerQuarticTimeUnit - AreaPerQuarticTimeUnit + InversePermittivityUnit + InversePermittivityUnit - - + + + + RightHandedParticle + RightHandedParticle + + + + + + InterferenceFitting + InterferenceFitting + + + + + + + A neutrino belonging to the first generation of leptons. + ElectronNeutrino + ElectronNeutrino + A neutrino belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron_neutrino + + + + + + + T-2 L+2 M+1 I-1 Θ0 N0 J0 + + + - Ratio of area on a sphere to its radius squared. - SolidAngle - SolidAngle - http://qudt.org/vocab/quantitykind/SolidAngle - 3-6 - Ratio of area on a sphere to its radius squared. - https://doi.org/10.1351/goldbook.S05732 + MagneticFluxUnit + MagneticFluxUnit @@ -25180,547 +25251,485 @@ e.g. the fact that steel comes in sheets is not relevant for the definition of s http://qudt.org/vocab/quantitykind/Curvature - - - - - T+3 L-3 M-1 I+2 Θ0 N0 J0 - - - - - ElectricConductivityUnit - ElectricConductivityUnit + + + + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + MagneticQuantumNumber + MagneticQuantumNumber + https://qudt.org/vocab/quantitykind/MagneticQuantumNumber + https://www.wikidata.org/wiki/Q2009727 + 10-13.4 + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - - - - - T-1 L0 M0 I0 Θ-1 N0 J0 - - - - - PerTemperatureTimeUnit - PerTemperatureTimeUnit + + + + Molds + Molds + + + + + + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + ICI + IntermittentCurrentInterruptionMethod + ICI + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - - + + + + PlasticModeling + PlasticModeling + + + + + + + + - - T-1 L0 M+1 I-1 Θ0 N0 J0 + + - - - - MassPerElectricChargeUnit - MassPerElectricChargeUnit + + + In nuclear physics, time derivative of the energy fluence. + EnergyFluenceRate + EnergyFluenceRate + https://qudt.org/vocab/quantitykind/EnergyFluenceRate + https://www.wikidata.org/wiki/Q98538655 + 10-47 + In nuclear physics, time derivative of the energy fluence. - - - - A material that takes active part in a chemical reaction. - ReactiveMaterial - ReactiveMaterial - A material that takes active part in a chemical reaction. + + + + Painting + Painting - + - T-3 L+1 M+1 I0 Θ0 N0 J0 + T0 L-3 M0 I+1 Θ0 N-1 J0 - MassLengthPerCubicTimeUnit - MassLengthPerCubicTimeUnit - - - - - - A molecule composed of more than one element type. - Heteronuclear - Heteronuclear - A molecule composed of more than one element type. - Nitric oxide (NO) or carbon dioxide (CO₂). + ElectricCurrentPerAmountVolumeUnit + ElectricCurrentPerAmountVolumeUnit - - - - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - VoltammetryAtARotatingDiskElectrode - VoltammetryAtARotatingDiskElectrode - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - https://doi.org/10.1515/pac-2018-0109 + + + + PowderCoating + PowderCoating - - + + - - + Δ - Minus - Minus + Laplacian + Laplacian - - - - - Synchrotron - Synchrotron + + + + Factor by which the phase velocity of light is reduced in a medium. + RefractiveIndex + RefractiveIndex + http://qudt.org/vocab/quantitykind/RefractiveIndex + https://doi.org/10.1351/goldbook.R05240 - - - - Exponent - Exponent + + + + + GreenBottomQuark + GreenBottomQuark - - - - Speed with which the envelope of a wave propagates in space. - GroupVelocity - GroupSpeed - GroupVelocity - https://www.wikidata.org/wiki/Q217361 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 - https://dbpedia.org/page/Group_velocity - 3-23.2 - Speed with which the envelope of a wave propagates in space. - https://en.wikipedia.org/wiki/Group_velocity + + + + + + + + + + + + + + A set of units that correspond to the base quantities in a system of units. + BaseUnit + BaseUnit + A set of units that correspond to the base quantities in a system of units. + base unit - - - - Gathering - Gathering + + + + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + + Thermogravimetry + TGA + Thermogravimetry + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - - - - An product that is ready for commercialisation. - CommercialProduct - Product - CommercialProduct - An product that is ready for commercialisation. + + + + + A generic step in a workflow, that is not the begin or the end. + InternalStep + InternalStep + A generic step in a workflow, that is not the begin or the end. - - - - A physics-based model based on a physics equation describing the behaviour of atoms. - AtomisticModel - AtomisticModel - A physics-based model based on a physics equation describing the behaviour of atoms. + + + + Electroplating + Electroplating - - - - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - ConfocalMicroscopy - ConfocalMicroscopy - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + + + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + Bending + Bending - - + + + + - - T-2 L0 M0 I0 Θ+1 N0 J0 + + - - - - TemperaturePerSquareTimeUnit - TemperaturePerSquareTimeUnit + + + 3-dimensional array who's spatial direct parts are matrices. + Array3D + 3DArray + Array3D + 3-dimensional array who's spatial direct parts are matrices. - - - - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - UltrasonicTesting - UltrasonicTesting - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + + + + Galvanizing + Galvanizing - - + + - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - MercuryPorosimetry - MercuryPorosimetry - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + FreezingPointDepressionOsmometry + FreezingPointDepressionOsmometry + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - - - - - A solid solution made of two or more component substances. - SolidSolution - SolidSolution - A solid solution made of two or more component substances. + + + + + T0 L-1 M0 I0 Θ+1 N0 J0 + + + + + TemperaturePerLengthUnit + TemperaturePerLengthUnit - - - - ContinuousCasting - ContinuousCasting + + + + + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + CyclotronAngularFrequency + CyclotronAngularFrequency + https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency + https://www.wikidata.org/wiki/Q97708211 + 10-16 + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - + - T+1 L-2 M0 I0 Θ0 N0 J+1 + T-1 L0 M+1 I-1 Θ0 N0 J0 - - IlluminanceTimeUnit - IlluminanceTimeUnit + + MassPerElectricChargeUnit + MassPerElectricChargeUnit - - - - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - DielectricAndImpedanceSpectroscopy - DielectricAndImpedanceSpectroscopy - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + + + + A meson with total spin 1 and odd parit. + VectorMeson + VectorMeson + A meson with total spin 1 and odd parit. + https://en.wikipedia.org/wiki/Vector_meson - - - - - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - Tau - Tau - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_(particle) + + + + SystemUnit + SystemUnit - - - - ElectricCurrentPhasor - ElectricCurrentPhasor - https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor - https://www.wikidata.org/wiki/Q78514596 - 6-49 + + + + Numeral + Numeral - - - - A real matrix with shape 4x3. - Shape4x3Matrix - Shape4x3Matrix - A real matrix with shape 4x3. + + + + A estimator that uses its predefined knowledge to declare a property of an object. + Assigner + Assigner + A estimator that uses its predefined knowledge to declare a property of an object. + I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. - + - T-1 L+2 M-1 I0 Θ+1 N0 J0 + T-3 L+2 M+1 I0 Θ0 N0 J0 - TemperatureAreaPerMassTimeUnit - TemperatureAreaPerMassTimeUnit + PowerUnit + PowerUnit - - + + - Irradiate - Irradiate + InspectionDevice + InspectionDevice - - - - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - DirectCoulometryAtControlledCurrent - DirectCoulometryAtControlledCurrent - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + + + + Riveting + Riveting - + + + + + Dimensionless quantity in electromagnetism. + QualityFactor + QualityFactor + https://qudt.org/vocab/quantitykind/QualityFactor + https://www.wikidata.org/wiki/Q79467569 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 + 6-53 + Dimensionless quantity in electromagnetism. + + + - T+2 L-3 M-1 I0 Θ0 N+1 J0 + T+1 L+1 M-1 I0 Θ0 N0 J0 - AmountSquareTimePerMassVolumeUnit - AmountSquareTimePerMassVolumeUnit + LengthTimePerMassUnit + LengthTimePerMassUnit - - - - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - -Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - -Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - - RamanSpectroscopy - RamanSpectroscopy - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - -Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - -Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + + + + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + TransformationLanguage + TransformationLanguage + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + https://en.wikipedia.org/wiki/Transformation_language + Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML - - + + - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - FatigueTesting - FatigueTesting - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + AlphaSpectrometry + AlphaSpectrometry + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - - - - SystemUnit - SystemUnit + + + + SparkPlasmaSintering + SparkPlasmaSintering - - - - - AntiTau - AntiTau + + + + Letter + Letter - - - - - GreenCharmQuark - GreenCharmQuark + + + + FlameCutting + FlameCutting - - - - Real part of the admittance. - ConductanceForAlternatingCurrent - ConductanceForAlternatingCurrent - https://www.wikidata.org/wiki/Q79464628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 - 6-52.2 - Real part of the admittance. + + + + + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + Gel + Gel + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - - - - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - Inequality - Inequality - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - f(x) > 0 + + + + Java + Java + + + + + + + T-3 L-3 M+1 I0 Θ0 N0 J0 + + + + + PowerPerAreaVolumeUnit + PowerPerAreaVolumeUnit - + - T-2 L+1 M+1 I-2 Θ0 N0 J0 + T-4 L+2 M+1 I-1 Θ0 N0 J0 - - PermeabilityUnit - PermeabilityUnit + + ElectricPotentialPerTimeUnit + ElectricPotentialPerTimeUnit - - - - Python - Python + + + + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + Grinding + Grinding + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - - - - - XrdGrazingIncidence - XrdGrazingIncidence + + + + + + * + + + + Multiplication + Multiplication - - - - - Average number of fission neutrons, both prompt and delayed, emitted per fission event. - NeutronYieldPerFission - NeutronYieldPerFission - https://qudt.org/vocab/quantitykind/NeutronYieldPerFission - https://www.wikidata.org/wiki/Q99157909 - 10-74.1 - Average number of fission neutrons, both prompt and delayed, emitted per fission event. + + + + WPositiveBoson + WPositiveBoson - + - T+1 L+2 M0 I+1 Θ0 N0 J0 + T+7 L-3 M-2 I+3 Θ0 N0 J0 - ElectricChargeAreaUnit - ElectricChargeAreaUnit - - - - - - Galvanizing - Galvanizing - - - - - - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - EnvironmentalScanningElectronMicroscopy - EnvironmentalScanningElectronMicroscopy - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - - - - - - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - HPPC - HybridPulsePowerCharacterisation - HybridPulsePowerCharacterization - HPPC - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + CubicElectricChargeLengthPerSquareEnergyUnit + CubicElectricChargeLengthPerSquareEnergyUnit - + - T0 L0 M0 I+1 Θ-1 N0 J0 + T-1 L0 M-1 I0 Θ0 N+1 J0 - ElectricCurrentPerTemperatureUnit - ElectricCurrentPerTemperatureUnit - - - - - - GluonType3 - GluonType3 - - - - - - MetallicPowderSintering - MetallicPowderSintering - - - - - - PorcelainOrCeramicCasting - PorcelainOrCeramicCasting - - - - - - Painting - Painting + AmountPerMassTimeUnit + AmountPerMassTimeUnit - - + + - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - ScanningProbeMicroscopy - ScanningProbeMicroscopy - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - - - - - - FunctionallyDefinedMaterial - FunctionallyDefinedMaterial - - - - - - DrawForms - DrawForms - - - - - - FiberReinforcePlasticManufacturing - FiberReinforcePlasticManufacturing - - - - - - ElectroSinterForging - ElectroSinterForging - - - - - - HotDipGalvanizing - Hot-dipGalvanizing - HotDipGalvanizing - + Gerhard Goldbeck + Gerhard Goldbeck + Gerhard Goldbeck + @@ -25731,15 +25740,6 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation Pierluigi Del Nostro - - - - - Gerhard Goldbeck - Gerhard Goldbeck - Gerhard Goldbeck - - @@ -25796,14 +25796,6 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation 1 - - 3 - - - - 4 - - 1 @@ -25813,7 +25805,7 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation - 1 + 4 @@ -25825,11 +25817,11 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation - 1 + 1 - 2 + 1 @@ -25837,67 +25829,20 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation - 1 + 3 1 - - - - - - IntentionalProcess - From Latin intentionem, derived from intendere ("stretching out") - - - - - - Role - From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. - - - - - - Assemblying - From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + 2 + + + + 1 + @@ -25913,103 +25858,54 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation - - - - AnalogicalIcon - From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). - - - - - - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - DIN 8593-0:2003-09 - + + + + + + + - - - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - http://www.linfo.org/program.html + + + Part + From Latin partire, partiri ‘divide, share’. - - - - - - - - - - - - - All EMMO individuals are part of the most comprehensive entity which is the universe. + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + DIN 8586:2003-09 - - - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 + + + Particle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). - + - Existent - ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). + Observation + From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”), - + - mereological - Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). -https://en.wiktionary.org/wiki/mereology - - - - - - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). - - - - - - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - DIN 8580:2022-12 + Holistic + Holism (from Greek ὅλος holos "all, whole, entire"). - + - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; - - - - - - EMMO - EMMO is the acronym of Elementary Multiperspective Material Ontology. - - - - - - Lifetime - From Middle English liftime, equivalent to life +‎ time. + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + https://en.wikipedia.org/wiki/Variable_(mathematics) @@ -26017,61 +25913,13 @@ Entities are not placed in space or time: space and time are always relative bet - - - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - - @@ -26084,112 +25932,56 @@ Entities are not placed in space or time: space and time are always relative bet - Implementation of equality based on mereology. - - - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - DIN 8585-3:2003-09 - - - - - - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - - - - - - ManufacturedProduct - From Latin manufacture: "made by hand". + + + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + ISO 4885:2018-02 - + - Language - From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). - - - - - - the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - - - - Part - From Latin partire, partiri ‘divide, share’. - - - - - - Simulacrum - From Latin simulacrum ("likeness, semblance") - - - - - - Conversion of materials and assembly of components for the manufacture of products - DIN EN 14943:2006-03 - - - - - - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - DIN 8590 Berichtigung 1:2004-02 - - - - - - Model - From Latin modus (“measure”). + Boson + 1940s: named after S.N. Bose. - - - chronopotentiometry where the change in applied current undergoes a cyclic current reversal - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + + + The disjoint union of the Item and Collection classes. + The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). +Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. - - - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - https://www.collinsdictionary.com/it/dizionario/inglese/technology + + + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + https://en.wiktionary.org/wiki/procedure - - - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + Removal of material by means of rigid or flexible discs or belts containing abrasives. + DIN EN 12258-1:2012-08 - + - Procedure - From Latin pro-cedere (“to go forward, to proceed”). + Item + From Latin item, "likewise, just so, moreover". - - - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + Crystal + From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). @@ -26197,7 +25989,7 @@ Entities are not placed in space or time: space and time are always relative bet - + @@ -26209,94 +26001,58 @@ Entities are not placed in space or time: space and time are always relative bet - - - + + + - Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. + Enforcing exclusivity between overlapping and causality. - - - Icon - From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - - - - - - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + DIN EN ISO 15156-3:2015-12 - + - Product - From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. + FunctionalIcon + From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). - + - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + Collection + From Latin collectio, from colligere ‘gather together’. - + - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - https://www.ietf.org/rfc/rfc3986.txt + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL - + - Matter - From Latin materia (“matter, stuff, material”), from mater (“mother”). - - - - - - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - DIN 65099-3:1989-11 - - - - - - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - https://en.wikipedia.org/wiki/Supply_chain + Fundamental + From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). - - - - - - - - - - - - - - - - + @@ -26308,39 +26064,76 @@ Entities are not placed in space or time: space and time are always relative bet - - - + + + - Enforcing exclusivity between overlapping and causality. + Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. + + + + Elementary + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + + + + ResemblanceIcon + From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). + + + + + + CausalChain + From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). + + + + + + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + DIN 65099-4:1989-11 + + + + + + PhysicalObject + From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + + + + + CausalParticle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + + + + AnalogicalIcon + From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). + + - - + + - - + - - - - - - - - - - - - + @@ -26349,89 +26142,151 @@ Entities are not placed in space or time: space and time are always relative bet - + - Transitivity for parthood. + Enforcing parthood reflexivity. - + - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - DIN 65099-5:1989-11 + the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. + + + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + https://en.wikipedia.org/wiki/Condensed_matter_physics - + + + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + http://www.linfo.org/source_code.html + + + + + + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + DIN 8584-2:2003-09 + + + + + + CausalStructure + From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). + + + + - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + chronopotentiometry where the applied current is changed in steps + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - - - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + + + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 - - - TangibleProduct - From late Latin tangibilis, from tangere ‘to touch’. + + + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + DIN 65099-5:1989-11 + + + + + + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + DIN EN 9110:2018-08 + + + + + + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + DIN 8590 Berichtigung 1:2004-02 - - - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org + + + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + DIN 8589-3:2003-09 - - - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen. + + + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + DIN 8585-3:2003-09 - - - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - https://datatracker.ietf.org/doc/rfc3987/ + + + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + EN 16603-11:2019-11 - - - FunctionalIcon - From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). + + + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] + https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol + + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing a strict one-way causality direction. + + - - - Process for joining two (base) materials by means of an adhesive polymer material - DIN EN 62047-1:2016-12 + + + Data + From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). @@ -26462,265 +26317,325 @@ We call "interpreting" the act of providing semantic meaning to data, which is c - - - Boson - 1940s: named after S.N. Bose. - - - - - - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL + + + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + DIN 65099-3:1989-11 - + - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - ISO 23952:2020(en), 3.4.143 + Conversion of materials and assembly of components for the manufacture of products + DIN EN 14943:2006-03 - - - Manufacturing - From Latin manu factum ("made by hand"). + + + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + ISO/ASTM 52900:2021(en), 3.3.1 - - - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - DIN 8584-1:2003-09 + + + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention - - - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - https://de.wikipedia.org/wiki/Werkst%C3%BCck + + + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). - - - Crystal - From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). + + + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 - + - Symbolic - From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). + Whole + From Middle English hole (“healthy, unhurt, whole”). - + - Process for removing unwanted residual or waste material from a given product or material - ISO 13574:2015-02 + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + DIN 8589-2:2003-09 - - - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - DIN EN ISO 4885:2018-07 + + + Quantum + From Latin quantum (plural quanta) "as much as, so much as". - - - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + Icon + From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - + - CausalPath - From Ancient Greek πάτος (pátos, “path”). + Matter + From Latin materia (“matter, stuff, material”), from mater (“mother”). - - - Machine - From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. + + + + + + + + + + + + + All EMMO individuals are part of the most comprehensive entity which is the universe. - - - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - ISO 23704-1:2022(en), 3.1.2 + + + ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 - + - Heat treatment process that generally produces martensite in the matrix. - ISO/TR 10809-1:2009, 0000_19 + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen. - + - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - EN 16603-11:2019-11 + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + DIN 65099-3:1989-11 - - - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - DIN EN ISO 15156-3:2015-12 + + + Symbolic + From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). - - - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - DIN EN 13831:2007-12 + + + Equipment + From French équipement, from équiper ‘equip’. - - - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 + + + Computation + From Latin con- +‎ putō (“I reckon”). - + - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - DIN 65099-3:1989-11 + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + DIN 8593-3:2003-09 + + + + + + Language + From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). + + + + + + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + http://www.linfo.org/program.html + + + + + + Perspective + From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. + + + + + + + + + + + + + + + - - - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - https://www.ietf.org/rfc/rfc3986.txt + + + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + http://www.linfo.org/program.html - - - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - DIN 8593-3:2003-09 + + + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - CausalParticle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + :isCauseOf owl:propertyDisjointWith :overlaps + Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. - - - Equipment - From French équipement, from équiper ‘equip’. + + + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + https://www.ietf.org/rfc/rfc3986.txt - - - Device - From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". + + + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + https://en.wikipedia.org/wiki/Tessellation - - - Index - From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). + + + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - - - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 + + + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + DIN EN ISO 4885:2018-07 - - - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 + + + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + DIN 8588:2013-08 - - + + - + + - + + + + + + + + + + + - + - + - Enforcing reflexivity of overlapping. - - - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - DIN 8590 Berichtigung 1:2004-02 + + + Factory + From Latin factor, from fact- ‘done’, from the verb facere (to do). - - - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 + + + CausalObject + From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). - + + + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + + - Quantum - From Latin quantum (plural quanta) "as much as, so much as". + Role + From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. - - - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - DIN EN 9110:2018-08 + + + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - + - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - DIN 8587:2003-09 + The raw material or partially finished piece that is shaped by performing various operations. + https://en.wiktionary.org/wiki/workpiece @@ -26732,177 +26647,186 @@ liquid-phase sintering: sintering of a powder or compact containing at least two - - Elementary - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + CausalPath + From Ancient Greek πάτος (pátos, “path”). - - - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - https://en.wikipedia.org/wiki/Tessellation + + + Manufacturing + From Latin manu factum ("made by hand"). - + - chronopotentiometry where the applied current is changed in steps - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - - - - - - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - DIN 8583-2:2003-09 + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + https://en.wikipedia.org/wiki/Supply_chain - + - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - DIN 55405:2014-12 + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + DIN 8590 Berichtigung 1:2004-02 - - - ResemblanceIcon - From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). + + + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + DIN 65099-7:1989-11 - + - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - DIN 8588:2013-08 - - - - - - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - https://en.wikipedia.org/wiki/Variable_(mathematics) - - - - - - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + https://www.collinsdictionary.com/it/dizionario/inglese/technology - + - Collection - From Latin collectio, from colligere ‘gather together’. + Tool + Old English tōl, from a Germanic base meaning ‘prepare’. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Implementation of equality based on mereology. + + - + - Estimation - From Latin aestimatus (“to value, rate, esteem”). + FundamentalBoson + 1940s: named after S.N. Bose. - - - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + + + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + https://datatracker.ietf.org/doc/rfc3987/ - - - Tool - Old English tōl, from a Germanic base meaning ‘prepare’. + + + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 - - - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - https://en.wikipedia.org/wiki/Condensed_matter_physics + + + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + ISO 14034:2016-11 - + - Item - From Latin item, "likewise, just so, moreover". + isPredecessorOf + From Latin prae ("beforehand") and decedere ("depart"). - - - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 + + + Property + From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). - + - Whole - From Middle English hole (“healthy, unhurt, whole”). + Procedure + From Latin pro-cedere (“to go forward, to proceed”). - - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] - https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol + + Simulacrum + From Latin simulacrum ("likeness, semblance") - - - Property - From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). + + + chronopotentiometry where the applied current is changed linearly + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - - - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - http://www.linfo.org/source_code.html + + + Engineered + From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). - - - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 - + + + A material is a crystal if it has essentially a sharp diffraction pattern. - - - - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - DIN 8584-2:2003-09 +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) + https://dictionary.iucr.org/Crystal - - - CausalChain - From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). + + + Variable + Fom Latin variabilis ("changeable"). - - - Engineered - From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). + + + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + https://www.ietf.org/rfc/rfc3986.txt @@ -26913,150 +26837,150 @@ sintering: process of heating a powder metal compact to increase density and/or - + - Removal of material by means of rigid or flexible discs or belts containing abrasives. - DIN EN 12258-1:2012-08 + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + DIN EN ISO 472/A1:2019-03 - - - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - ISO 4885:2018-02 + + + Device + From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". - - - Verfestigen durch Umformen - DIN 8580:2022-12 + + + chronopotentiometry where the change in applied current undergoes a cyclic current reversal + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - - - - - - - 2 - - - Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). + + + CausalSystem + From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”). - - - Wholistic - From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. + + + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + DIN 8583-2:2003-09 - + - Computation - From Latin con- +‎ putō (“I reckon”). + Assemblying + From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. - - - Data - From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). + + + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + DIN EN 13831:2007-12 - - - the time between changes in potential in step 2 is related to the concentration of analyte in the solution - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + EMMO + EMMO is the acronym of Elementary Multiperspective Material Ontology. - - - measurand - VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity. + + + Technology is the application of knowledge for achieving practical goals in a reproducible way. + https://en.wikipedia.org/wiki/Technology - - - Fundamental - From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). + + + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + DIN 8593-0:2003-09 - - - Cogniser - From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” + + + + + + + 2 + + + Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). - + - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - DIN 8588:2013-08 + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - The disjoint union of the Item and Collection classes. - The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). -Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. + + + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 - - - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - DIN 8586:2003-09 + + + Machine + From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. - - - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - https://en.wiktionary.org/wiki/procedure + + + Index + From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). - + - isPredecessorOf - From Latin prae ("beforehand") and decedere ("depart"). + Existent + ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). - - - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - DIN 8589-6:2003-09 + + + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + DIN 8589-0:2003-09 - - - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - EN 10028-1:2017-07 + + + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + DIN 65099-3:1989-11 - - - CausalStructure - From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). + + + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en @@ -27099,123 +27023,151 @@ Disjointness means that a collection cannot be an item and viceversa, representi - - - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - DIN 65099-7:1989-11 + + + ISO 8887-1:2017 +manufacturing: production of components + https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5 - - - Observation - From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”), + + + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + https://de.wikipedia.org/wiki/Werkst%C3%BCck - + - CausalObject - From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). + Wholistic + From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. - + - the accumulation is similar to that used in stripping voltammetry - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + https://www.iso.org/standard/45324.html - - - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en + + + Heat treatment process that generally produces martensite in the matrix. + ISO/TR 10809-1:2009, 0000_19 - + - Particle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + Model + From Latin modus (“measure”). - + - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - DIN 8589-3:2003-09 + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + DIN 8589-6:2003-09 - - - chronopotentiometry where the applied current is changed linearly - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + + + Dedomena + From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) - - - Definitions are usually taken from Wiktionary. - https://en.wiktionary.org/wiki/Wiktionary + + + measurand + VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity. - - - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - DIN 8589-0:2003-09 + + + Software + From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. - - - CausalSystem - From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”). + + + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + DIN 65099-5:1989-11 - - - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - https://en.wikipedia.org/wiki/Phase_(matter) + + + Object that is processed with a machine + DIN EN ISO 5349-2:2015-12 - - - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + DIN 65099-7:1989-11 + + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing reflexivity of overlapping. + -H=∑ni=1hia∗i (n≥3) - https://dictionary.iucr.org/Crystal + + + + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - DIN 65099-3:1989-11 + + + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - ISO/ASTM 52900:2021(en), 3.3.1 + + + mereological + Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). +https://en.wiktionary.org/wiki/mereology - - - Technology is the application of knowledge for achieving practical goals in a reproducible way. - https://en.wikipedia.org/wiki/Technology + + + ManufacturedProduct + From Latin manufacture: "made by hand". @@ -27223,169 +27175,222 @@ Note 1 to entry: This term is often used in a non-technical context synonymously - + - + + + + + + + + + + + - - - + + + - Enforcing a strict one-way causality direction. - - - ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 + + + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + EN 10028-1:2017-07 + + + + + + Lifetime + From Middle English liftime, equivalent to life +‎ time. + + + + + + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + DIN EN 10210-3:2020-11 + + + + + + IntentionalProcess + From Latin intentionem, derived from intendere ("stretching out") + + + + + + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + DIN 55405:2014-12 + + + + + + TangibleProduct + From late Latin tangibilis, from tangere ‘to touch’. + + + + + + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + DIN EN 13956:2013-03 - + + + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org + + + + - Holistic - Holism (from Greek ὅλος holos "all, whole, entire"). + Cogniser + From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” - + - Object that is processed with a machine - DIN EN ISO 5349-2:2015-12 + the accumulation is similar to that used in stripping voltammetry + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - Variable - Fom Latin variabilis ("changeable"). + + + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf - + - PhysicalObject - From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - https://www.ietf.org/rfc/rfc3986.txt + + + Artifact + From Latin arte ‘by or using art’ + factum ‘something made’. - + - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - ISO 14034:2016-11 + Process for removing unwanted residual or waste material from a given product or material + ISO 13574:2015-02 - - - Perspective - From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. + + + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 - + - ISO 8887-1:2017 -manufacturing: production of components - https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5 + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 - - - The raw material or partially finished piece that is shaped by performing various operations. - https://en.wiktionary.org/wiki/workpiece + + + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + ISO 23704-1:2022(en), 3.1.2 - - - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). - DIN 65099-5:1989-11 - + + + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - - - - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. - DIN EN 13956:2013-03 +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + https://en.wikipedia.org/wiki/Phase_(matter) - - - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - DIN 8589-2:2003-09 + + + Product + From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. - - - :isCauseOf owl:propertyDisjointWith :overlaps - Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + DIN 8586:2003-09 - + - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - DIN 65099-7:1989-11 + Definitions are usually taken from Wiktionary. + https://en.wiktionary.org/wiki/Wiktionary - - - Dedomena - From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) + + + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + https://www.ietf.org/rfc/rfc3986.txt - - - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - DIN EN 10210-3:2020-11 + + + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + ISO 23952:2020(en), 3.4.143 - - - Software - From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. + + + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + DIN 8584-1:2003-09 - - - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - DIN 65099-4:1989-11 + + + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - FundamentalBoson - 1940s: named after S.N. Bose. + + + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + DIN 8587:2003-09 @@ -27393,7 +27398,7 @@ manufacturing: production of components - + @@ -27401,10 +27406,11 @@ manufacturing: production of components - - - - + + + + + @@ -27415,84 +27421,78 @@ manufacturing: production of components - + - + + Transitivity for parthood. - - - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - https://www.iso.org/standard/45324.html + + + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 - - - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - http://www.linfo.org/program.html + + + Verfestigen durch Umformen + DIN 8580:2022-12 - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing parthood reflexivity. - + + + + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). + DIN 8588:2013-08 + - - - Artifact - From Latin arte ‘by or using art’ + factum ‘something made’. + + + + + + + + + Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. - + + + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + DIN 8580:2022-12 + + + + - Factory - From Latin factor, from fact- ‘done’, from the verb facere (to do). + Estimation + From Latin aestimatus (“to value, rate, esteem”). - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - DIN 8586:2003-09 + + + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 - + - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - DIN EN ISO 472/A1:2019-03 + Process for joining two (base) materials by means of an adhesive polymer material + DIN EN 62047-1:2016-12 diff --git a/chameo-inferred.ttl b/chameo-inferred.ttl index 4b44e4c..9385f51 100644 --- a/chameo-inferred.ttl +++ b/chameo-inferred.ttl @@ -649,7 +649,7 @@ ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f rdf:type owl:ObjectProperty ; ns1:EMMO_2337e25c_3c60_43fc_a8f9_b11a3f974291 rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ns1:EMMO_ec2472ae_cf4a_46a5_8555_1556f5a6c3c5 ; rdfs:comment "The generic EMMO semiotical relation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "semiotical"@en ; skos:prefLabel "semiotical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The generic EMMO semiotical relation."@en . @@ -1051,7 +1051,7 @@ ns1:EMMO_60577dea_9019_4537_ac41_80b0fb563d41 rdf:type owl:ObjectProperty ; rdfs:domain ns1:EMMO_6f5af708_f825_4feb_a0d1_a8d813d3022b ; rdfs:range ns1:EMMO_b21a56ed_f969_4612_a6ec_cb7766f7f31d ; rdfs:comment "A relation that connects the semiotic object to the sign in a semiotic process."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "hasSign"@en ; skos:prefLabel "hasSign"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A relation that connects the semiotic object to the sign in a semiotic process."@en . @@ -1896,7 +1896,7 @@ ns1:EMMO_eb3518bf_f799_4f9e_8c3e_ce59af11453b rdf:type owl:ObjectProperty ; rdfs:domain ns1:EMMO_c9805ac9_a943_4be4_ac4b_6da64ba36c73 ; rdfs:range ns1:EMMO_35d2e130_6e01_41ed_94f7_00b333d46cf9 ; rdfs:comment "A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "hasConvention"@en ; skos:prefLabel "hasConvention"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process."@en . @@ -3301,7 +3301,7 @@ ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 rdf:type owl:Class ; rdfs:comment "A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules."@en , """A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. In other words, a sequence of bit \"1000010\" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter \"B\". The same holds for an entity standing for the sound of a voice saying: \"Hello\", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Symbolic"@en ; skos:prefLabel "Symbolic"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules."@en ; @@ -4507,7 +4507,7 @@ ns1:EMMO_13191289_6c2b_4741_93e1_82d53bd0e703 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_90ae56e4_d197_49b6_be1a_0049e4756606 , ns1:EMMO_fcae603e_aa6e_4940_9fa1_9f0909cabf3b ; rdfs:comment "An object which is an holistic spatial part of a process."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Participant"@en ; skos:prefLabel "Participant"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An object which is an holistic spatial part of a process."@en ; @@ -6941,7 +6941,7 @@ ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 rdf:type owl:Class ; ] ; rdfs:subClassOf ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 ; rdfs:comment "https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a" ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "SpatioTemporalTile" ; skos:altLabel "WellFormedTile"@en ; skos:prefLabel "SpatioTemporalTile" ; @@ -7532,7 +7532,7 @@ ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 rdf:type owl:Class ; """The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself."""@en , "The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Arrangement"@en ; skos:altLabel "MereologicalState"@en ; skos:prefLabel "Arrangement"@en ; @@ -8793,7 +8793,7 @@ ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce rdf:type owl:Class ; """Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). For this reason, the definition of every specific process subclass requires the introduction of a primitive concept."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Process"@en ; skos:altLabel "Occurrent"@en , "Perdurant"@en ; @@ -9083,7 +9083,7 @@ ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 rdf:type owl:Class ; rdfs:comment "A procedure can be considered as an intentional process with a plan."@en , "The process in which an agent works with some entities according to some existing formalised operative rules."@en , "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Procedure"@en ; skos:altLabel "Elaboration"@en , "Work"@en ; @@ -9334,7 +9334,7 @@ ns1:EMMO_49267eba_5548_4163_8f36_518d65b583f9 rdf:type owl:Class ; rdfs:comment "The class of causal objects that stand for world objects according to a specific representational perspective."@en , """This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Perspective"@en ; skos:prefLabel "Perspective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of causal objects that stand for world objects according to a specific representational perspective."@en ; @@ -9414,7 +9414,7 @@ ns1:EMMO_498aad49_f8d4_40a4_a9eb_efd563a0115f rdf:type owl:Class ; ns1:EMMO_4a1c73f1_b6f5_4d10_a3a6_5de90bac7cd0 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_1b52ee70_121e_4d8d_8419_3f97cd0bd89c ; rdfs:comment "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Estimator"@en ; skos:prefLabel "Estimator"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en . @@ -9944,7 +9944,7 @@ ns1:EMMO_501f9b3a_c469_48f7_9281_2e6a8d805d7a rdf:type owl:Class ; ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment "A direct part that is obtained by partitioning a whole purely in temporal parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "TemporalTile"@en ; skos:prefLabel "TemporalTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A direct part that is obtained by partitioning a whole purely in temporal parts."@en . @@ -10519,7 +10519,7 @@ ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; rdfs:comment "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en , "A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions." ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Mathematical"@en ; skos:prefLabel "Mathematical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en . @@ -11669,7 +11669,7 @@ ns1:EMMO_64963ed6_39c9_4258_85e0_6466c4b5420c rdf:type owl:Class ; ns1:EMMO_5848e476_2768_4988_98f9_9053c532307b ) ; rdfs:comment "A procedure that has at least two procedures (tasks) as proper parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Workflow"@en ; skos:prefLabel "Workflow"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A procedure that has at least two procedures (tasks) as proper parts."@en . @@ -11738,7 +11738,7 @@ ns1:EMMO_65a007dc_2550_46b0_b394_3346c67fbb69 rdf:type owl:Class ; ] ; rdfs:comment "A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time."@en , "An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "HolisticSystem"@en ; skos:prefLabel "HolisticSystem"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole."@en . @@ -14352,7 +14352,7 @@ ns1:EMMO_88470739_03d3_4c47_a03e_b30a1288d50c rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_ffe760a2_9d1f_4aef_8bee_1f450f9cb00d ; rdfs:comment "A mathematical string that express a relation between the elements in one set X to elements in another set Y."@en , "The set X is called domain and the set Y range or codomain."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "MathematicalFormula"@en ; skos:prefLabel "MathematicalFormula"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A mathematical string that express a relation between the elements in one set X to elements in another set Y."@en . @@ -14516,7 +14516,7 @@ ns1:EMMO_8944581c_64da_46a9_be29_7074f7cc8098 rdf:type owl:Class ; owl:allValuesFrom ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ] ; rdfs:comment "A well formed tessellation with tiles that all spatial."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "SpatialTiling"@en ; skos:prefLabel "SpatialTiling"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A well formed tessellation with tiles that all spatial."@en . @@ -14542,7 +14542,7 @@ ns1:EMMO_89a0c87c_0804_4013_937a_6fe234d9499c rdf:type owl:Class ; ] ; rdfs:comment "A symbolic entity made of other symbolic entities according to a specific spatial configuration."@en , "This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "SymbolicConstruct"@en ; skos:prefLabel "SymbolicConstruct"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A symbolic entity made of other symbolic entities according to a specific spatial configuration."@en ; @@ -15364,7 +15364,7 @@ ns1:EMMO_9226c7af_573f_4762_865c_e3a68a4832dd rdf:type owl:Class ; ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c ; rdfs:comment "A tessellation of temporal slices."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Sequence"@en ; skos:prefLabel "Sequence"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tessellation of temporal slices."@en . @@ -15938,7 +15938,7 @@ ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_ee0466e4_780d_4236_8281_ace7ad3fc5d2 ] ; rdfs:comment "A causal object that is direct part of a tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Tile"@en ; skos:prefLabel "Tile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A causal object that is direct part of a tessellation."@en . @@ -16110,7 +16110,7 @@ ns1:EMMO_9bc6da11_528a_44e8_bd9e_c4154eae7e55 rdf:type owl:Class ; ns1:EMMO_9be5fcc4_0d8b_481d_b984_6338d4b55588 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 ; rdfs:comment "An observer that makes use of a measurement tool and provides a quantitative property."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Measurer"@en ; skos:prefLabel "Measurer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An observer that makes use of a measurement tool and provides a quantitative property."@en . @@ -18198,7 +18198,7 @@ ns1:EMMO_b94b3748_71c5_4de9_95e7_42586c3ed607 rdf:type owl:Class ; ns1:EMMO_b9522e56_1fac_4766_97e6_428605fabd3e rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_65a007dc_2550_46b0_b394_3346c67fbb69 ; rdfs:comment "A system which is mainly characterised by the spatial configuration of its elements."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "HolisticArrangement"@en ; skos:prefLabel "HolisticArrangement"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A system which is mainly characterised by the spatial configuration of its elements."@en . @@ -18297,7 +18297,7 @@ ns1:EMMO_bafc17b5_9be4_4823_8bbe_ab4e90b6738c rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_c130614a_2985_476d_a7ed_8a137847703c ] ; rdfs:comment "A process occurring with the active participation of an agent that drives the process according to a specific objective (intention)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "IntentionalProcess"@en ; skos:altLabel "Project"@en ; skos:prefLabel "IntentionalProcess"@en ; @@ -19028,7 +19028,7 @@ The unity criterion beyond the definition of a causal structure (the most genera - is made of at least two quantums (a structure is not a simple entity) - all quantum parts form a causally connected graph"""@en , "The union of CausalPath and CausalSystem classes."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "CausalStructure"@en ; skos:altLabel "CausalObject"@en ; skos:prefLabel "CausalStructure"@en ; @@ -19482,7 +19482,7 @@ ns1:EMMO_ca54593a_6828_491b_8fda_22b0ad85e446 rdf:type owl:Class ; ns1:EMMO_caa63d00_80b1_4408_ac1b_cd0d23b0ec50 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment "A tile that has next and is next of other tiles within the same tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "ThroughTile"@en ; skos:prefLabel "ThroughTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tile that has next and is next of other tiles within the same tessellation."@en . @@ -20503,7 +20503,7 @@ Then I have two different physical quantities that are properties thanks to two ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; rdfs:comment "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Language"@en ; skos:prefLabel "Language"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en . @@ -21495,7 +21495,7 @@ f(v0, v1, ..., vn) = g(v0, v1, ..., vn) where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables."""@en , "The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Equation"@en ; skos:prefLabel "Equation"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions."@en ; @@ -21991,7 +21991,7 @@ ns1:EMMO_ea47add2_8e93_4659_a5f0_e6879032dee0 rdf:type owl:Class ; ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_1b52ee70_121e_4d8d_8419_3f97cd0bd89c ; rdfs:comment "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Observer"@en ; skos:prefLabel "Observer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en . @@ -22399,7 +22399,7 @@ ns1:EMMO_ed7dd267_e2ee_4565_8117_e5c1eafa3e66 rdf:type owl:Class ; ns1:EMMO_edf72228_e040_4edc_8b46_78b2a47c72d7 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "EndTile"@en ; skos:prefLabel "EndTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e . @@ -23068,7 +23068,7 @@ ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c rdf:type owl:Class ; owl:allValuesFrom ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ] ; rdfs:comment "A well formed tessellation with tiles that are all temporal."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "TemporalTiling"@en ; skos:prefLabel "TemporalTiling"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A well formed tessellation with tiles that are all temporal."@en . @@ -23211,7 +23211,7 @@ ns1:EMMO_f8e436fb_61ed_4512_a5a5_bee90f0cec2f rdf:type owl:Class ; ns1:EMMO_f93fe78b_9646_4a15_b88b_1c93686a764d rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_65a007dc_2550_46b0_b394_3346c67fbb69 ; rdfs:comment "A system whose is mainly characterised by the way in which elements are interconnected."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Network"@en ; skos:prefLabel "Network"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A system whose is mainly characterised by the way in which elements are interconnected."@en . @@ -23319,7 +23319,7 @@ ns1:EMMO_fa3c9d4d_9fc9_4e8a_82c1_28c84e34133a rdf:type owl:Class ; ns1:EMMO_fa595892_070d_455e_9459_06c97179c080 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "BeginTile"@en ; skos:prefLabel "BeginTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b . @@ -26576,10 +26576,10 @@ ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 rdf:type owl:NamedIndividual , ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 "The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique."@en . -[ owl:qualifiedCardinality "4"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger +[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger @@ -26588,13 +26588,13 @@ ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 rdf:type owl:NamedIndividual , [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger @@ -26606,22 +26606,22 @@ ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 rdf:type owl:NamedIndividual , [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "4"^^xsd:nonNegativeInteger ] . -[ owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . ################################################################# diff --git a/chameo.html b/chameo.html index 0e1f58e..84dd58d 100644 --- a/chameo.html +++ b/chameo.html @@ -48,6 +48,14 @@

ACVoltammetryAnnotations + + Preflabel + ACVoltammetry + + + Elucidation + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + Comment The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. @@ -60,10 +68,6 @@

ACVoltammetryComment - - Elucidation - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - Wikidatareference https://www.wikidata.org/wiki/Q120895154 @@ -72,10 +76,6 @@

ACVoltammetryAltlabel ACV - - Preflabel - ACVoltammetry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -103,20 +103,20 @@

AbrasiveStrippingVoltammetryAnnotations - Comment - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + Preflabel + AbrasiveStrippingVoltammetry - Comment - + Elucidation + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - Elucidation + Comment electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - Preflabel - AbrasiveStrippingVoltammetry + Comment + Label @@ -141,16 +141,16 @@

AccessConditionsAnnotations - Comment - Describes what is needed to repeat the experiment + Preflabel + AccessConditions Elucidation Describes what is needed to repeat the experiment - Preflabel - AccessConditions + Comment + Describes what is needed to repeat the experiment Example @@ -179,25 +179,25 @@

AdsorptiveStrippingVoltammetryAnnotations - Comment - A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + Preflabel + AdsorptiveStrippingVoltammetry - Comment + Elucidation Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - Elucidation + Comment + A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + + + Comment Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). Altlabel AdSV - - Preflabel - AdsorptiveStrippingVoltammetry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -225,16 +225,16 @@

AlphaSpectrometryAnnotations - Comment - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + Preflabel + AlphaSpectrometry Elucidation Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - Preflabel - AlphaSpectrometry + Comment + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. Label @@ -259,20 +259,20 @@

AmperometryAnnotations - Comment - Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. + Preflabel + Amperometry - Comment + Elucidation The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - Elucidation - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + Comment + Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. - Preflabel - Amperometry + Comment + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. Iupacreference @@ -301,16 +301,16 @@

AnalyticalElectronMicroscopyAnnotations - Comment - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + Preflabel + AnalyticalElectronMicroscopy Elucidation Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - Preflabel - AnalyticalElectronMicroscopy + Comment + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. Label @@ -335,20 +335,20 @@

AnodicStrippingVoltammetryAnnotations - Comment - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + Preflabel + AnodicStrippingVoltammetry Elucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - Wikidatareference - https://www.wikidata.org/wiki/Q939328 + Comment + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - Preflabel - AnodicStrippingVoltammetry + Wikidatareference + https://www.wikidata.org/wiki/Q939328 Iupacreference @@ -377,13 +377,17 @@

AtomProbeTomographyAnnotations - Comment - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + Preflabel + AtomProbeTomography Elucidation Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + + Comment + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + Altlabel 3D Atom Probe @@ -392,10 +396,6 @@

AtomProbeTomographyAltlabel APT - - Preflabel - AtomProbeTomography - Label AtomProbeTomography @@ -419,16 +419,16 @@

AtomicForceMicroscopyAnnotations - Comment - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + Preflabel + AtomicForceMicroscopy Elucidation Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - Preflabel - AtomicForceMicroscopy + Comment + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. Label @@ -479,13 +479,17 @@

BrunauerEmmettTellerMethodAnnotations - Comment - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + Preflabel + BrunauerEmmettTellerMethod Elucidation A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + + Comment + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + Wikidatareference https://www.wikidata.org/wiki/Q795838 @@ -494,10 +498,6 @@

BrunauerEmmettTellerMethodAltlabel BET - - Preflabel - BrunauerEmmettTellerMethod - Wikipediareference https://en.wikipedia.org/wiki/BET_theory @@ -525,16 +525,16 @@

CalibrationDataAnnotations - Comment - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + Preflabel + CalibrationData Elucidation Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - Preflabel - CalibrationData + Comment + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. Label @@ -558,6 +558,14 @@

CalibrationProcessAnnotations + + Preflabel + CalibrationProcess + + + Elucidation + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + Comment Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. @@ -574,14 +582,6 @@

CalibrationProcessComment Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - - Elucidation - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - - - Preflabel - CalibrationProcess - Definition Operation performed on a measuring instrument or a measuring system that, under specified conditions
1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and
2. uses this information to establish a relation for obtaining a measurement result from an indication
NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system.
NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty.
NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from
measurement standards.
NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty
for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the
past the second step was usually considered to occur after the calibration.
NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement
standards.

-- International Vocabulary of Metrology(VIM) @@ -629,16 +629,16 @@

CalorimetryAnnotations - Comment - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + Preflabel + Calorimetry Elucidation In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - Preflabel - Calorimetry + Comment + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. Label @@ -663,13 +663,17 @@

CathodicStrippingVoltammetryAnnotations - Comment - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + Preflabel + CathodicStrippingVoltammetry Elucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + + Comment + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + Wikidatareference https://www.wikidata.org/wiki/Q4016325 @@ -678,10 +682,6 @@

CathodicStrippingVoltammetryAltlabel CSV - - Preflabel - CathodicStrippingVoltammetry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -708,14 +708,14 @@

CharacterisationComponentAnnotations - - Comment - - Preflabel CharacterisationComponent + + Comment + + Label CharacterisationComponent @@ -739,16 +739,16 @@

CharacterisationDataAnnotations - Comment - Represents every type of data that is produced during a characterisation process + Preflabel + CharacterisationData Elucidation Represents every type of data that is produced during a characterisation process - Preflabel - CharacterisationData + Comment + Represents every type of data that is produced during a characterisation process Label @@ -773,16 +773,16 @@

CharacterisationDataValidationAnnotations - Comment - Procedure to validate the characterisation data. + Preflabel + CharacterisationDataValidation Elucidation Procedure to validate the characterisation data. - Preflabel - CharacterisationDataValidation + Comment + Procedure to validate the characterisation data. Label @@ -807,8 +807,12 @@

CharacterisationEnvironmentAnnotations - Comment - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + Preflabel + CharacterisationEnvironment + + + Elucidation + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. Comment @@ -816,16 +820,12 @@

CharacterisationEnvironmentComment - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - Elucidation + Comment Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - - Preflabel - CharacterisationEnvironment - Label CharacterisationEnvironment @@ -856,14 +856,14 @@

CharacterisationEnvironmentPropertyAnnotations - - Comment - - Preflabel CharacterisationEnvironmentProperty + + Comment + + Label CharacterisationEnvironmentProperty @@ -887,20 +887,20 @@

CharacterisationExperimentAnnotations - Comment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + Preflabel + CharacterisationExperiment - Comment + Elucidation A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - Elucidation + Comment A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - Preflabel - CharacterisationExperiment + Comment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. Label @@ -925,16 +925,16 @@

CharacterisationHardwareAnnotations - Comment - Whatever hardware is used during the characterisation process. + Preflabel + CharacterisationHardware Elucidation Whatever hardware is used during the characterisation process. - Preflabel - CharacterisationHardware + Comment + Whatever hardware is used during the characterisation process. Label @@ -958,14 +958,14 @@

CharacterisationHardwareSpecificationAnnotations - - Comment - - Preflabel CharacterisationHardwareSpecification + + Comment + + Label CharacterisationHardwareSpecification @@ -988,6 +988,14 @@

CharacterisationMeasurementInstrumentAnnotations + + Preflabel + CharacterisationMeasurementInstrument + + + Elucidation + The instrument used for characterising a material, which usually has a probe and a detector as parts. + Comment Device used for making measurements, alone or in conjunction with one or more supplementary
devices
NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system.
NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. @@ -996,14 +1004,6 @@

CharacterisationMeasurementInstrumentComment The instrument used for characterising a material, which usually has a probe and a detector as parts. - - Elucidation - The instrument used for characterising a material, which usually has a probe and a detector as parts. - - - Preflabel - CharacterisationMeasurementInstrument - Definition Device used for making measurements, alone or in conjunction with one or more supplementary
devices
NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system.
NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. @@ -1055,20 +1055,20 @@

CharacterisationMeasurementProcessAnnotations - Comment - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information
NOTE 1 The quantity mentioned in the definition is an individual quantity.
NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement,
such that some may be more representative of the measurand than others.
NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the
process of obtaining values of nominal properties is called “examination”.
NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at
some step of the process and the use of models and calculations that are based on conceptual considerations.
NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the
quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated
measuring system operating according to the specified measurement procedure, including the measurement
conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the
measurement procedure and the measuring system should then be chosen in order not to exceed these measuring
system specifications.

-- International Vocabulary of Metrology(VIM) + Preflabel + CharacterisationMeasurementProcess - Comment + Elucidation The measurement process associates raw data to the sample through a probe and a detector. - Elucidation - The measurement process associates raw data to the sample through a probe and a detector. + Comment + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information
NOTE 1 The quantity mentioned in the definition is an individual quantity.
NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement,
such that some may be more representative of the measurand than others.
NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the
process of obtaining values of nominal properties is called “examination”.
NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at
some step of the process and the use of models and calculations that are based on conceptual considerations.
NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the
quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated
measuring system operating according to the specified measurement procedure, including the measurement
conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the
measurement procedure and the measuring system should then be chosen in order not to exceed these measuring
system specifications.

-- International Vocabulary of Metrology(VIM) - Preflabel - CharacterisationMeasurementProcess + Comment + The measurement process associates raw data to the sample through a probe and a detector. Definition @@ -1125,8 +1125,12 @@

CharacterisationProcedureAnnotations - Comment - Characterisation procedure may refer to the full characterisation process or just a part of the full process. + Preflabel + CharacterisationProcedure + + + Elucidation + The process of performing characterisation by following some existing formalised operative rules. Comment @@ -1134,16 +1138,12 @@

CharacterisationProcedureComment - The process of performing characterisation by following some existing formalised operative rules. + Characterisation procedure may refer to the full characterisation process or just a part of the full process. - Elucidation + Comment The process of performing characterisation by following some existing formalised operative rules. - - Preflabel - CharacterisationProcedure - Example Sample preparation
Sample inspection
Calibration
Microscopy
Viscometry
Data sampling @@ -1171,16 +1171,16 @@

CharacterisationProcedureValidationAnnotations - Comment - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + Preflabel + CharacterisationProcedureValidation Elucidation Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - Preflabel - CharacterisationProcedureValidation + Comment + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. Label @@ -1205,16 +1205,16 @@

CharacterisationPropertyAnnotations - Comment - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + Preflabel + CharacterisationProperty Elucidation The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - Preflabel - CharacterisationProperty + Comment + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). Label @@ -1239,16 +1239,16 @@

CharacterisationProtocolAnnotations - Comment - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + Preflabel + CharacterisationProtocol Elucidation A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - Preflabel - CharacterisationProtocol + Comment + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. Label @@ -1273,16 +1273,16 @@

CharacterisationSoftwareAnnotations - Comment - A software application to process characterisation data + Preflabel + CharacterisationSoftware Elucidation A software application to process characterisation data - Preflabel - CharacterisationSoftware + Comment + A software application to process characterisation data Example @@ -1311,20 +1311,20 @@

CharacterisationSystemAnnotations - Comment - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Preflabel + CharacterisationSystem - Comment - Set of one or more measuring instruments and often other components, assembled and
adapted to give information used to generate measured values within specified intervals for
quantities of specified kinds
NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies.
NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012,
Measurement management systems – Requirements for measurement processes and measuring equipment and ISO
17025, General requirements for the competence of testing and calibration laboratories.
NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the
latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement,
including the object under measurement and the person(s) performing the measurement.
NOTE 4 A measuring system can be used as a measurement standard. + Elucidation + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Elucidation + Comment A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Preflabel - CharacterisationSystem + Comment + Set of one or more measuring instruments and often other components, assembled and
adapted to give information used to generate measured values within specified intervals for
quantities of specified kinds
NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies.
NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012,
Measurement management systems – Requirements for measurement processes and measuring equipment and ISO
17025, General requirements for the competence of testing and calibration laboratories.
NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the
latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement,
including the object under measurement and the person(s) performing the measurement.
NOTE 4 A measuring system can be used as a measurement standard. Definition @@ -1364,14 +1364,14 @@

CharacterisationTask Annotations - - Comment - - Preflabel CharacterisationTask + + Comment + + Label CharacterisationTask @@ -1407,11 +1407,11 @@

CharacterisationTechniqueAnnotations - Comment - A characterisation technique is not only related to the measurement process which can be one of its steps. + Preflabel + CharacterisationTechnique - Comment + Elucidation The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). @@ -1419,9 +1419,13 @@

CharacterisationTechniqueA characterisation technique is not only related to the measurement process which can be one of its steps. - Elucidation + Comment The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + + Comment + A characterisation technique is not only related to the measurement process which can be one of its steps. + Altlabel Characterisation procedure @@ -1430,10 +1434,6 @@

CharacterisationTechniqueAltlabel Characterisation technique - - Preflabel - CharacterisationTechnique - Label CharacterisationTechnique @@ -1457,16 +1457,16 @@

CharacterisationWorkflowAnnotations - Comment - A characterisation procedure that has at least two characterisation tasks as proper parts. + Preflabel + CharacterisationWorkflow Elucidation A characterisation procedure that has at least two characterisation tasks as proper parts. - Preflabel - CharacterisationWorkflow + Comment + A characterisation procedure that has at least two characterisation tasks as proper parts. Label @@ -1503,16 +1503,16 @@

CharacterisedSampleAnnotations - Comment - The sample after having been subjected to a characterization process + Preflabel + CharacterisedSample Elucidation The sample after having been subjected to a characterization process - Preflabel - CharacterisedSample + Comment + The sample after having been subjected to a characterization process Label @@ -1536,14 +1536,14 @@

ChargeDistributionAnnotations - - Comment - - Preflabel ChargeDistribution + + Comment + + Label ChargeDistribution @@ -1567,16 +1567,16 @@

ChromatographyAnnotations - Comment - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + Preflabel + Chromatography Elucidation In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - Preflabel - Chromatography + Comment + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. Wikipediareference @@ -1605,13 +1605,17 @@

ChronoamperometryAnnotations - Comment - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Preflabel + Chronoamperometry Elucidation Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + + Comment + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Altlabel AmperiometricDetection @@ -1620,10 +1624,6 @@

ChronoamperometryAltlabel AmperometricCurrentTimeCurve - - Preflabel - Chronoamperometry - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -1651,16 +1651,16 @@

ChronocoulometryAnnotations - Comment - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Preflabel + Chronocoulometry Elucidation Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Preflabel - Chronocoulometry + Comment + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. Iupacreference @@ -1689,16 +1689,16 @@

ChronopotentiometryAnnotations - Comment - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Preflabel + Chronopotentiometry Elucidation Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Preflabel - Chronopotentiometry + Comment + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. Iupacreference @@ -1727,16 +1727,16 @@

CompressionTestingAnnotations - Comment - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + Preflabel + CompressionTesting Elucidation Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - Preflabel - CompressionTesting + Comment + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. Label @@ -1761,20 +1761,20 @@

ConductometricTitrationAnnotations - Comment - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + Preflabel + ConductometricTitration Elucidation Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - Wikidatareference - https://www.wikidata.org/wiki/Q11778221 + Comment + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - Preflabel - ConductometricTitration + Wikidatareference + https://www.wikidata.org/wiki/Q11778221 Iupacreference @@ -1803,20 +1803,24 @@

ConductometryAnnotations - Comment - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Preflabel + Conductometry Elucidation Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + + Comment + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Wikidatareference https://www.wikidata.org/wiki/Q901180 - Preflabel - Conductometry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference @@ -1826,10 +1830,6 @@

ConductometryExample Monitoring of the purity of deionized water. - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label Conductometry @@ -1853,16 +1853,16 @@

ConfocalMicroscopyAnnotations - Comment - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + Preflabel + ConfocalMicroscopy Elucidation Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - Preflabel - ConfocalMicroscopy + Comment + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. Label @@ -1887,16 +1887,16 @@

CoulometricTitrationAnnotations - Comment - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + Preflabel + CoulometricTitration Elucidation Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - Preflabel - CoulometricTitration + Comment + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. Label @@ -1921,32 +1921,32 @@

CoulometryAnnotations - Comment - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + Preflabel + Coulometry Elucidation Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Wikidatareference - https://www.wikidata.org/wiki/Q1136979 + Comment + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Preflabel - Coulometry + Wikidatareference + https://www.wikidata.org/wiki/Q1136979 - Wikipediareference - https://en.wikipedia.org/wiki/Coulometry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikipediareference + https://en.wikipedia.org/wiki/Coulometry Label @@ -1971,16 +1971,16 @@

CreepTestingAnnotations - Comment - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + Preflabel + CreepTesting Elucidation The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - Preflabel - CreepTesting + Comment + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. Label @@ -2004,14 +2004,14 @@

CriticalAndSupercriticalChromatographyAnnotations - - Comment - - Preflabel CriticalAndSupercriticalChromatography + + Comment + + Label CriticalAndSupercriticalChromatography @@ -2035,8 +2035,8 @@

CyclicChronopotentiometryAnnotations - Comment - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + Preflabel + CyclicChronopotentiometry Elucidation @@ -2047,8 +2047,8 @@

CyclicChronopotentiometrychronopotentiometry where the change in applied current undergoes a cyclic current reversal - Preflabel - CyclicChronopotentiometry + Comment + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. Label @@ -2073,36 +2073,36 @@

CyclicVoltammetryAnnotations - Comment - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + Preflabel + CyclicVoltammetry Elucidation Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - Wikidatareference - https://www.wikidata.org/wiki/Q1147647 + Comment + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - Altlabel - CV + Dbpediareference + https://dbpedia.org/page/Cyclic_voltammetry - Preflabel - CyclicVoltammetry + Wikidatareference + https://www.wikidata.org/wiki/Q1147647 - Wikipediareference - https://en.wikipedia.org/wiki/Cyclic_voltammetry + Altlabel + CV Iupacreference https://doi.org/10.1515/pac-2018-0109 - Dbpediareference - https://dbpedia.org/page/Cyclic_voltammetry + Wikipediareference + https://en.wikipedia.org/wiki/Cyclic_voltammetry Label @@ -2127,16 +2127,16 @@

DCPolarographyAnnotations - Comment - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + Preflabel + DCPolarography Elucidation Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - Preflabel - DCPolarography + Comment + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. Iupacreference @@ -2165,16 +2165,16 @@

DataAcquisitionRateAnnotations - Comment - Quantifies the raw data acquisition rate, if applicable. + Preflabel + DataAcquisitionRate Elucidation Quantifies the raw data acquisition rate, if applicable. - Preflabel - DataAcquisitionRate + Comment + Quantifies the raw data acquisition rate, if applicable. Label @@ -2199,16 +2199,16 @@

DataAnalysisAnnotations - Comment - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + Preflabel + DataAnalysis Elucidation Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - Preflabel - DataAnalysis + Comment + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. Label @@ -2233,16 +2233,16 @@

DataFilteringAnnotations - Comment - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + Preflabel + DataFiltering Elucidation Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - Preflabel - DataFiltering + Comment + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. Label @@ -2267,11 +2267,11 @@

DataNormalisationAnnotations - Comment - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + Preflabel + DataNormalisation - Comment + Elucidation Data normalization involves adjusting raw data to a notionally common scale. @@ -2279,12 +2279,12 @@

DataNormalisationIt involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - Elucidation + Comment Data normalization involves adjusting raw data to a notionally common scale. - Preflabel - DataNormalisation + Comment + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. Label @@ -2309,16 +2309,16 @@

DataPostProcessingAnnotations - Comment - Analysis, that allows one to calculate the final material property from the calibrated primary data. + Preflabel + DataPostProcessing Elucidation Analysis, that allows one to calculate the final material property from the calibrated primary data. - Preflabel - DataPostProcessing + Comment + Analysis, that allows one to calculate the final material property from the calibrated primary data. Label @@ -2343,16 +2343,16 @@

DataPreparationAnnotations - Comment - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + Preflabel + DataPreparation Elucidation Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - Preflabel - DataPreparation + Comment + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. Label @@ -2377,16 +2377,16 @@

DataProcessingThroughCalibrationAnnotations - Comment - Describes how raw data are corrected and/or modified through calibrations. + Preflabel + DataProcessingThroughCalibration Elucidation Describes how raw data are corrected and/or modified through calibrations. - Preflabel - DataProcessingThroughCalibration + Comment + Describes how raw data are corrected and/or modified through calibrations. Label @@ -2411,16 +2411,16 @@

DataQualityAnnotations - Comment - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + Preflabel + DataQuality Elucidation Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - Preflabel - DataQuality + Comment + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. Example @@ -2449,16 +2449,16 @@

Detector Annotations - Comment - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Preflabel + Detector Elucidation Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Preflabel - Detector + Comment + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. Example @@ -2491,16 +2491,16 @@

DielectricAndImpedanceSpectroscopyAnnotations - Comment - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + Preflabel + DielectricAndImpedanceSpectroscopy Elucidation Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - Preflabel - DielectricAndImpedanceSpectroscopy + Comment + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. Label @@ -2525,16 +2525,16 @@

DielectrometryAnnotations - Comment - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Preflabel + Dielectrometry Elucidation Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Preflabel - Dielectrometry + Comment + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. Iupacreference @@ -2563,16 +2563,16 @@

DifferentialLinearPulseVoltammetryAnnotations - Comment - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + Preflabel + DifferentialLinearPulseVoltammetry Elucidation Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - Preflabel - DifferentialLinearPulseVoltammetry + Comment + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. Label @@ -2597,13 +2597,17 @@

DifferentialPulseVoltammetryAnnotations - Comment - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + Preflabel + DifferentialPulseVoltammetry Elucidation Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + + Comment + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + Wikidatareference https://www.wikidata.org/wiki/Q5275361 @@ -2613,17 +2617,13 @@

DifferentialPulseVoltammetryDPV - Preflabel - DifferentialPulseVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Differential_pulse_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label DifferentialPulseVoltammetry @@ -2646,14 +2646,14 @@

DifferentialRefractiveIndexAnnotations - - Comment - - Preflabel DifferentialRefractiveIndex + + Comment + + Label DifferentialRefractiveIndex @@ -2677,20 +2677,20 @@

DifferentialScanningCalorimetryAnnotations - Comment - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + Preflabel + DifferentialScanningCalorimetry Elucidation Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - Altlabel - DSC + Comment + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - Preflabel - DifferentialScanningCalorimetry + Altlabel + DSC Label @@ -2715,16 +2715,16 @@

DifferentialStaircasePulseVoltammetryAnnotations - Comment - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + Preflabel + DifferentialStaircasePulseVoltammetry Elucidation Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - Preflabel - DifferentialStaircasePulseVoltammetry + Comment + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. Label @@ -2749,20 +2749,20 @@

DifferentialThermalAnalysisAnnotations - Comment - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + Preflabel + DifferentialThermalAnalysis Elucidation Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - Altlabel - DTA + Comment + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - Preflabel - DifferentialThermalAnalysis + Altlabel + DTA Label @@ -2787,16 +2787,16 @@

DilatometryAnnotations - Comment - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + Preflabel + Dilatometry Elucidation Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - Preflabel - Dilatometry + Comment + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. Label @@ -2821,16 +2821,16 @@

DirectCoulometryAtControlledCurrentAnnotations - Comment - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + Preflabel + DirectCoulometryAtControlledCurrent Elucidation Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - Preflabel - DirectCoulometryAtControlledCurrent + Comment + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. Label @@ -2855,12 +2855,8 @@

DirectCoulometryAtControlledPotentialAnnotations - Comment - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - - - Comment - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + Preflabel + DirectCoulometryAtControlledPotential Elucidation @@ -2871,8 +2867,12 @@

DirectCoulometryAtControlledPotentialIn principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - Preflabel - DirectCoulometryAtControlledPotential + Comment + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + + + Comment + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. Iupacreference @@ -2901,16 +2901,16 @@

DirectCurrentInternalResistanceAnnotations - Comment - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + Preflabel + DirectCurrentInternalResistance Elucidation Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - Preflabel - DirectCurrentInternalResistance + Comment + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. Label @@ -2935,20 +2935,20 @@

DynamicLightScatteringAnnotations - Comment - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + Preflabel + DynamicLightScattering Elucidation Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - Altlabel - DLS + Comment + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - Preflabel - DynamicLightScattering + Altlabel + DLS Label @@ -2973,16 +2973,16 @@

DynamicMechanicalAnalysisAnnotations - Comment - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + Preflabel + DynamicMechanicalAnalysis Elucidation Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - Preflabel - DynamicMechanicalAnalysis + Comment + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. Label @@ -3007,20 +3007,20 @@

DynamicMechanicalSpectroscopyAnnotations - Comment - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + Preflabel + DynamicMechanicalSpectroscopy Elucidation Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - Altlabel - DMA + Comment + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - Preflabel - DynamicMechanicalSpectroscopy + Altlabel + DMA Label @@ -3045,13 +3045,17 @@

ElectrochemicalImpedanceSpectroscopyAnnotations - Comment - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + Preflabel + ElectrochemicalImpedanceSpectroscopy Elucidation Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + + Comment + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + Wikidatareference https://www.wikidata.org/wiki/Q3492904 @@ -3060,10 +3064,6 @@

ElectrochemicalImpedanceSpectroscopyAltlabel EIS - - Preflabel - ElectrochemicalImpedanceSpectroscopy - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -3091,16 +3091,16 @@

ElectrochemicalPiezoelectricMicrogravimetryAnnotations - Comment - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + Preflabel + ElectrochemicalPiezoelectricMicrogravimetry Elucidation Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - Preflabel - ElectrochemicalPiezoelectricMicrogravimetry + Comment + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. Iupacreference @@ -3129,20 +3129,20 @@

ElectrochemicalTestingAnnotations - Comment - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity + Preflabel + ElectrochemicalTesting - Comment + Elucidation In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - Elucidation - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + Comment + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity - Preflabel - ElectrochemicalTesting + Comment + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. Label @@ -3167,8 +3167,8 @@

ElectrogravimetryAnnotations - Comment - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Preflabel + Electrogravimetry Elucidation @@ -3178,22 +3178,22 @@

ElectrogravimetryElucidation method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + + Comment + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Wikidatareference https://www.wikidata.org/wiki/Q902953 - Preflabel - Electrogravimetry + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 Wikipediareference https://en.wikipedia.org/wiki/Electrogravimetry - - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 - Label Electrogravimetry @@ -3217,20 +3217,20 @@

ElectronBackscatterDiffractionAnnotations - Comment - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + Preflabel + ElectronBackscatterDiffraction Elucidation Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - Altlabel - EBSD + Comment + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - Preflabel - ElectronBackscatterDiffraction + Altlabel + EBSD Label @@ -3259,16 +3259,16 @@

ElectronProbeMicroanalysisAnnotations - Comment - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + Preflabel + ElectronProbeMicroanalysis Elucidation Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - Preflabel - ElectronProbeMicroanalysis + Comment + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. Label @@ -3293,16 +3293,16 @@

EllipsometryAnnotations - Comment - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + Preflabel + Ellipsometry Elucidation Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - Preflabel - Ellipsometry + Comment + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. Label @@ -3327,13 +3327,17 @@

EnergyDispersiveXraySpectroscopyAnnotations - Comment - An analytical technique used for the elemental analysis or chemical characterization of a sample. + Preflabel + EnergyDispersiveXraySpectroscopy Elucidation An analytical technique used for the elemental analysis or chemical characterization of a sample. + + Comment + An analytical technique used for the elemental analysis or chemical characterization of a sample. + Wikidatareference https://www.wikidata.org/wiki/Q386334 @@ -3346,10 +3350,6 @@

EnergyDispersiveXraySpectroscopyAltlabel EDX - - Preflabel - EnergyDispersiveXraySpectroscopy - Wikipediareference https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy @@ -3377,16 +3377,16 @@

EnvironmentalScanningElectronMicroscopyAnnotations - Comment - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + Preflabel + EnvironmentalScanningElectronMicroscopy Elucidation The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - Preflabel - EnvironmentalScanningElectronMicroscopy + Comment + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. Label @@ -3411,16 +3411,16 @@

Exafs Annotations - Comment - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + Preflabel + Exafs Elucidation Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - Preflabel - Exafs + Comment + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. Label @@ -3445,16 +3445,16 @@

FatigueTestingAnnotations - Comment - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + Preflabel + FatigueTesting Elucidation Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - Preflabel - FatigueTesting + Comment + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. Label @@ -3479,20 +3479,20 @@

FibDicAnnotations - Comment - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + Preflabel + FibDic Elucidation The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - Altlabel - FIBDICResidualStressAnalysis + Comment + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - Preflabel - FibDic + Altlabel + FIBDICResidualStressAnalysis Label @@ -3517,20 +3517,20 @@

FieldEmissionScanningElectronMicroscopyAnnotations - Comment - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + Preflabel + FieldEmissionScanningElectronMicroscopy Elucidation Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - Altlabel - FE-SEM + Comment + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - Preflabel - FieldEmissionScanningElectronMicroscopy + Altlabel + FE-SEM Label @@ -3555,13 +3555,17 @@

FourierTransformInfraredSpectroscopyAnnotations - Comment - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + Preflabel + FourierTransformInfraredSpectroscopy Elucidation A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + + Comment + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + Wikidatareference https://www.wikidata.org/wiki/Q901559 @@ -3570,10 +3574,6 @@

FourierTransformInfraredSpectroscopyAltlabel FTIR - - Preflabel - FourierTransformInfraredSpectroscopy - Wikipediareference https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy @@ -3601,16 +3601,16 @@

FractographyAnnotations - Comment - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + Preflabel + Fractography Elucidation Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - Preflabel - Fractography + Comment + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. Label @@ -3635,16 +3635,16 @@

FreezingPointDepressionOsmometryAnnotations - Comment - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + Preflabel + FreezingPointDepressionOsmometry Elucidation The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - Preflabel - FreezingPointDepressionOsmometry + Comment + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. Label @@ -3669,13 +3669,17 @@

GalvanostaticIntermittentTitrationTechniqueAnnotations - Comment - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + Preflabel + GalvanostaticIntermittentTitrationTechnique Elucidation Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + + Comment + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + Wikidatareference https://www.wikidata.org/wiki/Q120906986 @@ -3684,10 +3688,6 @@

GalvanostaticIntermittentTitrationTechniqueAltlabel GITT - - Preflabel - GalvanostaticIntermittentTitrationTechnique - Label GalvanostaticIntermittentTitrationTechnique @@ -3711,16 +3711,16 @@

GammaSpectrometryAnnotations - Comment - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + Preflabel + GammaSpectrometry Elucidation Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - Preflabel - GammaSpectrometry + Comment + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. Label @@ -3745,19 +3745,19 @@

GasAdsorptionPorosimetryAnnotations - Comment - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + Preflabel + GasAdsorptionPorosimetry Elucidation Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - Altlabel - GasAdsorptionPorosimetry + Comment + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - Preflabel + Altlabel GasAdsorptionPorosimetry @@ -3783,16 +3783,16 @@

Grinding Annotations - Comment - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + Preflabel + Grinding Elucidation Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - Preflabel - Grinding + Comment + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. Label @@ -3817,13 +3817,17 @@

HPPCAnnotations - Comment - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + Preflabel + HPPC Elucidation Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + + Comment + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + Altlabel HybridPulsePowerCharacterisation @@ -3832,10 +3836,6 @@

HPPCAltlabel HybridPulsePowerCharacterization - - Preflabel - HPPC - Label HPPC @@ -3859,16 +3859,16 @@

HardnessTestingAnnotations - Comment - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + Preflabel + HardnessTesting Elucidation A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - Preflabel - HardnessTesting + Comment + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. Label @@ -3893,14 +3893,14 @@

HardwareManufacturer Annotations - - Comment - - Preflabel HardwareManufacturer + + Comment + + Label HardwareManufacturer @@ -3924,14 +3924,14 @@

HardwareModelAnnotations - - Comment - - Preflabel HardwareModel + + Comment + + Label HardwareModel @@ -3955,16 +3955,16 @@

HazardAnnotations - Comment - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + Preflabel + Hazard Elucidation Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - Preflabel - Hazard + Comment + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. Label @@ -3989,16 +3989,16 @@

HolderAnnotations - Comment - An object which supports the specimen in the correct position for the characterisation process. + Preflabel + Holder Elucidation An object which supports the specimen in the correct position for the characterisation process. - Preflabel - Holder + Comment + An object which supports the specimen in the correct position for the characterisation process. Label @@ -4023,29 +4023,29 @@

HydrodynamicVoltammetryAnnotations - Comment - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + Preflabel + HydrodynamicVoltammetry Elucidation Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + + Comment + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + Wikidatareference https://www.wikidata.org/wiki/Q17028237 - Preflabel - HydrodynamicVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label HydrodynamicVoltammetry @@ -4069,20 +4069,20 @@

ICI

Annotations - Comment - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + Preflabel + ICI Elucidation Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - Altlabel - IntermittentCurrentInterruptionMethod + Comment + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - Preflabel - ICI + Altlabel + IntermittentCurrentInterruptionMethod Label @@ -4107,16 +4107,16 @@

ImpedimetryAnnotations - Comment - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Preflabel + Impedimetry Elucidation Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Preflabel - Impedimetry + Comment + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. Iupacreference @@ -4144,6 +4144,14 @@

InteractionVolumeAnnotations + + Preflabel + InteractionVolume + + + Elucidation + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + Comment In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. @@ -4160,14 +4168,6 @@

InteractionVolumeComment The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - - Elucidation - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - - - Preflabel - InteractionVolume - Example In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). @@ -4194,14 +4194,14 @@

IntermediateSampleAnnotations - - Comment - - Preflabel IntermediateSample + + Comment + + Label IntermediateSample @@ -4225,16 +4225,16 @@

IonChromatographyAnnotations - Comment - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + Preflabel + IonChromatography Elucidation Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - Preflabel - IonChromatography + Comment + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. Wikipediareference @@ -4263,20 +4263,20 @@

IonMobilitySpectrometryAnnotations - Comment - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + Preflabel + IonMobilitySpectrometry Elucidation Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - Altlabel - IMS + Comment + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - Preflabel - IonMobilitySpectrometry + Altlabel + IMS Label @@ -4301,20 +4301,20 @@

IsothermalMicrocalorimetryAnnotations - Comment - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + Preflabel + IsothermalMicrocalorimetry Elucidation Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - Altlabel - IMC + Comment + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - Preflabel - IsothermalMicrocalorimetry + Altlabel + IMC Label @@ -4339,16 +4339,16 @@

LaboratoryAnnotations - Comment - The laboratory where the whole characterisation process or some of its stages take place. + Preflabel + Laboratory Elucidation The laboratory where the whole characterisation process or some of its stages take place. - Preflabel - Laboratory + Comment + The laboratory where the whole characterisation process or some of its stages take place. Label @@ -4373,16 +4373,16 @@

LevelOfAutomationAnnotations - Comment - Describes the level of automation of the test. + Preflabel + LevelOfAutomation Elucidation Describes the level of automation of the test. - Preflabel - LevelOfAutomation + Comment + Describes the level of automation of the test. Label @@ -4407,16 +4407,16 @@

LevelOfExpertiseAnnotations - Comment - Describes the level of expertise required to carry out a process (the entire test or the data processing). + Preflabel + LevelOfExpertise Elucidation Describes the level of expertise required to carry out a process (the entire test or the data processing). - Preflabel - LevelOfExpertise + Comment + Describes the level of expertise required to carry out a process (the entire test or the data processing). Label @@ -4441,16 +4441,16 @@

LightScatteringAnnotations - Comment - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + Preflabel + LightScattering Elucidation Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - Preflabel - LightScattering + Comment + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. Label @@ -4475,8 +4475,8 @@

LinearChronopotentiometryAnnotations - Comment - Chronopotentiometry where the applied current is changed linearly. + Preflabel + LinearChronopotentiometry Elucidation @@ -4487,8 +4487,8 @@

LinearChronopotentiometrychronopotentiometry where the applied current is changed linearly - Preflabel - LinearChronopotentiometry + Comment + Chronopotentiometry where the applied current is changed linearly. Label @@ -4513,13 +4513,17 @@

LinearScanVoltammetryAnnotations - Comment - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + Preflabel + LinearScanVoltammetry Elucidation Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + + Comment + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + Wikidatareference https://www.wikidata.org/wiki/Q620700 @@ -4537,17 +4541,13 @@

LinearScanVoltammetryLinearSweepVoltammetry - Preflabel - LinearScanVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Linear_sweep_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label LinearScanVoltammetry @@ -4571,16 +4571,16 @@

MassSpectrometryAnnotations - Comment - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + Preflabel + MassSpectrometry Elucidation Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - Preflabel - MassSpectrometry + Comment + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. Label @@ -4605,20 +4605,20 @@

MeasurementParameterAnnotations - Comment - Describes the main input parameters that are needed to acquire the signal. + Preflabel + MeasurementParameter - Comment + Elucidation Describes the main input parameters that are needed to acquire the signal. - Elucidation + Comment Describes the main input parameters that are needed to acquire the signal. - Preflabel - MeasurementParameter + Comment + Describes the main input parameters that are needed to acquire the signal. Label @@ -4642,6 +4642,14 @@

MeasurementSystemAdjustmentAnnotations + + Preflabel + MeasurementSystemAdjustment + + + Elucidation + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Comment Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. @@ -4655,21 +4663,13 @@

MeasurementSystemAdjustmentActivity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Elucidation - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Definition + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. Altlabel MeasurementParameterAdjustment - - Preflabel - MeasurementSystemAdjustment - - - Definition - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Vimterm Adjustment @@ -4701,20 +4701,20 @@

MeasurementTimeAnnotations - Comment - The overall time needed to acquire the measurement data. + Preflabel + MeasurementTime - Comment + Elucidation The overall time needed to acquire the measurement data. - Elucidation + Comment The overall time needed to acquire the measurement data. - Preflabel - MeasurementTime + Comment + The overall time needed to acquire the measurement data. Label @@ -4739,16 +4739,16 @@

MechanicalTestingAnnotations - Comment - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + Preflabel + MechanicalTesting Elucidation Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - Preflabel - MechanicalTesting + Comment + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. Wikipediareference @@ -4777,20 +4777,20 @@

MembraneOsmometryAnnotations - Comment - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + Preflabel + MembraneOsmometry - Comment + Elucidation In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - Elucidation + Comment In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - Preflabel - MembraneOsmometry + Comment + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. Label @@ -4815,20 +4815,20 @@

MercuryPorosimetryAnnotations - Comment - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + Preflabel + MercuryPorosimetry - Comment + Elucidation A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - Elucidation + Comment A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - Preflabel - MercuryPorosimetry + Comment + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. Label @@ -4853,20 +4853,20 @@

MicroscopyAnnotations - Comment - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Preflabel + Microscopy - Comment + Elucidation Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Elucidation + Comment Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Preflabel - Microscopy + Comment + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. Label @@ -4891,16 +4891,16 @@

Milling¶ Annotations - Comment - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + Preflabel + Milling Elucidation Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - Preflabel - Milling + Comment + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. Label @@ -4925,20 +4925,20 @@

Mounting Annotations - Comment - The sample is mounted on a holder. + Preflabel + Mounting - Comment + Elucidation The sample is mounted on a holder. - Elucidation + Comment The sample is mounted on a holder. - Preflabel - Mounting + Comment + The sample is mounted on a holder. Label @@ -4967,20 +4967,20 @@

NanoindentationAnnotations - Comment - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + Preflabel + Nanoindentation - Comment - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Elucidation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Elucidation + Comment Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Preflabel - Nanoindentation + Comment + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. Example @@ -5009,20 +5009,20 @@

NeutronSpinEchoSpectroscopyAnnotations - Comment - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + Preflabel + NeutronSpinEchoSpectroscopy Elucidation Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - Altlabel - NSE + Comment + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - Preflabel - NeutronSpinEchoSpectroscopy + Altlabel + NSE Label @@ -5047,16 +5047,16 @@

NexafsAnnotations - Comment - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Preflabel + Nexafs Elucidation Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - Preflabel - Nexafs + Comment + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. Label @@ -5081,20 +5081,20 @@

NormalPulseVoltammetryAnnotations - Comment - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + Preflabel + NormalPulseVoltammetry Elucidation Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - Altlabel - NPV + Comment + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - Preflabel - NormalPulseVoltammetry + Altlabel + NPV Iupacreference @@ -5123,13 +5123,17 @@

NuclearMagneticResonanceAnnotations - Comment - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + Preflabel + NuclearMagneticResonance Elucidation Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + + Comment + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + Altlabel Magnetic resonance spectroscopy (MRS) @@ -5138,10 +5142,6 @@

NuclearMagneticResonanceAltlabel NMR - - Preflabel - NuclearMagneticResonance - Label NuclearMagneticResonance @@ -5165,20 +5165,20 @@

OpenCircuitHoldAnnotations - Comment - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + Preflabel + OpenCircuitHold Elucidation A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - Altlabel - OCVHold + Comment + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - Preflabel - OpenCircuitHold + Altlabel + OCVHold Label @@ -5203,16 +5203,16 @@

Operator Annotations - Comment - The human operator who takes care of the whole characterisation method or sub-processes/stages. + Preflabel + Operator Elucidation The human operator who takes care of the whole characterisation method or sub-processes/stages. - Preflabel - Operator + Comment + The human operator who takes care of the whole characterisation method or sub-processes/stages. Label @@ -5245,16 +5245,16 @@

OpticalMicroscopyAnnotations - Comment - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + Preflabel + OpticalMicroscopy Elucidation Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - Preflabel - OpticalMicroscopy + Comment + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. Label @@ -5278,14 +5278,14 @@

OpticalTestingAnnotations - - Comment - - Preflabel OpticalTesting + + Comment + + Label OpticalTesting @@ -5309,16 +5309,16 @@

OsmometryAnnotations - Comment - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Preflabel + Osmometry Elucidation Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - Preflabel - Osmometry + Comment + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). Label @@ -5343,20 +5343,20 @@

OutlierRemovalAnnotations - Comment - Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. + Preflabel + OutlierRemoval - Comment - + Elucidation + Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - Elucidation + Comment Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - Preflabel - OutlierRemoval + Comment + Label @@ -5381,16 +5381,16 @@

PhotoluminescenceMicroscopyAnnotations - Comment - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + Preflabel + PhotoluminescenceMicroscopy Elucidation Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - Preflabel - PhotoluminescenceMicroscopy + Comment + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. Label @@ -5415,20 +5415,20 @@

PhysicsOfInteractionAnnotations - Comment - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + Preflabel + PhysicsOfInteraction - Comment - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + Elucidation + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Elucidation + Comment Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Preflabel - PhysicsOfInteraction + Comment + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). Example @@ -5461,16 +5461,16 @@

PolishingAnnotations - Comment - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Preflabel + Polishing Elucidation Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - Preflabel - Polishing + Comment + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. Label @@ -5494,14 +5494,14 @@

PorosimetryAnnotations - - Comment - - Preflabel Porosimetry + + Comment + + Label Porosimetry @@ -5524,6 +5524,14 @@

PostProcessingModelAnnotations + + Preflabel + PostProcessingModel + + + Elucidation + Mathematical model used to process data. + Comment The PostProcessingModel use is mainly intended to get secondary data from primary data. @@ -5540,14 +5548,6 @@

PostProcessingModelComment The PostProcessingModel use is mainly intended to get secondary data from primary data. - - Elucidation - Mathematical model used to process data. - - - Preflabel - PostProcessingModel - Label PostProcessingModel @@ -5570,6 +5570,18 @@

PotentiometricStrippingAnalysisAnnotations + + Preflabel + PotentiometricStrippingAnalysis + + + Elucidation + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + + + Elucidation + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + Comment Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. @@ -5590,22 +5602,10 @@

PotentiometricStrippingAnalysisComment the time between changes in potential in step 2 is related to the concentration of analyte in the solution - - Elucidation - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - - - Elucidation - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - Altlabel PSA - - Preflabel - PotentiometricStrippingAnalysis - Label PotentiometricStrippingAnalysis @@ -5629,29 +5629,29 @@

PotentiometryAnnotations - Comment - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Preflabel + Potentiometry Elucidation Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + + Comment + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Wikidatareference https://www.wikidata.org/wiki/Q900632 - Preflabel - Potentiometry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label Potentiometry @@ -5675,16 +5675,16 @@

PreparedSampleAnnotations - Comment - The sample after a preparation process. + Preflabel + PreparedSample Elucidation The sample after a preparation process. - Preflabel - PreparedSample + Comment + The sample after a preparation process. Label @@ -5709,16 +5709,16 @@

PrimaryDataAnnotations - Comment - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + Preflabel + PrimaryData Elucidation Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - Preflabel - PrimaryData + Comment + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. Example @@ -5746,6 +5746,14 @@

Probe Annotations + + Preflabel + Probe + + + Elucidation + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + Comment Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. @@ -5754,14 +5762,6 @@

Probe Comment - - Elucidation - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - - - Preflabel - Probe - Example In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. @@ -5805,20 +5805,20 @@

ProbeSampleInteractionAnnotations - Comment - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + Preflabel + ProbeSampleInteraction - Comment - + Elucidation + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - Elucidation + Comment Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - Preflabel - ProbeSampleInteraction + Comment + Label @@ -5859,20 +5859,20 @@

ProcessingReproducibilityAnnotations - Comment - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + Preflabel + ProcessingReproducibility - Comment - + Elucidation + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - Elucidation + Comment Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - Preflabel - ProcessingReproducibility + Comment + Label @@ -5897,20 +5897,20 @@

ProfilometryAnnotations - Comment - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + Preflabel + Profilometry - Comment - + Elucidation + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - Elucidation + Comment Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - Preflabel - Profilometry + Comment + Label @@ -5935,25 +5935,25 @@

PseudoOpenCircuitVoltageMethodAnnotations - Comment + Preflabel + PseudoOpenCircuitVoltageMethod + + + Elucidation a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage Comment - + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - Elucidation - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + Comment + Altlabel PseudoOCV - - Preflabel - PseudoOpenCircuitVoltageMethod - Label PseudoOpenCircuitVoltageMethod @@ -5977,20 +5977,20 @@

PulsedElectroacousticMethodAnnotations - Comment - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + Preflabel + PulsedElectroacousticMethod - Comment - + Elucidation + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - Elucidation + Comment The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - Preflabel - PulsedElectroacousticMethod + Comment + Iupacreference @@ -6019,20 +6019,20 @@

RamanSpectroscopyAnnotations - Comment - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + Preflabel + RamanSpectroscopy - Comment - + Elucidation + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - Elucidation + Comment Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified.

Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information.

Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - Preflabel - RamanSpectroscopy + Comment + Label @@ -6057,16 +6057,16 @@

RationaleAnnotations - Comment - A set of reasons or a logical basis for a decision or belief + Preflabel + Rationale Elucidation A set of reasons or a logical basis for a decision or belief - Preflabel - Rationale + Comment + A set of reasons or a logical basis for a decision or belief Label @@ -6091,32 +6091,32 @@

RawData¶ Annotations - Comment - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + Preflabel + RawData - Comment + Elucidation Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - Comment - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + Elucidation + The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. Comment - + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - Elucidation + Comment Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - Elucidation - The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. + Comment + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - Preflabel - RawData + Comment + Example @@ -6152,14 +6152,14 @@

RawSampleAnnotations - - Comment - - Preflabel RawSample + + Comment + + Label RawSample @@ -6182,6 +6182,14 @@

ReferenceSampleAnnotations + + Preflabel + ReferenceSample + + + Elucidation + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Comment Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination
NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property
value.
NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.
NOTE 3 Reference materials can be used for measurement precision evaluation and quality control.
EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.
NOTE 4 Properties of reference materials can be quantities or nominal properties.
NOTE 5 A reference material is sometimes incorporated into a specially fabricated device.
EXAMPLE Spheres of uniform size mounted on a microscope slide.
NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to
which International Units (IU) have been assigned by the World Health Organization.
NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality
control, but not both.
NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference
materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.

-- International Vocabulary of Metrology(VIM) @@ -6195,8 +6203,12 @@

ReferenceSample - Elucidation - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Definition + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination
NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property
value.
NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.
NOTE 3 Reference materials can be used for measurement precision evaluation and quality control.
EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.
NOTE 4 Properties of reference materials can be quantities or nominal properties.
NOTE 5 A reference material is sometimes incorporated into a specially fabricated device.
EXAMPLE Spheres of uniform size mounted on a microscope slide.
NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to
which International Units (IU) have been assigned by the World Health Organization.
NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality
control, but not both.
NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference
materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.

-- International Vocabulary of Metrology(VIM) + + + Definition + Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] Altlabel @@ -6210,18 +6222,6 @@

ReferenceSampleAltlabel ReferenceSpecimen - - Preflabel - ReferenceSample - - - Definition - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination
NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property
value.
NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material.
NOTE 3 Reference materials can be used for measurement precision evaluation and quality control.
EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control.
NOTE 4 Properties of reference materials can be quantities or nominal properties.
NOTE 5 A reference material is sometimes incorporated into a specially fabricated device.
EXAMPLE Spheres of uniform size mounted on a microscope slide.
NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to
which International Units (IU) have been assigned by the World Health Organization.
NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality
control, but not both.
NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference
materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination.

-- International Vocabulary of Metrology(VIM) - - - Definition - Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] - Vimterm Reference material @@ -6248,6 +6248,14 @@

Sample Annotations + + Preflabel + Sample + + + Elucidation + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. + Comment Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. @@ -6264,18 +6272,10 @@

SampleComment Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - - Elucidation - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. - Altlabel Specimen - - Preflabel - Sample - Label Sample @@ -6299,11 +6299,11 @@

SampleExtractionAnnotations - Comment - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + Preflabel + SampleExtraction - Comment + Elucidation Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. @@ -6312,15 +6312,15 @@

SampleExtractionComment - + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - Elucidation - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + Comment + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - Preflabel - SampleExtraction + Comment + Label @@ -6375,14 +6375,14 @@

SampleExtractionInstrumentAnnotations - - Comment - - Preflabel SampleExtractionInstrument + + Comment + + Label SampleExtractionInstrument @@ -6406,20 +6406,20 @@

SampleInspectionAnnotations - Comment - Analysis of the sample in order to determine information that are relevant for the characterisation method. + Preflabel + SampleInspection - Comment - + Elucidation + Analysis of the sample in order to determine information that are relevant for the characterisation method. - Elucidation + Comment Analysis of the sample in order to determine information that are relevant for the characterisation method. - Preflabel - SampleInspection + Comment + Example @@ -6463,14 +6463,14 @@

SampleInspectionInstrumentAnnotations - - Comment - - Preflabel SampleInspectionInstrument + + Comment + + Label SampleInspectionInstrument @@ -6494,20 +6494,20 @@

SampleInspectionParameterAnnotations - Comment - Parameter used for the sample inspection process + Preflabel + SampleInspectionParameter - Comment - + Elucidation + Parameter used for the sample inspection process - Elucidation + Comment Parameter used for the sample inspection process - Preflabel - SampleInspectionParameter + Comment + Label @@ -6532,20 +6532,20 @@

SamplePreparationAnnotations - Comment - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + Preflabel + SamplePreparation - Comment - + Elucidation + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - Elucidation + Comment Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - Preflabel - SamplePreparation + Comment + Label @@ -6607,14 +6607,14 @@

SamplePreparationInstrumentAnnotations - - Comment - - Preflabel SamplePreparationInstrument + + Comment + + Label SamplePreparationInstrument @@ -6638,20 +6638,20 @@

SamplePreparationParameterAnnotations - Comment - Parameter used for the sample preparation process + Preflabel + SamplePreparationParameter - Comment - + Elucidation + Parameter used for the sample preparation process - Elucidation + Comment Parameter used for the sample preparation process - Preflabel - SamplePreparationParameter + Comment + Label @@ -6675,6 +6675,14 @@

SampledDCPolarography Annotations + + Preflabel + SampledDCPolarography + + + Elucidation + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + Comment DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. @@ -6687,18 +6695,10 @@

SampledDCPolarographyComment - - Elucidation - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - Altlabel TASTPolarography - - Preflabel - SampledDCPolarography - Iupacreference https://doi.org/10.1515/pac-2018-0109 @@ -6726,25 +6726,25 @@

ScanningAugerElectronMicroscopyAnnotations - Comment + Preflabel + ScanningAugerElectronMicroscopy + + + Elucidation Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. Comment - + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - Elucidation - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + Comment + Altlabel AES - - Preflabel - ScanningAugerElectronMicroscopy - Label ScanningAugerElectronMicroscopy @@ -6768,25 +6768,25 @@

ScanningElectronMicroscopyAnnotations - Comment + Preflabel + ScanningElectronMicroscopy + + + Elucidation The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. Comment - + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - Elucidation - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + Comment + Altlabel SEM - - Preflabel - ScanningElectronMicroscopy - Label ScanningElectronMicroscopy @@ -6810,25 +6810,25 @@

ScanningKelvinProbeAnnotations - Comment + Preflabel + ScanningKelvinProbe + + + Elucidation Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. Comment - + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - Elucidation - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + Comment + Altlabel SKB - - Preflabel - ScanningKelvinProbe - Label ScanningKelvinProbe @@ -6852,20 +6852,20 @@

ScanningProbeMicroscopyAnnotations - Comment - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + Preflabel + ScanningProbeMicroscopy - Comment - + Elucidation + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - Elucidation + Comment Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - Preflabel - ScanningProbeMicroscopy + Comment + Label @@ -6890,25 +6890,25 @@

ScanningTunnelingMicroscopyAnnotations - Comment + Preflabel + ScanningTunnelingMicroscopy + + + Elucidation Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. Comment - + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - Elucidation - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + Comment + Altlabel STM - - Preflabel - ScanningTunnelingMicroscopy - Label ScanningTunnelingMicroscopy @@ -6931,14 +6931,14 @@

ScatteringAndDiffractionAnnotations - - Comment - - Preflabel ScatteringAndDiffraction + + Comment + + Label ScatteringAndDiffraction @@ -6962,25 +6962,25 @@

SecondaryDataAnnotations - Comment + Preflabel + SecondaryData + + + Elucidation Data resulting from the application of post-processing or model generation to other data. Comment - + Data resulting from the application of post-processing or model generation to other data. - Elucidation - Data resulting from the application of post-processing or model generation to other data. + Comment + Altlabel Elaborated data - - Preflabel - SecondaryData - Example Deconvoluted curves @@ -7012,25 +7012,25 @@

SecondaryIonMassSpectrometryAnnotations - Comment + Preflabel + SecondaryIonMassSpectrometry + + + Elucidation Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. Comment - + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - Elucidation - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + Comment + Altlabel SIMS - - Preflabel - SecondaryIonMassSpectrometry - Label SecondaryIonMassSpectrometry @@ -7053,14 +7053,14 @@

ShearOrTorsionTesting Annotations - - Comment - - Preflabel ShearOrTorsionTesting + + Comment + + Label ShearOrTorsionTesting @@ -7083,6 +7083,14 @@

Signal Annotations + + Preflabel + Signal + + + Elucidation + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Comment Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. @@ -7103,14 +7111,6 @@

SignalComment - - Elucidation - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - - - Preflabel - Signal - Definition According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). @@ -7138,20 +7138,20 @@

SpectrometryAnnotations - Comment - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + Preflabel + Spectrometry - Comment - + Elucidation + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - Elucidation + Comment Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - Preflabel - Spectrometry + Comment + Label @@ -7176,20 +7176,20 @@

SpectroscopyAnnotations - Comment - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + Preflabel + Spectroscopy - Comment - + Elucidation + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - Elucidation + Comment Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - Preflabel - Spectroscopy + Comment + Label @@ -7213,6 +7213,14 @@

SquareWaveVoltammetry Annotations + + Preflabel + SquareWaveVoltammetry + + + Elucidation + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + Comment Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. @@ -7233,10 +7241,6 @@

SquareWaveVoltammetryComment - - Elucidation - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - Wikidatareference https://www.wikidata.org/wiki/Q4016323 @@ -7254,17 +7258,13 @@

SquareWaveVoltammetrySWV - Preflabel - SquareWaveVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Squarewave_voltammetry - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label SquareWaveVoltammetry @@ -7288,20 +7288,20 @@

StepChronopotentiometryAnnotations - Comment - chronopotentiometry where the applied current is changed in steps + Preflabel + StepChronopotentiometry - Comment - + Elucidation + chronopotentiometry where the applied current is changed in steps - Elucidation + Comment chronopotentiometry where the applied current is changed in steps - Preflabel - StepChronopotentiometry + Comment + Label @@ -7325,6 +7325,14 @@

StrippingVoltammetry Annotations + + Preflabel + StrippingVoltammetry + + + Elucidation + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + Comment Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. @@ -7354,21 +7362,13 @@

StrippingVoltammetry - Elucidation - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - - - Preflabel - StrippingVoltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Wikipediareference https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label StrippingVoltammetry @@ -7391,14 +7391,14 @@

SynchrotronAnnotations - - Comment - - Preflabel Synchrotron + + Comment + + Label Synchrotron @@ -7422,25 +7422,25 @@

TensileTestingAnnotations - Comment + Preflabel + TensileTesting + + + Elucidation Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. Comment - + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - Elucidation - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. + Comment + Altlabel TensionTest - - Preflabel - TensileTesting - Label TensileTesting @@ -7464,25 +7464,25 @@

ThermochemicalTestingAnnotations - Comment + Preflabel + ThermochemicalTesting + + + Elucidation Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. Comment - + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - Elucidation - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + Comment + Altlabel TMA - - Preflabel - ThermochemicalTesting - Label ThermochemicalTesting @@ -7506,25 +7506,25 @@

ThermogravimetryAnnotations - Comment + Preflabel + Thermogravimetry + + + Elucidation Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). Comment - + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - Elucidation - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + Comment + Altlabel TGA - - Preflabel - Thermogravimetry - Label Thermogravimetry @@ -7548,16 +7548,20 @@

ThreePointBendingTestingAnnotations - Comment + Preflabel + ThreePointBendingTesting + + + Elucidation Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample Comment - + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - Elucidation - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + Comment + Wikidatareference @@ -7567,10 +7571,6 @@

ThreePointBendingTestingAltlabel ThreePointFlexuralTest - - Preflabel - ThreePointBendingTesting - Wikipediareference https://en.wikipedia.org/wiki/Three-point_flexural_test @@ -7598,16 +7598,16 @@

TomographyAnnotations - Comment - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + Preflabel + Tomography Elucidation Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - Preflabel - Tomography + Comment + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. Label @@ -7632,25 +7632,25 @@

TransmissionElectronMicroscopyAnnotations - Comment + Preflabel + TransmissionElectronMicroscopy + + + Elucidation Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. Comment - + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - Elucidation - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + Comment + Altlabel TEM - - Preflabel - TransmissionElectronMicroscopy - Label TransmissionElectronMicroscopy @@ -7674,16 +7674,16 @@

UltrasonicTestingAnnotations - Comment - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + Preflabel + UltrasonicTesting Elucidation Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - Preflabel - UltrasonicTesting + Comment + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. Label @@ -7708,16 +7708,16 @@

UserCase Annotations - Comment - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + Preflabel + UserCase Elucidation High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - Preflabel - UserCase + Comment + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. Label @@ -7739,7 +7739,15 @@

VaporPressureDepressionOsmometryhttps://w3id.org/emmo/domain/characterisation-methodology/chameo#VaporPressureDepressionOsmometry - Annotations + Annotations + + + Preflabel + VaporPressureDepressionOsmometry + + + Elucidation + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. Comment @@ -7749,18 +7757,10 @@

VaporPressureDepressionOsmometryComment - - Elucidation - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - Altlabel VPO - - Preflabel - VaporPressureDepressionOsmometry - Label VaporPressureDepressionOsmometry @@ -7784,25 +7784,25 @@

ViscometryAnnotations - Comment + Preflabel + Viscometry + + + Elucidation Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. Comment - + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - Elucidation - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + Comment + Altlabel Viscosity - - Preflabel - Viscometry - Label Viscometry @@ -7825,6 +7825,14 @@

VoltammetryAnnotations + + Preflabel + Voltammetry + + + Elucidation + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + Comment The current vs. potential (I-E) curve is called a voltammogram. @@ -7837,29 +7845,21 @@

VoltammetryComment - - Elucidation - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - Wikidatareference https://www.wikidata.org/wiki/Q904093 - Preflabel - Voltammetry - - - Wikipediareference - https://en.wikipedia.org/wiki/Voltammetry + Iupacreference + https://doi.org/10.1515/pac-2018-0109 Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikipediareference + https://en.wikipedia.org/wiki/Voltammetry Label @@ -7884,16 +7884,16 @@

VoltammetryAtARotatingDiskElectrodeAnnotations - Comment - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + Preflabel + VoltammetryAtARotatingDiskElectrode Elucidation Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - Preflabel - VoltammetryAtARotatingDiskElectrode + Comment + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation Iupacreference @@ -7922,16 +7922,16 @@

WearTestingAnnotations - Comment - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + Preflabel + WearTesting Elucidation A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - Preflabel - WearTesting + Comment + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. Label @@ -7956,13 +7956,17 @@

XpsVariableKineticAnnotations - Comment - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + Preflabel + XpsVariableKinetic Elucidation X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + + Comment + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + Altlabel Electron spectroscopy for chemical analysis (ESCA) @@ -7971,10 +7975,6 @@

XpsVariableKineticAltlabel X-ray photoelectron spectroscopy (XPS) - - Preflabel - XpsVariableKinetic - Label XpsVariableKinetic @@ -7998,16 +7998,20 @@

XrayDiffractionAnnotations - Comment + Preflabel + XrayDiffraction + + + Elucidation a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice Comment - + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - Elucidation - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + Comment + Wikidatareference @@ -8017,10 +8021,6 @@

XrayDiffractionAltlabel XRD - - Preflabel - XrayDiffraction - Wikipediareference https://en.wikipedia.org/wiki/X-ray_crystallography @@ -8048,25 +8048,25 @@

XrayPowderDiffractionAnnotations - Comment + Preflabel + XrayPowderDiffraction + + + Elucidation a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample Comment - + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - Elucidation - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + Comment + Altlabel XRPD - - Preflabel - XrayPowderDiffraction - Wikipediareference https://en.wikipedia.org/wiki/Powder_diffraction @@ -8093,14 +8093,14 @@

XrdGrazingIncidenceAnnotations - - Comment - - Preflabel XrdGrazingIncidence + + Comment + + Label XrdGrazingIncidence @@ -8126,14 +8126,14 @@

hasAccessConditionsAnnotations - - Comment - - Preflabel hasAccessConditions + + Comment + + Label hasAccessConditions @@ -8182,6 +8182,10 @@

hasBeginCharacterisationTaskAnnotations + + Preflabel + hasBeginCharacterisationTask + Comment @@ -8190,10 +8194,6 @@

hasBeginCharacterisationTaskAltlabel hasBeginCharacterizationTask - - Preflabel - hasBeginCharacterisationTask - Label hasBeginCharacterisationTask @@ -8220,6 +8220,10 @@

hasCharacterisationComponentAnnotations + + Preflabel + hasCharacterisationComponent + Comment @@ -8228,10 +8232,6 @@

hasCharacterisationComponentAltlabel hasCharacterizationComponent - - Preflabel - hasCharacterisationComponent - Label hasCharacterisationComponent @@ -8258,6 +8258,10 @@

hasCharacterisationEnvironmentAnnotations + + Preflabel + hasCharacterisationEnvironment + Comment @@ -8266,10 +8270,6 @@

hasCharacterisationEnvironmentAltlabel hasCharacterizationEnvironment - - Preflabel - hasCharacterisationEnvironment - Label hasCharacterisationEnvironment @@ -8296,6 +8296,10 @@

hasCharacterisationEnvironmentPropertyAnnotations + + Preflabel + hasCharacterisationEnvironmentProperty + Comment @@ -8304,10 +8308,6 @@

hasCharacterisationEnvironmentPropertyAltlabel hasCharacterizationEnvironmentProperty - - Preflabel - hasCharacterisationEnvironmentProperty - Label hasCharacterisationEnvironmentProperty @@ -8334,6 +8334,10 @@

hasCharacterisationInputAnnotations + + Preflabel + hasCharacterisationInput + Comment @@ -8342,10 +8346,6 @@

hasCharacterisationInputAltlabel hasCharacterizationInput - - Preflabel - hasCharacterisationInput - Label hasCharacterisationInput @@ -8372,6 +8372,10 @@

hasCharacterisationMeasurementInstrumentAnnotations + + Preflabel + hasCharacterisationMeasurementInstrument + Comment @@ -8380,10 +8384,6 @@

hasCharacterisationMeasurementInstrumentAltlabel hasCharacterizationMeasurementInstrument - - Preflabel - hasCharacterisationMeasurementInstrument - Label hasCharacterisationMeasurementInstrument @@ -8410,6 +8410,10 @@

hasCharacterisationOutputAnnotations + + Preflabel + hasCharacterisationOutput + Comment @@ -8418,10 +8422,6 @@

hasCharacterisationOutputAltlabel hasCharacterizationOutput - - Preflabel - hasCharacterisationOutput - Label hasCharacterisationOutput @@ -8448,14 +8448,14 @@

hasCharacterisationProcedureValidationAnnotations - - Comment - - Preflabel hasCharacterisationProcedureValidation + + Comment + + Label hasCharacterisationProcedureValidation @@ -8482,6 +8482,10 @@

hasCharacterisationPropertyAnnotations + + Preflabel + hasCharacterisationProperty + Comment @@ -8490,10 +8494,6 @@

hasCharacterisationPropertyAltlabel hasCharacterizationProperty - - Preflabel - hasCharacterisationProperty - Label hasCharacterisationProperty @@ -8520,6 +8520,10 @@

hasCharacterisationSoftwareAnnotations + + Preflabel + hasCharacterisationSoftware + Comment @@ -8528,10 +8532,6 @@

hasCharacterisationSoftwareAltlabel hasCharacterizationSoftware - - Preflabel - hasCharacterisationSoftware - Label hasCharacterisationSoftware @@ -8558,6 +8558,10 @@

hasCharacterisationTask Annotations + + Preflabel + hasCharacterisationTask + Comment @@ -8566,10 +8570,6 @@

hasCharacterisationTaskAltlabel hasCharacterizationTask - - Preflabel - hasCharacterisationTask - Label hasCharacterisationTask @@ -8596,14 +8596,14 @@

hasDataAcquisitionRate Annotations - - Comment - - Preflabel hasDataAcquisitionRate + + Comment + + Label hasDataAcquisitionRate @@ -8630,14 +8630,14 @@

hasDataProcessingThroughCalibrationAnnotations - - Comment - - Preflabel hasDataProcessingThroughCalibration + + Comment + + Label hasDataProcessingThroughCalibration @@ -8664,14 +8664,14 @@

hasDataQualityAnnotations - - Comment - - Preflabel hasDataQuality + + Comment + + Label hasDataQuality @@ -8698,14 +8698,14 @@

hasDatasetAnnotations - - Comment - - Preflabel hasDataset + + Comment + + Label hasDataset @@ -8732,14 +8732,14 @@

hasDateOfCalibration Annotations - - Comment - - Preflabel hasDateOfCalibration + + Comment + + Label hasDateOfCalibration @@ -8766,6 +8766,10 @@

hasEndCharacterisationTaskAnnotations + + Preflabel + hasEndCharacterisationTask + Comment @@ -8774,10 +8778,6 @@

hasEndCharacterisationTaskAltlabel hasEndCharacterizationTask - - Preflabel - hasEndCharacterisationTask - Label hasEndCharacterisationTask @@ -8804,14 +8804,14 @@

hasHardwareSpecificationAnnotations - - Comment - - Preflabel hasHardwareSpecification + + Comment + + Label hasHardwareSpecification @@ -8838,14 +8838,14 @@

hasHazardAnnotations - - Comment - - Preflabel hasHazard + + Comment + + Label hasHazard @@ -8872,14 +8872,14 @@

hasHolderAnnotations - - Comment - - Preflabel hasHolder + + Comment + + Label hasHolder @@ -8906,14 +8906,14 @@

hasInstrumentForCalibrationAnnotations - - Comment - - Preflabel hasInstrumentForCalibration + + Comment + + Label hasInstrumentForCalibration @@ -8940,14 +8940,14 @@

hasInteractionVolume Annotations - - Comment - - Preflabel hasInteractionVolume + + Comment + + Label hasInteractionVolume @@ -8974,14 +8974,14 @@

hasInteractionWithProbe Annotations - - Comment - - Preflabel hasInteractionWithProbe + + Comment + + Label hasInteractionWithProbe @@ -9008,14 +9008,14 @@

hasInteractionWithSampleAnnotations - - Comment - - Preflabel hasInteractionWithSample + + Comment + + Label hasInteractionWithSample @@ -9042,14 +9042,14 @@

hasLab Annotations - - Comment - - Preflabel hasLab + + Comment + + Label hasLab @@ -9076,14 +9076,14 @@

hasLevelOfAutomation Annotations - - Comment - - Preflabel hasLevelOfAutomation + + Comment + + Label hasLevelOfAutomation @@ -9111,16 +9111,16 @@

hasManufacturerAnnotations - Comment - A string representing the Manufacturer of a CharacterisationHardware + Preflabel + hasManufacturer Elucidation A string representing the Manufacturer of a CharacterisationHardware - Preflabel - hasManufacturer + Comment + A string representing the Manufacturer of a CharacterisationHardware Label @@ -9148,14 +9148,14 @@

hasMeasurementDetector Annotations - - Comment - - Preflabel hasMeasurementDetector + + Comment + + Label hasMeasurementDetector @@ -9182,14 +9182,14 @@

hasMeasurementParameter Annotations - - Comment - - Preflabel hasMeasurementParameter + + Comment + + Label hasMeasurementParameter @@ -9216,14 +9216,14 @@

hasMeasurementProbeAnnotations - - Comment - - Preflabel hasMeasurementProbe + + Comment + + Label hasMeasurementProbe @@ -9250,14 +9250,14 @@

hasMeasurementSample Annotations - - Comment - - Preflabel hasMeasurementSample + + Comment + + Label hasMeasurementSample @@ -9284,14 +9284,14 @@

hasMeasurementTimeAnnotations - - Comment - - Preflabel hasMeasurementTime + + Comment + + Label hasMeasurementTime @@ -9319,16 +9319,16 @@

hasModel Annotations - Comment - A string representing the model of a CharacterisationHardware + Preflabel + hasModel Elucidation A string representing the model of a CharacterisationHardware - Preflabel - hasModel + Comment + A string representing the model of a CharacterisationHardware Label @@ -9356,14 +9356,14 @@

hasOperatorAnnotations - - Comment - - Preflabel hasOperator + + Comment + + Label hasOperator @@ -9390,14 +9390,14 @@

hasPeerReviewedArticle Annotations - - Comment - - Preflabel hasPeerReviewedArticle + + Comment + + Label hasPeerReviewedArticle @@ -9424,14 +9424,14 @@

hasPhysicsOfInteraction Annotations - - Comment - - Preflabel hasPhysicsOfInteraction + + Comment + + Label hasPhysicsOfInteraction @@ -9458,14 +9458,14 @@

hasPostProcessingModel Annotations - - Comment - - Preflabel hasPostProcessingModel + + Comment + + Label hasPostProcessingModel @@ -9492,14 +9492,14 @@

hasProcessingReproducibilityAnnotations - - Comment - - Preflabel hasProcessingReproducibility + + Comment + + Label hasProcessingReproducibility @@ -9526,14 +9526,14 @@

hasReferenceSampleAnnotations - - Comment - - Preflabel hasReferenceSample + + Comment + + Label hasReferenceSample @@ -9561,14 +9561,14 @@

hasSampleBeforeSamplePreparationAnnotations - - Comment - - Preflabel hasSampleBeforeSamplePreparation + + Comment + + Label hasSampleBeforeSamplePreparation @@ -9599,14 +9599,14 @@

hasSampleForInspection Annotations - - Comment - - Preflabel hasSampleForInspection + + Comment + + Label hasSampleForInspection @@ -9633,14 +9633,14 @@

hasSampleInspectionInstrumentAnnotations - - Comment - - Preflabel hasSampleInspectionInstrument + + Comment + + Label hasSampleInspectionInstrument @@ -9667,14 +9667,14 @@

hasSampleInspectionParameterAnnotations - - Comment - - Preflabel hasSampleInspectionParameter + + Comment + + Label hasSampleInspectionParameter @@ -9701,14 +9701,14 @@

hasSamplePreparationInstrumentAnnotations - - Comment - - Preflabel hasSamplePreparationInstrument + + Comment + + Label hasSamplePreparationInstrument @@ -9735,14 +9735,14 @@

hasSamplePreparationParameterAnnotations - - Comment - - Preflabel hasSamplePreparationParameter + + Comment + + Label hasSamplePreparationParameter @@ -9769,14 +9769,14 @@

hasSampledSampleAnnotations - - Comment - - Preflabel hasSampledSample + + Comment + + Label hasSampledSample @@ -9804,16 +9804,16 @@

hasUniqueIDAnnotations - Comment - A string representing the UniqueID of a CharacterisationHardware + Preflabel + hasUniqueID Elucidation A string representing the UniqueID of a CharacterisationHardware - Preflabel - hasUniqueID + Comment + A string representing the UniqueID of a CharacterisationHardware Label @@ -9881,14 +9881,14 @@

requiresLevelOfExpertiseAnnotations - - Comment - - Preflabel requiresLevelOfExpertise + + Comment + + Label requiresLevelOfExpertise diff --git a/chameo.owl b/chameo.owl index 6b7baa3..55370d1 100644 --- a/chameo.owl +++ b/chameo.owl @@ -5,8 +5,8 @@ xmlns:owl="http://www.w3.org/2002/07/owl#" xml:base="https://w3id.org/emmo/domain/characterisation-methodology/chameo" xmlns="https://w3id.org/emmo/domain/characterisation-methodology/chameo#" - xmlns:swrl="http://www.w3.org/2003/11/swrl#" xmlns:emmo="https://w3id.org/emmo#" + xmlns:swrl="http://www.w3.org/2003/11/swrl#" xmlns:term="http://purl.org/dc/terms/" xmlns:core="http://www.w3.org/2004/02/skos/core#" xmlns:x_0.1="http://xmlns.com/foaf/0.1/" @@ -51,33 +51,101 @@ https://raw.githubusercontent.com/emmo-repo/domain-characterisation-methodology/main/images/chameo_logo_small.png - + + + + + + hasMeasurementUnit + A conventional semiotic relation that relates a physical quantity to its unit. + hasMeasurementUnit + Length hasUnit only LengthUnit + + + + + + + isIndirectCauseOf + A causal relation between the effected and the causing entities with intermediaries. + An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. + isIndirectCauseOf + An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. + A causal relation between the effected and the causing entities with intermediaries. + + + - - - notOverlaps - notOverlaps + + + isConcomitantWith + The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + alongsideOf + isConcomitantWith + The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). - - - - - - - hasRedundantPart - The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. + + + + + + isDirectCauseOf + A causal relation between the causing and the effected entities occurring without intermediaries. + Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. +It does not exclude the possibility of indirect causal routes between proper parts of the two entities. + Direct cause is irreflexive. + isDirectCauseOf + Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. +It does not exclude the possibility of indirect causal routes between proper parts of the two entities. + A causal relation between the causing and the effected entities occurring without intermediaries. + Direct cause is irreflexive. + Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. + -On the contrary, the holistic parthood, is expected to go that deep. - The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. - hasRedundantPart - The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. - A volume of water has redundand parts other volumes of water. All this volumes have holistic parts some water molecules. - The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. + + + + + isCauseOf + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + isCauseOf + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + :isCauseOf owl:propertyDisjointWith :overlaps + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. + The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. +While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. + -On the contrary, the holistic parthood, is expected to go that deep. + + + + + hasModelledProperty + Assigns a quantity to an object via a well-defined modelling procedure. + hasModelledProperty + Assigns a quantity to an object via a well-defined modelling procedure. + + + + + + + hasObjectiveProperty + Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. + hasObjectiveProperty @@ -91,62 +159,6 @@ On the contrary, the holistic parthood, is expected to go that deep.The relation between a holistic whole and its related entities, being them parts or other overlapping entities. - - - - - hasSpatialPart - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - hasSpatialPart - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - - - hasHolisticTemporalPart - hasHolisticTemporalPart - - - - - - hasTemporalPart - A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. - A temporal part of an item cannot both cause and be caused by any other proper part of the item. - -A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. - hasTemporalPart - A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. - A temporal part of an item cannot both cause and be caused by any other proper part of the item. - -A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - - - hasHolisticPart - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - hasHolisticPart - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - An holistic part of water fluid is a water molecule. - - - - - - isOvercrossedBy - isOvercrossedBy - - @@ -157,90 +169,76 @@ A temporal part is not constraint to be causally self-connected, i.e. it can be The relation between two entities that share at least one of their parts. - - - - - - hasMeasurementUnit - A conventional semiotic relation that relates a physical quantity to its unit. - hasMeasurementUnit - Length hasUnit only LengthUnit + + + + + + + contacts + A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). +It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). +Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. + An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. + Spatial contact is symmetric and irreflexive. + hasSpatiialnteractionWith + contacts + A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). +It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). +Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. + An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. + Spatial contact is symmetric and irreflexive. + The contact relation is not an ordering relation since is symmetric. - + - - - requiresLevelOfExpertise + + + hasOperator - requiresLevelOfExpertise + hasOperator - - - - - - hasProperty - A semiotic relation that connects a semiotic object to a property in a declaration process. - hasProperty - A semiotic relation that connects a semiotic object to a property in a declaration process. + + + + + hasAgent + The relation within a process and an agengt participant. + hasAgent + The relation within a process and an agengt participant. - - - - - hasJunctionPart - The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - hasSpatioTemporalPart - hasJunctionPart - The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. + + + + + hasMeasuredProperty + Assigns a quantity to an object via a well-defined measurement procedure. + hasMeasuredProperty + Assigns a quantity to an object via a well-defined measurement procedure. - + + + - - hasHeterogeneousPart - The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - hasHeterogeneousPart - The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. + + + isSpatiallyRelatedWith + isSpatiallyRelatedWith - - - - hasNonTemporalPart - The part is not connected with the rest item or members with hasNext relation (or its inverse). - hasNonTemporalPart - The part is not connected with the rest item or members with hasNext relation (or its inverse). - - - - - - - - hasMaximalCollection - hasMaximalCollection - - - - - - - hasMaximalPart - hasMaximalPart - - - - - - - - hasSubCollection - hasSubCollection + + + + + + hasTemporaryParticipant + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + hasTemporaryParticipant + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. @@ -255,93 +253,141 @@ A temporal part is not constraint to be causally self-connected, i.e. it can be All other mereology relations can be defined in FOL using hasPart as primitive. - + + + + + hasMeasurementProbe + + hasMeasurementProbe + + + + + - - hasSpatialSection - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - hasSpatialPartialPart - hasSpatialSection - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. -A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. + + + notOverlaps + notOverlaps - - - + + + + - hasInterpretant - A relation that connects a semiotic object to the interpretant in a semiotic process. - hasInterpretant - A relation that connects a semiotic object to the interpretant in a semiotic process. + hasConvention + A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. + hasConvention + A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - - - - - - hasSign - A relation that connects the semiotic object to the sign in a semiotic process. - hasSign - A relation that connects the semiotic object to the sign in a semiotic process. + + + + hasTemporalPart + A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. + A temporal part of an item cannot both cause and be caused by any other proper part of the item. + +A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. + hasTemporalPart + A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. + A temporal part of an item cannot both cause and be caused by any other proper part of the item. + +A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - + + - - - hasSubObject - hasSubObject + + + hasParticipant + Participation is a parthood relation: you must be part of the process to contribute to it. A participant whose 4D extension is totally contained within the process. + +Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters. + The relation between a process and an object participating to it, i.e. that is relevant to the process itself. + hasParticipant + The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - - - - - - hasMetrologicalUncertainty - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - hasMetrologicalUncertainty - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + + + + + + hasHolisticNonTemporalPart + hasHolisticNonTemporalPart - - - + + + + - hasObjectiveProperty - Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. - hasObjectiveProperty + hasCharacterisationEnvironmentProperty + + hasCharacterizationEnvironmentProperty + hasCharacterisationEnvironmentProperty - - - + + + + + + hasProperty + A semiotic relation that connects a semiotic object to a property in a declaration process. + hasProperty + A semiotic relation that connects a semiotic object to a property in a declaration process. + + + - - properOverlaps - The relation between two entities that overlaps and neither of both is part of the other. - properOverlaps - The relation between two entities that overlaps and neither of both is part of the other. + + + + isNotCauseOf + x isNotCauseOf y iff not(x isCauseOf y) + isNotCauseOf + x isNotCauseOf y iff not(x isCauseOf y) - - + - - - - overcrosses - The relation between an entity that overlaps another without being its part. - overcrosses - The relation between an entity that overlaps another without being its part. + + causal + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + The superclass of all causal EMMO relations. + causal + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + The superclass of all causal EMMO relations. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + + + + + + + + hasDataAcquisitionRate + + hasDataAcquisitionRate + + + + + + + + hasSampleInspectionParameter + + hasSampleInspectionParameter @@ -354,86 +400,174 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa The input of a process. - - - - - - - contacts - A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). -It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). -Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. - An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. - Spatial contact is symmetric and irreflexive. - hasSpatiialnteractionWith - contacts - A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). -It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). -Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. - An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. - Spatial contact is symmetric and irreflexive. - The contact relation is not an ordering relation since is symmetric. + + + + + + + hasPortion + The relation between a object whole and its spatial part of the same type. + hasPortion + The relation between a object whole and its spatial part of the same type. + A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). - - - - - - - isSpatiallyRelatedWith - isSpatiallyRelatedWith + + + + + + + hasRedundantPart + The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. + +On the contrary, the holistic parthood, is expected to go that deep. + The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. + hasRedundantPart + The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. + A volume of water has redundand parts other volumes of water. All this volumes have holistic parts some water molecules. + The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. + +On the contrary, the holistic parthood, is expected to go that deep. - - + + - - - isDirectCauseOf - A causal relation between the causing and the effected entities occurring without intermediaries. - Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. -It does not exclude the possibility of indirect causal routes between proper parts of the two entities. - Direct cause is irreflexive. - isDirectCauseOf - Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. -It does not exclude the possibility of indirect causal routes between proper parts of the two entities. - A causal relation between the causing and the effected entities occurring without intermediaries. - Direct cause is irreflexive. - Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. + + hasSpatialPart + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + hasSpatialPart + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - + + + + + + hasCognised + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + hasCognised + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + + + + + + + + hasReferent + A relation that connects the interpreter to the semiotic object in a semiotic process. + hasSemioticObject + hasReferent + A relation that connects the interpreter to the semiotic object in a semiotic process. + + + + - - - hasInstrumentForCalibration + + + hasProcessingReproducibility - hasInstrumentForCalibration + hasProcessingReproducibility - - - - - - hasTemporaryParticipant - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - hasTemporaryParticipant - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + + + + - - + + + + + + hasIcon + A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + hasIcon + A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + + + - + + + hasDataset + + hasDataset + + + + + + + + hasSign + A relation that connects the semiotic object to the sign in a semiotic process. + hasSign + A relation that connects the semiotic object to the sign in a semiotic process. + + + + + + + + + hasHolisticOverlap + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + hasHolisticOverlap + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + A man and the process of building a house. +The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. +The process of building a house is a whole that possesses an holistic spatial part which is a builder. +The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. +In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + + + + + + + + + equalsTo + Equality is here defined following a mereological approach. + The relation between two entities that stands for the same individuals. + equalsTo + The relation between two entities that stands for the same individuals. + Equality is here defined following a mereological approach. + + + + + - hasCharacterisationEnvironment + hasHazard - hasCharacterizationEnvironment - hasCharacterisationEnvironment + hasHazard + + + + + + hasSpatialSection + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + hasSpatialPartialPart + hasSpatialSection + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. +A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. @@ -459,130 +593,131 @@ It does not exclude the possibility of indirect causal routes between proper par For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". - - + + + + + + hasSubObject + hasSubObject + + + + + + + + hasHolisticTemporalPart + hasHolisticTemporalPart + + + + - + - hasHardwareSpecification + hasCharacterisationEnvironment - hasHardwareSpecification + hasCharacterizationEnvironment + hasCharacterisationEnvironment - + - - - - hasFractionalCollection - hasFractionalCollection + + hasSpatialSlice + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. + hasSpatialIntegralPart + hasSpatialSlice + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - - - - hasNonMaximalPart - hasNonMaximalPart + + + + + hasOutput + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + hasOutput + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - + - + - hasSamplePreparationInstrument + hasHolder - hasSamplePreparationInstrument + hasHolder - - - - - - hasDataAcquisitionRate - - hasDataAcquisitionRate - + + + + + + hasSubProcess + The relation between a process and one of its process parts. + hasSubProcess + The relation between a process and one of its process parts. + - - + + - - - hasPeerReviewedArticle + + + hasMeasurementTime - hasPeerReviewedArticle + hasMeasurementTime - - - - - - hasConvention - A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - hasConvention - A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. + + + + isPartOf + isPartOf - - - - - - hasCollaborationWith - hasCollaborationWith + + + + + hasResourceIdentifier + Relates a resource to its identifier. + hasResourceIdentifier + Relates a resource to its identifier. - - + + - - - hasCharacterisationMeasurementInstrument + + + hasInteractionVolume - hasCharacterizationMeasurementInstrument - hasCharacterisationMeasurementInstrument + hasInteractionVolume - - - - - - hasParticipant - Participation is a parthood relation: you must be part of the process to contribute to it. A participant whose 4D extension is totally contained within the process. - -Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters. - The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - hasParticipant - The relation between a process and an object participating to it, i.e. that is relevant to the process itself. + + + + hasEndTask + hasEndTask - - - + + + + - - hasHolisticNonTemporalPart - hasHolisticNonTemporalPart - - - - - - isPartOf - isPartOf - - - - - - semiotical - The generic EMMO semiotical relation. - semiotical - The generic EMMO semiotical relation. + hasTask + hasTask @@ -596,33 +731,56 @@ Participation is not under direct parthood since a process is not strictly relat The class for all relations used by the EMMO. - - + + - - - hasDataProcessingThroughCalibration + + + hasCharacterisationOutput - hasDataProcessingThroughCalibration + hasCharacterizationOutput + hasCharacterisationOutput - - + + + + + + hasInterpreter + A relation connecting a sign to the interpreter in a semiotic process. + hasInterpreter + A relation connecting a sign to the interpreter in a semiotic process. + + + + + + semiotical + The generic EMMO semiotical relation. + semiotical + The generic EMMO semiotical relation. + + + + - - - hasDataQuality + + + hasSampleBeforeSamplePreparation + hasSampleForPreparation - hasDataQuality + hasSampleBeforeSamplePreparation - - - - - - hasComponent - hasComponent + + + + + hasQuantity + Relates the result of a semiotic process to ont of its optained quantities. + hasQuantity + Relates the result of a semiotic process to ont of its optained quantities. @@ -636,20 +794,72 @@ Participation is not under direct parthood since a process is not strictly relat The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. - + + + + + hasCharacterisationSoftware + + hasCharacterizationSoftware + hasCharacterisationSoftware + + + - - - - hasScatteredPortion - hasScatteredPortion + + mereological + The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + The superclass of all mereological EMMO relations. + mereological + The superclass of all mereological EMMO relations. + The EMMO adheres to Atomistic General Extensional Mereology (AGEM). - + - - isPortionPartOf - isPortionPartOf + + + hasMaximalPart + hasMaximalPart + + + + + + + + hasSubItem + hasSubItem + + + + + + + + properOverlaps + The relation between two entities that overlaps and neither of both is part of the other. + properOverlaps + The relation between two entities that overlaps and neither of both is part of the other. + + + + + + + + hasVariable + hasVariable + + + + + + + + hasSampleForInspection + + hasSampleForInspection @@ -662,256 +872,155 @@ Participation is not under direct parthood since a process is not strictly relat hasMeasurementSample - - - - - - hasInterpreter - A relation connecting a sign to the interpreter in a semiotic process. - hasInterpreter - A relation connecting a sign to the interpreter in a semiotic process. - - - - - - - - hasIcon - A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. - hasIcon - A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. - - - - - - - isCauseOf - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - isCauseOf - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - :isCauseOf owl:propertyDisjointWith :overlaps - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. - The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. -While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. - - - + + - + - hasMeasurementDetector + hasPostProcessingModel - hasMeasurementDetector - - - - - - - hasAgent - The relation within a process and an agengt participant. - hasAgent - The relation within a process and an agengt participant. + hasPostProcessingModel - - + - - isIndirectCauseOf - A causal relation between the effected and the causing entities with intermediaries. - An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. - isIndirectCauseOf - An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. - A causal relation between the effected and the causing entities with intermediaries. + + hasNonMaximalPart + hasNonMaximalPart - - - - - - hasIndex - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. - hasIndex - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + + + + + hasOutcome + The relation between a process and the entity that represents how things have turned out. + hasOutcome + The relation between a process and the entity that represents how things have turned out. - - + - + - - hasHolisticOverlap - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - hasHolisticOverlap - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - A man and the process of building a house. -The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. -The process of building a house is a whole that possesses an holistic spatial part which is a builder. -The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. -In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - - - - - - - - hasSamplePreparationParameter - - hasSamplePreparationParameter + + hasHolisticPart + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + hasHolisticPart + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + An holistic part of water fluid is a water molecule. - + - - - - hasSubItem - hasSubItem - - - - - - - - hasSampledSample - - hasSampledSample + + + hasTemporalCollectionSlice + A temporal part that is a collection. + hasTemporalCollectionSlice + A temporal part that is a collection. - - - - - hasOutput - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - hasOutput - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + + + + hasTemporalSlice + A temporal part that capture the overall spatial extension of the causal object. + hasTemporalSlice + A temporal part that capture the overall spatial extension of the causal object. - - - - hasBeginTask - hasBeginTask + + + + + + hasScatteredPortion + hasScatteredPortion - - - - - - hasTask - hasTask + + + + + hasServiceOutput + hasServiceOutput - - - - hasModel - hasModel + + + + + hasProductOutput + hasProductOutput - - - - - - hasEndCharacterisationTask - - hasEndCharacterizationTask - hasEndCharacterisationTask + + + + + + + overcrosses + The relation between an entity that overlaps another without being its part. + overcrosses + The relation between an entity that overlaps another without being its part. - + - hasEndTask - hasEndTask + hasBeginTask + hasBeginTask - - + + - + - hasPostProcessingModel + hasReferenceSample - hasPostProcessingModel + hasReferenceSample - - - - - hasOperator - - hasOperator + + + + + + hasMetricPrefix + Relates a prefixed unit to its metric prefix part. + hasMetricPrefix - + - - - - isNotCauseOf - x isNotCauseOf y iff not(x isCauseOf y) - isNotCauseOf - x isNotCauseOf y iff not(x isCauseOf y) + + + + hasFractionalCollection + hasFractionalCollection - + - - hasSpatialSlice - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - hasSpatialIntegralPart - hasSpatialSlice - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - - - - - - - hasModelledProperty - Assigns a quantity to an object via a well-defined modelling procedure. - hasModelledProperty - Assigns a quantity to an object via a well-defined modelling procedure. + + + + hasSubCollection + hasSubCollection - - - - - - hasCharacterisationEnvironmentProperty - - hasCharacterizationEnvironmentProperty - hasCharacterisationEnvironmentProperty + + + + + + hasDeclarer + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. + hasDeclarer + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. @@ -925,101 +1034,55 @@ In this sense, the man and the building process overcrosses. and the overlapping Relates a quantity to its reference unit through spatial direct parthood. - - - - - - hasSampleInspectionParameter - - hasSampleInspectionParameter - - - - - - - - hasInteractionWithSample - - hasInteractionWithSample - - - - - - - - hasProcessingReproducibility - - hasProcessingReproducibility - - - - - - - hasMeasuredProperty - Assigns a quantity to an object via a well-defined measurement procedure. - hasMeasuredProperty - Assigns a quantity to an object via a well-defined measurement procedure. - - - - - - - hasTemporalCollectionSlice - A temporal part that is a collection. - hasTemporalCollectionSlice - A temporal part that is a collection. - - - - - - hasTemporalSlice - A temporal part that capture the overall spatial extension of the causal object. - hasTemporalSlice - A temporal part that capture the overall spatial extension of the causal object. + + + + + + hasStage + hasStage - - - - - - hasManufacturedOutput - hasManufacturedOutput + + + + + + hasCollaborationWith + hasCollaborationWith - - - - - hasProductOutput - hasProductOutput + + + + hasModel + hasModel - - + + - - - hasMeasurementTime + + + hasCharacterisationInput - hasMeasurementTime + hasCharacterizationInput + hasCharacterisationInput - - + - + - hasSampleBeforeSamplePreparation - hasSampleForPreparation + hasLab - hasSampleBeforeSamplePreparation + hasLab + + + + + + @@ -1031,117 +1094,61 @@ In this sense, the man and the building process overcrosses. and the overlapping hasCharacteriser - - - - - - hasDeclarer - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - hasDeclarer - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - - - - + + - - - hasInteractionVolume + + + hasDataQuality - hasInteractionVolume - - - - - - - - hasMetricPrefix - Relates a prefixed unit to its metric prefix part. - hasMetricPrefix + hasDataQuality - + - - - hasBehaviour - hasBehaviour - - - - - - + - hasSubProcess - The relation between a process and one of its process parts. - hasSubProcess - The relation between a process and one of its process parts. + hasConstitutiveProcess + hasConstitutiveProcess - - - - - hasResourceIdentifier - Relates a resource to its identifier. - hasResourceIdentifier - Relates a resource to its identifier. + + + + + - - + + - - hasSampleForInspection + + hasSampledSample - hasSampleForInspection + hasSampledSample - - - - - - - isConcomitantWith - The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). - alongsideOf - isConcomitantWith - The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + + + + + + hasPhysicsOfInteraction + + hasPhysicsOfInteraction - + + - - - hasHazard + + + hasBeginCharacterisationTask - hasHazard - - - - - - - - - hasPortion - The relation between a object whole and its spatial part of the same type. - hasPortion - The relation between a object whole and its spatial part of the same type. - A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). - - - - - - isGatheredPartOf - isGatheredPartOf + hasBeginCharacterizationTask + hasBeginCharacterisationTask @@ -1154,144 +1161,161 @@ In this sense, the man and the building process overcrosses. and the overlapping hasLevelOfAutomation - - - - - - hasConstitutiveProcess - hasConstitutiveProcess + + + + + + hasMetrologicalUncertainty + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + hasMetrologicalUncertainty + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - - - - mereological - The EMMO adheres to Atomistic General Extensional Mereology (AGEM). - The superclass of all mereological EMMO relations. - mereological - The superclass of all mereological EMMO relations. - The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + + + + + requiresLevelOfExpertise + + requiresLevelOfExpertise - - - - - hasQuantity - Relates the result of a semiotic process to ont of its optained quantities. - hasQuantity - Relates the result of a semiotic process to ont of its optained quantities. + + + + + + hasCharacterisationMeasurementInstrument + + hasCharacterizationMeasurementInstrument + hasCharacterisationMeasurementInstrument - - - - - hasConventionalProperty - An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. + + + + + + hasInstrumentForCalibration + + hasInstrumentForCalibration + -The quantity is selected without an observation aimed to measure its actual value, but by convention. - Assigns a quantity to an object by convention. - hasConventionalProperty - Assigns a quantity to an object by convention. - An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. + + + + + + hasCogniser + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + hasCogniser + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - - + + + + isPortionPartOf + isPortionPartOf + + + + - - - hasCharacterisationTask + + hasSampleInspectionInstrument - hasCharacterizationTask - hasCharacterisationTask + hasSampleInspectionInstrument - + - - - hasTemporalItemSlice - A temporal part that is an item. - hasTemporalItemSlice - A temporal part that is an item. + + + hasJunctionPart + The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. + hasSpatioTemporalPart + hasJunctionPart + The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - + + + + hasHeterogeneousPart + The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. + hasHeterogeneousPart + The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. + + + - - - - hasConnectedPortion - hasConnectedPortion + hasNonTemporalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). + hasNonTemporalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). - - - - - hasCharacterisationSoftware - - hasCharacterizationSoftware - hasCharacterisationSoftware + + + + + + hasStatus + hasStatus - + - - + + - hasFractionalMember - hasFractionalMember + hasMaximalCollection + hasMaximalCollection - + - - hasBeginCharacterisationTask + + hasCharacterisationTask - hasBeginCharacterizationTask - hasBeginCharacterisationTask + hasCharacterizationTask + hasCharacterisationTask - - + - - - - equalsTo - Equality is here defined following a mereological approach. - The relation between two entities that stands for the same individuals. - equalsTo - The relation between two entities that stands for the same individuals. - Equality is here defined following a mereological approach. + + + + + hasConnectedPortion + hasConnectedPortion - - - - - - hasReferent - A relation that connects the interpreter to the semiotic object in a semiotic process. - hasSemioticObject - hasReferent - A relation that connects the interpreter to the semiotic object in a semiotic process. + + + + + + hasMeasurementParameter + + hasMeasurementParameter - - - - - - hasCharacterised - hasCharacterised + + + + + + hasComponent + hasComponent @@ -1305,39 +1329,73 @@ The quantity is selected without an observation aimed to measure its actual valu A semiotic relation connecting a declaring interpreter to the "declared" semiotic object in a declaration process. - - + - - - hasDeduced - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - hasDeduced - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + + + hasInterpretant + A relation that connects a semiotic object to the interpretant in a semiotic process. + hasInterpretant + A relation that connects a semiotic object to the interpretant in a semiotic process. - - + + - - - hasCharacterisationOutput + + + hasDataProcessingThroughCalibration - hasCharacterizationOutput - hasCharacterisationOutput + hasDataProcessingThroughCalibration - - - - - - - - hasInterval - The relation between a process whole and a temporal part of the same type. - hasInterval - The relation between a process whole and a temporal part of the same type. + + + + + + hasIndex + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + hasIndex + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + + + + + + + + hasPeerReviewedArticle + + hasPeerReviewedArticle + + + + + + isOvercrossedBy + isOvercrossedBy + + + + + + + + hasSamplePreparationInstrument + + hasSamplePreparationInstrument + + + + + + + + hasDeducer + A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. + hasDeducer + A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. @@ -1349,81 +1407,76 @@ The quantity is selected without an observation aimed to measure its actual valu A temporal part that is not a slice. - - - - - hasLab - - hasLab - - - - + + - hasSampleInspectionInstrument + hasMeasurementDetector - hasSampleInspectionInstrument + hasMeasurementDetector - + - - causal - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - The superclass of all causal EMMO relations. - causal - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - The superclass of all causal EMMO relations. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + + + hasTemporalItemSlice + A temporal part that is an item. + hasTemporalItemSlice + A temporal part that is an item. - - + + - - - hasDescription - A semiotic relation that connects a declared semiotic object to a description in a declaration process. - hasDescription - A semiotic relation that connects a declared semiotic object to a description in a declaration process. + + + hasDeduced + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + hasDeduced + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - - - - - hasServiceOutput - hasServiceOutput + + + + + + hasCharacterised + hasCharacterised - - - - - - hasStage - hasStage + + + + + + hasInteractionWithProbe + + hasInteractionWithProbe - - - - - + + + + + + hasFractionalMember + hasFractionalMember - - - - hasCharacterisationComponent - - hasCharacterizationComponent - hasCharacterisationComponent + + + + + hasConventionalProperty + An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. + +The quantity is selected without an observation aimed to measure its actual value, but by convention. + Assigns a quantity to an object by convention. + hasConventionalProperty + Assigns a quantity to an object by convention. + An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. @@ -1437,74 +1490,45 @@ Embracing a strong reductionistic view, causality originates at quantum entities Relates a dataset to its datum. - - - - - - hasInteractionWithProbe - - hasInteractionWithProbe + + + + isGatheredPartOf + isGatheredPartOf - - - - - - hasReferenceSample - - hasReferenceSample + + + + + + hasManufacturedOutput + hasManufacturedOutput - - + + - - - hasCognised - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - hasCognised - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - - - - - - + - hasVariable - hasVariable + hasDescription + A semiotic relation that connects a declared semiotic object to a description in a declaration process. + hasDescription + A semiotic relation that connects a declared semiotic object to a description in a declaration process. - + - - - hasHolder + + + hasSamplePreparationParameter - hasHolder + hasSamplePreparationParameter - - - - - - hasAccessConditions - - hasAccessConditions - - - - - - - - - - + + @@ -1514,110 +1538,86 @@ Embracing a strong reductionistic view, causality originates at quantum entities hasCharacterisationProperty - - - - - - hasCogniser - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - hasCogniser - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - - - + + - - - hasDataset + + + hasEndCharacterisationTask - hasDataset + hasEndCharacterizationTask + hasEndCharacterisationTask - - - - - hasMeasurementProbe - - hasMeasurementProbe + + + + + + hasBehaviour + hasBehaviour - - - - - - hasDeducer - A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. - hasDeducer - A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. + + + + hasCharacterisationComponent + + hasCharacterizationComponent + hasCharacterisationComponent - - + + - - - hasMeasurementParameter + + + hasCharacterisationProcedureValidation - hasMeasurementParameter + hasCharacterisationProcedureValidation - + - - - hasPhysicsOfInteraction + + + hasInteractionWithSample - hasPhysicsOfInteraction + hasInteractionWithSample - + + - - - hasStatus - hasStatus - - - - - - + + + + hasInterval + The relation between a process whole and a temporal part of the same type. + hasInterval + The relation between a process whole and a temporal part of the same type. - - + + - - - hasCharacterisationInput + + + hasHardwareSpecification - hasCharacterizationInput - hasCharacterisationInput - - - - - - - hasOutcome - The relation between a process and the entity that represents how things have turned out. - hasOutcome - The relation between a process and the entity that represents how things have turned out. + hasHardwareSpecification - + - + - hasCharacterisationProcedureValidation + hasAccessConditions - hasCharacterisationProcedureValidation + hasAccessConditions @@ -1629,42 +1629,16 @@ Embracing a strong reductionistic view, causality originates at quantum entities Relates a SI dimensional unit to a dimension string. - - - - - - hasNumericalValue - The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. - hasNumericalValue - The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. - - - - - - - - - hasSymbolValue - The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - hasSymbolValue - The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - - - - - - hasURNValue - hasURNValue - - - - - - - hasURIValue - hasURIValue + + + + + hasDataValue + The owl:dataProperty that provides a serialisation of an EMMO data entity. + This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). + hasDataValue + The owl:dataProperty that provides a serialisation of an EMMO data entity. + This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). @@ -1678,28 +1652,27 @@ Embracing a strong reductionistic view, causality originates at quantum entities A string representing the UniqueID of a CharacterisationHardware - - - + + + + - hasDataValue - The owl:dataProperty that provides a serialisation of an EMMO data entity. - This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). - hasDataValue - The owl:dataProperty that provides a serialisation of an EMMO data entity. - This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). + hasModel + A string representing the model of a CharacterisationHardware + hasModel + A string representing the model of a CharacterisationHardware - + - - + + - hasStringValue - The owl:dataProperty that provides a serialisation of an EMMO string data entity. - hasStringValue - The owl:dataProperty that provides a serialisation of an EMMO string data entity. + hasSymbolValue + The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. + hasSymbolValue + The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. @@ -1712,17 +1685,6 @@ Embracing a strong reductionistic view, causality originates at quantum entities hasDateOfCalibration - - - - - - hasModel - A string representing the model of a CharacterisationHardware - hasModel - A string representing the model of a CharacterisationHardware - - @@ -1734,78 +1696,57 @@ Embracing a strong reductionistic view, causality originates at quantum entities A string representing the Manufacturer of a CharacterisationHardware - - - - hasURLValue - hasURLValue + + + + + + + hasStringValue + The owl:dataProperty that provides a serialisation of an EMMO string data entity. + hasStringValue + The owl:dataProperty that provides a serialisation of an EMMO string data entity. - + + + - + + hasNumericalValue + The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + hasNumericalValue + The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + - - - - - - - - - - - - - - - - - - - - - comment - A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. - A text that add some information about the entity. - comment - A text that add some information about the entity. - A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. - - - - - - + + + + + hasURIValue + hasURIValue + - - - - contact - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - contact - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - + + + + hasURLValue + hasURLValue + - - - - + + + + hasURNValue + hasURNValue + - - + + - - - - - figure - A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. - figure - A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. + + @@ -1819,53 +1760,14 @@ Embracing a strong reductionistic view, causality originates at quantum entities An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. - - - - - - - - OWLDLRestrictedAxiom - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - OWLDLRestrictedAxiom - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - - - - - - definition - A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. - Precise and univocal description of an ontological entity in the framework of an axiomatic system. - definition - Precise and univocal description of an ontological entity in the framework of an axiomatic system. - A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. - - - - - - ISO14040Reference - ISO14040Reference - - - - - - - - uneceCommonCode - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - uneceCommonCode - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - - - + + - metrologicalReference - metrologicalReference + iupacReference + DOI to corresponding concept in IUPAC + https://goldbook.iupac.org/ + iupacReference @@ -1879,6 +1781,30 @@ Embracing a strong reductionistic view, causality originates at quantum entities IRI to corresponding concept in the Ontology of units of Measure. + + + + metrologicalReference + metrologicalReference + + + + + + etymology + Definitions are usually taken from Wiktionary. + The etymology annotation explains the origin of a word and the historical development of its meaning. + etymology + The etymology annotation explains the origin of a word and the historical development of its meaning. + Definitions are usually taken from Wiktionary. + The etymology annotation is usually applied to rdfs:label entities, to better understand the connection between a label and the concept it concisely represents. + + + + + + + @@ -1891,18 +1817,6 @@ Embracing a strong reductionistic view, causality originates at quantum entities An elucidation can provide references to external knowledge sources (i.e. ISO, Goldbook, RoMM). - - - - - VIMTerm - The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. - https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf - VIMTerm - quantity value (term in VIM that corresponds to Quantity in EMMO) - The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. - - @@ -1923,44 +1837,55 @@ Embracing a strong reductionistic view, causality originates at quantum entities - - - - - dbpediaReference - URL to corresponding dpbedia entry. - https://wiki.dbpedia.org/ - dbpediaReference - URL to corresponding dpbedia entry. + + + + qudtReference + URL to corresponing entity in QUDT. + http://www.qudt.org/2.1/catalog/qudt-catalog.html + qudtReference + URL to corresponing entity in QUDT. - + - ISO80000Reference - Corresponding item number in ISO 80 000. - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en - ISO80000Reference - Corresponding item number in ISO 80 000. - 3-1.1 (ISO80000 reference to length) + wikidataReference + URL corresponding to entry in Wikidata. + https://www.wikidata.org/ + wikidataReference + URL corresponding to entry in Wikidata. - + + - - + + + + comment + A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. + A text that add some information about the entity. + comment + A text that add some information about the entity. + A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. - - - - qudtReference - URL to corresponing entity in QUDT. - http://www.qudt.org/2.1/catalog/qudt-catalog.html - qudtReference - URL to corresponing entity in QUDT. + + + + definition + A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + Precise and univocal description of an ontological entity in the framework of an axiomatic system. + definition + Precise and univocal description of an ontological entity in the framework of an axiomatic system. + A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + + + + @@ -1974,28 +1899,38 @@ Embracing a strong reductionistic view, causality originates at quantum entities URL to corresponding Wikipedia entry. - + - - etymology - Definitions are usually taken from Wiktionary. - The etymology annotation explains the origin of a word and the historical development of its meaning. - etymology - The etymology annotation explains the origin of a word and the historical development of its meaning. - Definitions are usually taken from Wiktionary. - The etymology annotation is usually applied to rdfs:label entities, to better understand the connection between a label and the concept it concisely represents. - - - - ISO9000Reference - ISO9000Reference + + + + + + uneceCommonCode + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + uneceCommonCode + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - - - + + + + + figure + A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. + figure + A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. + + + + + + + + + IEVReference URL for the entry in the International Electrotechnical Vocabulary (IEV). https://www.electropedia.org/ @@ -2003,6 +1938,18 @@ Embracing a strong reductionistic view, causality originates at quantum entities URL for the entry in the International Electrotechnical Vocabulary (IEV). + + + + + VIMTerm + The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. + https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + VIMTerm + quantity value (term in VIM that corresponds to Quantity in EMMO) + The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. + + @@ -2026,227 +1973,310 @@ Embracing a strong reductionistic view, causality originates at quantum entities Illustrative example of how the entity is used. - + - - + + + + + dbpediaReference + URL to corresponding dpbedia entry. + https://wiki.dbpedia.org/ + dbpediaReference + URL to corresponding dpbedia entry. - - - - wikidataReference - URL corresponding to entry in Wikidata. - https://www.wikidata.org/ - wikidataReference - URL corresponding to entry in Wikidata. + + - + + + OWLDLRestrictedAxiom + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + OWLDLRestrictedAxiom + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - + + + + ISO14040Reference + ISO14040Reference + + + + + + ISO9000Reference + ISO9000Reference + + + + + + + + + + + + + contact + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. + contact + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. - + - + + + + ISO80000Reference + Corresponding item number in ISO 80 000. + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en + ISO80000Reference + Corresponding item number in ISO 80 000. + 3-1.1 (ISO80000 reference to length) + + + - + + + + + + + + + + + + + + - + - + - + - + - - - - - iupacReference - DOI to corresponding concept in IUPAC - https://goldbook.iupac.org/ - iupacReference + + - + - - - - - BoltzmannConstant - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - -It defines the Kelvin unit in the SI system. - The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. - BoltzmannConstant - http://qudt.org/vocab/constant/BoltzmannConstant - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. + + + + GalvanostaticIntermittentTitrationTechnique + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + GITT + GalvanostaticIntermittentTitrationTechnique + https://www.wikidata.org/wiki/Q120906986 + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + -It defines the Kelvin unit in the SI system. - https://doi.org/10.1351/goldbook.B00695 + + + + Chronopotentiometry + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Chronopotentiometry + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + https://doi.org/10.1515/pac-2018-0109 - + - + + - - + + T0 L-1 M+1 I0 Θ0 N0 J0 - - - - Entropy - Logarithmic measure of the number of available states of a system. - May also be referred to as a measure of order of a system. - Entropy - http://qudt.org/vocab/quantitykind/Entropy - 5-18 - https://doi.org/10.1351/goldbook.E02149 + + MassPerLengthUnit + MassPerLengthUnit - - - - SIExactConstant - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - SIExactConstant - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + + + + SolidLiquidSuspension + A coarse dispersion of liquid in a solid continuum phase. + SolidLiquidSuspension + A coarse dispersion of liquid in a solid continuum phase. - - - + + + + Solid + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + Solid + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + + + + + - - - - - - + + + T0 L+6 M0 I0 Θ0 N0 J0 + - Data - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - A perspective in which entities are represented according to the variation of their properties. - Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 - Contrast - Dedomena - Pattern - Data - A perspective in which entities are represented according to the variation of their properties. - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. + SexticLengthUnit + SexticLengthUnit - - - - Perspective - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - Perspective - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - - - + - - - ChargeNumber - For a particle, electric charge q divided by elementary charge e. - The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. - The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. - IonizationNumber - ChargeNumber - https://qudt.org/vocab/quantitykind/ChargeNumber - https://www.wikidata.org/wiki/Q1800063 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 - https://dbpedia.org/page/Charge_number - 10-5.2 - For a particle, electric charge q divided by elementary charge e. - https://en.wikipedia.org/wiki/Charge_number - https://doi.org/10.1351/goldbook.C00993 + + SIDimensionalUnit + Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). + In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + +In general the dimension of any quantity Q is written in the form of a dimensional product, + + dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + +where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. +-- SI brouchure + +The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + +^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + +Examples of correspondance between dimensional units and their dimensional units are: + +- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" +- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" +- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" + SIDimensionalUnit + Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). + In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + +In general the dimension of any quantity Q is written in the form of a dimensional product, + + dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + +where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. +-- SI brouchure + +The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + +^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + +Examples of correspondance between dimensional units and their dimensional units are: + +- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" +- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" +- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - - - - PhysioChemicalQuantity - Quantities categorised according to ISO 80000-9. - PhysioChemicalQuantity - Quantities categorised according to ISO 80000-9. + + + + Irradiate + Irradiate - - - - PureNumberQuantity - A pure number, typically the number of something. - According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. + + + + + MaterialTreatment + esce workpiece + Has shaped bodies as input and output. + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + DIN 8580:2020 + Stoffeigenschaft ändern + WorkPieceTreatment + MaterialTreatment + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + Has shaped bodies as input and output. + -This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + + + + WorkpieceManufacturing + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + DIN 8580:2020 + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. + ISO 8887-1:2017 +manufacturing: production of components + Werkstücke + DiscreteManufacturing + WorkpieceManufacturing + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + -There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. - PureNumberQuantity - A pure number, typically the number of something. - 1, -i, -π, -the number of protons in the nucleus of an atom + + + + + + Path + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + Path + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + /etc/fstab (UNIX-like path) +C:\\Users\\John\\Desktop (DOS-like path) - + - + - - KermaRate - Time derivative of kerma. - KermaRate - https://qudt.org/vocab/quantitykind/KermaRate - https://www.wikidata.org/wiki/Q99713105 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 - 10-86.2 - Time derivative of kerma. + + + SpecificEnergy + Energy per unit mass + SpecificEnergy + https://qudt.org/vocab/quantitykind/SpecificEnergy + https://www.wikidata.org/wiki/Q3023293 + https://dbpedia.org/page/Specific_energy + 5-21.1 + Energy per unit mass + https://en.wikipedia.org/wiki/Specific_energy @@ -2259,848 +2289,972 @@ the number of protons in the nucleus of an atomDerived quantities defined in the International System of Quantities (ISQ). - + + + + Intensive + A quantity whose magnitude is independent of the size of the system. + Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. + Intensive + A quantity whose magnitude is independent of the size of the system. + Temperature +Density +Pressure +ChemicalPotential + + + - AtomicAndNuclearPhysicsQuantity - Quantities categorised according to ISO 80000-10. - AtomicAndNuclearPhysicsQuantity - Quantities categorised according to ISO 80000-10. + ThermodynamicalQuantity + Quantities categorised according to ISO 80000-5. + ThermodynamicalQuantity + Quantities categorised according to ISO 80000-5. - - - BlueDownAntiQuark - BlueDownAntiQuark + + + + + + + + + + MagneticMoment + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + MagneticAreaMoment + MagneticMoment + https://qudt.org/vocab/quantitykind/MagneticMoment + https://www.wikidata.org/wiki/Q242657 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 + 6-23 + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + https://doi.org/10.1351/goldbook.M03688 - - - - DifferentialRefractiveIndex - - DifferentialRefractiveIndex + + + + ElectromagneticQuantity + Quantities categorised according to ISO 80000-6. + ElectromagneticQuantity + Quantities categorised according to ISO 80000-6. - - - - OpticalTesting - - OpticalTesting + + + + + HelmholtzEnergy + HelmholtzFreeEnergy + HelmholtzEnergy + https://www.wikidata.org/wiki/Q865821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 + 5-20.4 + https://doi.org/10.1351/goldbook.H02772 - - - - - - - - + + - - + + - - - CharacterisationMeasurementInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - CharacterisationMeasurementInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - In nanoindentation is the nanoindenter - Measuring instrument - - - - - - MeasuringInstrument - A measuring instrument that can be used alone is a measuring system. - Device used for making measurements, alone or in conjunction with one or more supplementary devices. - --- VIM - MeasuringInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary devices. - --- VIM - measuring instrument + + + Energy + A property of objects which can be transferred to other objects or converted into different forms. + Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. + Energy + http://qudt.org/vocab/quantitykind/Energy + 5-20-1 + A property of objects which can be transferred to other objects or converted into different forms. + https://doi.org/10.1351/goldbook.E02101 - - - - CharacterisationHardware - Whatever hardware is used during the characterisation process. - CharacterisationHardware - Whatever hardware is used during the characterisation process. + + + + ModulusOfImpedance + ModulusOfImpedance + https://qudt.org/vocab/quantitykind/ModulusOfImpedance + https://www.wikidata.org/wiki/Q25457909 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 + 6-51.4 - - - - Nanoindentation - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Nanoindentation - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + + + + + + + + + + + ElectricResistance + Inverse of 'ElectricalConductance'. + Measure of the difficulty to pass an electric current through a material. + Resistance + ElectricResistance + http://qudt.org/vocab/quantitykind/Resistance + https://www.wikidata.org/wiki/Q25358 + 6-46 + Measure of the difficulty to pass an electric current through a material. + https://doi.org/10.1351/goldbook.E01936 - - - - MechanicalTesting - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - MechanicalTesting - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - https://en.wikipedia.org/wiki/Mechanical_testing + + + + + SpecificEnergyImparted + In nuclear physics, energy imparted per mass. + SpecificEnergyImparted + https://qudt.org/vocab/quantitykind/SpecificEnergyImparted + https://www.wikidata.org/wiki/Q99566195 + 10-81.2 + In nuclear physics, energy imparted per mass. - + - - HyperfineStructureQuantumNumber - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - HyperfineStructureQuantumNumber - https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber - https://www.wikidata.org/wiki/Q97577449 - 10-13.8 - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + + AtomicAndNuclearPhysicsQuantity + Quantities categorised according to ISO 80000-10. + AtomicAndNuclearPhysicsQuantity + Quantities categorised according to ISO 80000-10. - + - - - QuantumNumber - Number describing a particular state of a quantum system. - QuantumNumber - https://qudt.org/vocab/quantitykind/QuantumNumber - https://www.wikidata.org/wiki/Q232431 - 10-13.1 - Number describing a particular state of a quantum system. + + AngularFrequency + Rate of change of the phase angle. + AngularFrequency + https://qudt.org/vocab/quantitykind/AngularFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 + https://dbpedia.org/page/Angular_frequency + 3-18 + Rate of change of the phase angle. + https://en.wikipedia.org/wiki/Angular_frequency + https://doi.org/10.1351/goldbook.A00352 - - + + - - - - - - + + - - SimulationLanguage - A computer language used to describe simulations. - SimulationLanguage - A computer language used to describe simulations. - https://en.wikipedia.org/wiki/Simulation_language + + + Frequency + Number of periods per time interval. + Frequency + http://qudt.org/vocab/quantitykind/Frequency + https://www.wikidata.org/wiki/Q11652 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 + 3-15.1 + Number of periods per time interval. + https://doi.org/10.1351/goldbook.FT07383 - - - - ModellingLanguage - An artificial computer language used to express information or knowledge, often for use in computer system design. - ModellingLanguage - An artificial computer language used to express information or knowledge, often for use in computer system design. - Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. - Hardware description language – used to model integrated circuits. + + + + + + + T-1 L+2 M+1 I0 Θ0 N0 J0 + + + AngularMomentumUnit + AngularMomentumUnit + -Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + + + + ManufacturingSystem + A system arranged to setup a specific manufacturing process. + ManufacturingSystem + A system arranged to setup a specific manufacturing process. + -Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. - https://en.wikipedia.org/wiki/Modeling_language + + + + HolisticArrangement + A system which is mainly characterised by the spatial configuration of its elements. + HolisticArrangement + A system which is mainly characterised by the spatial configuration of its elements. - + - - MagneticPolarisation - Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - MagneticPolarisation - https://qudt.org/vocab/quantitykind/MagneticPolarization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54 - 6-29 - Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. + + NewtonianConstantOfGravity + Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. + NewtonianConstantOfGravity + http://qudt.org/vocab/constant/NewtonianConstantOfGravitation + https://doi.org/10.1351/goldbook.G02695 - + + + MeasuredConstant + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + MeasuredConstant + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + + + + + + + DragForce + Retarding force on a body moving in a fluid. + DragForce + https://www.wikidata.org/wiki/Q206621 + 4-9.6 + Retarding force on a body moving in a fluid. + + + - + + - - MagneticFluxDensity - Often denoted B. - Strength of the magnetic field. - MagneticInduction - MagneticFluxDensity - http://qudt.org/vocab/quantitykind/MagneticFluxDensity - https://www.wikidata.org/wiki/Q30204 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 - 6-21 - Strength of the magnetic field. - https://doi.org/10.1351/goldbook.M03686 + Force + Any interaction that, when unopposed, will change the motion of an object + Force + http://qudt.org/vocab/quantitykind/Force + 4-9.1 + Any interaction that, when unopposed, will change the motion of an object + https://doi.org/10.1351/goldbook.F02480 - - - - Chronocoulometry - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Chronocoulometry - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - https://doi.org/10.1515/pac-2018-0109 + + + + MechanicalQuantity + Quantities categorised according to ISO 80000-4. + MechanicalQuantity + Quantities categorised according to ISO 80000-4. - - - - Coulometry - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Coulometry - https://www.wikidata.org/wiki/Q1136979 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - https://en.wikipedia.org/wiki/Coulometry - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + Property + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + Property + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + Hardness is a subclass of properties. +Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. + The name "red" which is atomic in the code made of the list of colors. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - - - - LinearScanVoltammetry - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - LSV - LinearPolarization - LinearSweepVoltammetry - LinearScanVoltammetry - https://www.wikidata.org/wiki/Q620700 - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - https://en.wikipedia.org/wiki/Linear_sweep_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + RelativeMassDefect + Quotient of mass defect and the unified atomic mass constant. + RelativeMassDefect + https://qudt.org/vocab/quantitykind/RelativeMassDefect + https://www.wikidata.org/wiki/Q98038718 + 10-22.2 + Quotient of mass defect and the unified atomic mass constant. - - - - Voltammetry - - The current vs. potential (I-E) curve is called a voltammogram. - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - Voltammetry - https://www.wikidata.org/wiki/Q904093 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - https://en.wikipedia.org/wiki/Voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + ISQDimensionlessQuantity + A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. + ISQDimensionlessQuantity + http://qudt.org/vocab/quantitykind/Dimensionless + A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. + https://en.wikipedia.org/wiki/Dimensionless_quantity + https://doi.org/10.1351/goldbook.D01742 - - - - - - EndTile - EndTile + + + + Height + Minimum length of a straight line segment between a point and a reference line or reference surface. + Height + https://qudt.org/vocab/quantitykind/Height + https://www.wikidata.org/wiki/Q208826 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 + https://dbpedia.org/page/Height + 3-1.3 + Minimum length of a straight line segment between a point and a reference line or reference surface. + https://en.wikipedia.org/wiki/Height - + - - PH - At about 25 °C aqueous solutions with: -pH < 7 are acidic; -pH = 7 are neutral; -pH > 7 are alkaline. -At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - Written as pH - PH - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 - For more details, see ISO 80000-9:2009, Annex C - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - https://doi.org/10.1351/goldbook.P04524 + + + + + + + + + Length + Extend of a spatial dimension. + Length is a non-negative additive quantity attributed to a one-dimensional object in space. + Length + http://qudt.org/vocab/quantitykind/Length + 3-1.1 + Extend of a spatial dimension. + https://doi.org/10.1351/goldbook.L03498 - - - - IonActivity - Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. - The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. - IonActivity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + + + + ComputerSystem + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + Computer + ComputerSystem + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + https://en.wikipedia.org/wiki/Computer - - - - Magnetizing - Magnetizing + + + Object + A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). +However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. +In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. +To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + Continuant + Endurant + Object + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - - - - - MaterialTreatment - esce workpiece - Has shaped bodies as input and output. - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - DIN 8580:2020 - Stoffeigenschaft ändern - WorkPieceTreatment - MaterialTreatment - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - Has shaped bodies as input and output. + + + + + + + + + + + + + + + CompositePhysicalParticle + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + CompositePhysicalParticle + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - + + + + + LinearExpansionCoefficient + Relative change of length per change of temperature. + LinearExpansionCoefficient + https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient + https://www.wikidata.org/wiki/Q74760821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 + 5-3.1 + Relative change of length per change of temperature. + + + - + - - - AtomicAttenuationCoefficient - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - AtomicAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592911 - 10-52 - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - - - - - - SolidGasSuspension - A coarse dispersion of gas in a solid continuum phase. - SolidGasSuspension - A coarse dispersion of gas in a solid continuum phase. - - - - - - Solid - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - Solid - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - - - - - - MassConcentrationOfWaterVapour - Quotient of the mass of water vapour in moist gas by the total gas volume. - The mass concentration of water at saturation is denoted vsat. - MassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - Quotient of the mass of water vapour in moist gas by the total gas volume. + CoefficientOfThermalExpansion + Material property which describes how the size of an object changes with a change in temperature. + ThermalExpansionCoefficient + CoefficientOfThermalExpansion + https://www.wikidata.org/wiki/Q45760 + Material property which describes how the size of an object changes with a change in temperature. - - - - - MassConcentration - Mass of a constituent divided by the volume of the mixture. - MassConcentration - http://qudt.org/vocab/quantitykind/MassConcentration - https://doi.org/10.1351/goldbook.M03713 + + + RedUpQuark + RedUpQuark - - - - ThermodynamicalQuantity - Quantities categorised according to ISO 80000-5. - ThermodynamicalQuantity - Quantities categorised according to ISO 80000-5. + + + GreenCharmAntiQuark + GreenCharmAntiQuark - + - + - DoseEquivalent - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - DoseEquivalent - http://qudt.org/vocab/quantitykind/DoseEquivalent - 10-83.1 - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - https://doi.org/10.1351/goldbook.E02101 + CatalyticActivity + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + CatalyticActivity + http://qudt.org/vocab/quantitykind/CatalyticActivity + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + https://doi.org/10.1351/goldbook.C00881 - + - - Intensive - A quantity whose magnitude is independent of the size of the system. - Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. - Intensive - A quantity whose magnitude is independent of the size of the system. - Temperature -Density -Pressure -ChemicalPotential + + + + + + + + + MassAttenuationCoefficient + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + MassAttenuationCoefficient + https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient + https://www.wikidata.org/wiki/Q98591983 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 + 10-50 + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - - - - ModelledProperty - A quantity obtained from a well-defined modelling procedure. - ModelledProperty - A quantity obtained from a well-defined modelling procedure. + + + + + + + T-3 L+2 M+1 I-1 Θ-1 N0 J0 + + + ElectricPotentialPerTemperatureUnit + ElectricPotentialPerTemperatureUnit - - - - ObjectiveProperty - A quantity that is obtained from a well-defined procedure. - Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - PhysicalProperty - QuantitativeProperty - ObjectiveProperty - A quantity that is obtained from a well-defined procedure. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + + + + + + + T+3 L-2 M-1 I+1 Θ0 N0 J0 + + + ElectricCurrentPerUnitEnergyUnit + ElectricCurrentPerUnitEnergyUnit - - - Quantum - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - Quantum - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. -However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + + + + + + + T-2 L-1 M+1 I0 Θ0 N0 J0 + + + PressureUnit + PressureUnit - + - - - NucleonNumber - number of nucleons in an atomic nucleus - MassNumber - NucleonNumber - https://qudt.org/vocab/quantitykind/NucleonNumber - https://www.wikidata.org/wiki/Q101395 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 - https://dbpedia.org/page/Mass_number - 10-1.3 - number of nucleons in an atomic nucleus - https://en.wikipedia.org/wiki/Mass_number - https://doi.org/10.1351/goldbook.M03726 + + Porosity + Ratio of void volume and total volume of a porous material. + Porosity + https://www.wikidata.org/wiki/Q622669 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 + Ratio of void volume and total volume of a porous material. + https://doi.org/10.1351/goldbook.P04762 - - - - - - - - - - - - Redundant - A whole possessing some proper parts of its same type. - NonMaximal - Redundant - A whole possessing some proper parts of its same type. - An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. + + + + RatioQuantity + Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). -If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. +Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 + RatioQuantity + http://qudt.org/vocab/quantitykind/DimensionlessRatio + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + refractive index, +volume fraction, +fine structure constant - - + + - - + + - Whole - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - A whole is categorized as fundamental (or maximal) or redundant (non-maximal). - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - Whole - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - - - - - - + + - - - BohrMagneton - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - BohrMagneton - https://www.wikidata.org/wiki/Q737120 - 10-9.2 - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - - - - - - + + - HolisticSystem - A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - HolisticSystem - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. + + + + + + + + + Declaration + ConventionalSemiosis + Declaration - - - - SparkErosion - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - elektrochemisches Abtragen - SparkErosion + + + + LinearScanVoltammetry + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + LSV + LinearPolarization + LinearSweepVoltammetry + LinearScanVoltammetry + https://www.wikidata.org/wiki/Q620700 + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + https://en.wikipedia.org/wiki/Linear_sweep_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - ReactivePower - Imaginary part of the complex power. - ReactivePower - https://qudt.org/vocab/quantitykind/ReactivePower - https://www.wikidata.org/wiki/Q2144613 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 - 6-60 - Imaginary part of the complex power. + + + + Voltammetry + + The current vs. potential (I-E) curve is called a voltammogram. + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + Voltammetry + https://www.wikidata.org/wiki/Q904093 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + https://en.wikipedia.org/wiki/Voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - Power - Rate of transfer of energy per unit time. - Power - http://qudt.org/vocab/quantitykind/Power - 4-27 - 6-45 - Rate of transfer of energy per unit time. - https://doi.org/10.1351/goldbook.P04792 + + + + + + + + + + + MathematicalModel + A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. + +Abramowitz and Stegun, 1968 + An analogical icon expressed in mathematical language. + MathematicalModel + An analogical icon expressed in mathematical language. - - - - WorkPiece - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. - It has a shape, so we conclude that it is solid - Object that is processed with a machine - Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product - The raw material or partially finished piece that is shaped by performing various operations. - They are not powders or threads - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - fili e polveri non sono compresi - it seems to be an intermediate product, that has to reach the final shape. - it seems to be solid, so it has a proper shape - powder is not workpiece because it has the shape of the recipient containing them - Werkstück - WorkPiece - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + + + + DynamicMechanicalAnalysis + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + DynamicMechanicalAnalysis + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - - - TemporalRole - An holistic temporal part of a whole. - HolisticTemporalPart - TemporalRole - An holistic temporal part of a whole. + + + + MechanicalTesting + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + MechanicalTesting + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + https://en.wikipedia.org/wiki/Mechanical_testing - + - - - PropagationCoefficient - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - PropagationCoefficient - https://qudt.org/vocab/quantitykind/PropagationCoefficient.html - https://www.wikidata.org/wiki/Q1434913 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 - 3-26.3 - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + + + ResidualResistivity + for metals, the resistivity extrapolated to zero thermodynamic temperature + ResidualResistivity + https://qudt.org/vocab/quantitykind/ResidualResistivity + https://www.wikidata.org/wiki/Q25098876 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 + 12-17 + for metals, the resistivity extrapolated to zero thermodynamic temperature - + - SpaceAndTimeQuantity - Quantities categorised according to ISO 80000-3. - SpaceAndTimeQuantity - Quantities categorised according to ISO 80000-3. + CondensedMatterPhysicsQuantity + Quantities categorised according to ISO 80000-12. + CondensedMatterPhysicsQuantity + Quantities categorised according to ISO 80000-12. - + - + + - ReciprocalLength - The inverse of length. - InverseLength - ReciprocalLength - http://qudt.org/vocab/quantitykind/InverseLength - The inverse of length. - https://en.wikipedia.org/wiki/Reciprocal_length + + ElectricResistivity + Electric field strength divided by the current density. + Resistivity + ElectricResistivity + http://qudt.org/vocab/quantitykind/Resistivity + https://www.wikidata.org/wiki/Q108193 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 + 6-44 + https://doi.org/10.1351/goldbook.R05316 - + - - + - - T-3 L+3 M+1 I-2 Θ0 N0 J0 + + - - ElectricResistivityUnit - ElectricResistivityUnit - - - - - - LevelOfExpertise - Describes the level of expertise required to carry out a process (the entire test or the data processing). - LevelOfExpertise - Describes the level of expertise required to carry out a process (the entire test or the data processing). + + + + Permeance + Inverse of the reluctance. + Permeance + https://qudt.org/vocab/quantitykind/Permeance + https://www.wikidata.org/wiki/Q77997985 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 + 6-40 + Inverse of the reluctance. - + - - - SurfaceCoefficientOfHeatTransfer - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. - SurfaceCoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q74770365 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 - 5-10.2 - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + + + BohrRadius + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + BohrRadius + https://qudt.org/vocab/constant/BohrRadius + https://www.wikidata.org/wiki/Q652571 + 10-6 + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + https://doi.org/10.1351/goldbook.B00693 - + - - - - - - - - - CoefficientOfHeatTransfer - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - ThermalTransmittance - CoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q634340 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 - 5-10.1 - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + + Radius + Distance from the centre of a circle to the circumference. + Radius + https://qudt.org/vocab/quantitykind/Radius + https://www.wikidata.org/wiki/Q173817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 + https://dbpedia.org/page/Radius + 3-1.6 + Distance from the centre of a circle to the circumference. + https://en.wikipedia.org/wiki/Radius - - - - DifferentialScanningCalorimetry - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - DSC - DifferentialScanningCalorimetry - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + + + + FormingBlasting + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + Umformstrahlen + FormingBlasting - - - - ThermochemicalTesting - - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - TMA - ThermochemicalTesting - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + + + + Agent + A participant that is the driver of the process. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. + Agent + A participant that is the driver of the process. + A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. - - - - - Extensive - A quantity whose magnitude is additive for subsystems. - Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. - Extensive - A quantity whose magnitude is additive for subsystems. - Mass -Volume -Entropy + + + + + Participant + An object which is an holistic spatial part of a process. + Participant + An object which is an holistic spatial part of a process. + A student during an examination. - + - - + + - - - File - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - File - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + + SymbolicConstruct + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + SymbolicConstruct + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - + - DigitalData - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. - BinaryData - DigitalData - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + + + + + + + + + Symbolic + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + Symbolic + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + fe780 +emmo +!5*a +cat +for(i=0;i<N;++i) + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + A symbolic object possesses a reductionistic oriented structure. +For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). - - + + + LeftHandedParticle + LeftHandedParticle + + + + + + ModelledProperty + A quantity obtained from a well-defined modelling procedure. + ModelledProperty + A quantity obtained from a well-defined modelling procedure. + + + + - - - - - - + + - - SystemResource - Any physical or virtual component of limited availability within a computer system. - Resource - SystemResource - Any physical or virtual component of limited availability within a computer system. + Whole + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + A whole is categorized as fundamental (or maximal) or redundant (non-maximal). + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + Whole + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - - - - Dielectrometry - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Dielectrometry - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + Holistic + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + Wholistic + Holistic + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. + A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. - - - - ElectrochemicalTesting - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 - ElectrochemicalTesting - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + + + + + + + T-3 L0 M+1 I0 Θ-1 N0 J0 + + + ThermalTransmittanceUnit + ThermalTransmittanceUnit - + + + + + + + T0 L-3 M0 I0 Θ0 N-1 J0 + + + ReciprocalAmountPerVolumeUnit + ReciprocalAmountPerVolumeUnit + + + + + + SpaceAndTimeQuantity + Quantities categorised according to ISO 80000-3. + SpaceAndTimeQuantity + Quantities categorised according to ISO 80000-3. + + + + + + + + + T-2 L+3 M0 I0 Θ0 N0 J0 + + + VolumePerSquareTimeUnit + VolumePerSquareTimeUnit + + + + + + + MassConcentrationOfWater + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + The mass concentration of water at saturation is denoted wsat. + MassConcentrationOfWater + https://qudt.org/vocab/quantitykind/MassConcentrationOfWater + https://www.wikidata.org/wiki/Q76378758 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 + 5-27 + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + + + + + + + MassConcentration + Mass of a constituent divided by the volume of the mixture. + MassConcentration + http://qudt.org/vocab/quantitykind/MassConcentration + https://doi.org/10.1351/goldbook.M03713 + + + PotentiometricStrippingAnalysis @@ -3115,3364 +3269,3551 @@ Entropy two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - - - - - GapEnergy - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - BandgapEnergy - GapEnergy - https://www.wikidata.org/wiki/Q103982939 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 - 12-27.2 - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - https://doi.org/10.1351/goldbook.B00593 + + + + + + + + + + + + + + + + + ThirdGenerationFermion + ThirdGenerationFermion - - - - - - - - - - - Energy - A property of objects which can be transferred to other objects or converted into different forms. - Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. - Energy - http://qudt.org/vocab/quantitykind/Energy - 5-20-1 - A property of objects which can be transferred to other objects or converted into different forms. - https://doi.org/10.1351/goldbook.E02101 + + + + + + + + + + + + + + CausalParticle + The class of entities that have no spatial structure. + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + CausalParticle + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + The class of entities that have no spatial structure. - - - - CondensedMatterPhysicsQuantity - Quantities categorised according to ISO 80000-12. - CondensedMatterPhysicsQuantity - Quantities categorised according to ISO 80000-12. + + + BlueTopQuark + BlueTopQuark - - - - Language - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - Language - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + + + + + + + + + + + + + + + + + + + AntiMatter + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. + AntiMatter + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. - - + + - - - - + + + + + + - - - LinearElectricCurrentDensity - Surface density of electric charge multiplied by velocity - LinearElectricCurrentDensity - https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity - https://www.wikidata.org/wiki/Q2356741 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 - 6-9 - Surface density of electric charge multiplied by velocity + Operator + The human operator who takes care of the whole characterisation method or sub-processes/stages. + Operator + The human operator who takes care of the whole characterisation method or sub-processes/stages. - - - - ElectromagneticQuantity - Quantities categorised according to ISO 80000-6. - ElectromagneticQuantity - Quantities categorised according to ISO 80000-6. + + + + + + + + + + + + + + + + + + + + + + + Determination + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Characterisation + Determination + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. - - - - Parameter - A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. - Parameter - Viscosity in the Navier-Stokes equation + + + ElementaryFermion + ElementaryFermion - - - - NumericalVariable - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - NumericalVariable - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - + + + Quantum + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + Quantum + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. +However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + - - + + - T0 L-1 M0 I+1 Θ0 N0 J0 + T-2 L+2 M+1 I-1 Θ0 N0 J0 - MagneticFieldStrengthUnit - MagneticFieldStrengthUnit + MagneticFluxUnit + MagneticFluxUnit - + - - SIDimensionalUnit - Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). - In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). - -In general the dimension of any quantity Q is written in the form of a dimensional product, - - dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η - -where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. --- SI brouchure - -The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + + + RelativeLinearStrain + Relative change of length with respect the original length. + RelativeLinearStrain + https://qudt.org/vocab/quantitykind/LinearStrain + https://www.wikidata.org/wiki/Q1990546 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 + 4-17.2 + Relative change of length with respect the original length. + https://doi.org/10.1351/goldbook.L03560 + -^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + + + + IntentionalAgent + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + IntentionalAgent + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + -Examples of correspondance between dimensional units and their dimensional units are: + + + + + + + T-1 L+2 M0 I0 Θ0 N0 J0 + + + AreaPerTimeUnit + AreaPerTimeUnit + -- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" -- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" -- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - SIDimensionalUnit - Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). - In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + + + + + + + + + + + + Replica + An icon that not only resembles the object, but also can express some of the object's functions. + Replica + An icon that not only resembles the object, but also can express some of the object's functions. + A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. + Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). + -In general the dimension of any quantity Q is written in the form of a dimensional product, + + + + + + + + + + + + + + + + + + + + + + Icon + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. +For example, when a Boeing 747 is used as a sign for another Boeing 747. + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] + Model + Simulacrum + Icon + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + A picture that reproduces the aspect of a person. + An equation that reproduces the logical connection of the properties of a physical entity. + - dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + + + + MeasuredProperty + A quantity that is the result of a well-defined measurement procedure. + The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. -where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. --- SI brouchure +-- VIM + MeasuredProperty + A quantity that is the result of a well-defined measurement procedure. + -The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + + + + TensileForming + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + Zugdruckumformen + TensileForming + -^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + + + + + ReshapeManufacturing + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. + DIN 8580:2020 + Umformen + Forming + ReshapeManufacturing + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. + -Examples of correspondance between dimensional units and their dimensional units are: + + + + + + + T-1 L-3 M+1 I0 Θ0 N0 J0 + + + MassPerVolumeTimeUnit + MassPerVolumeTimeUnit + -- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" -- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" -- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" + + + + Ellipsometry + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + Ellipsometry + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - - - - - VacuumElectricPermittivity - The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. - The value of the absolute dielectric permittivity of classical vacuum. - PermittivityOfVacuum - VacuumElectricPermittivity - http://qudt.org/vocab/constant/PermittivityOfVacuum - 6-14.1 - https://doi.org/10.1351/goldbook.P04508 + + + + OpticalTesting + + OpticalTesting - + - + - - Permittivity - Measure for how the polarization of a material is affected by the application of an external electric field. - Permittivity - http://qudt.org/vocab/quantitykind/Permittivity - 6-14.1 - 6-14.2 - https://doi.org/10.1351/goldbook.P04507 - - - - - MeasuredConstant - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. - MeasuredConstant - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + MagneticReluctance + Magnetic tension divided by magnetic flux. + Reluctance + MagneticReluctance + https://qudt.org/vocab/quantitykind/Reluctance + https://www.wikidata.org/wiki/Q863390 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 + 6-39 + Magnetic tension divided by magnetic flux. - - - - CyclicChronopotentiometry - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - CyclicChronopotentiometry - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - chronopotentiometry where the change in applied current undergoes a cyclic current reversal - - - - - - Chronopotentiometry - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Chronopotentiometry - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + RecombinationCoefficient + Coefficient in the law of recombination, + RecombinationCoefficient + https://qudt.org/vocab/quantitykind/RecombinationCoefficient + https://www.wikidata.org/wiki/Q98842099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 + 10-63 + Coefficient in the law of recombination, - - - - - Emulsion - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Emulsion - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Mayonnaise, milk. + + + + TransportationDevice + TransportationDevice - - - - Colloid - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. - Colloid - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. + + + + Device + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + Equipment + Machine + Device + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - - - - Liquid - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. - Liquid - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + + + + Procedure + A procedure can be considered as an intentional process with a plan. + The process in which an agent works with some entities according to some existing formalised operative rules. + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + Elaboration + Work + Procedure + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + The process in which an agent works with some entities according to some existing formalised operative rules. + The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). +The process in which a librarian order books alphabetically on a shelf. +The execution of an algorithm. + A procedure can be considered as an intentional process with a plan. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EncodedData - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. -Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). -A data object may be used as the physical basis for a sign, under Semiotics perspective. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - EncodedVariation - EncodedData - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - A Radio Morse Code transmission can be addressed by combination of perspectives. - -Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). -Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. -Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. -Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). - A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - https://no.wikipedia.org/wiki/Data + + + + + + + + + + IntentionalProcess + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + Project + IntentionalProcess + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - - + + - T-2 L+2 M+1 I0 Θ-1 N-1 J0 + T+3 L-3 M-1 I+2 Θ0 N0 J0 - EntropyPerAmountUnit - EntropyPerAmountUnit + ElectricConductivityUnit + ElectricConductivityUnit - + + + + MachineCell + A group of machineries used to process a group of similar parts. + Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. + MachineCell + A group of machineries used to process a group of similar parts. + + + - - - MolecularPartitionFunction - Partition function of a molecule. - MolecularPartitionFunction - https://www.wikidata.org/wiki/Q96192064 - 9-35.4 - Partition function of a molecule. + + SourceVoltage + Voltage between the two terminals of a voltage source when there is no electric current through the source. + SourceTension + SourceVoltage + https://qudt.org/vocab/quantitykind/SourceVoltage + https://www.wikidata.org/wiki/Q185329 + 6-36 + Voltage between the two terminals of a voltage source when there is no electric current through the source. - + - + + Voltage + Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. + The difference in electric potential between two points. + ElectricPotentialDifference + ElectricTension + Voltage + http://qudt.org/vocab/quantitykind/Voltage + 6-11.3 + The difference in electric potential between two points. + https://doi.org/10.1351/goldbook.A00424 + https://doi.org/10.1351/goldbook.V06635 + + + + + + - - + + T+10 L-2 M-3 I+4 Θ0 N0 J0 - - - ISQDimensionlessQuantity - A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. - ISQDimensionlessQuantity - http://qudt.org/vocab/quantitykind/Dimensionless - A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. - https://en.wikipedia.org/wiki/Dimensionless_quantity - https://doi.org/10.1351/goldbook.D01742 + + QuarticElectricDipoleMomentPerCubicEnergyUnit + QuarticElectricDipoleMomentPerCubicEnergyUnit - + - - - UpperCriticalMagneticFluxDensity - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - UpperCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127634 - 12-36.3 - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + + + NeutronYieldPerFission + Average number of fission neutrons, both prompt and delayed, emitted per fission event. + NeutronYieldPerFission + https://qudt.org/vocab/quantitykind/NeutronYieldPerFission + https://www.wikidata.org/wiki/Q99157909 + 10-74.1 + Average number of fission neutrons, both prompt and delayed, emitted per fission event. - + - - - ElectrolyticConductivity - ElectrolyticConductivity - https://qudt.org/vocab/quantitykind/ElectrolyticConductivity - https://www.wikidata.org/wiki/Q907564 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 - 9-44 + + PureNumberQuantity + A pure number, typically the number of something. + According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. + +This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + +There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. + PureNumberQuantity + A pure number, typically the number of something. + 1, +i, +π, +the number of protons in the nucleus of an atom - + + + + Synchrotron + + Synchrotron + + + + + + ScatteringAndDiffraction + + ScatteringAndDiffraction + + + - + + - - + + T0 L0 M0 I0 Θ0 N+1 J0 - - - - - ElectricConductivity - Measure of a material's ability to conduct an electric current. + + AmountUnit + AmountUnit + -Conductivity is equeal to the resiprocal of resistivity. - Conductivity - ElectricConductivity - http://qudt.org/vocab/quantitykind/ElectricConductivity - https://www.wikidata.org/wiki/Q4593291 - 6-43 - https://doi.org/10.1351/goldbook.C01245 + + + + Detector + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Detector + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM + Displacement and force sensors for mechanical testing - + + + + CharacterisationHardware + Whatever hardware is used during the characterisation process. + CharacterisationHardware + Whatever hardware is used during the characterisation process. + + + - + - - - MassExcess - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - MassExcess - https://qudt.org/vocab/quantitykind/MassExcess - https://www.wikidata.org/wiki/Q1571163 - 10-21.1 - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - https://doi.org/10.1351/goldbook.M03719 - + + AvogadroConstant + The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - - - - - - - - - - - - - - - - - - - - NeutrinoType - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - NeutrinoType - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - https://en.wikipedia.org/wiki/Neutrino +It defines the base unit mole in the SI system. + AvogadroConstant + http://qudt.org/vocab/constant/AvogadroConstant + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + +It defines the base unit mole in the SI system. + https://doi.org/10.1351/goldbook.A00543 - - - LeftHandedParticle - LeftHandedParticle + + + + SIExactConstant + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + SIExactConstant + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - - + + + - - - - + + + + - StrictFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - StrictFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + Data + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + A perspective in which entities are represented according to the variation of their properties. + Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 + Contrast + Dedomena + Pattern + Data + A perspective in which entities are represented according to the variation of their properties. + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. - + - - SurfaceDensityOfElectricCharge - The derivative of the electric charge of a system with respect to the area. - AreicElectricCharge - SurfaceChargeDensity - SurfaceDensityOfElectricCharge - https://www.wikidata.org/wiki/Q12799324 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 - 6-4 - The derivative of the electric charge of a system with respect to the area. - https://doi.org/10.1351/goldbook.S06159 + + + FermiTemperature + in the free electron model, the Fermi energy divided by the Boltzmann constant + FermiTemperature + https://qudt.org/vocab/quantitykind/FermiTemperature + https://www.wikidata.org/wiki/Q105942324 + 12-28 + in the free electron model, the Fermi energy divided by the Boltzmann constant - + - + - - - ElectricFluxDensity - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - ElectricDisplacement - ElectricFluxDensity - https://qudt.org/vocab/quantitykind/ElectricDisplacementField - https://www.wikidata.org/wiki/Q371907 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 - 6-12 - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. + + + ThermodynamicTemperature + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + ThermodynamicTemperature + http://qudt.org/vocab/quantitykind/ThermodynamicTemperature + 5-1 + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + https://doi.org/10.1351/goldbook.T06321 - - - - Arrangement - A causal object which is tessellated with only spatial direct parts. - The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. -This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. - The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. - MereologicalState - Arrangement - A causal object which is tessellated with only spatial direct parts. - e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. - -If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. + + + + DataPostProcessing + Analysis, that allows one to calculate the final material property from the calibrated primary data. + DataPostProcessing + Analysis, that allows one to calculate the final material property from the calibrated primary data. - - + + - - + + - SpatialTiling - A well formed tessellation with tiles that all spatial. - SpatialTiling - A well formed tessellation with tiles that all spatial. - - - - - - Interpretant - The interpreter's internal representation of the object in a semiosis process. - Interpretant - The interpreter's internal representation of the object in a semiosis process. + + + + + + + + + + + + + + DataProcessing + A computation that provides a data output following the elaboration of some input data, using a data processing application. + DataProcessing + A computation that provides a data output following the elaboration of some input data, using a data processing application. - - - - Ellipsometry - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - Ellipsometry - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + + + + Arrangement + A causal object which is tessellated with only spatial direct parts. + The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. +This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. + The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. + MereologicalState + Arrangement + A causal object which is tessellated with only spatial direct parts. + e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. + +If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. - - - - Spectroscopy - - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - Spectroscopy - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + + + + LiquidGasSuspension + A coarse dispersion of gas in a liquid continuum phase. + LiquidGasSuspension + A coarse dispersion of gas in a liquid continuum phase. + Sparkling water - - - - CharacterisationTechnique - A characterisation technique is not only related to the measurement process which can be one of its steps. - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - Characterisation procedure - Characterisation technique - CharacterisationTechnique - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - A characterisation technique is not only related to the measurement process which can be one of its steps. + + + + Liquid + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + Liquid + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. - + - - - - - - - - CoefficientOfThermalExpansion - Material property which describes how the size of an object changes with a change in temperature. - ThermalExpansionCoefficient - CoefficientOfThermalExpansion - https://www.wikidata.org/wiki/Q45760 - Material property which describes how the size of an object changes with a change in temperature. + + + InternalConversionFactor + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. + InternalConversionCoefficient + InternalConversionFactor + https://qudt.org/vocab/quantitykind/InternalConversionFactor + https://www.wikidata.org/wiki/Q6047819 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 + 10-35 + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - + - + - - MomentOfIntertia - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - MomentOfIntertia - https://qudt.org/vocab/quantitykind/MomentOfInertia - https://www.wikidata.org/wiki/Q165618 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 - 4-7 - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - https://doi.org/10.1351/goldbook.M04006 + + MolarConductivity + Conductivity per molar concentration of electrolyte. + MolarConductivity + https://qudt.org/vocab/quantitykind/MolarConductivity + https://www.wikidata.org/wiki/Q1943278 + 9-45 + Conductivity per molar concentration of electrolyte. + https://doi.org/10.1351/goldbook.M03976 - + - MechanicalQuantity - Quantities categorised according to ISO 80000-4. - MechanicalQuantity - Quantities categorised according to ISO 80000-4. - - - - - - LengthFractionUnit - Unit for quantities of dimension one that are the fraction of two lengths. - LengthFractionUnit - Unit for quantities of dimension one that are the fraction of two lengths. - Unit for plane angle. - - - - - - FractionUnit - Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this -is desirable (μm/m, nmol/mol). --- SI Brochure - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - RatioUnit - FractionUnit - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - - - - - Object - A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). -However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. -In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. -To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - Continuant - Endurant - Object - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + PhysioChemicalQuantity + Quantities categorised according to ISO 80000-9. + PhysioChemicalQuantity + Quantities categorised according to ISO 80000-9. - - - - - SubObject - An object which is an holistic temporal part of another object. - Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. - SubObject - An object which is an holistic temporal part of another object. - If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. + + + + + StandardAmountConcentration + Chosen value of amount concentration, usually equal to 1 mol dm−3. + StandardConcentration + StandardMolarConcentration + StandardAmountConcentration + https://www.wikidata.org/wiki/Q88871689 + Chosen value of amount concentration, usually equal to 1 mol dm−3. + 9-12.2 + https://doi.org/10.1351/goldbook.S05909 - - - GreenUpAntiQuark - GreenUpAntiQuark + + + + + + + + + + + + AmountConcentration + The amount of a constituent divided by the volume of the mixture. + Concentration + MolarConcentration + Molarity + AmountConcentration + http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB + https://doi.org/10.1351/goldbook.A00295 - + - - - LongRangeOrderParameter - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - LongRangeOrderParameter - https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter - https://www.wikidata.org/wiki/Q105496124 - 12-5.2 - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + + + PartialPressure + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + PartialPressure + https://qudt.org/vocab/quantitykind/PartialPressure + https://www.wikidata.org/wiki/Q27165 + 9-19 + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + https://doi.org/10.1351/goldbook.P04420 - - + + - - - - - - + + - BaseUnit - A set of units that correspond to the base quantities in a system of units. - BaseUnit - A set of units that correspond to the base quantities in a system of units. - base unit + + + Pressure + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + Pressure + http://qudt.org/vocab/quantitykind/Pressure + 4-14.1 + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + https://doi.org/10.1351/goldbook.P04819 - + + + + + MigrationArea + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + MigrationArea + https://qudt.org/vocab/quantitykind/MigrationArea + https://www.wikidata.org/wiki/Q98966325 + 10-72.3 + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + + + - + - - ElectricCharge - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - Charge - ElectricCharge - http://qudt.org/vocab/quantitykind/ElectricCharge - https://www.wikidata.org/wiki/Q1111 - 6-2 - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - https://doi.org/10.1351/goldbook.E01923 + + Area + Extent of a surface. + Area + http://qudt.org/vocab/quantitykind/Area + 3-3 + https://doi.org/10.1351/goldbook.A00429 - + + + + + VonKlitzingConstant + Resistance quantum. + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + VonKlitzingConstant + http://qudt.org/vocab/constant/VonKlitzingConstant + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + + + + + + PhysicalPhenomenon + A 'process' that is recognized by physical sciences and is categorized accordingly. + While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist + PhysicalPhenomenon + A 'process' that is recognized by physical sciences and is categorized accordingly. + + + + + + DieCasting + DieCasting + + + + + + Casting + Casting + + + - + BlueBottomAntiQuark + BlueBottomAntiQuark + + + + + + + + RelativeHumidity + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + The relative humidity is often expressed in per cent. + RelativeHumidity + https://qudt.org/vocab/quantitykind/RelativeHumidity + https://www.wikidata.org/wiki/Q2499617 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 + 5-33 + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + https://en.wikipedia.org/wiki/Humidity#Relative_humidity + + + + + + + RelativeMassConcentrationOfWaterVapour + For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + RelativeMassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour + https://www.wikidata.org/wiki/Q76379357 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + + + + + + + + + + + + + EnergyDistributionOfCrossSection + Differential quotient of the cross section for a process and the energy of the scattered particle. + EnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralCrossSection + https://www.wikidata.org/wiki/Q98267245 + 10-40 + Differential quotient of the cross section for a process and the energy of the scattered particle. + + + + + + SystemUnit + SystemUnit + + + + - + - + - StandardModelParticle - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - The union of all classes categorising elementary particles according to the Standard Model. - ElementaryParticle - StandardModelParticle - The union of all classes categorising elementary particles according to the Standard Model. - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. - This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). -In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). - + + + + + + + + + + + + + MeasurementUnit + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + A metrological reference for a physical quantity. + MeasurementUnit + A metrological reference for a physical quantity. + kg +m/s +km + measurement unit (VIM3 1.9) + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + "Unit symbols are mathematical entities and not abbreviations." - - - - Osmometry - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - Osmometry - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). +"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." + +https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf + Measurement units and procedure units are disjoint. + Quantitative value are expressed as a multiple of the 'MeasurementUnit'. - - - - - - - - - - - - - - - + + - - - - - - - - - + + + + + VolumeFlowRate + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + VolumetricFlowRate + VolumeFlowRate + https://qudt.org/vocab/quantitykind/VolumeFlowRate + https://www.wikidata.org/wiki/Q1134348 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 + 4-31 + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + https://en.wikipedia.org/wiki/Volumetric_flow_rate + + + + - + - + - CausalPath - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - CausalChain - Elementary - CausalPath - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - An electron with at least one causal interaction with another particle. - hasTemporalPart min 2 (Elementary or Quantum) - - - - - - - - - T-1 L+2 M+1 I0 Θ0 N0 J0 - - - AngularMomentumUnit - AngularMomentumUnit + PhysicalObject + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + PhysicalObject + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - + - - SampledDCPolarography + + Probe - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. - TASTPolarography - SampledDCPolarography - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - https://doi.org/10.1515/pac-2018-0109 + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + Probe + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. + In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. + In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) + In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). + In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry - - - - DCPolarography - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - DCPolarography - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + PhaseHeterogeneousMixture + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + PhaseHeterogeneousMixture + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - - - - Fork - A tessellation in wich a tile has next two or more non spatially connected tiles. - Fork - A tessellation in wich a tile has next two or more non spatially connected tiles. + + + + Mixture + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + Mixture + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - - + + - - + + + 1 - TemporalTiling - A well formed tessellation with tiles that are all temporal. - TemporalTiling - A well formed tessellation with tiles that are all temporal. - - - - - - + + + 1 - - IntentionalProcess - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - Project - IntentionalProcess - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - + + QuantityValue + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). - - - Process - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). +So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. -For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. - Occurrent - Perdurant - Process - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. +While the string "1 kg" is a 'QuantityValue'. + QuantityValue + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + 6.8 m +0.9 km +8 K +6 MeV +43.5 HRC(150 kg) + quantity value + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - + - - MetrologicalUncertainty - In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. - MetrologicalUncertainty - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - - Standard deviation -- Half-width of an interval with a stated coverage probability - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - - - - - - - - - T+1 L+1 M-1 I0 Θ0 N0 J0 - - - LengthTimePerMassUnit - LengthTimePerMassUnit - - - - - - ThroughTile - A tile that has next and is next of other tiles within the same tessellation. - ThroughTile - A tile that has next and is next of other tiles within the same tessellation. + + Metrological + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + Metrological + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - - - - - Participant - An object which is an holistic spatial part of a process. - Participant - An object which is an holistic spatial part of a process. - A student during an examination. + + + + Language + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + Language + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - - - NonTemporalRole - An holistic spatial part of a whole. - HolisticSpatialPart - NonTemporalRole - An holistic spatial part of a whole. + + + + ConfigurationLanguage + A construction language used to write configuration files. + ConfigurationLanguage + A construction language used to write configuration files. + .ini files + Files in the standard .config directory on Unix systems. + https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages - - - NeutralAtom - A standalone atom that has no net charge. - NeutralAtom - A standalone atom that has no net charge. + + + + ConstructionLanguage + A computer language by which a human can specify an executable problem solution to a computer. + ConstructionLanguage + A computer language by which a human can specify an executable problem solution to a computer. + https://en.wikipedia.org/wiki/Software_construction#Construction_languages - + - - - RollingResistanceFactor - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - RollingResistanceFactor - https://www.wikidata.org/wiki/Q91738044 - 4-23.3 - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + + + ReactorTimeConstant + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + ReactorTimeConstant + https://qudt.org/vocab/quantitykind/ReactorTimeConstant + https://www.wikidata.org/wiki/Q99518950 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 + 10-79 + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - + - - RatioQuantity - Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). - -Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 - RatioQuantity - http://qudt.org/vocab/quantitykind/DimensionlessRatio - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - refractive index, -volume fraction, -fine structure constant - - - - - - PseudoOpenCircuitVoltageMethod - - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - PseudoOCV - PseudoOpenCircuitVoltageMethod - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - - - - - - SupplyChain - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - SupplyChain - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - - - - - - Network - A system whose is mainly characterised by the way in which elements are interconnected. - Network - A system whose is mainly characterised by the way in which elements are interconnected. - - - - - - - - - - - - - ParticleFluence - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - ParticleFluence - https://qudt.org/vocab/quantitykind/ParticleFluence - https://www.wikidata.org/wiki/Q82965908 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 - 10-43 - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - - - - - - DifferentialThermalAnalysis - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - DTA - DifferentialThermalAnalysis - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - - - - - - - MathematicalOperator - A mapping that acts on elements of one space and produces elements of another space. - MathematicalOperator - A mapping that acts on elements of one space and produces elements of another space. - The algebraic operator '+' that acts on two real numbers and produces one real number. - The differential operator that acts on a C1 real function and produces another real function. - - - - - - Mathematical - A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. - The class of general mathematical symbolic objects respecting mathematical syntactic rules. - Mathematical - The class of general mathematical symbolic objects respecting mathematical syntactic rules. - - - - - - Symbol - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - AlphabeticEntity - Symbol - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). - -Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. -(Wikipedia) - The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. + + Duration + Physical quantity for describing the temporal distance between events. + Duration + https://www.wikidata.org/wiki/Q2199864 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 + 3-9 + Physical quantity for describing the temporal distance between events. - - + + - - + + + 1 - + - + - + - Workflow - A procedure that has at least two procedures (tasks) as proper parts. - Workflow - A procedure that has at least two procedures (tasks) as proper parts. - - - - - - Procedure - A procedure can be considered as an intentional process with a plan. - The process in which an agent works with some entities according to some existing formalised operative rules. - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - Elaboration - Work - Procedure - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - The process in which an agent works with some entities according to some existing formalised operative rules. - The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). -The process in which a librarian order books alphabetically on a shelf. -The execution of an algorithm. - A procedure can be considered as an intentional process with a plan. - - - - - - - - - - - - - MolarEntropy - Entropy per amount of substance. - MolarEntropy - https://qudt.org/vocab/quantitykind/MolarEntropy - https://www.wikidata.org/wiki/Q68972876 - 9-8 - Entropy per amount of substance. - - - - - - - Moulding - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - Gesenkformen - Moulding - + + + + + + + + + Quantity + A quantifiable property of a phenomenon, body, or substance. + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - - - - CompressiveForming - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - lasciano tensioni residue di compressione - Druckumformen - CompressiveForming - +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + Measurand + Quantity + https://qudt.org/schema/qudt/Quantity + A quantifiable property of a phenomenon, body, or substance. + length +Rockwell C hardness +electric resistance + measurand + quantity + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - - - - FromNotProperShapeToWorkPiece - From Powder, from liquid, from gas - da una forma non propria ad una forma propria - FromNotProperShapeToWorkPiece - From Powder, from liquid, from gas - Powder: -particles that are usually less than 1 mm in size +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - - - - - - - - - - - - + + + - - + + + - - - - - - - - - - - - - - - - - Coded - A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. -A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. -A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. + MetrologicalReference + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + MetrologicalReference + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + -For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. -An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) -Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). -This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. -This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. - Coded - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. - The name "red" that stands for the color of an object. + + + + + QuantumNumber + Number describing a particular state of a quantum system. + QuantumNumber + https://qudt.org/vocab/quantitykind/QuantumNumber + https://www.wikidata.org/wiki/Q232431 + 10-13.1 + Number describing a particular state of a quantum system. - + - - IonizationEnergy - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - IonizationEnergy - https://qudt.org/vocab/quantitykind/IonizationEnergy - https://www.wikidata.org/wiki/Q483769 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 - 12-24.2 - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - https://doi.org/10.1351/goldbook.I03199 + + ResonanceEnergy + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + ResonanceEnergy + https://qudt.org/vocab/quantitykind/ResonanceEnergy + https://www.wikidata.org/wiki/Q98165187 + 10-37.2 + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. - - - DiscreteData - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - Data whose variations are decoded according to a discrete schema. - DiscreteData - Data whose variations are decoded according to a discrete schema. - A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + + + + + NuclearRadius + Conventional radius of sphere in which the nuclear matter is included, + NuclearRadius + https://qudt.org/vocab/quantitykind/NuclearRadius + https://www.wikidata.org/wiki/Q3535676 + 10-19.1 + Conventional radius of sphere in which the nuclear matter is included, - - - - - - + + + + + + + + + + + + - - - - - - - + - - - - UpQuark - UpQuark - https://en.wikipedia.org/wiki/Up_quark + + + + + + Density + Quantity representing the spatial distribution of mass in a continuous material. + MassConcentration + MassDensity + Density + http://qudt.org/vocab/quantitykind/Density + 4-2 + 9-10 + Mass per volume. + https://doi.org/10.1351/goldbook.D01590 - - - - Letter - Letter + + + + AnalyticalElectronMicroscopy + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + AnalyticalElectronMicroscopy + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - - - - - - - - - - - - - - - CompositePhysicalParticle - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - CompositePhysicalParticle - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + + + + Microscopy + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - - + + - - + + - - - - + + + + + + + + + - + - PhysicalObject - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - PhysicalObject - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - - - - - DataSet - Encoded data made of more than one datum. - DataSet - Encoded data made of more than one datum. - + Item + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - - - - - HyperfineTransitionFrequencyOfCs - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The class of individuals standing for direct causally self-connected world entities. + The disjoint union of Elementary, Quantum and CausalSystem classes. + Item + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. -It defines the base unit second in the SI system. - HyperfineTransitionFrequencyOfCs - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The disjoint union of Elementary, Quantum and CausalSystem classes. + The class of individuals standing for direct causally self-connected world entities. + -It defines the base unit second in the SI system. + + + GreenTopQuark + GreenTopQuark - - - - + + + + FromWorkPIecetoWorkPiece + FromWorkPIecetoWorkPiece + + + + + + - + - - Frequency - Number of periods per time interval. - Frequency - http://qudt.org/vocab/quantitykind/Frequency - https://www.wikidata.org/wiki/Q11652 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 - 3-15.1 - Number of periods per time interval. - https://doi.org/10.1351/goldbook.FT07383 + + ExposureRate + Time derivative of exposure. + ExposureRate + https://qudt.org/vocab/quantitykind/ExposureRate + https://www.wikidata.org/wiki/Q99720212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 + 10-89 + Time derivative of exposure. - - - - SampleExtractionInstrument - - SampleExtractionInstrument + + + + SystemProgram + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + SystemProgram + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + An operating system. A graphic driver. - - - - - ThermalUtilizationFactor - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. - ThermalUtilizationFactor - https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor - https://www.wikidata.org/wiki/Q99197650 - 10-76 - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + + + + Software + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + Software + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - - - - - - - - - - - - - - - StandaloneAtom - A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. - An atom that does not share electrons with other atoms. - StandaloneAtom - An atom that does not share electrons with other atoms. + + + + OpenCircuitHold + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + OCVHold + OpenCircuitHold + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - - - - - - - - - - - - - - - - Atom - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. + + + + Potentiometry + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Potentiometry + https://www.wikidata.org/wiki/Q900632 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + https://doi.org/10.1515/pac-2018-0109 + -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + + + + + + + + + + + + Nucleon + Either a proton or a neutron. + Nucleon + Either a proton or a neutron. + https://en.wikipedia.org/wiki/Nucleon + -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + + + + Symbol + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + AlphabeticEntity + Symbol + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - ChemicalElement - Atom - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. +Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. +(Wikipedia) + The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. + -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + + + Process + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. +For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. + Occurrent + Perdurant + Process + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + + + + DirectCoulometryAtControlledPotential + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + DirectCoulometryAtControlledPotential + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + https://doi.org/10.1515/pac-2018-0109 - - - - DisplacementCurrentDensity - Vector quantity equal to the time derivative of the electric flux density. - DisplacementCurrentDensity - https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity - https://www.wikidata.org/wiki/Q77614612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 - 6-18 - Vector quantity equal to the time derivative of the electric flux density. + + + + Coulometry + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + Coulometry + https://www.wikidata.org/wiki/Q1136979 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + https://en.wikipedia.org/wiki/Coulometry + https://doi.org/10.1515/pac-2018-0109 - - + + - - + + - - - - ElectricCurrentDensity - Electric current divided by the cross-sectional area it is passing through. - AreicElectricCurrent - CurrentDensity - ElectricCurrentDensity - http://qudt.org/vocab/quantitykind/ElectricCurrentDensity - https://www.wikidata.org/wiki/Q234072 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 - 6-8 - https://en.wikipedia.org/wiki/Current_density - https://doi.org/10.1351/goldbook.E01928 + CharacterisationEnvironment + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + CharacterisationEnvironment + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - - - - - HartreeEnergy - Energy of the electron in a hydrogen atom in its ground state - HartreeEnergy - https://qudt.org/vocab/unit/E_h.html - https://www.wikidata.org/wiki/Q476572 - https://dbpedia.org/page/Hartree - 10-8 - Energy of the electron in a hydrogen atom in its ground state - https://en.wikipedia.org/wiki/Hartree - https://doi.org/10.1351/goldbook.H02748 + + + + CharacterisationEnvironmentProperty + + CharacterisationEnvironmentProperty - + - - DynamicMechanicalAnalysis - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - DynamicMechanicalAnalysis - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + Person + Person - - - - - StandardAbsoluteActivity - Property of a solute in a solution. - StandardAbsoluteActivityInASolution - StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89485936 - 9-26 - Property of a solute in a solution. + + + + + SerialWorkflow + A workflow whose tasks are tiles of a sequence. + SerialWorkflow + A workflow whose tasks are tiles of a sequence. - + + + + + + + + + + + + + + + + + + + + + Workflow + A procedure that has at least two procedures (tasks) as proper parts. + Workflow + A procedure that has at least two procedures (tasks) as proper parts. + + + + + + Sequence + A tessellation of temporal slices. + Sequence + A tessellation of temporal slices. + + + + + + MaterialLaw + A law that provides a connection between a material property and other properties of the object. + MaterialLaw + A law that provides a connection between a material property and other properties of the object. + + + + + + NaturalLaw + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + NaturalLaw + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + + + - - - AbsoluteActivity - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - AbsoluteActivity - https://qudt.org/vocab/quantitykind/AbsoluteActivity - https://www.wikidata.org/wiki/Q56638155 - 9-18 - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - https://goldbook.iupac.org/terms/view/A00019 + + GroupVelocity + Speed with which the envelope of a wave propagates in space. + GroupSpeed + GroupVelocity + https://www.wikidata.org/wiki/Q217361 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 + https://dbpedia.org/page/Group_velocity + 3-23.2 + Speed with which the envelope of a wave propagates in space. + https://en.wikipedia.org/wiki/Group_velocity - + - - + - - T-2 L+2 M+1 I0 Θ0 N0 J0 + + - - EnergyUnit - EnergyUnit + + + + + + + Velocity + The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. + +-- IEC, note 2 + The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. + +-- IEC, note 1 + Vector quantity giving the rate of change of a position vector. + +-- ISO 80000-3 + Velocity + http://qudt.org/vocab/quantitykind/Velocity + https://www.wikidata.org/wiki/Q11465 + Vector quantity giving the rate of change of a position vector. + +-- ISO 80000-3 + 3-8.1 + 3‑10.1 - + - - + - - T+2 L0 M0 I0 Θ0 N0 J0 + + - - SquareTimeUnit - SquareTimeUnit + + + + Action + Physical quantity of dimension energy × time. + Action + https://qudt.org/vocab/quantitykind/Action + https://www.wikidata.org/wiki/Q846785 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 + 4-32 + Physical quantity of dimension energy × time. - - - - Assembled - A system of independent elements that are assembled together to perform a function. - Assembled - A system of independent elements that are assembled together to perform a function. + + + + + + + + + + + CondensedMatter + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + CondensedMatter + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - - - - HolisticArrangement - A system which is mainly characterised by the spatial configuration of its elements. - HolisticArrangement - A system which is mainly characterised by the spatial configuration of its elements. + + + ContinuumSubstance + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + ContinuumSubstance + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). + +A single continuum individual can be the whole fluid in a pipe. + A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. - + + + ScanningKelvinProbe + + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + SKB + ScanningKelvinProbe + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + + + + - - - - - - - - + + - - + + - - + + - - SamplePreparation - - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - SamplePreparation - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - - - - - - CharacterisationProcedure - Characterisation procedure may refer to the full characterisation process or just a part of the full process. - The process of performing characterisation by following some existing formalised operative rules. - CharacterisationProcedure - The process of performing characterisation by following some existing formalised operative rules. - Sample preparation -Sample inspection -Calibration -Microscopy -Viscometry -Data sampling - Characterisation procedure may refer to the full characterisation process or just a part of the full process. + Deduction + IndexSemiosis + Deduction - - - - - - - - + + + + + SpeedOfLightInVacuum + The speed of light in vacuum. Defines the base unit metre in the SI system. + SpeedOfLightInVacuum + http://qudt.org/vocab/constant/SpeedOfLight_Vacuum + 6-35.2 + The speed of light in vacuum. Defines the base unit metre in the SI system. + https://doi.org/10.1351/goldbook.S05854 + + + + - - + + + + Speed + Length per unit time. + +Speed in the absolute value of the velocity. + Speed + http://qudt.org/vocab/quantitykind/Speed + 3-8.2 + https://doi.org/10.1351/goldbook.S05852 + + + + + + + InjectionMolding + InjectionMolding + + + + + + ArchetypeJoin + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + ArchetypeJoin + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + + + + + + FormingFromPlastic + FormingFromPlastic + + + + + + Enthalpy + Measurement of energy in a thermodynamic system. + Enthalpy + http://qudt.org/vocab/quantitykind/Enthalpy + 5.20-3 + https://doi.org/10.1351/goldbook.E02141 + + + + - - + + + + + + + Deducer + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Deducer + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Someone who deduces an emotional status of a persona according to facial expression. + Someone who deduces the occurring of a physical phenomenon through other phenomena. + + + + - - - 1 + + - - CalibrationProcess - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. + + + + + + + + + + + + PhysicalQuantity + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. +ISO 80000-1 + Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - CalibrationProcess - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. +Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. + Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. +For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. + +However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. + +For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. + +As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). + — quantities of the same kind have the same quantity dimension, +— quantities of different quantity dimensions are always of different kinds, and +— quantities having the same quantity dimension are not necessarily of the same kind. +ISO 80000-1 + PhysicalQuantity + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - - + + - T-2 L+2 M+1 I-1 Θ0 N0 J0 + T0 L+2 M0 I0 Θ0 N0 J0 - MagneticFluxUnit - MagneticFluxUnit + AreaUnit + AreaUnit - - - - - ResonanceEscapeProbability - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - ResonanceEscapeProbability - https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability - https://www.wikidata.org/wiki/Q4108072 - 10-68 - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + + + + ChemicallyDefinedMaterial + ChemicallyDefinedMaterial - - - - Probability - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. - Probability - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - https://doi.org/10.1351/goldbook.P04855 + + + + + Material + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + Material + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. - - - - WorkpieceForming - A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. - ArchetypeForming - PrimitiveForming - WorkpieceForming + + + + + MolarHelmholtzEnergy + Helmholtz energy per amount of substance. + MolarHelmholtzEnergy + https://www.wikidata.org/wiki/Q88862986 + 9-6.3 + Helmholtz energy per amount of substance. - - + + - - + + - CharacterisationEnvironment - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - CharacterisationEnvironment - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + + MolarEnergy + Energy per amount of substance. + MolarEnergy + https://qudt.org/vocab/quantitykind/MolarEnergy + https://www.wikidata.org/wiki/Q69427512 + Energy per amount of substance. - + - - CompressionTesting - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - CompressionTesting - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + DataQuality + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + DataQuality + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) - - + + + + Chronocoulometry + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Chronocoulometry + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + https://doi.org/10.1515/pac-2018-0109 + + + + - - + + - - - SeebeckCoefficient - Measure of voltage induced by change of temperature. - SeebeckCoefficient - https://qudt.org/vocab/quantitykind/SeebeckCoefficient - https://www.wikidata.org/wiki/Q1091448 - 12-21 - Measure of voltage induced by change of temperature. + SpatialTiling + A well formed tessellation with tiles that all spatial. + SpatialTiling + A well formed tessellation with tiles that all spatial. - - - - - NonLeakageProbability - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - NonLeakageProbability - https://qudt.org/vocab/quantitykind/Non-LeakageProbability - https://www.wikidata.org/wiki/Q99415566 - 10-77 - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + + + + + + ScientificTheory + A scientific theory is a description, objective and observed, produced with scientific methodology. + ScientificTheory + A scientific theory is a description, objective and observed, produced with scientific methodology. - - + + + + + RawData + + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + RawData + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. + In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. + In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + + + + + + DataAcquisitionRate + Quantifies the raw data acquisition rate, if applicable. + DataAcquisitionRate + Quantifies the raw data acquisition rate, if applicable. + + + + - - - 1 + + - - - 2 + + - Neutron - An uncharged subatomic particle found in the atomic nucleus. - Neutron - An uncharged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Neutron - - - - - - + + - - - ModulusOfCompression - Measure of how resistant to compressibility a substance is. - BulkModulus - ModulusOfCompression - https://qudt.org/vocab/quantitykind/BulkModulus - https://www.wikidata.org/wiki/Q900371 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 - 4-19.3 - Measure of how resistant to compressibility a substance is. + + + + + + + + SampleInspection + + Analysis of the sample in order to determine information that are relevant for the characterisation method. + SampleInspection + Analysis of the sample in order to determine information that are relevant for the characterisation method. + In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. - - - - - - - - - - - - - - - - - - - StrangeAntiQuark - StrangeAntiQuark + + + + SampleInspectionParameter + + Parameter used for the sample inspection process + SampleInspectionParameter + Parameter used for the sample inspection process - - - - Potentiometry - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - Potentiometry - https://www.wikidata.org/wiki/Q900632 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - https://doi.org/10.1515/pac-2018-0109 + + + + ReactivePower + Imaginary part of the complex power. + ReactivePower + https://qudt.org/vocab/quantitykind/ReactivePower + https://www.wikidata.org/wiki/Q2144613 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 + 6-60 + Imaginary part of the complex power. - + - - - - - - - - - - - + + - - Density - Quantity representing the spatial distribution of mass in a continuous material. - MassConcentration - MassDensity - Density - http://qudt.org/vocab/quantitykind/Density - 4-2 - 9-10 - Mass per volume. - https://doi.org/10.1351/goldbook.D01590 + + Power + Rate of transfer of energy per unit time. + Power + http://qudt.org/vocab/quantitykind/Power + 4-27 + 6-45 + Rate of transfer of energy per unit time. + https://doi.org/10.1351/goldbook.P04792 - + - - PositionVector - Vector quantity from the origin of a coordinate system to a point in space. - PositionVector - https://www.wikidata.org/wiki/Q192388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 - https://dbpedia.org/page/Position_(geometry) - 3-1.10 - Vector quantity from the origin of a coordinate system to a point in space. - https://en.wikipedia.org/wiki/Position_(geometry) + + Work + Product of force and displacement. + Work + http://qudt.org/vocab/quantitykind/Work + Product of force and displacement. + 4-28.4 + https://doi.org/10.1351/goldbook.W06684 - - - - LiquidPhaseSintering - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - LiquidPhaseSintering + + + + + + + T+2 L-2 M-1 I+1 Θ0 N0 J0 + + + ElectricCurrentPerEnergyUnit + ElectricCurrentPerEnergyUnit - - - - Sintering - Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. - Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. -Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - https://www.twi-global.com/technical-knowledge/faqs/what-is-sintering - Sintern - Sintering - Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. - Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. -Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. + + + + + MolarGasConstant + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + MolarGasConstant + http://qudt.org/vocab/constant/MolarGasConstant + 9-37.1 + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + https://doi.org/10.1351/goldbook.G02579 - - - - WearTesting - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - WearTesting - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + + + + + + + + + + + SpecificGasConstant + SpecificGasConstant + https://www.wikidata.org/wiki/Q94372268 + 5-26 - + - + + DataBasedSimulationSoftware + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + DataBasedSimulationSoftware + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + + + + + + + SimulationApplication + An application aimed to functionally reproduce an object. + SimulationApplication + An application aimed to functionally reproduce an object. + An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. + + + + + - - + + - Symbolic - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - Symbolic - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - fe780 -emmo -!5*a -cat -for(i=0;i<N;++i) - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - A symbolic object possesses a reductionistic oriented structure. -For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). + Redundant + A whole possessing some proper parts of its same type. + NonMaximal + Redundant + A whole possessing some proper parts of its same type. + An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. + +If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. - - - - EnergyDispersiveXraySpectroscopy - An analytical technique used for the elemental analysis or chemical characterization of a sample. - EDS - EDX - EnergyDispersiveXraySpectroscopy - https://www.wikidata.org/wiki/Q386334 - An analytical technique used for the elemental analysis or chemical characterization of a sample. - https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy + + + + PrincipalQuantumNumber + Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. + PrincipalQuantumNumber + https://qudt.org/vocab/quantitykind/PrincipalQuantumNumber + https://www.wikidata.org/wiki/Q867448 + 10-13.2 + Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - - - - - - - 1 - - + + - - - 1 + + - PrefixedUnit - A measurement unit that is made of a metric prefix and a unit symbol. - PrefixedUnit - A measurement unit that is made of a metric prefix and a unit symbol. - - - - - - - - - - - - - - - + - - + + - UnitSymbol - A symbol that stands for a single unit. - UnitSymbol - A symbol that stands for a single unit. - Some examples are "Pa", "m" and "J". + CharacterisationWorkflow + A characterisation procedure that has at least two characterisation tasks as proper parts. + CharacterisationWorkflow + A characterisation procedure that has at least two characterisation tasks as proper parts. - - + + - - + + - - + + - + - + - CausalParticle - The class of entities that have no spatial structure. - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - CausalParticle - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - The class of entities that have no spatial structure. + WeakBoson + WeakBoson - - - - CharacterisationHardwareSpecification - - CharacterisationHardwareSpecification + + + + FreeForming + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + Non la metterei + Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). + FreeForming - - + + + + CompressiveForming + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. + lasciano tensioni residue di compressione + Druckumformen + CompressiveForming + + + + - + - + - JunctionTile - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. - JunctionTile - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + Index + A 'Sign' that stands for an 'Object' due to causal continguity. + Signal + Index + A 'Sign' that stands for an 'Object' due to causal continguity. + Smoke stands for a combustion process (a fire). +My facial expression stands for my emotional status. - - - - Flanging - Flanging + + + + + + + T+1 L+2 M0 I0 Θ0 N0 J0 + + + AreaTimeUnit + AreaTimeUnit - - - - FormingJoin - FormingJoin + + + + RadiusOfCurvature + Radius of the osculating circle of a planar curve at a particular point of the curve. + RadiusOfCurvature + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 + https://dbpedia.org/page/Radius_of_curvature + 3-1.12 + Radius of the osculating circle of a planar curve at a particular point of the curve. + https://en.wikipedia.org/wiki/Radius_of_curvature - - - - DataPostProcessing - Analysis, that allows one to calculate the final material property from the calibrated primary data. - DataPostProcessing - Analysis, that allows one to calculate the final material property from the calibrated primary data. + + + Muon + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + Muon + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon - - - - - - - - + + - - + + + + + + EnergyDensityOfStates + Quantity in condensed matter physics. + EnergyDensityOfStates + https://qudt.org/vocab/quantitykind/EnergyDensityOfStates + https://www.wikidata.org/wiki/Q105687031 + 12-16 + Quantity in condensed matter physics. + + + + - - + + - - DataProcessing - A computation that provides a data output following the elaboration of some input data, using a data processing application. - DataProcessing - A computation that provides a data output following the elaboration of some input data, using a data processing application. + + + DensityOfVibrationalStates + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume + DensityOfVibrationalStates + https://qudt.org/vocab/quantitykind/DensityOfStates + https://www.wikidata.org/wiki/Q105637294 + 12-12 + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - + - - RestEnergy - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - Product of the rest mass and the square of the speed of light in vacuum. - RestEnergy - https://www.wikidata.org/wiki/Q11663629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 - 10-3 - Product of the rest mass and the square of the speed of light in vacuum. - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy - - - - - - Metrological - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - Metrological - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + + NucleonNumber + number of nucleons in an atomic nucleus + MassNumber + NucleonNumber + https://qudt.org/vocab/quantitykind/NucleonNumber + https://www.wikidata.org/wiki/Q101395 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 + https://dbpedia.org/page/Mass_number + 10-1.3 + number of nucleons in an atomic nucleus + https://en.wikipedia.org/wiki/Mass_number + https://doi.org/10.1351/goldbook.M03726 - - + + - - + + - - - IonicStrength - Charge number is a quantity of dimension one defined in ChargeNumber. - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - IonicStrength - https://qudt.org/vocab/quantitykind/IonicStrength - https://www.wikidata.org/wiki/Q898396 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 - 9-42 - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - https://doi.org/10.1351/goldbook.I03180 - + + + + + + + + + + Semiosis + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Semiosis + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Me looking a cat and saying loud: "Cat!" -> the semiosis process - - - - CentrifugalCasting - CentrifugalCasting +me -> interpreter +cat -> object (in Peirce semiotics) +the cat perceived by my mind -> interpretant +"Cat!" -> sign, the produced sign - - - - Casting - Casting + + + + CharacterisationTechnique + A characterisation technique is not only related to the measurement process which can be one of its steps. + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + Characterisation procedure + Characterisation technique + CharacterisationTechnique + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + A characterisation technique is not only related to the measurement process which can be one of its steps. - - - - HeatTreatment - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - wärmebehandeln - HeatTreatment - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + + FunctionalIcon + An icon that focusing WHAT the object does. + An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. + This subclass of icon inspired by Peirceian category (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else. + FunctionalIcon + An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. + A data based model is only a functional icon, since it provide the same relations between the properties of the object (e.g., it can predict some properties as function of others) but is not considering the internal mechanisms (i.e., it can ignore the physics). + A guinea pig. + An icon that focusing WHAT the object does. - + - + + - - + + T0 L+2 M0 I0 Θ0 N-1 J0 - - - - ElectricFieldStrength - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - ElectricFieldStrength - https://qudt.org/vocab/quantitykind/ElectricFieldStrength - https://www.wikidata.org/wiki/Q20989 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 - 6-10 - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + + AreaPerAmountUnit + AreaPerAmountUnit - - + + + Estimated + Estimated + The biography of a person that the author have not met. + + + + - - = + + + + + + - - - Equals - The equals symbol. - Equals - The equals symbol. + Cogniser + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + Cogniser + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + The scientist that connects an equation to a physical phenomenon. - - - Estimator - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). - Estimator - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + + + Cognised + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + Cognised + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + A physical phenomenon that is connected to an equation by a scientist. - - - - + + + SpatialTile + A direct part that is obtained by partitioning a whole purely in spatial parts. + SpatialTile + A direct part that is obtained by partitioning a whole purely in spatial parts. - - - - Cutting - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - Schneiden - Cutting + + + ProcessingReproducibility + + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + ProcessingReproducibility + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - + - - - - - - - - - - - - - - SampleExtraction - - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - SampleExtraction - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + BPMNDiagram + BPMNDiagram - - - - - - - - - - Time - One-dimensional subspace of space-time, which is locally orthogonal to space. - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - Time can be seen as the duration of an event or, more operationally, as "what clocks read". - Time - http://qudt.org/vocab/quantitykind/Time - One-dimensional subspace of space-time, which is locally orthogonal to space. - 3-7 - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - https://doi.org/10.1351/goldbook.T06375 + + + DataSet + Encoded data made of more than one datum. + DataSet + Encoded data made of more than one datum. - - - - - PhysicsMathematicalComputation - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. - PhysicsMathematicalComputation - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + + + + Screwing + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + Schrauben + Screwing - - - FunctionalIcon - An icon that focusing WHAT the object does. - An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. - This subclass of icon inspired by Peirceian category (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else. - FunctionalIcon - An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. - A data based model is only a functional icon, since it provide the same relations between the properties of the object (e.g., it can predict some properties as function of others) but is not considering the internal mechanisms (i.e., it can ignore the physics). - A guinea pig. - An icon that focusing WHAT the object does. + + + + Pressing + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + Anpressen + Pressing - - - - Computation - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - Computation - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - A matematician that calculates 2+2. -A computation machine that calculate the average value of a dataset. + + + + + Bending + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + Bending - - - PolymericMaterial - PolymericMaterial + + + + ElectrolyticDeposition + ElectrolyticDeposition - - - - - - - - - + + + + FormingFromIonised + FormingFromIonised + + + + - + - + - - - - - - - + + - MaterialsModel - A solvable set of one Physics Equation and one or more Materials Relations. - https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 - MaterialsModel - A solvable set of one Physics Equation and one or more Materials Relations. + DownQuark + DownQuark + https://en.wikipedia.org/wiki/Down_quark - - - - - - - - - - PhysicsBasedModel - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedModel - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + + + + WearTesting + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + WearTesting + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - + - - - Spin - Vector quantity expressing the internal angular momentum of a particle or a particle system. - Spin - https://qudt.org/vocab/quantitykind/Spin - https://www.wikidata.org/wiki/Q133673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 - 10-10 - Vector quantity expressing the internal angular momentum of a particle or a particle system. + + + NumberOfEntities + Discrete quantity; number of entities of a given kind in a system. + NumberOfEntities + https://www.wikidata.org/wiki/Q614112 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 + 9-1 + Discrete quantity; number of entities of a given kind in a system. + https://doi.org/10.1351/goldbook.N04266 - + + + + + + T+4 L0 M-1 I+2 Θ0 N0 J0 + + + SquareCurrentQuarticTimePerMassUnit + SquareCurrentQuarticTimePerMassUnit + + + + - - + + - - - AngularMomentum - Measure of the extent and direction an object rotates about a reference point. - AngularMomentum - http://qudt.org/vocab/quantitykind/AngularMomentum - 4-11 - https://doi.org/10.1351/goldbook.A00353 + + MeasurementResult + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + Result of a measurement. + +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + +-- VIM + MeasurementResult + Result of a measurement. + +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + +-- VIM + measurement result + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. - + + + Objective + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + Objective + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + + + - - ACVoltammetry + + XrayDiffraction - The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - ACV - ACVoltammetry - https://www.wikidata.org/wiki/Q120895154 - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - https://doi.org/10.1515/pac-2018-0109 + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + XRD + XrayDiffraction + https://www.wikidata.org/wiki/Q12101244 + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + https://en.wikipedia.org/wiki/X-ray_crystallography - + - - - ElectricSusceptibility - Electric polarization divided by electric constant and electric field strength. - ElectricSusceptibility - https://qudt.org/vocab/quantitykind/ElectricSusceptibility - https://www.wikidata.org/wiki/Q598305 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 - 6-16 - Electric polarization divided by electric constant and electric field strength. - https://en.wikipedia.org/wiki/Electric_susceptibility + DimensionalUnit + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + DimensionalUnit + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - + + + + Modeller + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + Modeller + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + + + + + Estimator + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + Estimator + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + + + - PrecipitationHardening - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - PrecipitationHardening - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + IsothermalConversion + IsothermalConversion - + + + + HeatTreatment + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + wärmebehandeln + HeatTreatment + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + + - - + - - T-1 L+3 M0 I-1 Θ0 N0 J0 + + - - ReciprocalElectricChargeDensityUnit - ReciprocalElectricChargeDensityUnit + + + + + ElectricPotential + The electric potential is not unique, since any constant scalar +field quantity can be added to it without changing its gradient. + Energy required to move a unit charge through an electric field from a reference point. + ElectroStaticPotential + ElectricPotential + http://qudt.org/vocab/quantitykind/ElectricPotential + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 + https://dbpedia.org/page/Electric_potential + 6-11.1 + Energy required to move a unit charge through an electric field from a reference point. + https://en.wikipedia.org/wiki/Electric_potential + https://doi.org/10.1351/goldbook.E01935 - + - - - MechanicalEfficiency - Quotient of mechanical output and input power. - MechanicalEfficiency - https://www.wikidata.org/wiki/Q2628085 - 4-29 - Quotient of mechanical output and input power. - - - - - - - - - - - - - - - - - - - - - Item - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The class of individuals standing for direct causally self-connected world entities. - The disjoint union of Elementary, Quantum and CausalSystem classes. - Item - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The disjoint union of Elementary, Quantum and CausalSystem classes. - The class of individuals standing for direct causally self-connected world entities. + + + Extensive + A quantity whose magnitude is additive for subsystems. + Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. + Extensive + A quantity whose magnitude is additive for subsystems. + Mass +Volume +Entropy - + - - - ActivityOfSolute - RelativeActivityOfSolute - ActivityOfSolute - https://www.wikidata.org/wiki/Q89408862 - 9-24 - - - - - - - - - - + + - - Task - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - Job - Task - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + + Vergence + In geometrical optics, vergence describes the curvature of optical wavefronts. + Vergence + http://qudt.org/vocab/quantitykind/Curvature - + + + LiquidLiquidSuspension + A coarse dispersion of liquid in a liquid continuum phase. + LiquidLiquidSuspension + A coarse dispersion of liquid in a liquid continuum phase. + + + + - - - 2 + + + 2 - - - - - 1 - - - Proton - A positive charged subatomic particle found in the atomic nucleus. - Proton - A positive charged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Proton + Collection + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + Collection + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. - - - - - DonorDensity - Number of donor levels per volume. - DonorDensity - https://qudt.org/vocab/quantitykind/DonorDensity - https://www.wikidata.org/wiki/Q105979886 - 12-29.4 - Number of donor levels per volume. + + + + + + + T-1 L0 M+1 I-1 Θ0 N0 J0 + + + MassPerElectricChargeUnit + MassPerElectricChargeUnit - + - - - - - - - ReciprocalVolume - ReciprocalVolume + Concentration + the abundance of a constituent divided by the total volume of a mixture. + Concentration + https://qudt.org/vocab/quantitykind/Concentration + https://www.wikidata.org/wiki/Q3686031 + https://dbpedia.org/page/Concentration + the abundance of a constituent divided by the total volume of a mixture. + https://en.wikipedia.org/wiki/Concentration + https://goldbook.iupac.org/terms/view/C01222 - - - - - - - - - - - - - - - - - - - - - - - - Hyperon - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - Hyperon - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - https://en.wikipedia.org/wiki/Hyperon + + + + + DewPointTemperature + The corresponding Celsius temperature is denoted td and is also called dew point. + Thermodynamic temperature at which vapour in air reaches saturation. + DewPointTemperature + https://www.wikidata.org/wiki/Q178828 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 + 5-36 + Thermodynamic temperature at which vapour in air reaches saturation. + https://doi.org/10.1351/goldbook.D01652 - - + + - - + + - - Baryon - Subatomic particle which contains an odd number of valence quarks, at least 3. - Baryon - Subatomic particle which contains an odd number of valence quarks, at least 3. - https://en.wikipedia.org/wiki/Baryon + + + MolarAttenuationCoefficient + Quotient of linear attenuation coefficient µ and the amount c of the medium. + MolarAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592828 + 10-51 + Quotient of linear attenuation coefficient µ and the amount c of the medium. - - - - GravitySintering - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder - Loose-powderSintering - PressurelessSintering - GravitySintering + + + BlueBottomQuark + BlueBottomQuark - - - - PorcelainOrCeramicCasting - PorcelainOrCeramicCasting + + + BlueUpQuark + BlueUpQuark - - - - FormingFromPulp - FormingFromPulp + + + + NuclearSpinQuantumNumber + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. + NuclearSpinQuantumNumber + https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber + https://www.wikidata.org/wiki/Q97577403 + 10-13.7 + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - - - - Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) - Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) + + + + + + + + + + + GasMixture + GasMixture - + - - + - - T-3 L+1 M+1 I-1 Θ0 N0 J0 + + - - ElectricFieldStrengthUnit - ElectricFieldStrengthUnit + + + FineStructureConstant + A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. + FineStructureConstant + http://qudt.org/vocab/constant/FineStructureConstant + https://doi.org/10.1351/goldbook.F02389 - - - MetallicMaterial - MetallicMaterial + + + + VolumeFractionUnit + Unit for quantities of dimension one that are the fraction of two volumes. + VolumeFractionUnit + Unit for quantities of dimension one that are the fraction of two volumes. + Unit for volume fraction. - + + + + FractionUnit + Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this +is desirable (μm/m, nmol/mol). +-- SI Brochure + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + RatioUnit + FractionUnit + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + + + - + - - SpecificVolume - inverse of the mass density ρ, thus v = 1/ρ. - MassicVolume - SpecificVolume - https://qudt.org/vocab/quantitykind/SpecificVolume - https://www.wikidata.org/wiki/Q683556 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 - 4-3 - inverse of the mass density ρ, thus v = 1/ρ. - https://doi.org/10.1351/goldbook.S05807 - - - - - - LinearChronopotentiometry - Chronopotentiometry where the applied current is changed linearly. - LinearChronopotentiometry - Chronopotentiometry where the applied current is changed linearly. - chronopotentiometry where the applied current is changed linearly + + DecayConstant + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + DisintegrationConstant + DecayConstant + https://qudt.org/vocab/quantitykind/DecayConstant + https://www.wikidata.org/wiki/Q11477200 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 + 10-24 + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + https://doi.org/10.1351/goldbook.D01538 - - + + + CausalCollapse + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + CausalCollapse + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + + + + - - + + - - - DiffusionArea - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - DiffusionArea - https://qudt.org/vocab/quantitykind/DiffusionArea - https://www.wikidata.org/wiki/Q98966292 - 10-72.2 - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - - - - - TotalAngularMomentumQuantumNumber - Quantum number in an atom describing the magnitude of total angular momentum J. - TotalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1141095 - 10-13.6 - Quantum number in an atom describing the magnitude of total angular momentum J. - - - - - - - Material - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - Material - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. - - - - - - + + + + + + - - - BurgersVector - Vector characterising a dislocation in a crystal lattice. - BurgersVector - https://qudt.org/vocab/quantitykind/BurgersVector - https://www.wikidata.org/wiki/Q623093 - 12-6 - Vector characterising a dislocation in a crystal lattice. - + + + + + + + + + + Interpreter + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. - - - - Displacement - vector quantity between any two points in space - Displacement - https://qudt.org/vocab/quantitykind/Displacement - https://www.wikidata.org/wiki/Q190291 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 - https://dbpedia.org/page/Displacement_(geometry) - 3-1.11 - vector quantity between any two points in space - https://en.wikipedia.org/wiki/Displacement_(geometry) - +On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. + Interpreter + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). - - - - - AverageLogarithmicEnergyDecrement - Average value of the increment of the lethargy per collision. - AverageLogarithmicEnergyDecrement - https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html - https://www.wikidata.org/wiki/Q1940739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 - 10-70 - Average value of the increment of the lethargy per collision. +The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). - - + + - T-2 L+2 M+1 I0 Θ-1 N0 J0 + T-2 L+2 M+1 I-2 Θ0 N0 J0 - EntropyUnit - EntropyUnit + InductanceUnit + InductanceUnit - - - - Mixture - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - Mixture - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + + + + + QualityFactor + Factor taking into account health effects in the determination of the dose equivalent. + QualityFactor + https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor + https://www.wikidata.org/wiki/Q2122099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 + 10-82 + Factor taking into account health effects in the determination of the dose equivalent. - - - ContinuumSubstance - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - ContinuumSubstance - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). + + + + + + + + + + + ModulusOfElasticity + Mechanical property of linear elastic solid materials. + YoungsModulus + ModulusOfElasticity + https://www.wikidata.org/wiki/Q2091584 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 + 4-19.1 + Mechanical property of linear elastic solid materials. + https://doi.org/10.1351/goldbook.M03966 + -A single continuum individual can be the whole fluid in a pipe. - A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. + + + + + + + + + + + + + Uncoded + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + Uncoded + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + A random generated id for a product. - + - DimensionalUnit - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + + + PackingFraction + Quotient of relative mass excess and the nucleon number. + PackingFraction + https://qudt.org/vocab/quantitykind/PackingFraction + https://www.wikidata.org/wiki/Q98058276 + 10-23.1 + Quotient of relative mass excess and the nucleon number. + -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + + + + NominalProperty + "Property of a phenomenon, body, or substance, where the property has no magnitude." -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - DimensionalUnit - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. +"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. +International vocabulary of metrology (VIM) + An 'ObjectiveProperty' that cannot be quantified. + NominalProperty + An 'ObjectiveProperty' that cannot be quantified. + CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). +A color is a nominal property. + +Sex of a human being. + nominal property - - - - SamplePreparationInstrument - - SamplePreparationInstrument - - - - - - PathLength - Length of a rectifiable curve between two of its points. - ArcLength - PathLength - https://www.wikidata.org/wiki/Q7144654 - https://dbpedia.org/page/Arc_length - 3-1.7 - Length of a rectifiable curve between two of its points. - https://en.wikipedia.org/wiki/Arc_length + + + + Heteronuclear + A molecule composed of more than one element type. + Heteronuclear + A molecule composed of more than one element type. + Nitric oxide (NO) or carbon dioxide (CO₂). - - + + - - + + - - - Length - Extend of a spatial dimension. - Length is a non-negative additive quantity attributed to a one-dimensional object in space. - Length - http://qudt.org/vocab/quantitykind/Length - 3-1.1 - Extend of a spatial dimension. - https://doi.org/10.1351/goldbook.L03498 + + + + + + + + + + + + + + + + + + + Molecule + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + ChemicalSubstance + Molecule + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + H₂0, C₆H₁₂O₆, CH₄ + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. +Removing an atom from the state will result in another type of atom_based state. +e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). - - - - AlgebricOperator - AlgebricOperator + + + + + ComptonWavelength + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + ComptonWavelength + https://qudt.org/vocab/constant/ComptonWavelength + https://www.wikidata.org/wiki/Q1145377 + 10-20 + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + https://en.wikipedia.org/wiki/Compton_wavelength - + + + + Wavelength + Length of the repetition interval of a wave. + Wavelength + https://qudt.org/vocab/quantitykind/Wavelength + https://www.wikidata.org/wiki/Q41364 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 + https://dbpedia.org/page/Wavelength + 3-19 + Length of the repetition interval of a wave. + https://en.wikipedia.org/wiki/Wavelength + https://doi.org/10.1351/goldbook.W06659 + + + - Ablation - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - Abtragen - Ablation + Dismantling + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + Demontage + Dismantling + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - - - - - RawData - - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - RawData - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. - In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. - In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + + + + SeparateManufacturing + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + DIN 8580:2020 + Trennen + CuttingManufacturing + SeparateManufacturing + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - + - - DataAcquisitionRate - Quantifies the raw data acquisition rate, if applicable. - DataAcquisitionRate - Quantifies the raw data acquisition rate, if applicable. + + GammaSpectrometry + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + GammaSpectrometry + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - - - ExactConstant - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - ExactConstant - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + + + + Spectrometry + + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + Spectrometry + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - - - - - - - - - - - - - - - - - - - - - - - SpatioTemporalTile - https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a - WellFormedTile - SpatioTemporalTile + + + + + DegreeOfDissociation + Dissociation may occur stepwise. + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + DissociationFraction + DegreeOfDissociation + https://qudt.org/vocab/quantitykind/DegreeOfDissociation + https://www.wikidata.org/wiki/Q907334 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 + 9-43 + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + https://doi.org/10.1351/goldbook.D01566 - - - + + + + - - - - - - + + T-2 L0 M0 I0 Θ+1 N0 J0 - - Tile - A causal object that is direct part of a tessellation. - Tile - A causal object that is direct part of a tessellation. + + TemperaturePerSquareTimeUnit + TemperaturePerSquareTimeUnit - - - - - - RollingResistance - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - RollingDrag - RollingFrictionForce - RollingResistance - https://www.wikidata.org/wiki/Q914921 - 4-9.5 - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. + + + + ElectrochemicalTesting + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 + ElectrochemicalTesting + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - + - + - - Force - Any interaction that, when unopposed, will change the motion of an object - Force - http://qudt.org/vocab/quantitykind/Force - 4-9.1 - Any interaction that, when unopposed, will change the motion of an object - https://doi.org/10.1351/goldbook.F02480 - - - - - - - - - T-1 L0 M+1 I-1 Θ0 N0 J0 - - - MassPerElectricChargeUnit - MassPerElectricChargeUnit + + ThermalConductance + Reciprocal of the thermal resistance. + ThermalConductance + https://qudt.org/vocab/quantitykind/ThermalConductance + https://www.wikidata.org/wiki/Q17176562 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 + 5-13 + Reciprocal of the thermal resistance. + https://doi.org/10.1351/goldbook.T06298 - - - - - - - - - - - LinearMassDensity - Mass per length. - LinearDensity - LineicMass - LinearMassDensity - https://qudt.org/vocab/quantitykind/LinearDensity - https://www.wikidata.org/wiki/Q56298294 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 - 4-6 - Mass per length. + + + + MaterialsProcessing + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + A material process requires the output to be classified as an individual of a material subclass. + ContinuumManufacturing + MaterialsProcessing + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. + A material process requires the output to be classified as an individual of a material subclass. - - - - - - - - + + - - + + - + - - - - - - - + - - - CharacterisationMeasurementProcess - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. - --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - CharacterisationMeasurementProcess - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. + + Manufacturing + Deals with entities that have a defined shape. + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + DIN 8580:2020 + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + Manufacturing + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + Deals with entities that have a defined shape. + https://de.wikipedia.org/wiki/Fertigungsverfahren + --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - Measurement + + + + + MeanEnergyImparted + Expectation value of the energy imparted. + MeanEnergyImparted + https://qudt.org/vocab/quantitykind/MeanEnergyImparted + https://www.wikidata.org/wiki/Q99526969 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 + 10-80.2 + Expectation value of the energy imparted. - - - - - - - - - - - - - - - - - - - - - - - - - - - - Interpreter - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. + + + + Vapor + A liquid aerosol composed of water droplets in air or another gas. + Vapor + A liquid aerosol composed of water droplets in air or another gas. + -On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. - Interpreter - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). + + + + LiquidAerosol + An aerosol composed of liquid droplets in air or another gas. + LiquidAerosol + An aerosol composed of liquid droplets in air or another gas. + -The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). + + + + Hazard + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + Hazard + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - + - - CharacterisationProcedureValidation - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - CharacterisationProcedureValidation - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + + MassSpectrometry + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + MassSpectrometry + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - + - ResourceIdentifier + + Spectroscopy - ResourceIdentifier + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + Spectroscopy + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - + - - - RestMass - For particle X, mass of that particle at rest in an inertial frame. - InvariantMass - ProperMass - RestMass - https://qudt.org/vocab/quantitykind/RestMass - https://www.wikidata.org/wiki/Q96941619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 - https://dbpedia.org/page/Mass_in_special_relativity - 10-2 - For particle X, mass of that particle at rest in an inertial frame. - https://en.wikipedia.org/wiki/Invariant_mass + + + VolumeFraction + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + VolumeFraction + http://qudt.org/vocab/quantitykind/VolumeFraction + 9-14 + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + https://doi.org/10.1351/goldbook.V06643 - + + + + + ManufacturedProduct + An object that has been designed and manufactured for a particular purpose. + Artifact + Engineered + TangibleProduct + ManufacturedProduct + An object that has been designed and manufactured for a particular purpose. + Car, tire, composite material. + + + + + + + + + + + + + + Product + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. + Output + Product + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 + https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. + + + + + + DataProcessingApplication + DataProcessingApplication + + + + + + ApplicationProgram + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + App + Application + ApplicationProgram + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + Word processors, graphic image processing programs, database management systems, numerical simulation software and games. + + + - - - - - - - + + - - - - - - + + T-1 L0 M0 I0 Θ-1 N0 J0 - - - - Mass - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - Mass - http://qudt.org/vocab/quantitykind/Mass - 4-1 - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - https://doi.org/10.1351/goldbook.M03709 + + PerTemperatureTimeUnit + PerTemperatureTimeUnit - - - - ConstructionLanguage - A computer language by which a human can specify an executable problem solution to a computer. - ConstructionLanguage - A computer language by which a human can specify an executable problem solution to a computer. - https://en.wikipedia.org/wiki/Software_construction#Construction_languages + + + + + + + T-3 L-1 M+1 I0 Θ0 N0 J0 + + + PressurePerTimeUnit + PressurePerTimeUnit @@ -6493,1724 +6834,1771 @@ https://www.computer.org/education/bodies-of-knowledge/software-engineeringhttps://en.wikipedia.org/wiki/Computer_language - - - - Thermogravimetry - - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - TGA - Thermogravimetry - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - - - + - - URN - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - URN - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - - - - - BlueBottomQuark - BlueBottomQuark - - - - - - - - - - - - - - ElectricPotential - The electric potential is not unique, since any constant scalar -field quantity can be added to it without changing its gradient. - Energy required to move a unit charge through an electric field from a reference point. - ElectroStaticPotential - ElectricPotential - http://qudt.org/vocab/quantitykind/ElectricPotential - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 - https://dbpedia.org/page/Electric_potential - 6-11.1 - Energy required to move a unit charge through an electric field from a reference point. - https://en.wikipedia.org/wiki/Electric_potential - https://doi.org/10.1351/goldbook.E01935 + + ComputerScience + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + A well-formed formula that follows the syntactic rules of computer science. + ComputerScience + A well-formed formula that follows the syntactic rules of computer science. + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - + - - Impedimetry - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Impedimetry - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + + ACVoltammetry + + The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + ACV + ACVoltammetry + https://www.wikidata.org/wiki/Q120895154 + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp https://doi.org/10.1515/pac-2018-0109 - + - - PrincipalQuantumNumber - Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - PrincipalQuantumNumber - https://qudt.org/vocab/quantitykind/PrincipalQuantumNumber - https://www.wikidata.org/wiki/Q867448 - 10-13.2 - Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. + + + AtomicScatteringFactor + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + AtomicScatteringFactor + https://qudt.org/vocab/quantitykind/AtomScatteringFactor + https://www.wikidata.org/wiki/Q837866 + 12-5.3 + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + https://en.wikipedia.org/wiki/Atomic_form_factor - + - - Annealing - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - Annealing - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + + WorkPiece + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. + It has a shape, so we conclude that it is solid + Object that is processed with a machine + Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product + The raw material or partially finished piece that is shaped by performing various operations. + They are not powders or threads + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + fili e polveri non sono compresi + it seems to be an intermediate product, that has to reach the final shape. + it seems to be solid, so it has a proper shape + powder is not workpiece because it has the shape of the recipient containing them + Werkstück + WorkPiece + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - - - + + - - - - + + + + - Holistic - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + ManufacturedMaterial + A material that is obtained through a manufacturing process. + EngineeredMaterial + ProcessedMaterial + ManufacturedMaterial + A material that is obtained through a manufacturing process. + -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - Wholistic - Holistic - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + + + + Perspective + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + Perspective + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + + + + String + A physical made of more than one symbol sequentially arranged. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + String + A physical made of more than one symbol sequentially arranged. + The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. - A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. +In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). + +If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + A string is not requested to respect any syntactic rule: it's simply directly made of symbols. - - - SpatiallyRedundant - A whole with spatial parts of its same type. - SpatiallyRedundant - A whole with spatial parts of its same type. + + + + + + + + + + + + + + ResourceIdentifier + A formal computer-interpretable identifier of a system resource. + ResourceIdentifier + A formal computer-interpretable identifier of a system resource. - - - - - StandardEquilibriumConstant - ThermodynamicEquilibriumConstant - StandardEquilibriumConstant - https://www.wikidata.org/wiki/Q95993378 - 9-32 - https://doi.org/10.1351/goldbook.S05915 + + + + Rationale + A set of reasons or a logical basis for a decision or belief + Rationale + A set of reasons or a logical basis for a decision or belief - + - - - EquilibriumConstant - The physical dimension can change based on the stoichiometric numbers of the substances involved. - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - EquilibriumConstantConcentrationBasis - EquilibriumConstant - https://qudt.org/vocab/quantitykind/EquilibriumConstant - https://www.wikidata.org/wiki/Q857809 - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - https://en.wikipedia.org/wiki/Equilibrium_constant - https://doi.org/10.1351/goldbook.E02177 + + + + + + + + Time + One-dimensional subspace of space-time, which is locally orthogonal to space. + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + Time can be seen as the duration of an event or, more operationally, as "what clocks read". + Time + http://qudt.org/vocab/quantitykind/Time + One-dimensional subspace of space-time, which is locally orthogonal to space. + 3-7 + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + https://doi.org/10.1351/goldbook.T06375 - - - - - FermiEnergy - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - FermiEnergy - https://qudt.org/vocab/quantitykind/FermiEnergy - https://www.wikidata.org/wiki/Q431335 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 - 12-27.1 - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - https://doi.org/10.1351/goldbook.F02340 + + + + NormalPulseVoltammetry + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + NPV + NormalPulseVoltammetry + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + https://doi.org/10.1515/pac-2018-0109 - - - TensorMeson - A meson with spin two. - TensorMeson - A meson with spin two. + + + + + SlowingDownArea + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + SlowingDownArea + https://qudt.org/vocab/quantitykind/Slowing-DownArea + https://www.wikidata.org/wiki/Q98950918 + 10-72.1 + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - - - - Device - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - Equipment - Machine - Device - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + + + + + + EndTile + EndTile - - - + + + - - - T-4 L+3 M+1 I-2 Θ0 N0 J0 - + + + + + + + - InversePermittivityUnit - InversePermittivityUnit + + + + + + + + + + + SpatioTemporalTile + https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a + WellFormedTile + SpatioTemporalTile - + - + + - - AreaDensity - Mass per unit area. - AreaDensity - http://qudt.org/vocab/quantitykind/SurfaceDensity - https://doi.org/10.1351/goldbook.S06167 + + ElectricCharge + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + Charge + ElectricCharge + http://qudt.org/vocab/quantitykind/ElectricCharge + https://www.wikidata.org/wiki/Q1111 + 6-2 + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + https://doi.org/10.1351/goldbook.E01923 - + - + - - ThermalInsulance - Reciprocal of the coefficient of heat transfer. - CoefficientOfThermalInsulance - ThermalInsulance - https://qudt.org/vocab/quantitykind/ThermalInsulance - https://www.wikidata.org/wiki/Q2596212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 - 5-11 - Reciprocal of the coefficient of heat transfer. - - - - - - DataBasedSimulationSoftware - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - DataBasedSimulationSoftware - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + + ParticleFluenceRate + Differential quotient of fluence Φ with respect to time. + ParticleFluenceRate + https://qudt.org/vocab/quantitykind/ParticleFluenceRate + https://www.wikidata.org/wiki/Q98497410 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 + 10-44 + Differential quotient of fluence Φ with respect to time. - - - - - SimulationApplication - An application aimed to functionally reproduce an object. - SimulationApplication - An application aimed to functionally reproduce an object. - An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. - + + + + + + + + + + + + Fundamental + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + Lifetime + Maximal + Fundamental + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - - - - - - Path - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - Path - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - /etc/fstab (UNIX-like path) -C:\\Users\\John\\Desktop (DOS-like path) +On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. + +Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. - - - - Height - Minimum length of a straight line segment between a point and a reference line or reference surface. - Height - https://qudt.org/vocab/quantitykind/Height - https://www.wikidata.org/wiki/Q208826 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 - https://dbpedia.org/page/Height - 3-1.3 - Minimum length of a straight line segment between a point and a reference line or reference surface. - https://en.wikipedia.org/wiki/Height + + + + + + + 1 + + + + + + + 1 + + + PrefixedUnit + A measurement unit that is made of a metric prefix and a unit symbol. + PrefixedUnit + A measurement unit that is made of a metric prefix and a unit symbol. - - + + - + - - - - - - - + + - AntiElectronType - AntiElectronType + + + + + + + + + UnitSymbol + A symbol that stands for a single unit. + UnitSymbol + A symbol that stands for a single unit. + Some examples are "Pa", "m" and "J". - - - - String - A physical made of more than one symbol sequentially arranged. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - String - A physical made of more than one symbol sequentially arranged. - The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. + + + + + + + T0 L-2 M0 I+1 Θ0 N0 J0 + + + ElectricCurrentDensityUnit + ElectricCurrentDensityUnit + -In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). + + + + PhaseOfMatter + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. -If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - A string is not requested to respect any syntactic rule: it's simply directly made of symbols. +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + Phase + PhaseOfMatter + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - + + + + + + BeginTile + BeginTile + + + + + + PotentialEnergy + The energy possessed by a body by virtue of its position or orientation in a potential field. + PotentialEnergy + http://qudt.org/vocab/quantitykind/PotentialEnergy + 4-28.1 + The energy possessed by a body by virtue of its position or orientation in a potential field. + https://doi.org/10.1351/goldbook.P04778 + + + + Subjective + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. + +This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. + +A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. + +e.g. you cannot evaluate the beauty of a person on objective basis. + Subjective + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The beauty of that girl. +The style of your clothing. + + + + - - + + + + + + - - SymbolicConstruct - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - SymbolicConstruct - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + JunctionTile + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + JunctionTile + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. - + - - PhaseVelocity - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - PhaseSpeed - PhaseVelocity - https://www.wikidata.org/wiki/Q13824 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 - https://dbpedia.org/page/Phase_velocity - 3-23.1 - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - https://en.wikipedia.org/wiki/Phase_velocity + + + LatentHeat + LatentHeat + https://www.wikidata.org/wiki/Q207721 + 5-6.2 - + + + + Heat + Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. + AmountOfHeat + Heat + http://qudt.org/vocab/quantitykind/Heat + 5-6.1 + https://doi.org/10.1351/goldbook.H02752 + + + + + + + + T0 L+1 M0 I0 Θ0 N0 J0 + + + LengthUnit + LengthUnit + + + + + + LightScattering + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + LightScattering + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + + + + - - + + - - - - - - Velocity - The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. + + + + + + + + + + + + + + + Measurement + A measurement always implies a causal interaction between the object and the observer. + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + Measurement + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + measurement + --- IEC, note 2 - The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. + + + + + + + + + + + + + Observation + A characterisation of an object with an actual interaction. + Observation + A characterisation of an object with an actual interaction. + --- IEC, note 1 - Vector quantity giving the rate of change of a position vector. + + + + ContinuousCasting + ContinuousCasting + --- ISO 80000-3 - Velocity - http://qudt.org/vocab/quantitykind/Velocity - https://www.wikidata.org/wiki/Q11465 - Vector quantity giving the rate of change of a position vector. + + + + + SubObject + An object which is an holistic temporal part of another object. + Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. + SubObject + An object which is an holistic temporal part of another object. + If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. + --- ISO 80000-3 - 3-8.1 - 3‑10.1 + + + + + IterativeStep + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + IterativeStep + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. - + + + + + + + + + + + + + + Step + A step is part of a specific granularity level for the workflow description, as composition of tasks. + A task that is a well formed tile of a workflow, according to a reductionistic description. + Step + A task that is a well formed tile of a workflow, according to a reductionistic description. + A step is part of a specific granularity level for the workflow description, as composition of tasks. + + + - + - - + + + + + + + - WeakBoson - WeakBoson + FundamentalBoson + A boson that is a single elementary particle. + A particle with integer spin that follows Bose–Einstein statistics. + FundamentalBoson + A particle with integer spin that follows Bose–Einstein statistics. + A boson that is a single elementary particle. + https://en.wikipedia.org/wiki/Boson#Elementary_bosons - - - - Organisation - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - Organisation - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + + + + CharacterisationProcedure + Characterisation procedure may refer to the full characterisation process or just a part of the full process. + The process of performing characterisation by following some existing formalised operative rules. + CharacterisationProcedure + The process of performing characterisation by following some existing formalised operative rules. + Sample preparation +Sample inspection +Calibration +Microscopy +Viscometry +Data sampling + Characterisation procedure may refer to the full characterisation process or just a part of the full process. - - - - - - - - - - - SlowingDownDensity - Number of slowed-down particles per time and volume. - SlowingDownDensity - https://qudt.org/vocab/quantitykind/Slowing-DownDensity - https://www.wikidata.org/wiki/Q98915830 - 10-67 - Number of slowed-down particles per time and volume. + + + + + ShearCutting + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + Scherschneiden + ShearCutting - - - - - MolarEnthalpy - MolarEnthalpy - https://www.wikidata.org/wiki/Q88769977 - Enthalpy per amount of substance. - 9-6.2 + + + + Cutting + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). + Schneiden + Cutting - + + + + + + + - - - - - - - - MolarEnergy - Energy per amount of substance. - MolarEnergy - https://qudt.org/vocab/quantitykind/MolarEnergy - https://www.wikidata.org/wiki/Q69427512 - Energy per amount of substance. + + + ElectronMass + The rest mass of an electron. + ElectronMass + http://qudt.org/vocab/constant/ElectronMass + https://doi.org/10.1351/goldbook.E02008 - - + + - - + + + + + + - - Vector - 1-dimensional array who's spatial direct parts are numbers. - LinearArray - 1DArray - Vector - 1-dimensional array who's spatial direct parts are numbers. - - - - - + - - Speed - Length per unit time. + + + Mass + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + Mass + http://qudt.org/vocab/quantitykind/Mass + 4-1 + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + https://doi.org/10.1351/goldbook.M03709 + -Speed in the absolute value of the velocity. - Speed - http://qudt.org/vocab/quantitykind/Speed - 3-8.2 - https://doi.org/10.1351/goldbook.S05852 + + + AtomisticModel + A physics-based model based on a physics equation describing the behaviour of atoms. + AtomisticModel + A physics-based model based on a physics equation describing the behaviour of atoms. - - - - Electrogravimetry - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - Electrogravimetry - https://www.wikidata.org/wiki/Q902953 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - https://en.wikipedia.org/wiki/Electrogravimetry - + + + + ObjectiveProperty + A quantity that is obtained from a well-defined procedure. + Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - - - CompositeMaterial - CompositeMaterial +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + PhysicalProperty + QuantitativeProperty + ObjectiveProperty + A quantity that is obtained from a well-defined procedure. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - - - - - - - - - - MagneticTension - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - MagneticTension - https://qudt.org/vocab/quantitykind/MagneticTension - https://www.wikidata.org/wiki/Q77993836 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 - 6-37.2 - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + + + + Mathematical + A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. + The class of general mathematical symbolic objects respecting mathematical syntactic rules. + Mathematical + The class of general mathematical symbolic objects respecting mathematical syntactic rules. - + - + + - - + + T0 L-3 M0 I0 Θ0 N0 J0 - - - - GyromagneticRatio - Ratio of magnetic dipole moment to total angular momentum. - GyromagneticCoefficient - MagnetogyricRatio - GyromagneticRatio - https://qudt.org/vocab/quantitykind/GyromagneticRatio - https://www.wikidata.org/wiki/Q634552 - 10-12.1 - Ratio of magnetic dipole moment to total angular momentum. - https://doi.org/10.1351/goldbook.M03693 - - - - - - ISO80000Categorised - ISO80000Categorised - - - - - RedStrangeAntiQuark - RedStrangeAntiQuark + + PerVolumeUnit + PerVolumeUnit - + - - Angle - Ratio of circular arc length to radius. - PlaneAngle - Angle - http://qudt.org/vocab/quantitykind/PlaneAngle - Ratio of circular arc length to radius. - 3-5 - https://doi.org/10.1351/goldbook.A00346 - - - - - DataProcessingThroughCalibration - Describes how raw data are corrected and/or modified through calibrations. - DataProcessingThroughCalibration - Describes how raw data are corrected and/or modified through calibrations. + + + NeelTemperature + Critical thermodynamic temperature of an antiferromagnet. + NeelTemperature + https://www.wikidata.org/wiki/Q830311 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 + 12-35.2 + Critical thermodynamic temperature of an antiferromagnet. - + - - - ElectronMass - The rest mass of an electron. - ElectronMass - http://qudt.org/vocab/constant/ElectronMass - https://doi.org/10.1351/goldbook.E02008 + + CriticalTemperature + Temperature below which quantum effects dominate. + CriticalTemperature + https://www.wikidata.org/wiki/Q1450516 + Temperature below which quantum effects dominate. - - - - - - - 1 - - - + + - + - + + + + + + + + + + + + + + + + + - - - - - - - - - Quantity - A quantifiable property of a phenomenon, body, or substance. - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - Measurand - Quantity - https://qudt.org/schema/qudt/Quantity - A quantifiable property of a phenomenon, body, or substance. - length -Rockwell C hardness -electric resistance - measurand - quantity - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". + Quark + The class of individuals that stand for quarks elementary particles. + Quark + The class of individuals that stand for quarks elementary particles. + https://en.wikipedia.org/wiki/Quark + -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + + + + + + + + + + + ThermalDiffusivity + ThermalDiffusionCoefficient + ThermalDiffusivity + https://qudt.org/vocab/quantitykind/ThermalDiffusivity + https://www.wikidata.org/wiki/Q3381809 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 + 5-14 - - + + - - - - - - + + - Property - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - Property - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - Hardness is a subclass of properties. -Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. - The name "red" which is atomic in the code made of the list of colors. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + + Array3D + 3-dimensional array who's spatial direct parts are matrices. + 3DArray + Array3D + 3-dimensional array who's spatial direct parts are matrices. - - - - LevelOfAutomation - Describes the level of automation of the test. - LevelOfAutomation - Describes the level of automation of the test. - - - - - - NominalProperty - "Property of a phenomenon, body, or substance, where the property has no magnitude." - -"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." - -International vocabulary of metrology (VIM) - An 'ObjectiveProperty' that cannot be quantified. - NominalProperty - An 'ObjectiveProperty' that cannot be quantified. - CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered - -A color is a nominal property. + + + + Array + Array subclasses with a specific shape can be constructed with cardinality restrictions. -Sex of a human being. - nominal property +See Shape4x3Matrix as an example. + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + Arrays are ordered objects, since they are a subclasses of Arrangement. + Array + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + A Vector is a 1-dimensional Array with Number as spatial direct parts, +a Matrix is a 2-dimensional Array with Vector as spatial direct parts, +an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, +and so forth... - + - - + - - T-1 L-3 M0 I0 Θ0 N0 J0 + + - - FrequencyPerVolumeUnit - FrequencyPerVolumeUnit - - - - - - Tempering - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - QuenchingAndTempering - Vergüten - Tempering - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + + + LuminousFlux + Perceived power of light. + LuminousFlux + http://qudt.org/vocab/quantitykind/LuminousFlux + 7-13 + Perceived power of light. + https://doi.org/10.1351/goldbook.L03646 - - - - - TotalAngularMomentum - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - TotalAngularMomentum - https://qudt.org/vocab/quantitykind/TotalAngularMomentum - https://www.wikidata.org/wiki/Q97496506 - 10-11 - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + + + + + + + + + + + + + Tile + A causal object that is direct part of a tessellation. + Tile + A causal object that is direct part of a tessellation. - + - + - - - ElectricCurrent - A flow of electric charge. - ElectricCurrent - http://qudt.org/vocab/quantitykind/ElectricCurrent - 6-1 - A flow of electric charge. - https://doi.org/10.1351/goldbook.E01927 - - - - - - MeasurementParameter - Describes the main input parameters that are needed to acquire the signal. - Describes the main input parameters that are needed to acquire the signal. - MeasurementParameter - Describes the main input parameters that are needed to acquire the signal. + + + TotalMassStoppingPower + Quotient of the total linear stopping power S and the mass density ρ of the material. + MassStoppingPower + TotalMassStoppingPower + https://qudt.org/vocab/quantitykind/TotalMassStoppingPower + https://www.wikidata.org/wiki/Q98642795 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 + 10-55 + Quotient of the total linear stopping power S and the mass density ρ of the material. - + - - + - - T0 L-2 M0 I0 Θ0 N0 J0 + + - - PerAreaUnit - PerAreaUnit - - - - - - ScatteringAndDiffraction - - ScatteringAndDiffraction + + + ChemicalPotential + Energy per unit change in amount of substance. + ChemicalPotential + http://qudt.org/vocab/quantitykind/ChemicalPotential + 9-17 + https://doi.org/10.1351/goldbook.C01032 - - - Laboratory - The laboratory where the whole characterisation process or some of its stages take place. - Laboratory - The laboratory where the whole characterisation process or some of its stages take place. + + + + Electroplating + Electroplating - - - - VolumetricNumberDensity - Count per volume. - VolumetricNumberDensity - Count per volume. + + + + CoatingManufacturing + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + DIN 8580:2020 + Beschichten + CoatingManufacturing + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. - + - - Wavelength - Length of the repetition interval of a wave. - Wavelength - https://qudt.org/vocab/quantitykind/Wavelength - https://www.wikidata.org/wiki/Q41364 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 - https://dbpedia.org/page/Wavelength - 3-19 - Length of the repetition interval of a wave. - https://en.wikipedia.org/wiki/Wavelength - https://doi.org/10.1351/goldbook.W06659 + + + + + + + + + SpecificVolume + inverse of the mass density ρ, thus v = 1/ρ. + MassicVolume + SpecificVolume + https://qudt.org/vocab/quantitykind/SpecificVolume + https://www.wikidata.org/wiki/Q683556 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 + 4-3 + inverse of the mass density ρ, thus v = 1/ρ. + https://doi.org/10.1351/goldbook.S05807 - + - - - ElementaryCharge - The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - ElementaryCharge - http://qudt.org/vocab/quantitykind/ElementaryCharge - 10-5.1 - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - https://doi.org/10.1351/goldbook.E02032 + + + MolecularPartitionFunction + Partition function of a molecule. + MolecularPartitionFunction + https://www.wikidata.org/wiki/Q96192064 + 9-35.4 + Partition function of a molecule. - - + + - + - - - - - - - + + - FundamentalBoson - A boson that is a single elementary particle. - A particle with integer spin that follows Bose–Einstein statistics. - FundamentalBoson - A particle with integer spin that follows Bose–Einstein statistics. - A boson that is a single elementary particle. - https://en.wikipedia.org/wiki/Boson#Elementary_bosons - - - - - - - ReactionEnergy - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - ReactionEnergy - https://qudt.org/vocab/quantitykind/ReactionEnergy - https://www.wikidata.org/wiki/Q98164745 - 10-37.1 - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + + + + + + + + + + + + CausalSystem + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + CausalSystem + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + A electron binded by a nucleus. - + - + - - Pressure - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - Pressure - http://qudt.org/vocab/quantitykind/Pressure - 4-14.1 - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - https://doi.org/10.1351/goldbook.P04819 + + ParticleFluence + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. + ParticleFluence + https://qudt.org/vocab/quantitykind/ParticleFluence + https://www.wikidata.org/wiki/Q82965908 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 + 10-43 + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - + - - - IonTransportNumber - Faction of electrical current carried by given ionic species. - CurrentFraction - TransferrenceNumber - IonTransportNumber - https://qudt.org/vocab/quantitykind/IonTransportNumber - https://www.wikidata.org/wiki/Q331854 - 9-46 - Faction of electrical current carried by given ionic species. - https://doi.org/10.1351/goldbook.I03181 - https://doi.org/10.1351/goldbook.T06489 - - - - - - AtomProbeTomography - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - 3D Atom Probe - APT - AtomProbeTomography - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - - - - - - Tomography - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - Tomography - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - - - - - - SecondaryData - - Data resulting from the application of post-processing or model generation to other data. - Elaborated data - SecondaryData - Data resulting from the application of post-processing or model generation to other data. - Deconvoluted curves - Intensity maps + + + SolidAngularMeasure + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + SolidAngle + SolidAngularMeasure + https://qudt.org/vocab/quantitykind/SolidAngle + https://www.wikidata.org/wiki/Q208476 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 + https://dbpedia.org/page/Solid_angle + 3-8 + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + https://en.wikipedia.org/wiki/Solid_angle - - - - CharacterisationData - Represents every type of data that is produced during a characterisation process - CharacterisationData - Represents every type of data that is produced during a characterisation process + + + + Angle + Ratio of circular arc length to radius. + PlaneAngle + Angle + http://qudt.org/vocab/quantitykind/PlaneAngle + Ratio of circular arc length to radius. + 3-5 + https://doi.org/10.1351/goldbook.A00346 - - + + - - - - + + + + + - MathematicalModel - A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. - -Abramowitz and Stegun, 1968 - An analogical icon expressed in mathematical language. - MathematicalModel - An analogical icon expressed in mathematical language. - - - - - - - - - - - - KinematicViscosity - Quotient of dynamic viscosity and mass density of a fluid. - KinematicViscosity - https://qudt.org/vocab/quantitykind/KinematicViscosity - https://www.wikidata.org/wiki/Q15106259 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 - 4-25 - Quotient of dynamic viscosity and mass density of a fluid. - https://doi.org/10.1351/goldbook.K03395 - + SemioticObject + Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. - - - - - HalfValueThickness - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - HalfValueThickness - https://qudt.org/vocab/quantitykind/Half-ValueThickness - https://www.wikidata.org/wiki/Q127526 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 - 10-53 - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - +The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. - - - - Thickness - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - Thickness - https://www.wikidata.org/wiki/Q3589038 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 - 3-1.4 - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. +In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). + The object, in Peirce semiotics, as participant to a semiotic process. + Object + SemioticObject + The object, in Peirce semiotics, as participant to a semiotic process. - + - + - - ElectronDensity - Number of electrons in conduction band per volume. - ElectronDensity - https://qudt.org/vocab/quantitykind/ElectronDensity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 - 12-29.1 - Number of electrons in conduction band per volume. + + MagneticFluxDensity + Often denoted B. + Strength of the magnetic field. + MagneticInduction + MagneticFluxDensity + http://qudt.org/vocab/quantitykind/MagneticFluxDensity + https://www.wikidata.org/wiki/Q30204 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 + 6-21 + Strength of the magnetic field. + https://doi.org/10.1351/goldbook.M03686 - - + + + - + - + - - - - - - - - - - - - - - - - - + + - RedQuark - RedQuark + Matter + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + A physical object made of fermionic quantum parts. + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + PhysicalSubstance + Matter + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + A physical object made of fermionic quantum parts. + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. - - - - OxidationNumber - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - OxidationState - OxidationNumber - https://www.wikidata.org/wiki/Q484152 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 - https://dbpedia.org/page/Oxidation_state - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - https://en.wikipedia.org/wiki/Oxidation_state - https://doi.org/10.1351/goldbook.O04363 + + + + Computation + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + Computation + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + A matematician that calculates 2+2. +A computation machine that calculate the average value of a dataset. - - - - Profilometry - - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - Profilometry - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + + + + + ParticlePositionVector + Position vector of a particle. + ParticlePositionVector + https://qudt.org/vocab/quantitykind/ParticlePositionVector + https://www.wikidata.org/wiki/Q105533324 + 12-7.1 + Position vector of a particle. - - - DataQuality - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - DataQuality - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) - + + + + + + + + + + + PositionVector + In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. - - - - AqueousSolution - A liquid solution in which the solvent is water. - AqueousSolution - A liquid solution in which the solvent is water. +-- IEC + Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. + +-- ISO 80000-3 + Vector r characterizing a point P in a point space with a given origin point O. + Position + PositionVector + http://qudt.org/vocab/quantitykind/PositionVector + Vector r characterizing a point P in a point space with a given origin point O. - - - - - LiquidSolution - A liquid solution made of two or more component substances. - LiquidSolution - A liquid solution made of two or more component substances. + + + + + + + T-1 L0 M+1 I0 Θ0 N0 J0 + + + MassPerTimeUnit + MassPerTimeUnit - + - - DataNormalisation - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - DataNormalisation - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + + FreezingPointDepressionOsmometry + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + FreezingPointDepressionOsmometry + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - + - - DataPreparation - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - DataPreparation - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + + Osmometry + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Osmometry + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - - - - Signal - - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - Signal - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + + + + + + + + + + + ActivityDensity + Activity per unit volume of the sample. + ActivityConcentration + VolumetricActivity + VolumicActivity + ActivityDensity + https://qudt.org/vocab/quantitykind/ActivityConcentration + https://www.wikidata.org/wiki/Q423263 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 + 10-29 + Activity per unit volume of the sample. - - - Datum - A self-consistent encoded data entity. - Datum - A self-consistent encoded data entity. - A character, a bit, a song in a CD. + + + + + ParticleEmissionRate + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + ParticleEmissionRate + https://www.wikidata.org/wiki/Q98153151 + 10-36 + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - + - - - MolarGibbsEnergy - Gibbs energy per amount of substance. - MolarGibbsEnergy - https://www.wikidata.org/wiki/Q88863324 - 9-6.4 - Gibbs energy per amount of substance. + + + + + + + + ReciprocalDuration + InverseDuration + InverseTime + ReciprocalTime + ReciprocalDuration + https://qudt.org/vocab/quantitykind/InverseTime + https://www.wikidata.org/wiki/Q98690850 - - - - UltrasonicTesting - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - UltrasonicTesting - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + + + + StandaloneModelSimulation + A standalone simulation, where a single physics equation is solved. + StandaloneModelSimulation + A standalone simulation, where a single physics equation is solved. - - - - MaterialsProcessing - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - A material process requires the output to be classified as an individual of a material subclass. - ContinuumManufacturing - MaterialsProcessing - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. - A material process requires the output to be classified as an individual of a material subclass. + + + + PhysicsBasedSimulation + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedSimulation + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - - - - - - - - - - - - - - + + + + + VacuumElectricPermittivity + The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. + The value of the absolute dielectric permittivity of classical vacuum. + PermittivityOfVacuum + VacuumElectricPermittivity + http://qudt.org/vocab/constant/PermittivityOfVacuum + 6-14.1 + https://doi.org/10.1351/goldbook.P04508 + + + + - - + + - - Manufacturing - Deals with entities that have a defined shape. - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - DIN 8580:2020 - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - Manufacturing - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - Deals with entities that have a defined shape. - https://de.wikipedia.org/wiki/Fertigungsverfahren + + + + Permittivity + Measure for how the polarization of a material is affected by the application of an external electric field. + Permittivity + http://qudt.org/vocab/quantitykind/Permittivity + 6-14.1 + 6-14.2 + https://doi.org/10.1351/goldbook.P04507 - - + + + + SparkErosion + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + elektrochemisches Abtragen + SparkErosion + + + + + + Ablation + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + Abtragen + Ablation + + + + + + Fork + A tessellation in wich a tile has next two or more non spatially connected tiles. + Fork + A tessellation in wich a tile has next two or more non spatially connected tiles. + + + + - - - - - - + + - - - - - - - - - - CharacterisationTask - - CharacterisationTask + TemporalTiling + A well formed tessellation with tiles that are all temporal. + TemporalTiling + A well formed tessellation with tiles that are all temporal. - + - - - - - T-2 L0 M+1 I0 Θ0 N0 J0 - - - ForcePerLengthUnit - ForcePerLengthUnit - - - - - MuonNeutrino - A neutrino belonging to the second generation of leptons. - MuonNeutrino - A neutrino belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon_neutrino - - - - - - LiquidGasSuspension - A coarse dispersion of gas in a liquid continuum phase. - LiquidGasSuspension - A coarse dispersion of gas in a liquid continuum phase. - Sparkling water + + EffectiveDiffusionCoefficient + Diffusion coefficient through the pore space of a porous media. + EffectiveDiffusionCoefficient + https://www.wikidata.org/wiki/Q258852 + Diffusion coefficient through the pore space of a porous media. - + - + - - MagneticFieldStrength - Strength of a magnetic field. Commonly denoted H. - MagnetizingFieldStrength - MagneticFieldStrength - http://qudt.org/vocab/quantitykind/MagneticFieldStrength - https://www.wikidata.org/wiki/Q28123 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 - 6-25 - https://doi.org/10.1351/goldbook.M03683 + + DiffusionCoefficient + Proportionality constant in some physical laws. + DiffusionCoefficient + Proportionality constant in some physical laws. - + - + - - SpecificHeatCapacity - Heat capacity divided by mass. - SpecificHeatCapacity - https://qudt.org/vocab/quantitykind/SpecificHeatCapacity - https://www.wikidata.org/wiki/Q487756 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 - https://dbpedia.org/page/Specific_heat_capacity - 5-16.1 - Heat capacity divided by mass. - https://en.wikipedia.org/wiki/Specific_heat_capacity - https://doi.org/10.1351/goldbook.S05800 - + + ElectricConductivity + Measure of a material's ability to conduct an electric current. - - - - ChemicallyDefinedMaterial - ChemicallyDefinedMaterial +Conductivity is equeal to the resiprocal of resistivity. + Conductivity + ElectricConductivity + http://qudt.org/vocab/quantitykind/ElectricConductivity + https://www.wikidata.org/wiki/Q4593291 + 6-43 + https://doi.org/10.1351/goldbook.C01245 - - - - DieCasting - DieCasting + + + + RefractiveIndex + Factor by which the phase velocity of light is reduced in a medium. + RefractiveIndex + http://qudt.org/vocab/quantitykind/RefractiveIndex + https://doi.org/10.1351/goldbook.R05240 - - + + - - - - - - + + - Uncoded - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - Uncoded - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - A random generated id for a product. - + + + + + + + + Atom + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - - - WPositiveBoson - WPositiveBoson - +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - - - - - BraggAngle - Angle between the scattered ray and the lattice plane. - BraggAngle - https://qudt.org/vocab/quantitykind/BraggAngle - https://www.wikidata.org/wiki/Q105488118 - 12-4 - Angle between the scattered ray and the lattice plane. - +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. - - - - - - - - - - - - - - - - - - - - - - - - - CausalSystem - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - CausalSystem - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - A electron binded by a nucleus. +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + ChemicalElement + Atom + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. + +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - - - - CategorizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - https://physics.nist.gov/cuu/Constants - CategorizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + + + + + MolecularEntity + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + https://goldbook.iupac.org/terms/view/M03986 + ChemicalEntity + MolecularEntity + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. + Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). - + - - - RelaxationTime - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - RelaxationTime - https://www.wikidata.org/wiki/Q106041085 - 12-32.1 - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + + + + + + + + + LinearElectricCurrentDensity + Surface density of electric charge multiplied by velocity + LinearElectricCurrentDensity + https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity + https://www.wikidata.org/wiki/Q2356741 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 + 6-9 + Surface density of electric charge multiplied by velocity - + - - TimeConstant - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - TimeConstant - https://www.wikidata.org/wiki/Q1335249 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 - 3-15 - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + + DisplacementCurrentDensity + Vector quantity equal to the time derivative of the electric flux density. + DisplacementCurrentDensity + https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity + https://www.wikidata.org/wiki/Q77614612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 + 6-18 + Vector quantity equal to the time derivative of the electric flux density. - + - + - - FundamentalLatticeVector - Fundamental translation vector for the crystal lattice. - FundamentalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalLatticeVector - https://www.wikidata.org/wiki/Q105451063 - 12-1.2 - Fundamental translation vector for the crystal lattice. + + + + ElectricCurrentDensity + Electric current divided by the cross-sectional area it is passing through. + AreicElectricCurrent + CurrentDensity + ElectricCurrentDensity + http://qudt.org/vocab/quantitykind/ElectricCurrentDensity + https://www.wikidata.org/wiki/Q234072 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 + 6-8 + https://en.wikipedia.org/wiki/Current_density + https://doi.org/10.1351/goldbook.E01928 - - - GreenBottomAntiQuark - GreenBottomAntiQuark + + + + Assemblying + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + The act of connecting together the parts of something + Assemblying + The act of connecting together the parts of something + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - - + + - - - - - - + + - Cogniser - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - Cogniser - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - The scientist that connects an equation to a physical phenomenon. + + + GyromagneticRatio + Ratio of magnetic dipole moment to total angular momentum. + GyromagneticCoefficient + MagnetogyricRatio + GyromagneticRatio + https://qudt.org/vocab/quantitykind/GyromagneticRatio + https://www.wikidata.org/wiki/Q634552 + 10-12.1 + Ratio of magnetic dipole moment to total angular momentum. + https://doi.org/10.1351/goldbook.M03693 - + - T+2 L-3 M-1 I0 Θ0 N+1 J0 + T-3 L-1 M+1 I0 Θ+1 N0 J0 - AmountSquareTimePerMassVolumeUnit - AmountSquareTimePerMassVolumeUnit - - - - - - Widening - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - Weiten - Widening - - - - - - TensileForming - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - Zugdruckumformen - TensileForming + TemperaturePressurePerTimeUnit + TemperaturePressurePerTimeUnit - - - - CurrentLinkage - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - CurrentLinkage - https://qudt.org/vocab/quantitykind/CurrentLinkage - https://www.wikidata.org/wiki/Q77995703 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 - 6-37.4 - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + + + + + + + + + + + + + + + + + + + + FundamentalInteraction + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + FundamentalInteraction + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - - + + - - - - - - + + - Component - A constituent of a system. - Component - A constituent of a system. - - - - - - + + - - - DirectionAndEnergyDistributionOfCrossSection - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - DirectionAndEnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection - https://www.wikidata.org/wiki/Q98269571 - 10-41 - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - - - - - - Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - - - - - - + + - - SurfaceTension - 4-26 - SurfaceTension - https://qudt.org/vocab/quantitykind/SurfaceTension - https://www.wikidata.org/wiki/Q170749 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-42 - https://doi.org/10.1351/goldbook.S06192 + Cognition + IconSemiosis + Cognition - - - - - - - - - - - CompositeFermion - CompositeFermion - Examples of composite particles with half-integer spin: -spin 1/2: He3 in ground state, proton, neutron -spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) + + + + + + + + + + + + + + ElementaryParticle + A chausal chain whose quantum parts are of the same standard model fundamental type. + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + SingleParticleChain + ElementaryParticle + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + A chausal chain whose quantum parts are of the same standard model fundamental type. - + - - + + Wavenumber + The number of waves per unit length along the direction of propagation. + Wavenumber + http://qudt.org/vocab/quantitykind/Wavenumber + 3-18 + https://doi.org/10.1351/goldbook.W06664 + + + + + - - T-3 L+1 M+1 I0 Θ-1 N0 J0 + + - - ThermalConductivityUnit - ThermalConductivityUnit + + + ReciprocalLength + The inverse of length. + InverseLength + ReciprocalLength + http://qudt.org/vocab/quantitykind/InverseLength + The inverse of length. + https://en.wikipedia.org/wiki/Reciprocal_length - - - - - StaticFrictionForce - StaticFriction - StaticFrictionForce - https://qudt.org/vocab/quantitykind/StaticFriction - https://www.wikidata.org/wiki/Q90862568 - 4-9.3 + + + + ScanningAugerElectronMicroscopy + + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + AES + ScanningAugerElectronMicroscopy + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - + - BlueStrangeAntiQuark - BlueStrangeAntiQuark + Tau + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + Tau + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_(particle) - - - - DynamicLightScattering - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - DLS - DynamicLightScattering - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + + + + ISO80000Categorised + ISO80000Categorised - - - - Sol - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - Sol - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + + + + + + + + + + + + + + + StandardModelParticle + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + The union of all classes categorising elementary particles according to the Standard Model. + ElementaryParticle + StandardModelParticle + The union of all classes categorising elementary particles according to the Standard Model. + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. + This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). +In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). - + - + + - - + + T+1 L0 M0 I+1 Θ0 N0 J0 - - - Torque - Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - Torque - http://qudt.org/vocab/quantitykind/Torque - 4-12.2 - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - https://doi.org/10.1351/goldbook.T06400 + + ElectricChargeUnit + ElectricChargeUnit - - - - - RelativeMassConcentrationOfWaterVapour - For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - RelativeMassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour - https://www.wikidata.org/wiki/Q76379357 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + + + + + Simulation + A estimation of a property using a functional icon. + Modelling + Simulation + A estimation of a property using a functional icon. + I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. + + + + + + CharacterisedSample + The sample after having been subjected to a characterization process + CharacterisedSample + The sample after having been subjected to a characterization process @@ -8226,288 +8614,194 @@ spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neut Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - - - - - - - - - - - RichardsonConstant - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - RichardsonConstant - https://qudt.org/vocab/quantitykind/RichardsonConstant - https://www.wikidata.org/wiki/Q105883079 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 - 12-26 - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + + + PseudoscalarMeson + A meson with spin zero and odd parity. + PseudoscalarMeson + A meson with spin zero and odd parity. + https://en.wikipedia.org/wiki/Pseudoscalar_meson - - - - - - - - - - - - - - - ParticleConcentration - ParticleConcentration - https://www.wikidata.org/wiki/Q39078574 - 9-9.1 + + + + UserCase + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + UserCase + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - - - - Concentration - the abundance of a constituent divided by the total volume of a mixture. - Concentration - https://qudt.org/vocab/quantitykind/Concentration - https://www.wikidata.org/wiki/Q3686031 - https://dbpedia.org/page/Concentration - the abundance of a constituent divided by the total volume of a mixture. - https://en.wikipedia.org/wiki/Concentration - https://goldbook.iupac.org/terms/view/C01222 + + + + + + + + + + + + + + PhysicalParticle + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + The union of hadron and lepton, or fermion and bosons. + Particle + PhysicalParticle + The union of hadron and lepton, or fermion and bosons. + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. - - + + + + CharacterisationProtocol + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + CharacterisationProtocol + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + + + + - - + + - - - - MolecularConcentration - Number of molecules of a substance in a mixture per volume. - MolecularConcentration - https://qudt.org/vocab/quantitykind/MolecularConcentration - https://www.wikidata.org/wiki/Q88865973 - 9-9.2 - Number of molecules of a substance in a mixture per volume. - - - - - - + + - - - ParticleNumberDensity - Mean number of particles per volume. - ParticleNumberDensity - https://qudt.org/vocab/quantitykind/ParticleNumberDensity - https://www.wikidata.org/wiki/Q98601569 - 10-62.1 - Mean number of particles per volume. - https://doi.org/10.1351/goldbook.N04262 - - - - - - + + - - - TotalLinearStoppingPower - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - LinearStoppingPower - TotalLinearStoppingPower - https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower - https://www.wikidata.org/wiki/Q908474 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 - 10-54 - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - https://doi.org/10.1351/goldbook.S06035 - - - - - - + - - T0 L0 M+1 I0 Θ0 N-1 J0 + + - - MassPerAmountUnit - MassPerAmountUnit + + + SamplePreparation + + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + SamplePreparation + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - + - - JoinManufacturing - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - A manufacturing involving the creation of long-term connection of several workpieces. - DIN 8580:2020 - Fügen - JoinManufacturing - A manufacturing involving the creation of long-term connection of several workpieces. + + ManufacturingDevice + A device that is designed to participate to a manufacturing process. + ManufacturingDevice + A device that is designed to participate to a manufacturing process. - + - + - - DissociationConstant - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - DissociationConstant - https://www.wikidata.org/wiki/Q898254 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + + + ElectricInductance + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + Inductance + ElectricInductance + http://qudt.org/vocab/quantitykind/Inductance + https://www.wikidata.org/wiki/Q177897 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 + 6-41.1 + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + https://doi.org/10.1351/goldbook.M04076 - - - - + + + - - T0 L-1 M0 I0 Θ0 N0 J0 + + - - ReciprocalLengthUnit - ReciprocalLengthUnit - - - - - - + + - - T+2 L+1 M-1 I0 Θ+1 N0 J0 + + - - TemperaturePerPressureUnit - TemperaturePerPressureUnit - - - - + - - - - - - - - + + + + - - - - - - - - - MathematicalSymbol - MathematicalSymbol - - - - - - - - AngularMeasure - The abstract notion of angle. - AngularMeasure - https://qudt.org/vocab/quantitykind/Angle - https://www.wikidata.org/wiki/Q1357788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 - 3-5 - The abstract notion of angle. - https://doi.org/10.1351/goldbook.A00346 - - - - - - - RelativeVolumeStrain - Quotient of change of volume and original volume. - BulkStrain - VolumeStrain - RelativeVolumeStrain - https://qudt.org/vocab/quantitykind/VolumeStrain - https://www.wikidata.org/wiki/Q73432507 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 - 4-17.4 - Quotient of change of volume and original volume. - https://doi.org/10.1351/goldbook.V06648 - + + + + + 1 + + + + CalibrationProcess + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. - - - - TechnologyProcess - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - Conversion of materials and assembly of components for the manufacture of products - Technology is the application of knowledge for achieving practical goals in a reproducible way. - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - ProductionEngineeringProcess - TechnologyProcess - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. + CalibrationProcess + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. - - - - - PhaseDifference - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - DisplacementAngle - PhaseDifference - https://www.wikidata.org/wiki/Q97222919 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 - 6-48 - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - + - - SourceCode - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - SourceCode - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + ScriptingLanguage + A programming language that is executed through runtime interpretation. + ScriptingLanguage + A programming language that is executed through runtime interpretation. @@ -8524,1191 +8818,1087 @@ spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neut Entities are not necessarily digital data, but can be code fragments printed on paper. - + - - BetaDisintegrationEnergy - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - BetaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98148340 - 10-34 - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + + HalfValueThickness + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + HalfValueThickness + https://qudt.org/vocab/quantitykind/Half-ValueThickness + https://www.wikidata.org/wiki/Q127526 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 + 10-53 + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - - - - LogarithmicUnit - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - -It is advisory to create a uniquely defined subclass these units for concrete usage. - LogarithmicUnit - http://qudt.org/schema/qudt/LogarithmicUnit - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Decibel - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + + + + Thickness + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + Thickness + https://www.wikidata.org/wiki/Q3589038 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 + 3-1.4 + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + -It is advisory to create a uniquely defined subclass these units for concrete usage. - https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units + + + + ScanningTunnelingMicroscopy + + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + STM + ScanningTunnelingMicroscopy + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - - - DimensionlessUnit - The subclass of measurement units with no physical dimension. - DimensionlessUnit - http://qudt.org/vocab/unit/UNITLESS - The subclass of measurement units with no physical dimension. - Refractive index -Plane angle -Number of apples + + + + StepChronopotentiometry + + chronopotentiometry where the applied current is changed in steps + StepChronopotentiometry + chronopotentiometry where the applied current is changed in steps - + - - - ComptonWavelength - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - ComptonWavelength - https://qudt.org/vocab/constant/ComptonWavelength - https://www.wikidata.org/wiki/Q1145377 - 10-20 - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - https://en.wikipedia.org/wiki/Compton_wavelength + + + CarrierLifetime + Time constant for recombination or trapping of minority charge carriers in semiconductors + CarrierLifetime + https://qudt.org/vocab/quantitykind/CarrierLifetime + https://www.wikidata.org/wiki/Q5046374 + 12-32.2 + Time constant for recombination or trapping of minority charge carriers in semiconductors - + - - - - - T-1 L0 M0 I0 Θ-1 N0 J0 - - - PerTemperatureTimeUnit - PerTemperatureTimeUnit + + TimeConstant + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + TimeConstant + https://www.wikidata.org/wiki/Q1335249 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 + 3-15 + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - - - - - - - - - - - - - - - - Substance - A composite physical object made of fermions (i.e. having mass and occupying space). - Substance - A composite physical object made of fermions (i.e. having mass and occupying space). + + + + Holder + An object which supports the specimen in the correct position for the characterisation process. + Holder + An object which supports the specimen in the correct position for the characterisation process. - - - CompositePhysicalObject - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - CompositePhysicalObject - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - + + + + + SubProcess + A process which is an holistic spatial part of a process. + In the EMMO the relation of participation to a process falls under mereotopology. - - - - - - - - - - - - - - - - - - - - Matter - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - A physical object made of fermionic quantum parts. - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - PhysicalSubstance - Matter - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - A physical object made of fermionic quantum parts. - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + SubProcess + A process which is an holistic spatial part of a process. + Breathing is a subprocess of living for a human being. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - - - MuonAntiNeutrino - MuonAntiNeutrino + + + + + BeginStep + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. + BeginStep + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. - - - - ArithmeticOperator - ArithmeticOperator + + + + WorkpieceForming + A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. + ArchetypeForming + PrimitiveForming + WorkpieceForming - + - - MercuryPorosimetry - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - MercuryPorosimetry - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + CharacterisationMeasurementProcess + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. + +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + CharacterisationMeasurementProcess + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. + +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + Measurement - + - - Porosimetry - - Porosimetry + + MeasurementTime + The overall time needed to acquire the measurement data. + The overall time needed to acquire the measurement data. + MeasurementTime + The overall time needed to acquire the measurement data. - + + + + + CurieTemperature + Critical thermodynamic temperature of a ferromagnet. + CurieTemperature + https://qudt.org/vocab/quantitykind/CurieTemperature + https://www.wikidata.org/wiki/Q191073 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 + 12-35.1 + Critical thermodynamic temperature of a ferromagnet. + + + + + + + + + + + + + + ThermalConductivity + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + In an anisotropic medium, thermal conductivity is a tensor quantity. + ThermalConductivity + https://qudt.org/vocab/quantitykind/ThermalConductivity + https://www.wikidata.org/wiki/Q487005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 + https://dbpedia.org/page/Thermal_conductivity + 5-9 + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + + + + + ElectronAntiNeutrino + ElectronAntiNeutrino + + + - T-2 L+1 M+1 I0 Θ0 N0 J0 + T0 L-2 M0 I0 Θ0 N0 J+1 - ForceUnit - ForceUnit + LuminanceUnit + LuminanceUnit - - + + - - - 2 + + + + + + - Collection - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - Collection - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. + + SystemResource + Any physical or virtual component of limited availability within a computer system. + Resource + SystemResource + Any physical or virtual component of limited availability within a computer system. - - - - Distance - Distance is the norm of Displacement. - Shortest path length between two points in a metric space. - Distance - https://qudt.org/vocab/quantitykind/Distance - https://www.wikidata.org/wiki/Q126017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 - https://dbpedia.org/page/Distance - 3-1.8 - Shortest path length between two points in a metric space. - https://en.wikipedia.org/wiki/Distance - - - - - - - DebyeAngularFrequency - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - DebyeAngularFrequency - https://qudt.org/vocab/quantitykind/DebyeAngularFrequency - https://www.wikidata.org/wiki/Q105580986 - 12-10 - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + + + + GasSolidSuspension + A coarse dispersion of solid in a gas continuum phase. + GasSolidSuspension + A coarse dispersion of solid in a gas continuum phase. + Dust, sand storm. - + - - AngularFrequency - Rate of change of the phase angle. - AngularFrequency - https://qudt.org/vocab/quantitykind/AngularFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 - https://dbpedia.org/page/Angular_frequency - 3-18 - Rate of change of the phase angle. - https://en.wikipedia.org/wiki/Angular_frequency - https://doi.org/10.1351/goldbook.A00352 + + + + + T-2 L+4 M0 I0 Θ0 N0 J0 + + + MassStoppingPowerUnit + MassStoppingPowerUnit - - - - Dismantling - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - Demontage - Dismantling - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + + + + PrimaryData + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + PrimaryData + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + Baseline subtraction, noise reduction , X and Y axes correction. - - - - SeparateManufacturing - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - DIN 8580:2020 - Trennen - CuttingManufacturing - SeparateManufacturing - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + + + + CharacterisationData + Represents every type of data that is produced during a characterisation process + CharacterisationData + Represents every type of data that is produced during a characterisation process - - - NonEncodedData - Data that occurs naturally without an encoding agent producing it. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - EnvironmentalData - NonEncodedData - Data that occurs naturally without an encoding agent producing it. - A cloud in the sky. The radiative spectrum of a star. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + + + + + + + + + + + StrictFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + StrictFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - + - T0 L0 M0 I0 Θ0 N+1 J0 + T-1 L+3 M0 I0 Θ0 N0 J0 - AmountUnit - AmountUnit + VolumePerTimeUnit + VolumePerTimeUnit - - - - + + + - - T-2 L0 M+1 I-1 Θ0 N0 J0 + + - - MagneticFluxDensityUnit - MagneticFluxDensityUnit + + + + + + + + + + + + + + + ProbeSampleInteraction + + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + ProbeSampleInteraction + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - - - - StyleSheetLanguage - A computer language that expresses the presentation of structured documents. - StyleSheetLanguage - A computer language that expresses the presentation of structured documents. - CSS - https://en.wikipedia.org/wiki/Style_sheet_language + + + + InteractionVolume + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + InteractionVolume + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - - - - Command - A command must be interpretable by the computer system. - An instruction to a computer system to perform a given task. - Command - From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. - A command must be interpretable by the computer system. - Commands are typically performed from a shell or a shell script, but not limited to them. + + + + Parameter + A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. + Parameter + Viscosity in the Navier-Stokes equation - + + + + QuantumAnnihilation + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + QuantumAnnihilation + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + + + - - DiffusionCoefficientForParticleNumberDensity - Proportionality constant between the particle current density J and the gradient of the particle number density n. - DiffusionCoefficientForParticleNumberDensity - https://www.wikidata.org/wiki/Q98875545 - 10-64 - Proportionality constant between the particle current density J and the gradient of the particle number density n. + + LarmonFrequency + Quotient of Larmor angular frequency and 2π. + LarmonFrequency + 10-15.2 + Quotient of Larmor angular frequency and 2π. - + - - - - - - - - - DiffusionCoefficient - Proportionality constant in some physical laws. - DiffusionCoefficient - Proportionality constant in some physical laws. + + + MolarInternalEnergy + Internal energy per amount of substance. + MolarInternalEnergy + https://www.wikidata.org/wiki/Q88523106 + 9-6.1 + Internal energy per amount of substance. - + - - - ShearStrain - Displacement of one surface with respect to another divided by the distance between them. - ShearStrain - https://qudt.org/vocab/quantitykind/ShearStrain - https://www.wikidata.org/wiki/Q7561704 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 - 4-17.3 - Displacement of one surface with respect to another divided by the distance between them. - https://doi.org/10.1351/goldbook.S05637 + + + AmountFraction + The amount of a constituent divided by the total amount of all constituents in a mixture. + MoleFraction + AmountFraction + http://qudt.org/vocab/quantitykind/MoleFraction + The amount of a constituent divided by the total amount of all constituents in a mixture. + https://doi.org/10.1351/goldbook.A00296 - - - - - ElectronAffinity - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - ElectronAffinity - https://qudt.org/vocab/quantitykind/ElectronAffinity - https://www.wikidata.org/wiki/Q105846486 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 - 12-25 - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor + + + RedTopQuark + RedTopQuark - + - - - DewPointTemperature - The corresponding Celsius temperature is denoted td and is also called dew point. - Thermodynamic temperature at which vapour in air reaches saturation. - DewPointTemperature - https://www.wikidata.org/wiki/Q178828 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 - 5-36 - Thermodynamic temperature at which vapour in air reaches saturation. - https://doi.org/10.1351/goldbook.D01652 + + + CyclotronAngularFrequency + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + CyclotronAngularFrequency + https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency + https://www.wikidata.org/wiki/Q97708211 + 10-16 + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - - + + - - + + = - - - ThermodynamicTemperature - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - ThermodynamicTemperature - http://qudt.org/vocab/quantitykind/ThermodynamicTemperature - 5-1 - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - https://doi.org/10.1351/goldbook.T06321 + + + Equals + The equals symbol. + Equals + The equals symbol. - - - - Heteronuclear - A molecule composed of more than one element type. - Heteronuclear - A molecule composed of more than one element type. - Nitric oxide (NO) or carbon dioxide (CO₂). + + + + + RotationalDisplacement + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + AngularDisplacement + RotationalDisplacement + https://www.wikidata.org/wiki/Q3305038 + 3-6 + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + https://en.wikipedia.org/wiki/Angular_displacement - - - + + + + AlphaSpectrometry + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + AlphaSpectrometry + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + + + + + + + LogarithmicDecrement + Product of damping coefficient and period duration. + LogarithmicDecrement + https://www.wikidata.org/wiki/Q1399446 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 + 3-25 + Product of damping coefficient and period duration. + + + + + + AmountFractionUnit + Unit for quantities of dimension one that are the fraction of two amount of substance. + AmountFractionUnit + Unit for quantities of dimension one that are the fraction of two amount of substance. + Unit for amount fraction. + + + + + + - - + + T0 L+3 M0 I0 Θ-1 N0 J0 - + + VolumePerTemperatureUnit + VolumePerTemperatureUnit + + + + - - + + - + + + SlowingDownDensity + Number of slowed-down particles per time and volume. + SlowingDownDensity + https://qudt.org/vocab/quantitykind/Slowing-DownDensity + https://www.wikidata.org/wiki/Q98915830 + 10-67 + Number of slowed-down particles per time and volume. + + + + + + + DebyeWallerFactor + Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. + DebyeWallerFactor + https://qudt.org/vocab/quantitykind/Debye-WallerFactor + https://www.wikidata.org/wiki/Q902587 + 12-8 + Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. + + + + - + - - + + + + + + + + + + + + - Molecule - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - ChemicalSubstance - Molecule - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - H₂0, C₆H₁₂O₆, CH₄ - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. -Removing an atom from the state will result in another type of atom_based state. -e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). - - - - - - - LatticePlaneSpacing - distance between successive lattice planes - LatticePlaneSpacing - https://qudt.org/vocab/quantitykind/LatticePlaneSpacing - https://www.wikidata.org/wiki/Q105488046 - 12-3 - distance between successive lattice planes + StateOfMatter + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + StateOfMatter + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + https://en.wikipedia.org/wiki/State_of_matter - + + + + + + + + + + + - - - + + - Sign - A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. - -A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). - -Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. - According to Peirce, 'Sign' includes three subcategories: -- symbols: that stand for an object through convention -- indeces: that stand for an object due to causal continguity -- icons: that stand for an object due to similitudes e.g. in shape or composition - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - Sign - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). - -Each of them are 'sign'-s. - -A character can be the a-tomistic 'sign' for the class of texts. - -The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. - -For plain text we can propose the ASCII symbols, for math the fundamental math symbols. + Determiner + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. + Determiner + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - + - - BPMNDiagram - BPMNDiagram + + Conductometry + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Conductometry + https://www.wikidata.org/wiki/Q901180 + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Monitoring of the purity of deionized water. + https://en.wikipedia.org/wiki/Conductometry + https://doi.org/10.1515/pac-2018-0109 - - + + + + + Spin + Vector quantity expressing the internal angular momentum of a particle or a particle system. + Spin + https://qudt.org/vocab/quantitykind/Spin + https://www.wikidata.org/wiki/Q133673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 + 10-10 + Vector quantity expressing the internal angular momentum of a particle or a particle system. + + + + - - - - - - + + - - - - - - - - - - Icon - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. -For example, when a Boeing 747 is used as a sign for another Boeing 747. - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] - Model - Simulacrum - Icon - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - A picture that reproduces the aspect of a person. - An equation that reproduces the logical connection of the properties of a physical entity. + + + AngularMomentum + Measure of the extent and direction an object rotates about a reference point. + AngularMomentum + http://qudt.org/vocab/quantitykind/AngularMomentum + 4-11 + https://doi.org/10.1351/goldbook.A00353 - + - - - - - - - - - - Reductionistic - A class devoted to categorize causal objects by specifying their granularity levels. - A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: - - are proper parts of y - - covers the entire whole (y = x1 +x2 + ... + xn) - - do not overlap - - are part of one, and one only, whole (inverse functional) - Reductionistic - A class devoted to categorize causal objects by specifying their granularity levels. - A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: - - are proper parts of y - - covers the entire whole (y = x1 +x2 + ... + xn) - - do not overlap - - are part of one, and one only, whole (inverse functional) - Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. + + + + + + + Tessellation + A causal object that is tessellated in direct parts. + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + Tiling + Tessellation + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + A causal object that is tessellated in direct parts. - + - Person - Person + + AbrasiveStrippingVoltammetry + + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + AbrasiveStrippingVoltammetry + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - - + + - - - - - - + + - Observation - A characterisation of an object with an actual interaction. - Observation - A characterisation of an object with an actual interaction. - - - - - - - - ThermalDiffusionFactor - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. - ThermalDiffusionFactor - https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor - https://www.wikidata.org/wiki/Q96249629 - 9-40.2 - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + + + ModulusOfCompression + Measure of how resistant to compressibility a substance is. + BulkModulus + ModulusOfCompression + https://qudt.org/vocab/quantitykind/BulkModulus + https://www.wikidata.org/wiki/Q900371 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 + 4-19.3 + Measure of how resistant to compressibility a substance is. - + - - - ThermalDiffusionRatio - ThermalDiffusionRatio - https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio - https://www.wikidata.org/wiki/Q96249433 - 9-40.1 - - - - - - Assemblying - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - The act of connecting together the parts of something - Assemblying - The act of connecting together the parts of something - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + + IsochoricHeatCapacity + Heat capacity at constant volume. + HeatCapacityAtConstantVolume + IsochoricHeatCapacity + https://www.wikidata.org/wiki/Q112187521 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 + 5-16.3 + Heat capacity at constant volume. - + - - - HoleDensity - Number of holes in valence band per volume. - HoleDensity - https://qudt.org/vocab/quantitykind/HoleDensity - https://www.wikidata.org/wiki/Q105971101 - 12-29.2 - Number of holes in valence band per volume. - - - - - Observer - A characteriser that declares a property for an object through the specific interaction required by the property definition. - Observer - A characteriser that declares a property for an object through the specific interaction required by the property definition. + + + + + + + + + HeatCapacity + Examples of condition might be constant volume or constant pressure for a gas. + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + HeatCapacity + https://qudt.org/vocab/quantitykind/HeatCapacity + https://www.wikidata.org/wiki/Q179388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 + https://dbpedia.org/page/Heat_capacity + 5-15 + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + https://en.wikipedia.org/wiki/Heat_capacity + https://doi.org/10.1351/goldbook.H02753 - + - + - - Magnetization - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - Magnetization - https://qudt.org/vocab/quantitykind/Magnetization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 - 6-24 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. + + ParticleCurrentDensity + Number of particles per time and area crossing a surface. + ParticleCurrentDensity + https://qudt.org/vocab/quantitykind/ParticleCurrent + https://www.wikidata.org/wiki/Q2400689 + 10-48 + Number of particles per time and area crossing a surface. - + - GreenUpQuark - GreenUpQuark - - - - - Cognised - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - Cognised - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - A physical phenomenon that is connected to an equation by a scientist. + + + + + + + + + + + + + + + + + UpQuarkType + UpQuarkType - + + + + + MaximumBetaParticleEnergy + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + MaximumBetaParticleEnergy + https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy + https://www.wikidata.org/wiki/Q98148038 + 10-33 + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + + + - Objective - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + + PhysicalBasedSimulationSoftware + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + PhysicalBasedSimulationSoftware + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - Objective - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + + + + JoinManufacturing + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + A manufacturing involving the creation of long-term connection of several workpieces. + DIN 8580:2020 + Fügen + JoinManufacturing + A manufacturing involving the creation of long-term connection of several workpieces. - - - - + + + + CommercialProduct + An product that is ready for commercialisation. + Product + CommercialProduct + An product that is ready for commercialisation. + + + + + Declared + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + Declared + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + + + + + - - T-3 L-2 M+2 I0 Θ0 N0 J0 + + + + + + + + + + + + + + - SquarePressureTimeUnit - SquarePressureTimeUnit - - - - - - SpecificHelmholtzEnergy - Helmholtz energy per unit mass. - SpecificHelmholtzEnergy - https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy - https://www.wikidata.org/wiki/Q76359554 - 5-21.4 - Helmholtz energy per unit mass. + Conventional + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. + Conventional + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - + - + - - - SpecificEnergy - Energy per unit mass - SpecificEnergy - https://qudt.org/vocab/quantitykind/SpecificEnergy - https://www.wikidata.org/wiki/Q3023293 - https://dbpedia.org/page/Specific_energy - 5-21.1 - Energy per unit mass - https://en.wikipedia.org/wiki/Specific_energy + + MolarEntropy + Entropy per amount of substance. + MolarEntropy + https://qudt.org/vocab/quantitykind/MolarEntropy + https://www.wikidata.org/wiki/Q68972876 + 9-8 + Entropy per amount of substance. - + - + - - ElectricConductance - Inverse of 'ElectricalResistance'. - Measure of the ease for electric current to pass through a material. - Conductance - ElectricConductance - http://qudt.org/vocab/quantitykind/Conductance - https://www.wikidata.org/wiki/Q309017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 - 6-47 - Measure of the ease for electric current to pass through a material. - https://doi.org/10.1351/goldbook.E01925 - - - - - - PhysicalLaw - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - PhysicalLaw - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + Capacitance + The derivative of the electric charge of a system with respect to the electric potential. + ElectricCapacitance + Capacitance + http://qudt.org/vocab/quantitykind/Capacitance + 6-13 + The derivative of the electric charge of a system with respect to the electric potential. + https://doi.org/10.1351/goldbook.C00791 - - - - NaturalLaw - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - NaturalLaw - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + + + ScalarMeson + A meson with spin zero and even parity. + ScalarMeson + A meson with spin zero and even parity. + https://en.wikipedia.org/wiki/Scalar_meson - - - - RotationalFrequency - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - RotationalFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 - 3-17.2 - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + + + + FormingFromLiquid + FormingFromLiquid - - - - Radius - Distance from the centre of a circle to the circumference. - Radius - https://qudt.org/vocab/quantitykind/Radius - https://www.wikidata.org/wiki/Q173817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 - https://dbpedia.org/page/Radius - 3-1.6 - Distance from the centre of a circle to the circumference. - https://en.wikipedia.org/wiki/Radius + + + + FromNotProperShapeToWorkPiece + From Powder, from liquid, from gas + da una forma non propria ad una forma propria + FromNotProperShapeToWorkPiece + From Powder, from liquid, from gas + Powder: +particles that are usually less than 1 mm in size - - - - RadialDistance - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - RadialDistance - https://qudt.org/vocab/quantitykind/RadialDistance - https://www.wikidata.org/wiki/Q1578234 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 - 3-1.9 - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + + + + + PhysicsEquation + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + PhysicsEquation + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + The Newton's equation of motion. +The Schrödinger equation. +The Navier-Stokes equation. - - - - ElectricReactance - The imaginary part of the impedance. - The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. - Reactance - ElectricReactance - http://qudt.org/vocab/quantitykind/Reactance - https://www.wikidata.org/wiki/Q193972 - 6-51.3 - The imaginary part of the impedance. - https://en.wikipedia.org/wiki/Electrical_reactance - https://doi.org/10.1351/goldbook.R05162 - - - - + + - - + + - - - ElectricResistance - Inverse of 'ElectricalConductance'. - Measure of the difficulty to pass an electric current through a material. - Resistance - ElectricResistance - http://qudt.org/vocab/quantitykind/Resistance - https://www.wikidata.org/wiki/Q25358 - 6-46 - Measure of the difficulty to pass an electric current through a material. - https://doi.org/10.1351/goldbook.E01936 - - - - - - - LinearIonization - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - LinearIonization - https://qudt.org/vocab/quantitykind/LinearIonization - https://www.wikidata.org/wiki/Q98690755 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 - 10-58 - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - - - - - - MassSpectrometry - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - MassSpectrometry - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - - - - - - Spectrometry - - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - Spectrometry - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - - - - - - - - - - - - - - Fundamental - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - Lifetime - Maximal - Fundamental - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - -On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. - -Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. - - - - - - Detector - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Detector - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM - Displacement and force sensors for mechanical testing + + PhysicsBasedModel + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedModel + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - - + + - - + + - - - IonNumberDensity - Number of ions per volume. - IonDensity - IonNumberDensity - https://www.wikidata.org/wiki/Q98831218 - 10-62.2 - Number of ions per volume. + + + Equation + An equation with variables can always be represented as: + +f(v0, v1, ..., vn) = g(v0, v1, ..., vn) + +where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + Equation + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + 2+3 = 5 +x^2 +3x = 5x +dv/dt = a +sin(x) = y - + - - - - - T-1 L-2 M0 I0 Θ0 N0 J0 - - - PerAreaTimeUnit - PerAreaTimeUnit + + + ThermodynamicEfficiency + ThermalEfficiency + ThermodynamicEfficiency + https://qudt.org/vocab/quantitykind/ThermalEfficiency + https://www.wikidata.org/wiki/Q1452104 + 5-25.1 - + - - - OsmoticPressure - Measure of the tendency of a solution to take in pure solvent by osmosis. - OsmoticPressure - https://qudt.org/vocab/quantitykind/OsmoticPressure - https://www.wikidata.org/wiki/Q193135 - 9-28 - Measure of the tendency of a solution to take in pure solvent by osmosis. - https://doi.org/10.1351/goldbook.O04344 + + + NeutronNumber + Atomic number (proton number) plus neutron number equals mass number. + Number of neutrons in an atomic nucleus. + NeutronNumber + https://www.wikidata.org/wiki/Q970319 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 + 10-1.2 + Number of neutrons in an atomic nucleus. + Atomic number (proton number) plus neutron number equals mass number. + https://en.wikipedia.org/wiki/Neutron_number + https://doi.org/10.1351/goldbook.N04119 - - - - - - - 1 - - - - - - - 1 - - - - QuantityValue - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). - -So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. - -While the string "1 kg" is a 'QuantityValue'. - QuantityValue - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - 6.8 m -0.9 km -8 K -6 MeV -43.5 HRC(150 kg) - quantity value - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + + + + + PureParallelWorkflow + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + EmbarassinglyParallelWorkflow + PureParallelWorkflow + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - - - - MembraneOsmometry - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - MembraneOsmometry - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + + + + ParallelWorkflow + ParallelWorkflow - - + + - T-1 L-3 M+1 I0 Θ0 N0 J0 + T0 L-2 M+1 I0 Θ0 N0 J0 - MassPerVolumeTimeUnit - MassPerVolumeTimeUnit + AreaDensityUnit + AreaDensityUnit - - - - - - - T-2 L+2 M0 I0 Θ-1 N0 J0 - - - EntropyPerMassUnit - EntropyPerMassUnit - - - - - - - Gyroradius - Radius of the circular movement of an electrically charged particle in a magnetic field. - LarmorRadius - Gyroradius - https://www.wikidata.org/wiki/Q1194458 - 10-17 - Radius of the circular movement of an electrically charged particle in a magnetic field. - - - - - - Variable - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - Variable - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - x -k - - - - - - - - - - - - - CelsiusTemperature - An objective comparative measure of hot or cold. - -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - CelsiusTemperature - http://qudt.org/vocab/quantitykind/CelciusTemperature - 5-2 - An objective comparative measure of hot or cold. - -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - https://doi.org/10.1351/goldbook.T06261 - - - - - - ReactiveMaterial - A material that takes active part in a chemical reaction. - ReactiveMaterial - A material that takes active part in a chemical reaction. - - - - - - - - - T+3 L0 M-1 I0 Θ+1 N0 J0 - - - PerThermalTransmittanceUnit - PerThermalTransmittanceUnit - - - - - - - DisplacementVector - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - DisplacementVector - https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon - https://www.wikidata.org/wiki/Q105533558 - 12-7.3 - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - - - - - - - - - T-1 L-2 M+1 I0 Θ0 N0 J0 - - - MassFluxUnit - MassFluxUnit - - - + - + - + - + - + - + - + @@ -9722,530 +9912,475 @@ Temperature is a relative quantity that can be used to express temperature diffe - BlueQuark - BlueQuark + GreenAntiQuark + GreenAntiQuark - - - - - WorkFunction - Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. - least energy required for the emission of a conduction electron. - ElectronWorkFunction - WorkFunction - https://www.wikidata.org/wiki/Q783800 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 - 12-24.1 - least energy required for the emission of a conduction electron. - https://doi.org/10.1351/goldbook.E02015 - + + + + + + + + + + + + Sign + A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. - - - - - - - - - - - MassFlow - At a point in a fluid, the product of mass density and velocity. - MassFlow - https://www.wikidata.org/wiki/Q3265048 - 4-30.1 - At a point in a fluid, the product of mass density and velocity. - +A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). - - - - Numerical - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - Numerical - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - +Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. + According to Peirce, 'Sign' includes three subcategories: +- symbols: that stand for an object through convention +- indeces: that stand for an object due to causal continguity +- icons: that stand for an object due to similitudes e.g. in shape or composition + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + Sign + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). - - - - - - - - - - - MolarAttenuationCoefficient - Quotient of linear attenuation coefficient µ and the amount c of the medium. - MolarAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592828 - 10-51 - Quotient of linear attenuation coefficient µ and the amount c of the medium. - +Each of them are 'sign'-s. - - - - - TotalIonization - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - TotalIonization - https://qudt.org/vocab/quantitykind/TotalIonization - https://www.wikidata.org/wiki/Q98690787 - 10-59 - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - +A character can be the a-tomistic 'sign' for the class of texts. - - - - IntentionalAgent - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - IntentionalAgent - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - +The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. - - - - PotentialEnergy - The energy possessed by a body by virtue of its position or orientation in a potential field. - PotentialEnergy - http://qudt.org/vocab/quantitykind/PotentialEnergy - 4-28.1 - The energy possessed by a body by virtue of its position or orientation in a potential field. - https://doi.org/10.1351/goldbook.P04778 +For plain text we can propose the ASCII symbols, for math the fundamental math symbols. - + - - MergingManufacturing - AddingManufacturing - MergingManufacturing + + Molds + Molds - + - - InspectionDevice - InspectionDevice + + Nailing + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + Nageln + Nailing - - - - - - - - - - - - - - - - - - - - - - - Measurement - A measurement always implies a causal interaction between the object and the observer. - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - Measurement - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - measurement + + + + + + + + + + + + + + + StandaloneAtom + A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. + An atom that does not share electrons with other atoms. + StandaloneAtom + An atom that does not share electrons with other atoms. - - - + + + + StyleSheetLanguage + A computer language that expresses the presentation of structured documents. + StyleSheetLanguage + A computer language that expresses the presentation of structured documents. + CSS + https://en.wikipedia.org/wiki/Style_sheet_language + + + + + CeramicMaterial + CeramicMaterial + + + + - - - T0 L-2 M0 I+1 Θ-1 N0 J0 - + + + + + + + + + + + + - ElectricCurrentDensityPerTemperatureUnit - ElectricCurrentDensityPerTemperatureUnit + FirstGenerationFermion + FirstGenerationFermion - + - + - Permeance - Inverse of the reluctance. - Permeance - https://qudt.org/vocab/quantitykind/Permeance - https://www.wikidata.org/wiki/Q77997985 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 - 6-40 - Inverse of the reluctance. + ElectricChargeDensity + Electric charge per volume. + VolumeElectricCharge + ElectricChargeDensity + https://qudt.org/vocab/quantitykind/ElectricChargeDensity + https://www.wikidata.org/wiki/Q69425629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 + 6-3 + Electric charge per volume. + https://doi.org/10.1351/goldbook.C00988 - - - - Array - Array subclasses with a specific shape can be constructed with cardinality restrictions. + + + + Organisation + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + Organisation + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + -See Shape4x3Matrix as an example. - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - Arrays are ordered objects, since they are a subclasses of Arrangement. - Array - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - A Vector is a 1-dimensional Array with Number as spatial direct parts, -a Matrix is a 2-dimensional Array with Vector as spatial direct parts, -an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, -and so forth... + + + RedBottomAntiQuark + RedBottomAntiQuark - - - + + + - - - T-1 L0 M+1 I0 Θ0 N0 J0 - + + + + + + - MassPerTimeUnit - MassPerTimeUnit + Program + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + A set of instructions that tell a computer what to do. + Executable + Program + A set of instructions that tell a computer what to do. + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - - - - PhaseCoefficient - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - PhaseChangeCoefficient - PhaseCoefficient - https://qudt.org/vocab/quantitykind/PhaseCoefficient - https://www.wikidata.org/wiki/Q32745742 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 - 3-26.2 - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant - + + + + ProcessEngineeringProcess + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FundamentalFermion - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - FundamentalFermion - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + ProcessEngineeringProcess + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. + +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + https://de.wikipedia.org/wiki/Verfahrenstechnik - - - - - Expression - A well-formed finite combination of mathematical symbols according to some specific rules. - Expression - A well-formed finite combination of mathematical symbols according to some specific rules. + + + + TechnologyProcess + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + Conversion of materials and assembly of components for the manufacture of products + Technology is the application of knowledge for achieving practical goals in a reproducible way. + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + ProductionEngineeringProcess + TechnologyProcess + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - - - - DifferentialPulseVoltammetry - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - DPV - DifferentialPulseVoltammetry - https://www.wikidata.org/wiki/Q5275361 - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - https://en.wikipedia.org/wiki/Differential_pulse_voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - + + + - - T-3 L+2 M0 I0 Θ0 N0 J0 + + - - AbsorbedDoseRateUnit - AbsorbedDoseRateUnit - - - - + + - - InfiniteMultiplicationFactor - In nuclear physics, the multiplication factor for an infinite medium. - InfiniteMultiplicationFactor - https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor - https://www.wikidata.org/wiki/Q99440487 - 10-78.2 - In nuclear physics, the multiplication factor for an infinite medium. + MassExcess + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + MassExcess + https://qudt.org/vocab/quantitykind/MassExcess + https://www.wikidata.org/wiki/Q1571163 + 10-21.1 + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + https://doi.org/10.1351/goldbook.M03719 - - - - Planing - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - Hobeln - Planing + + + + EnergyDispersiveXraySpectroscopy + An analytical technique used for the elemental analysis or chemical characterization of a sample. + EDS + EDX + EnergyDispersiveXraySpectroscopy + https://www.wikidata.org/wiki/Q386334 + An analytical technique used for the elemental analysis or chemical characterization of a sample. + https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy - + - - Machining - A manufacturing in which material is removed from the workpiece in the form of chips. - RemovingChipsFromWorkpiece - Machining - A manufacturing in which material is removed from the workpiece in the form of chips. + + + DeepDrawing + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + Tiefziehen + DeepDrawing - - - - - SolidFoam - A foam of trapped gas in a solid. - SolidFoam - A foam of trapped gas in a solid. - Aerogel + + + + + HalfLife + Mean duration required for the decay of one half of the atoms or nuclei. + HalfLife + https://qudt.org/vocab/quantitykind/Half-Life + https://www.wikidata.org/wiki/Q98118544 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 + 10-31 + Mean duration required for the decay of one half of the atoms or nuclei. - - - - Foam - A colloid formed by trapping pockets of gas in a liquid or solid. - Foam - A colloid formed by trapping pockets of gas in a liquid or solid. + + + + + + + + + + + + + 1 + + + + + + + + + + Real + A real number. + Real + A real number. - - - DerivedUnit - A measurement unit for a derived quantity. --- VIM - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - DerivedUnit - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - derived unit - A measurement unit for a derived quantity. --- VIM + + + + + Number + A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. + A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). + A numerical data value. + In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. +More than one numeral stands for the same number. +In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). +Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). +The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. +For these reasons, the EMMO will consider numerals and numbers as the same concept. + Numeral + Number + A numerical data value. - - - - Unknown - The dependent variable for which an equation has been written. - Unknown - The dependent variable for which an equation has been written. - Velocity, for the Navier-Stokes equation. + + + + PowderCoating + PowderCoating - + - - - CurieTemperature - Critical thermodynamic temperature of a ferromagnet. - CurieTemperature - https://qudt.org/vocab/quantitykind/CurieTemperature - https://www.wikidata.org/wiki/Q191073 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 - 12-35.1 - Critical thermodynamic temperature of a ferromagnet. + + + WaveVector + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + WaveVector + https://www.wikidata.org/wiki/Q657009 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 + 3-21 + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + https://en.wikipedia.org/wiki/Wave_vector - - - - CriticalTemperature - Temperature below which quantum effects dominate. - CriticalTemperature - https://www.wikidata.org/wiki/Q1450516 - Temperature below which quantum effects dominate. + + + + + Constituent + An object which is an holistic spatial part of a object. + ObjectPart + Constituent + An object which is an holistic spatial part of a object. + A tire is a constituent of a car. - + - - - ThermodynamicGrueneisenParameter - ThermodynamicGrueneisenParameter - https://www.wikidata.org/wiki/Q105658620 - 12-13 + + + + + T+2 L0 M+1 I0 Θ0 N0 J0 + + + MassSquareTimeUnit + MassSquareTimeUnit - + - - IsochoricHeatCapacity - Heat capacity at constant volume. - HeatCapacityAtConstantVolume - IsochoricHeatCapacity - https://www.wikidata.org/wiki/Q112187521 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 - 5-16.3 - Heat capacity at constant volume. + + + TotalAngularMomentum + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + TotalAngularMomentum + https://qudt.org/vocab/quantitykind/TotalAngularMomentum + https://www.wikidata.org/wiki/Q97496506 + 10-11 + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - + - + + - - + + T+1 L+2 M0 I+1 Θ0 N0 J0 - - - - HeatCapacity - Examples of condition might be constant volume or constant pressure for a gas. - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - HeatCapacity - https://qudt.org/vocab/quantitykind/HeatCapacity - https://www.wikidata.org/wiki/Q179388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 - https://dbpedia.org/page/Heat_capacity - 5-15 - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - https://en.wikipedia.org/wiki/Heat_capacity - https://doi.org/10.1351/goldbook.H02753 - - - - - GreenBottomQuark - GreenBottomQuark + + ElectricChargeAreaUnit + ElectricChargeAreaUnit - - - - URL - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - URL - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + + + PhotoluminescenceMicroscopy + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + PhotoluminescenceMicroscopy + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - - - - URI - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] - URI - https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + + + + + MeanFreePath + The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + MeanFreePath + https://qudt.org/vocab/quantitykind/MeanFreePath + https://www.wikidata.org/wiki/Q756307 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 + 9-38 + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + https://doi.org/10.1351/goldbook.M03778 - - - - ThermochemicalTreatment - ThermochemicalTreatment + + + + PathLength + Length of a rectifiable curve between two of its points. + ArcLength + PathLength + https://www.wikidata.org/wiki/Q7144654 + https://dbpedia.org/page/Arc_length + 3-1.7 + Length of a rectifiable curve between two of its points. + https://en.wikipedia.org/wiki/Arc_length - - - PseudoscalarMeson - A meson with spin zero and odd parity. - PseudoscalarMeson - A meson with spin zero and odd parity. - https://en.wikipedia.org/wiki/Pseudoscalar_meson + + + + JavaScript + JavaScript - + - - ElectricCurrentPhasor - ElectricCurrentPhasor - https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor - https://www.wikidata.org/wiki/Q78514596 - 6-49 + + + RollingResistanceFactor + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + RollingResistanceFactor + https://www.wikidata.org/wiki/Q91738044 + 4-23.3 + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - - - - + + + - - T0 L-3 M0 I0 Θ0 N+1 J0 + + - - AmountConcentrationUnit - AmountConcentrationUnit + + + + ElectromagneticEnergyDensity + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + VolumicElectromagneticEnergy + ElectromagneticEnergyDensity + https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity + https://www.wikidata.org/wiki/Q77989624 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 + 6-33 + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - + + + + CharacterisationSoftware + A software application to process characterisation data + CharacterisationSoftware + A software application to process characterisation data + In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. + + + @@ -10253,411 +10388,366 @@ and so forth... - - - EnergyDistributionOfCrossSection - Differential quotient of the cross section for a process and the energy of the scattered particle. - EnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralCrossSection - https://www.wikidata.org/wiki/Q98267245 - 10-40 - Differential quotient of the cross section for a process and the energy of the scattered particle. + + SurfaceTension + 4-26 + SurfaceTension + https://qudt.org/vocab/quantitykind/SurfaceTension + https://www.wikidata.org/wiki/Q170749 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-42 + https://doi.org/10.1351/goldbook.S06192 - + + + + SolidAngle + Ratio of area on a sphere to its radius squared. + SolidAngle + http://qudt.org/vocab/quantitykind/SolidAngle + 3-6 + Ratio of area on a sphere to its radius squared. + https://doi.org/10.1351/goldbook.S05732 + + + + + + + + + + - - DiffusionCoefficientForFluenceRate - Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - DiffusionCoefficientForFluenceRate - https://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate - https://www.wikidata.org/wiki/Q98876254 - 10-65 - Proportionality constant between the particle current density J and the gradient of the particle fluence rate. + KermaRate + Time derivative of kerma. + KermaRate + https://qudt.org/vocab/quantitykind/KermaRate + https://www.wikidata.org/wiki/Q99713105 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 + 10-86.2 + Time derivative of kerma. - - - Deduced - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. - Deduced - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + + + SpatiallyRedundant + A whole with spatial parts of its same type. + SpatiallyRedundant + A whole with spatial parts of its same type. - - + + - - - - - - + + - Index - A 'Sign' that stands for an 'Object' due to causal continguity. - Signal - Index - A 'Sign' that stands for an 'Object' due to causal continguity. - Smoke stands for a combustion process (a fire). -My facial expression stands for my emotional status. + + + + ElectricConductance + Inverse of 'ElectricalResistance'. + Measure of the ease for electric current to pass through a material. + Conductance + ElectricConductance + http://qudt.org/vocab/quantitykind/Conductance + https://www.wikidata.org/wiki/Q309017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 + 6-47 + Measure of the ease for electric current to pass through a material. + https://doi.org/10.1351/goldbook.E01925 - - - - DeepFreezing - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - Cryogenic treatment, Deep-freeze - Tieftemperaturbehandeln - DeepFreezing - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - - - - - - LaserCutting - LaserCutting + + + + + LinearAttenuationCoefficient + In nuclear physics, fraction of interacting particles per distance traversed in a given material. + LinearAttenuationCoefficient + https://www.wikidata.org/wiki/Q98583077 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 + 10-49 + In nuclear physics, fraction of interacting particles per distance traversed in a given material. - - - - ThermalCutting - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - Thermisches Abtragen - ThermalCutting - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + + + + AreaFractionUnit + Unit for quantities of dimension one that are the fraction of two areas. + AreaFractionUnit + Unit for quantities of dimension one that are the fraction of two areas. + Unit for solid angle. - + - - - DebyeWallerFactor - Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. - DebyeWallerFactor - https://qudt.org/vocab/quantitykind/Debye-WallerFactor - https://www.wikidata.org/wiki/Q902587 - 12-8 - Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. + + + PhaseAngle + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. + PhaseAngle + https://www.wikidata.org/wiki/Q415829 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 + 3-7 + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - - - - HydrodynamicVoltammetry - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - HydrodynamicVoltammetry - https://www.wikidata.org/wiki/Q17028237 - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + ChargeNumber + For a particle, electric charge q divided by elementary charge e. + The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. + The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. + IonizationNumber + ChargeNumber + https://qudt.org/vocab/quantitykind/ChargeNumber + https://www.wikidata.org/wiki/Q1800063 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 + https://dbpedia.org/page/Charge_number + 10-5.2 + For a particle, electric charge q divided by elementary charge e. + https://en.wikipedia.org/wiki/Charge_number + https://doi.org/10.1351/goldbook.C00993 - - - - SamplePreparationParameter - - Parameter used for the sample preparation process - SamplePreparationParameter - Parameter used for the sample preparation process + + + + + ActivityOfSolvent + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + ActivityOfSolvent + https://www.wikidata.org/wiki/Q89486193 + 9-27.1 + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - + - - - MolarInternalEnergy - Internal energy per amount of substance. - MolarInternalEnergy - https://www.wikidata.org/wiki/Q88523106 - 9-6.1 - Internal energy per amount of substance. + + + ElectricSusceptibility + Electric polarization divided by electric constant and electric field strength. + ElectricSusceptibility + https://qudt.org/vocab/quantitykind/ElectricSusceptibility + https://www.wikidata.org/wiki/Q598305 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 + 6-16 + Electric polarization divided by electric constant and electric field strength. + https://en.wikipedia.org/wiki/Electric_susceptibility - - - - FormingFromPowder - FormingFromPowder + + + + + + + T0 L-3 M+1 I0 Θ0 N0 J0 + + + DensityUnit + DensityUnit - - - - Milling - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - Fräsen - Milling + + + + Width + Length in a given direction regarded as horizontal. + The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. + Breadth + Width + https://qudt.org/vocab/quantitykind/Width + https://www.wikidata.org/wiki/Q35059 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 + 3-1.2 + Length in a given direction regarded as horizontal. - + - T-1 L+1 M0 I0 Θ+1 N0 J0 + T-3 L0 M+1 I0 Θ0 N0 J0 - TemperatureLengthPerTimeUnit - TemperatureLengthPerTimeUnit + PowerDensityUnit + PowerDensityUnit - - - RedTopAntiQuark - RedTopAntiQuark + + + + OxidationNumber + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + OxidationState + OxidationNumber + https://www.wikidata.org/wiki/Q484152 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 + https://dbpedia.org/page/Oxidation_state + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + https://en.wikipedia.org/wiki/Oxidation_state + https://doi.org/10.1351/goldbook.O04363 - - - - - - - - - - - - - - - - - - - CharmQuark - CharmQuark - https://en.wikipedia.org/wiki/Charm_quark + + + + + EndStep + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. + EndStep + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. - - - - DirectCoulometryAtControlledCurrent - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - DirectCoulometryAtControlledCurrent - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + + + + + + + T+1 L-1 M0 I+1 Θ0 N0 J0 + + + ElectricChargePerLengthUnit + ElectricChargePerLengthUnit - - - - - ReshapeManufacturing - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. - DIN 8580:2020 - Umformen - Forming - ReshapeManufacturing - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. + + + + Gas + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + Gas + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - + - - CommandLanguage - An interpreted computer language for job control in computing. - CommandLanguage - An interpreted computer language for job control in computing. - Unix shell. -Batch programming languages. - https://en.wikipedia.org/wiki/Command_language + + URI + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + URI + https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] - + - - - - - - - - - - Program - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - A set of instructions that tell a computer what to do. - Executable - Program - A set of instructions that tell a computer what to do. - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - - - - - Drilling - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - Bohren - Drilling - - - - - - + + + 1 - - - SpecificEntropy - SpecificEntropy - https://qudt.org/vocab/quantitykind/SpecificEntropy - https://www.wikidata.org/wiki/Q69423705 - 5-19 - - - - - - ConductometricTitration - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - ConductometricTitration - https://www.wikidata.org/wiki/Q11778221 - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - https://doi.org/10.1515/pac-2018-0109 + + IRI + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + IRI + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + https://en.wiktionary.org/wiki/Ῥόδος + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier - + - - Conductometry - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Conductometry - https://www.wikidata.org/wiki/Q901180 - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Monitoring of the purity of deionized water. - https://en.wikipedia.org/wiki/Conductometry + + CyclicVoltammetry + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + CV + CyclicVoltammetry + https://www.wikidata.org/wiki/Q1147647 + https://dbpedia.org/page/Cyclic_voltammetry + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + https://en.wikipedia.org/wiki/Cyclic_voltammetry https://doi.org/10.1515/pac-2018-0109 - - - - ConfigurationLanguage - A construction language used to write configuration files. - ConfigurationLanguage - A construction language used to write configuration files. - .ini files - Files in the standard .config directory on Unix systems. - https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages - - - - - - Fractography - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - Fractography - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - - - - - - InteractionVolume - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - InteractionVolume - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + + + + + + + T0 L+3 M0 I0 Θ0 N-1 J0 + + + VolumePerAmountUnit + VolumePerAmountUnit - + - - 3DPrinting - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - 3DPrinting - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + Riveting + Riveting - + - - AdditiveManufacturing - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - GenerativeManufacturing - AdditiveManufacturing - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + + FormingJoin + FormingJoin - + - - - LarmonAngularFrequency - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - LarmonAngularFrequency - 10-15.1 - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - - - - - - - - - - - - - - - - - - - - - DownQuark - DownQuark - https://en.wikipedia.org/wiki/Down_quark - - - - - - FlexuralForming - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - Biegeumformen - FlexuralForming - + + + + + + + + + AmountOfSubstance + "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." - - - - Determined - Determined +-- SI Brochure + The number of elementary entities present. + AmountOfSubstance + http://qudt.org/vocab/quantitykind/AmountOfSubstance + 9-2 + The number of elementary entities present. + https://doi.org/10.1351/goldbook.A00297 - - - Declared - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - Declared - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + + + + + + + + + + + MolarVolume + Volume per amount of substance. + MolarVolume + https://qudt.org/vocab/quantitykind/MolarVolume + https://www.wikidata.org/wiki/Q487112 + 9-5 + Volume per amount of substance. @@ -10668,5504 +10758,5068 @@ Note 1 to entry: This term is often used in a non-technical context synonymously Data that are non-quantitatively interpreted (e.g., qualitative data, types). - - - GreenTopQuark - GreenTopQuark - - - + - - - NeutronYieldPerFission - Average number of fission neutrons, both prompt and delayed, emitted per fission event. - NeutronYieldPerFission - https://qudt.org/vocab/quantitykind/NeutronYieldPerFission - https://www.wikidata.org/wiki/Q99157909 - 10-74.1 - Average number of fission neutrons, both prompt and delayed, emitted per fission event. - - - - - - ComputerScience - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - A well-formed formula that follows the syntactic rules of computer science. - ComputerScience - A well-formed formula that follows the syntactic rules of computer science. - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + + + + + + + + + Acceleration + Derivative of velocity with respect to time. + Acceleration + http://qudt.org/vocab/quantitykind/Acceleration + 3-9.1 + https://doi.org/10.1351/goldbook.A00051 - + - - + - - T-3 L0 M+1 I0 Θ0 N0 J0 + + - - PowerDensityUnit - PowerDensityUnit + + + + ModulusOfRigidity + Ratio of shear stress to the shear strain. + ShearModulus + ModulusOfRigidity + https://qudt.org/vocab/quantitykind/ShearModulus + https://www.wikidata.org/wiki/Q461466 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 + 4-19.2 + Ratio of shear stress to the shear strain. + https://doi.org/10.1351/goldbook.S05635 - + + + DimensionlessUnit + The subclass of measurement units with no physical dimension. + DimensionlessUnit + http://qudt.org/vocab/unit/UNITLESS + The subclass of measurement units with no physical dimension. + Refractive index +Plane angle +Number of apples + + + + + + SourceCode + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + SourceCode + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + + + + - - - 1 + + - - IRI - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - IRI - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - https://en.wiktionary.org/wiki/Ῥόδος - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier + + + + Permeability + Measure for how the magnetization of material is affected by the application of an external magnetic field . + ElectromagneticPermeability + Permeability + http://qudt.org/vocab/quantitykind/ElectromagneticPermeability + 6-26.2 + https://doi.org/10.1351/goldbook.P04503 - - - CrystallineMaterial - Suggestion of Rickard Armiento - CrystallineMaterial + + + + DataPreparation + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + DataPreparation + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - - - - ScanningAugerElectronMicroscopy - - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - AES - ScanningAugerElectronMicroscopy - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + + + + + DebyeAngularWaveNumber + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + DebyeAngluarRepetency + DebyeAngularWaveNumber + https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber + https://www.wikidata.org/wiki/Q105554370 + 12-9.3 + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - - - - Microscopy - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + + + + + AngularWaveNumber + In condensed matter physics, quotient of momentum and the reduced Planck constant. + AngularRepetency + AngularWaveNumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q105542089 + 12-9.1 + In condensed matter physics, quotient of momentum and the reduced Planck constant. - + - + + - - + + T-2 L-2 M0 I0 Θ0 N0 J0 - - - MagneticMoment - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - MagneticAreaMoment - MagneticMoment - https://qudt.org/vocab/quantitykind/MagneticMoment - https://www.wikidata.org/wiki/Q242657 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 - 6-23 - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - https://doi.org/10.1351/goldbook.M03688 + + FrequencyPerAreaTimeUnit + FrequencyPerAreaTimeUnit - + - - HotDipGalvanizing - Hot-dipGalvanizing - HotDipGalvanizing + + ElectroSinterForging + ElectroSinterForging - + - - CoatingManufacturing - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. - DIN 8580:2020 - Beschichten - CoatingManufacturing - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + + Sintering + Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. + Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. +Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + https://www.twi-global.com/technical-knowledge/faqs/what-is-sintering + Sintern + Sintering + Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. + Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. +Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - - - + + + + - - + + T-2 L+2 M+1 I0 Θ-1 N0 J0 - - - - LinearDensityOfElectricCharge - The derivative of the electric charge of a system with respect to the length. - LinearDensityOfElectricCharge - https://www.wikidata.org/wiki/Q77267838 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 - 6-5 - The derivative of the electric charge of a system with respect to the length. + + EntropyUnit + EntropyUnit - - - - - AtomicScatteringFactor - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - AtomicScatteringFactor - https://qudt.org/vocab/quantitykind/AtomScatteringFactor - https://www.wikidata.org/wiki/Q837866 - 12-5.3 - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - https://en.wikipedia.org/wiki/Atomic_form_factor + + + + QueryLanguage + A construction language used to make queries in databases and information systems. + QueryLanguage + A construction language used to make queries in databases and information systems. + SQL, SPARQL + https://en.wikipedia.org/wiki/Query_language - - - + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - Suspension - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - Suspensions show no significant effect on light. - Suspension - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + UpAntiQuarkType + UpAntiQuarkType - + + + + DisplacementCurrent + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + DisplacementCurrent + https://qudt.org/vocab/quantitykind/DisplacementCurrent + https://www.wikidata.org/wiki/Q853178 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 + 6-19.1 + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + + + - - - - - - + + - - AtomicMass - Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. - The atomic mass is often expressed as an average of the commonly found isotopes. - The mass of an atom in the ground state. - AtomicMass - The mass of an atom in the ground state. - 10-4.1 - https://en.wikipedia.org/wiki/Atomic_mass - https://doi.org/10.1351/goldbook.A00496 + + + ElectricCurrent + A flow of electric charge. + ElectricCurrent + http://qudt.org/vocab/quantitykind/ElectricCurrent + 6-1 + A flow of electric charge. + https://doi.org/10.1351/goldbook.E01927 - - - - - - - - - - - - - Hadron - Particles composed of two or more quarks. - Hadron - Particles composed of two or more quarks. - https://en.wikipedia.org/wiki/Hadron + + + + Variable + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + Variable + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + x +k - + - - - - - T-2 L-1 M+1 I0 Θ0 N0 J0 - - - PressureUnit - PressureUnit + + + PhaseDifference + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + DisplacementAngle + PhaseDifference + https://www.wikidata.org/wiki/Q97222919 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 + 6-48 + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - - - - - - - T-2 L+2 M+1 I0 Θ0 N-1 J0 - - - EnergyPerAmountUnit - EnergyPerAmountUnit + + + + + FastFissionFactor + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + FastFissionFactor + https://qudt.org/vocab/quantitykind/FastFissionFactor + https://www.wikidata.org/wiki/Q99197493 + 10-75 + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - - + + + + LogarithmicUnit + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + +It is advisory to create a uniquely defined subclass these units for concrete usage. + LogarithmicUnit + http://qudt.org/schema/qudt/LogarithmicUnit + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Decibel + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + +It is advisory to create a uniquely defined subclass these units for concrete usage. + https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units + + + + + + + QualityFactor + Dimensionless quantity in electromagnetism. + QualityFactor + https://qudt.org/vocab/quantitykind/QualityFactor + https://www.wikidata.org/wiki/Q79467569 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 + 6-53 + Dimensionless quantity in electromagnetism. + + + + - - + + + + + + + + + - - - 1 + + + + + + + + + - - - - - - - - Integer - An integer number. - Integer - An integer number. - - - - - - - Number - A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. - A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). - A numerical data value. - In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. -More than one numeral stands for the same number. -In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). -Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). -The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. -For these reasons, the EMMO will consider numerals and numbers as the same concept. - Numeral - Number - A numerical data value. - - - - - - + + - - + + - + - + - CausalStructure - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - A self-connected composition of more than one quantum entities. - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - CausalObject - CausalStructure - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - A self-connected composition of more than one quantum entities. - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - - - - - - - StandardChemicalPotential - StandardChemicalPotential - https://qudt.org/vocab/quantitykind/StandardChemicalPotential - https://www.wikidata.org/wiki/Q89333468 - 9-21 - https://doi.org/10.1351/goldbook.S05908 - - - - - - - MolecularEntity - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - https://goldbook.iupac.org/terms/view/M03986 - ChemicalEntity - MolecularEntity - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. - Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). - - - - - - - ReactorTimeConstant - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - ReactorTimeConstant - https://qudt.org/vocab/quantitykind/ReactorTimeConstant - https://www.wikidata.org/wiki/Q99518950 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 - 10-79 - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + CausalPath + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + CausalChain + Elementary + CausalPath + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + An electron with at least one causal interaction with another particle. + hasTemporalPart min 2 (Elementary or Quantum) - + - - Duration - Physical quantity for describing the temporal distance between events. - Duration - https://www.wikidata.org/wiki/Q2199864 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 - 3-9 - Physical quantity for describing the temporal distance between events. - - - - - - Solution - A solution is a homogeneous mixture composed of two or more substances. - Solutions are characterized by the occurrence of Rayleigh scattering on light, - Solution - A solution is a homogeneous mixture composed of two or more substances. + + + + + T0 L0 M0 I+1 Θ0 N0 J0 + + + ElectricCurrentUnit + ElectricCurrentUnit - - - - PhaseOfMatter - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - Phase - PhaseOfMatter - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + + + + Tempering + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + QuenchingAndTempering + Vergüten + Tempering + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - - + + + - + - - Estimation - A determination of an object without any actual interaction. - Estimation - A determination of an object without any actual interaction. - - - - - - + - - T0 L+1 M0 I0 Θ0 N-1 J0 + + - - LengthPerAmountUnit - LengthPerAmountUnit + + + + + + + + + + + + + EMMO + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The class of all the OWL individuals declared by EMMO as standing for world entities. + The disjoint union of the Item and Collection classes. + EMMO + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The disjoint union of the Item and Collection classes. + The class of all the OWL individuals declared by EMMO as standing for world entities. + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - + - + - - MagnetomotiveForce - Scalar line integral of the magnetic field strength along a closed path. - MagnetomotiveForce - https://qudt.org/vocab/quantitykind/MagnetomotiveForce - https://www.wikidata.org/wiki/Q1266982 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 - 6-37.3 - Scalar line integral of the magnetic field strength along a closed path. + + LinearMassDensity + Mass per length. + LinearDensity + LineicMass + LinearMassDensity + https://qudt.org/vocab/quantitykind/LinearDensity + https://www.wikidata.org/wiki/Q56298294 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 + 4-6 + Mass per length. - - - - - ManufacturedProduct - An object that has been designed and manufactured for a particular purpose. - Artifact - Engineered - TangibleProduct - ManufacturedProduct - An object that has been designed and manufactured for a particular purpose. - Car, tire, composite material. + + + + + Aerosol + A colloid composed of fine solid particles or liquid droplets in air or another gas. + Aerosol + A colloid composed of fine solid particles or liquid droplets in air or another gas. - - - - Wavenumber - The number of waves per unit length along the direction of propagation. - Wavenumber - http://qudt.org/vocab/quantitykind/Wavenumber - 3-18 - https://doi.org/10.1351/goldbook.W06664 - - - - - - - - - - - - - - - - - - - - CharacterisationWorkflow - A characterisation procedure that has at least two characterisation tasks as proper parts. - CharacterisationWorkflow - A characterisation procedure that has at least two characterisation tasks as proper parts. - - - - - - TransmissionElectronMicroscopy - - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - TEM - TransmissionElectronMicroscopy - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - - - - - - PostProcessingModel - Mathematical model used to process data. - Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. - PostProcessingModel - Mathematical model used to process data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. + + + + Colloid + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. + Colloid + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. - - - - Sequence - A tessellation of temporal slices. - Sequence - A tessellation of temporal slices. + + + + + PlanckConstant + The quantum of action. It defines the kg base unit in the SI system. + PlanckConstant + http://qudt.org/vocab/constant/PlanckConstant + The quantum of action. It defines the kg base unit in the SI system. + https://doi.org/10.1351/goldbook.P04685 - - - - Probe - - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - Probe - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. - In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. - In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) - In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). - In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry + + + + + StandardChemicalPotential + StandardChemicalPotential + https://qudt.org/vocab/quantitykind/StandardChemicalPotential + https://www.wikidata.org/wiki/Q89333468 + 9-21 + https://doi.org/10.1351/goldbook.S05908 - - - - CentreOfMass - In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - CentreOfMass - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - https://en.wikipedia.org/wiki/Center_of_mass + + + GreenTopAntiQuark + GreenTopAntiQuark - + - + - - PositionVector - In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. + Intensity + Power transferred per unit area. + Intensity + Power transferred per unit area. + https://en.wikipedia.org/wiki/Intensity_(physics) + --- IEC - Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. + + + + + DensityOfHeatFlowRate + At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + AreicHeatFlowRate + DensityOfHeatFlowRate + https://www.wikidata.org/wiki/Q1478382 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 + 5-8 + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + https://doi.org/10.1351/goldbook.H02755 + --- ISO 80000-3 - Vector r characterizing a point P in a point space with a given origin point O. - Position - PositionVector - http://qudt.org/vocab/quantitykind/PositionVector - Vector r characterizing a point P in a point space with a given origin point O. + + + + + ActiveEnergy + The integral over a time interval of the instantaneous power. + ActiveEnergy + https://qudt.org/vocab/quantitykind/ActiveEnergy + https://www.wikidata.org/wiki/Q79813678 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 + 6-62 + The integral over a time interval of the instantaneous power. - + - T0 L0 M0 I+1 Θ0 N0 J0 + T+4 L-4 M-2 I0 Θ0 N0 J0 - ElectricCurrentUnit - ElectricCurrentUnit + ReciprocalSquareEnergyUnit + ReciprocalSquareEnergyUnit - + - - - DebyeTemperature - DebyeTemperature - https://qudt.org/vocab/quantitykind/DebyeTemperature - https://www.wikidata.org/wiki/Q3517821 - 12-11 + + + StoichiometricNumberOfSubstance + StoichiometricNumberOfSubstance + https://qudt.org/vocab/quantitykind/StoichiometricNumber + https://www.wikidata.org/wiki/Q95443720 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 + 9-29 + https://doi.org/10.1351/goldbook.S06025 - + - - - ActivityOfSolvent - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - ActivityOfSolvent - https://www.wikidata.org/wiki/Q89486193 - 9-27.1 - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + + + MechanicalEfficiency + Quotient of mechanical output and input power. + MechanicalEfficiency + https://www.wikidata.org/wiki/Q2628085 + 4-29 + Quotient of mechanical output and input power. - - - - PhaseHomogeneousMixture - A single phase mixture. - PhaseHomogeneousMixture - A single phase mixture. + + + + + MassFractionOfWater + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + MassFractionOfWater + https://qudt.org/vocab/quantitykind/MassFractionOfWater + https://www.wikidata.org/wiki/Q76379025 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 + 5-31 + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - + - - - AlphaDisintegrationEnergy - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - AlphaDisintegrationEnergy - http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98146025 - 10-32 - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + + + MassFraction + Mass of a constituent divided by the total mass of all constituents in the mixture. + MassFraction + http://qudt.org/vocab/quantitykind/MassFraction + 9-11 + https://doi.org/10.1351/goldbook.M03722 - - - - - MeanEnergyImparted - Expectation value of the energy imparted. - MeanEnergyImparted - https://qudt.org/vocab/quantitykind/MeanEnergyImparted - https://www.wikidata.org/wiki/Q99526969 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 - 10-80.2 - Expectation value of the energy imparted. + + + AntiMuon + AntiMuon - - - - - ThermoelectricVoltage - Voltage between substances a and b caused by the thermoelectric effect. - ThermoelectricVoltage - https://www.wikidata.org/wiki/Q105761637 - 12-20 - Voltage between substances a and b caused by the thermoelectric effect. + + + + CentrifugalCasting + CentrifugalCasting - + - - Voltage - Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. - The difference in electric potential between two points. - ElectricPotentialDifference - ElectricTension - Voltage - http://qudt.org/vocab/quantitykind/Voltage - 6-11.3 - The difference in electric potential between two points. - https://doi.org/10.1351/goldbook.A00424 - https://doi.org/10.1351/goldbook.V06635 + + + + + T0 L+2 M+1 I0 Θ0 N0 J0 + + + MassAreaUnit + MassAreaUnit - - - + + + + - - + + T+1 L+1 M0 I+1 Θ0 N0 J0 - - - - - - - - - - - - - - Meson - Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. - Most mesons are composed of one quark and one antiquark. - Meson - Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. - Most mesons are composed of one quark and one antiquark. - https://en.wikipedia.org/wiki/Meson + ElectricDipoleMomentUnit + ElectricDipoleMomentUnit - - - HybridMatter - Matter composed of both matter and antimatter fundamental particles. - HybridMatter - Matter composed of both matter and antimatter fundamental particles. + + + + DynamicMechanicalSpectroscopy + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + DMA + DynamicMechanicalSpectroscopy + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - - - - - - - - - - - CompositeBoson - CompositeBoson - Examples of composite particles with integer spin: -spin 0: H1 and He4 in ground state, pion -spin 1: H1 and He4 in first excited state, meson -spin 2: O15 in ground state. + + + + PostProcessingModel + Mathematical model used to process data. + Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. + PostProcessingModel + Mathematical model used to process data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. - - - - Spray - A suspension of liquid droplets dispersed in a gas through an atomization process. - Spray - A suspension of liquid droplets dispersed in a gas through an atomization process. + + + + + SerialStep + SerialStep - - - - GasLiquidSuspension - A coarse dispersion of liquid in a gas continuum phase. - GasLiquidSuspension - A coarse dispersion of liquid in a gas continuum phase. - Rain, spray. + + + TemporalTile + A direct part that is obtained by partitioning a whole purely in temporal parts. + TemporalTile + A direct part that is obtained by partitioning a whole purely in temporal parts. - - + + + + + + + + + + + + - - + + - - Operator - The human operator who takes care of the whole characterisation method or sub-processes/stages. - Operator - The human operator who takes care of the whole characterisation method or sub-processes/stages. - - - - - - - - - - - Tessellation - A causal object that is tessellated in direct parts. - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - Tiling - Tessellation - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - A causal object that is tessellated in direct parts. + + MathematicalSymbol + MathematicalSymbol - + - T0 L+3 M0 I0 Θ0 N0 J0 + T-1 L+1 M+1 I0 Θ0 N0 J0 - VolumeUnit - VolumeUnit + MomentumUnit + MomentumUnit - + - - InternalEnergy - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - ThermodynamicEnergy - InternalEnergy - http://qudt.org/vocab/quantitykind/InternalEnergy - 5.20-2 - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - https://doi.org/10.1351/goldbook.I03103 + + + LossAngle + Arctan of the loss factor + LossAngle + https://www.qudt.org/vocab/quantitykind/LossAngle + https://www.wikidata.org/wiki/Q20820438 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 + 6-55 + Arctan of the loss factor - - - - WorkpieceManufacturing - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. - DIN 8580:2020 - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. - ISO 8887-1:2017 -manufacturing: production of components - Werkstücke - DiscreteManufacturing - WorkpieceManufacturing - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + + + + + MeanFreePathOfElectrons + Average distance that electrons travel between two successive interactions. + MeanFreePathOfElectrons + https://qudt.org/vocab/quantitykind/ElectronMeanFreePath + https://www.wikidata.org/wiki/Q105672307 + 12-15.2 + Average distance that electrons travel between two successive interactions. - + - - - - - - - - - PhysicsOfInteraction - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - PhysicsOfInteraction - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + + SampleInspectionInstrument + + SampleInspectionInstrument - + - - + - - T+4 L-4 M-2 I0 Θ0 N0 J0 + + - - ReciprocalSquareEnergyUnit - ReciprocalSquareEnergyUnit + + + + ScalarMagneticPotential + Scalar potential of an irrotational magnetic field strength. + ScalarMagneticPotential + https://www.wikidata.org/wiki/Q17162107 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 + 6-37.1 + Scalar potential of an irrotational magnetic field strength. - + - - RefractiveIndex - Factor by which the phase velocity of light is reduced in a medium. - RefractiveIndex - http://qudt.org/vocab/quantitykind/RefractiveIndex - https://doi.org/10.1351/goldbook.R05240 + + IsobaricHeatCapacity + Heat capacity at constant pressure. + HeatCapacityAtConstantPressure + IsobaricHeatCapacity + https://www.wikidata.org/wiki/Q112187490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 + 5-16.2 + Heat capacity at constant pressure. - - + + + + + + + + + + PoyntingVector + Electric field strength multiplied by magnetic field strength. + PoyntingVector + https://qudt.org/vocab/quantitykind/PoyntingVector + https://www.wikidata.org/wiki/Q504186 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 + 6-34 + Electric field strength multiplied by magnetic field strength. + + + + - T+10 L-2 M-3 I+4 Θ0 N0 J0 + T0 L+1 M0 I0 Θ+1 N0 J0 - QuarticElectricDipoleMomentPerCubicEnergyUnit - QuarticElectricDipoleMomentPerCubicEnergyUnit - - - - - - AlphaSpectrometry - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - AlphaSpectrometry - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + LengthTemperatureUnit + LengthTemperatureUnit - - - GreenCharmQuark - GreenCharmQuark + + + + + + + + + + + + + Estimation + A determination of an object without any actual interaction. + Estimation + A determination of an object without any actual interaction. - + - + - - LuminousIntensity - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - LuminousIntensity - http://qudt.org/vocab/quantitykind/LuminousIntensity - 7-14 - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - - - - - - LightAndRadiationQuantity - Quantities categorised according to ISO 80000-7. - LightAndRadiationQuantity - Quantities categorised according to ISO 80000-7. - - - - - - DifferentialLinearPulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - DifferentialLinearPulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + + + EnergyFluence + In nuclear physics, incident radiant energy per cross-sectional area. + EnergyFluence + https://qudt.org/vocab/quantitykind/EnergyFluence + https://www.wikidata.org/wiki/Q98538612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 + 10-46 + In nuclear physics, incident radiant energy per cross-sectional area. - + - - ReferenceSample - - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - ReferenceSpecimen - Certified Reference Material - Reference material - ReferenceSample - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - Reference material - - - - - - - - - - - - - - - - Step - A step is part of a specific granularity level for the workflow description, as composition of tasks. - A task that is a well formed tile of a workflow, according to a reductionistic description. - Step - A task that is a well formed tile of a workflow, according to a reductionistic description. - A step is part of a specific granularity level for the workflow description, as composition of tasks. + + DielectricAndImpedanceSpectroscopy + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + DielectricAndImpedanceSpectroscopy + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - + - + - - PressureCoefficient - Change of pressure per change of temperature at constant volume. - PressureCoefficient - https://qudt.org/vocab/quantitykind/PressureCoefficient - https://www.wikidata.org/wiki/Q74762732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 - 5-4 - Change of pressure per change of temperature at constant volume. + + + ThomsonCoefficient + quotient of Thomson heat power developed, and the electric current and temperature difference + ThomsonCoefficient + https://qudt.org/vocab/quantitykind/ThomsonCoefficient + https://www.wikidata.org/wiki/Q105801233 + 12-23 + quotient of Thomson heat power developed, and the electric current and temperature difference - + - + - - PeltierCoefficient - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - PeltierCoefficient - https://qudt.org/vocab/quantitykind/PeltierCoefficient - https://www.wikidata.org/wiki/Q105801003 - 12-22 - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + + JouleThomsonCoefficient + JouleThomsonCoefficient + https://www.wikidata.org/wiki/Q93946998 + 5-24 - - - - DefiningEquation - An equation that define a new variable in terms of other mathematical entities. - DefiningEquation - An equation that define a new variable in terms of other mathematical entities. - The definition of velocity as v = dx/dt. - -The definition of density as mass/volume. - -y = f(x) - - - - - - - - - - - - - Equation - An equation with variables can always be represented as: - -f(v0, v1, ..., vn) = g(v0, v1, ..., vn) - -where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - Equation - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - 2+3 = 5 -x^2 +3x = 5x -dv/dt = a -sin(x) = y + + + + ShearForming + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + Schubumformen + ShearForming - - - - FibDic - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - FIBDICResidualStressAnalysis - FibDic - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + + + + + EnergyImparted + Sum of energies deposited by ionizing radiation in a given volume. + EnergyImparted + https://qudt.org/vocab/quantitykind/EnergyImparted + https://www.wikidata.org/wiki/Q99526944 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 + 10-80.1 + Sum of energies deposited by ionizing radiation in a given volume. - - - - ShearOrTorsionTesting - - ShearOrTorsionTesting + + + + SupplyChain + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + SupplyChain + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - + - - Sawing - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - Sägen - Sawing - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + + + Moulding + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + Gesenkformen + Moulding - - - - ShellScript - A command language designed to be run by a command-line interpreter, like a Unix shell. - ShellScript - A command language designed to be run by a command-line interpreter, like a Unix shell. - https://en.wikipedia.org/wiki/Shell_script + + + CompositePhysicalObject + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + CompositePhysicalObject + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - - - Photon - The class of individuals that stand for photons elementary particles. - Photon - The class of individuals that stand for photons elementary particles. - https://en.wikipedia.org/wiki/Photon + + + + + PoissonNumber + Ratio of transverse strain to axial strain. + PoissonsRatio + PoissonNumber + https://www.wikidata.org/wiki/Q190453 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 + 4-18 + Ratio of transverse strain to axial strain. - - - StandardUnit - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - ReferenceMaterial - StandardUnit - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + RightHandedParticle + RightHandedParticle - + - T-1 L-4 M+1 I0 Θ0 N0 J0 + T+2 L0 M-1 I0 Θ0 N0 J0 - MassPerQuarticLengthTimeUnit - MassPerQuarticLengthTimeUnit + SquareTimePerMassUnit + SquareTimePerMassUnit - - - + + + ProcedureUnit + A reference unit provided by a measurement procedure. + Procedure units and measurement units are disjoint. + MeasurementProcedure + ProcedureUnit + A reference unit provided by a measurement procedure. + Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) + Procedure units and measurement units are disjoint. + + + + + + - - + + T0 L-1 M0 I+1 Θ0 N0 J0 - - - FineStructureConstant - A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. - FineStructureConstant - http://qudt.org/vocab/constant/FineStructureConstant - https://doi.org/10.1351/goldbook.F02389 + + MagneticFieldStrengthUnit + MagneticFieldStrengthUnit - - - - ProductionEngineering - ProductionEngineering + + + + + ConstitutiveProcess + A constitutive process is a process that is holistically relevant for the definition of the whole. + A process which is an holistic spatial part of an object. + ConstitutiveProcess + A process which is an holistic spatial part of an object. + Blood circulation in a human body. + A constitutive process is a process that is holistically relevant for the definition of the whole. - - - - ProcessEngineeringProcess - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. - -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - ProcessEngineeringProcess - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. - -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - https://de.wikipedia.org/wiki/Verfahrenstechnik + + + NonTemporalRole + An holistic spatial part of a whole. + HolisticSpatialPart + NonTemporalRole + An holistic spatial part of a whole. - - - - - IsothermalCompressibility - IsothermalCompressibility - https://qudt.org/vocab/quantitykind/IsothermalCompressibility - https://www.wikidata.org/wiki/Q2990696 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 - 5-5.1 + + + + DifferentialPulseVoltammetry + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + DPV + DifferentialPulseVoltammetry + https://www.wikidata.org/wiki/Q5275361 + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + https://en.wikipedia.org/wiki/Differential_pulse_voltammetry + https://doi.org/10.1515/pac-2018-0109 - + - + + - - + + T+2 L+1 M-1 I0 Θ0 N0 J0 - - - - Compressibility - Measure of the relative volume change of a fluid or solid as a response to a pressure change. - Compressibility - https://qudt.org/vocab/quantitykind/Compressibility - https://www.wikidata.org/wiki/Q8067817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 - 4-20 - Measure of the relative volume change of a fluid or solid as a response to a pressure change. + + PerPressureUnit + PerPressureUnit - - - GluonType1 - GluonType1 + + + + + + + T-3 L+2 M0 I0 Θ0 N0 J0 + + + AbsorbedDoseRateUnit + AbsorbedDoseRateUnit - - - - - LondonPenetrationDepth - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - LondonPenetrationDepth - https://qudt.org/vocab/quantitykind/LondonPenetrationDepth - https://www.wikidata.org/wiki/Q3277853 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 - 12-38.1 - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + + + + PhysicalLaw + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + PhysicalLaw + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - - + + - - + + - - - - - - - - - - Semiosis - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Semiosis - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Me looking a cat and saying loud: "Cat!" -> the semiosis process - -me -> interpreter -cat -> object (in Peirce semiotics) -the cat perceived by my mind -> interpretant -"Cat!" -> sign, the produced sign - - - - - - - - - - + + - - - - - - - - - Role - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - HolisticPart - Part - Role - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + + + CharacterisationMeasurementInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + CharacterisationMeasurementInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + In nanoindentation is the nanoindenter + Measuring instrument - + - + - - DynamicViscosity - The measure of the resistance of a fluid to flow when an external force is applied. - Viscosity - DynamicViscosity - https://qudt.org/vocab/quantitykind/DynamicViscosity - https://www.wikidata.org/wiki/Q15152757 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 - 4-24 - The measure of the resistance of a fluid to flow when an external force is applied. - https://doi.org/10.1351/goldbook.D01877 - - - - - - ResistanceToAlternativeCurrent - Real part of the impedance. - ResistanceToAlternativeCurrent - https://www.wikidata.org/wiki/Q1048490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 - 6-51.2 - Real part of the impedance. + + + NuclearQuadrupoleMoment + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). + NuclearQuadrupoleMoment + https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment + https://www.wikidata.org/wiki/Q97921226 + 10-18 + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - + - - - SpeedOfLightInVacuum - The speed of light in vacuum. Defines the base unit metre in the SI system. - SpeedOfLightInVacuum - http://qudt.org/vocab/constant/SpeedOfLight_Vacuum - 6-35.2 - The speed of light in vacuum. Defines the base unit metre in the SI system. - https://doi.org/10.1351/goldbook.S05854 + + + DragCoefficient + Dimensionless parameter to quantify fluid resistance. + DragFactor + DragCoefficient + https://qudt.org/vocab/quantitykind/DragCoefficient + https://www.wikidata.org/wiki/Q1778961 + 4-23.4 + Dimensionless parameter to quantify fluid resistance. - + - - Work - Product of force and displacement. - Work - http://qudt.org/vocab/quantitykind/Work - Product of force and displacement. - 4-28.4 - https://doi.org/10.1351/goldbook.W06684 + + + ShearStrain + Displacement of one surface with respect to another divided by the distance between them. + ShearStrain + https://qudt.org/vocab/quantitykind/ShearStrain + https://www.wikidata.org/wiki/Q7561704 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 + 4-17.3 + Displacement of one surface with respect to another divided by the distance between them. + https://doi.org/10.1351/goldbook.S05637 - + - - + - - T+2 L0 M-1 I+1 Θ+1 N0 J0 + + - - TemperaturePerMagneticFluxDensityUnit - TemperaturePerMagneticFluxDensityUnit + + + + DiffusionArea + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. + DiffusionArea + https://qudt.org/vocab/quantitykind/DiffusionArea + https://www.wikidata.org/wiki/Q98966292 + 10-72.2 + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - + + + + Factory + A building or group of buildings where goods are manufactured or assembled. + IndustrialPlant + Factory + A building or group of buildings where goods are manufactured or assembled. + + + + - - - - - - + + - - MassNumber - Number of nucleons in an atomic nucleus. - AtomicMassNumber - NucleonNumber - MassNumber - http://qudt.org/vocab/quantitykind/MassNumber - Number of nucleons in an atomic nucleus. + HolisticSystem + A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. + HolisticSystem + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - - - - - MeanFreePathOfElectrons - Average distance that electrons travel between two successive interactions. - MeanFreePathOfElectrons - https://qudt.org/vocab/quantitykind/ElectronMeanFreePath - https://www.wikidata.org/wiki/Q105672307 - 12-15.2 - Average distance that electrons travel between two successive interactions. + + + + Filling + Filling - - - - - MeanFreePath - The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - MeanFreePath - https://qudt.org/vocab/quantitykind/MeanFreePath - https://www.wikidata.org/wiki/Q756307 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 - 9-38 - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - https://doi.org/10.1351/goldbook.M03778 - - - + - - - Wavenumber - Reciprocal of the wavelength. - Repetency - Wavenumber - https://qudt.org/vocab/quantitykind/Wavenumber - https://www.wikidata.org/wiki/Q192510 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 - https://dbpedia.org/page/Wavenumber - 3-20 - Reciprocal of the wavelength. - https://en.wikipedia.org/wiki/Wavenumber - https://doi.org/10.1351/goldbook.W06664 - - - - - T-2 L+1 M0 I0 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ-1 N-1 J0 - AccelerationUnit - AccelerationUnit - - - - - - - - - - - - - ThermalResistance - The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. - Thermodynamic temperature difference divided by heat flow rate. - ThermalResistance - https://qudt.org/vocab/quantitykind/ThermalResistance - https://www.wikidata.org/wiki/Q899628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 - 5-12 - Thermodynamic temperature difference divided by heat flow rate. - - - - - - SolidSolidSuspension - A coarse dispersion of solid in a solid continuum phase. - SolidSolidSuspension - A coarse dispersion of solid in a solid continuum phase. - Granite, sand, dried concrete. + EntropyPerAmountUnit + EntropyPerAmountUnit - + - - - - - T+1 L0 M-1 I+1 Θ0 N0 J0 - - - ElectricChargePerMassUnit - ElectricChargePerMassUnit + + + BindingFraction + The ratio of the binding energy of a nucleus to the atomic mass number. + BindingFraction + https://qudt.org/vocab/quantitykind/BindingFraction + https://www.wikidata.org/wiki/Q98058362 + 10-23.2 + The ratio of the binding energy of a nucleus to the atomic mass number. - - - - - - - - - - - DirectionDistributionOfCrossSection - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - DirectionDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/AngularCrossSection - https://www.wikidata.org/wiki/Q98266630 - 10-39 - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + + + RedCharmAntiQuark + RedCharmAntiQuark - - - - - - - - - - ChemicalPotential - Energy per unit change in amount of substance. - ChemicalPotential - http://qudt.org/vocab/quantitykind/ChemicalPotential - 9-17 - https://doi.org/10.1351/goldbook.C01032 + + + + Amperometry + Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + Amperometry + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - - + + - + - + - - MeasurementUnit - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - A metrological reference for a physical quantity. - MeasurementUnit - A metrological reference for a physical quantity. - kg -m/s -km - measurement unit (VIM3 1.9) - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - "Unit symbols are mathematical entities and not abbreviations." - -"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." - -https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf - Measurement units and procedure units are disjoint. - Quantitative value are expressed as a multiple of the 'MeasurementUnit'. + Lepton + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + Lepton + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + https://en.wikipedia.org/wiki/Lepton - + - - DataAnalysis - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - DataAnalysis - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + + ElectrochemicalImpedanceSpectroscopy + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + EIS + ElectrochemicalImpedanceSpectroscopy + https://www.wikidata.org/wiki/Q3492904 + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - - - - - - - - - - - SemioticEntity - Semiotic subclasse are defined using Peirce's semiotic theory. - -"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). - -The triadic elements: -- 'sign': the sign A (e.g. a name) -- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) -- 'object': the object C (e.g. the entity to which the sign A and B refer to) - -This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - SemioticEntity - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + + + + Impedimetry + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Impedimetry + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + https://doi.org/10.1515/pac-2018-0109 - - - - - SolidSolution - A solid solution made of two or more component substances. - SolidSolution - A solid solution made of two or more component substances. + + + NeutralAtom + A standalone atom that has no net charge. + NeutralAtom + A standalone atom that has no net charge. - - - - - - - - - - PoyntingVector - Electric field strength multiplied by magnetic field strength. - PoyntingVector - https://qudt.org/vocab/quantitykind/PoyntingVector - https://www.wikidata.org/wiki/Q504186 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 - 6-34 - Electric field strength multiplied by magnetic field strength. - - - - - ElementaryFermion - ElementaryFermion - - - - - - FormingFromIonised - FormingFromIonised + + + + NumericalVariable + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + NumericalVariable + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - + - - CharacterisationEnvironmentProperty + + ThreePointBendingTesting - CharacterisationEnvironmentProperty - - - - - - - Service - IntangibleProduct - Service - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + ThreePointFlexuralTest + ThreePointBendingTesting + https://www.wikidata.org/wiki/Q2300905 + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + https://en.wikipedia.org/wiki/Three-point_flexural_test - - - PseudovectorMeson - A meson with total spin 1 and even parit. - PseudovectorMeson - A meson with total spin 1 and even parit. - https://en.wikipedia.org/wiki/Pseudovector_meson + + + GluonType4 + GluonType4 - + - - CreepTesting - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - CreepTesting - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + + Dielectrometry + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Dielectrometry + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + https://doi.org/10.1515/pac-2018-0109 - - - - NaturalProcess - A process occurring by natural (non-intentional) laws. - NonIntentionalProcess - NaturalProcess - A process occurring by natural (non-intentional) laws. + + + + Assignment + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + Assignment + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. - - - - + + + - - T0 L+1 M0 I0 Θ0 N0 J0 + + + + + + - - LengthUnit - LengthUnit + + + Task + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + Job + Task + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - + - - AverageEnergyLossPerElementaryChargeProduced - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - AverageEnergyLossPerElementaryChargeProduced - https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced - https://www.wikidata.org/wiki/Q98793042 - 10-60 - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + + Lethargy + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + Lethargy + https://qudt.org/vocab/quantitykind/Lethargy + https://www.wikidata.org/wiki/Q25508781 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 + 10-69 + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - - - - Dust - A suspension of fine particles in the atmosphere. - Dust - A suspension of fine particles in the atmosphere. + + + + IntermediateSample + + IntermediateSample - - - - GasSolidSuspension - A coarse dispersion of solid in a gas continuum phase. - GasSolidSuspension - A coarse dispersion of solid in a gas continuum phase. - Dust, sand storm. + + + + + + + + + MixedTiling + A well formed tessellation with at least a junction tile. + MixedTiling + A well formed tessellation with at least a junction tile. - - - - ThreePointBendingTesting - - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - ThreePointFlexuralTest - ThreePointBendingTesting - https://www.wikidata.org/wiki/Q2300905 - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - https://en.wikipedia.org/wiki/Three-point_flexural_test + + + HybridMatter + Matter composed of both matter and antimatter fundamental particles. + HybridMatter + Matter composed of both matter and antimatter fundamental particles. - - - GluonType6 - GluonType6 + + + + + MicrocanonicalPartitionFunction + MicrocanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96106546 + 9-35.1 - - - - ElectrochemicalPiezoelectricMicrogravimetry - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - ElectrochemicalPiezoelectricMicrogravimetry - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - https://doi.org/10.1515/pac-2018-0109 + + + + Welding + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + Schweißen + Welding - + - + - - Momentum - Product of mass and velocity. - Momentum - http://qudt.org/vocab/quantitykind/Momentum - 4-8 - https://doi.org/10.1351/goldbook.M04007 - - - - - - AreaFractionUnit - Unit for quantities of dimension one that are the fraction of two areas. - AreaFractionUnit - Unit for quantities of dimension one that are the fraction of two areas. - Unit for solid angle. + + DirectionDistributionOfCrossSection + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + DirectionDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/AngularCrossSection + https://www.wikidata.org/wiki/Q98266630 + 10-39 + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - - - - - - ActivityFactor - ActivityFactor - https://www.wikidata.org/wiki/Q89335167 - 9-22 - - - - - - - ActivityCoefficient - ActivityCoefficient - https://qudt.org/vocab/quantitykind/ActivityCoefficient - https://www.wikidata.org/wiki/Q745224 - 9-25 - https://doi.org/10.1351/goldbook.A00116 + + + + Chromatography + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + Chromatography + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + https://en.wikipedia.org/wiki/Chromatography - + - - - MassFractionOfWater - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - MassFractionOfWater - https://qudt.org/vocab/quantitykind/MassFractionOfWater - https://www.wikidata.org/wiki/Q76379025 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 - 5-31 - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + + + + + T-2 L-1 M+1 I0 Θ-1 N0 J0 + + + PressurePerTemperatureUnit + PressurePerTemperatureUnit - - - - - MassFraction - Mass of a constituent divided by the total mass of all constituents in the mixture. - MassFraction - http://qudt.org/vocab/quantitykind/MassFraction - 9-11 - https://doi.org/10.1351/goldbook.M03722 + + + + + MathematicalFormula + A mathematical string that express a relation between the elements in one set X to elements in another set Y. + The set X is called domain and the set Y range or codomain. + MathematicalFormula + A mathematical string that express a relation between the elements in one set X to elements in another set Y. - + - - - - - - - - - - - - - - - - - UpQuarkType - UpQuarkType + BlueCharmAntiQuark + BlueCharmAntiQuark - - - - GyromagneticRatioOfTheElectron - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - GyromagneticCoefficientOfTheElectron - MagnetogyricRatioOfTheElectron - GyromagneticRatioOfTheElectron - https://www.wikidata.org/wiki/Q97543076 - 10-12.2 - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + + + + NuclearMagneticResonance + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + Magnetic resonance spectroscopy (MRS) + NMR + NuclearMagneticResonance + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - - - BlueUpAntiQuark - BlueUpAntiQuark + + + + + MobilityRatio + Quotient of electron and hole mobility. + MobilityRatio + https://qudt.org/vocab/quantitykind/MobilityRatio + https://www.wikidata.org/wiki/Q106010255 + 12-31 + Quotient of electron and hole mobility. - - - - BondedAtom - A real bond between atoms is always something hybrid between covalent, metallic and ionic. - -In general, metallic and ionic bonds have atoms sharing electrons. - An bonded atom that shares at least one electron to the atom-based entity of which is part of. - The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. - This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. - BondedAtom - An bonded atom that shares at least one electron to the atom-based entity of which is part of. + + + + PlasticSintering + PlasticSintering - - - - - - - - - - - - - - - - - - - - - Conventional - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. - Conventional - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + + + + ThermochemicalTesting + + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + TMA + ThermochemicalTesting + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - + - + - AngularVelocity - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - AngularVelocity - https://qudt.org/vocab/quantitykind/AngularVelocity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 - https://dbpedia.org/page/Angular_velocity - 3-12 - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - https://en.wikipedia.org/wiki/Angular_velocity - + + MagneticDipoleMoment + For an atom or nucleus, this energy is quantized and can be written as: - - - - - - - - - - - SectionModulus - SectionModulus - https://qudt.org/vocab/quantitykind/SectionModulus - https://www.wikidata.org/wiki/Q1930808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 - 4-22 - + W = g μ M B - - - - Agent - A participant that is the driver of the process. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. - Agent - A participant that is the driver of the process. - A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. +where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. + +-- ISO 80000 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + MagneticDipoleMoment + http://qudt.org/vocab/quantitykind/MagneticDipoleMoment + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 + 10-9.1 + 6-30 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + http://goldbook.iupac.org/terms/view/M03688 - + - - CharacterisationProtocol - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - CharacterisationProtocol - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + + SampledDCPolarography + + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. + TASTPolarography + SampledDCPolarography + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + https://doi.org/10.1515/pac-2018-0109 - + - - CharacterisationDataValidation - Procedure to validate the characterisation data. - CharacterisationDataValidation - Procedure to validate the characterisation data. + + DCPolarography + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + DCPolarography + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + https://doi.org/10.1515/pac-2018-0109 - - - + + + + - - + + T-2 L+1 M0 I0 Θ0 N0 J0 - - - - EnergyFluenceRate - In nuclear physics, time derivative of the energy fluence. - EnergyFluenceRate - https://qudt.org/vocab/quantitykind/EnergyFluenceRate - https://www.wikidata.org/wiki/Q98538655 - 10-47 - In nuclear physics, time derivative of the energy fluence. + + AccelerationUnit + AccelerationUnit - + - + - - + + + + + + + + + + + + + + + + + + + + + + - PhysicallyInteractingConvex - PhysicallyInteractingConvex - - - - - - MaterialRelation - A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - MaterialRelation - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - The Lennard-Jones potential. -A force field. -An Hamiltonian. + BlueAntiQuark + BlueAntiQuark - - - + + - - - + + - MetrologicalReference - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - MetrologicalReference - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + + + + + + + + + + + + + + + + + + + + + + + + + EncodedData + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. +Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). +A data object may be used as the physical basis for a sign, under Semiotics perspective. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + EncodedVariation + EncodedData + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + A Radio Morse Code transmission can be addressed by combination of perspectives. + +Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). +Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. +Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. +Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). + A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + https://no.wikipedia.org/wiki/Data - - + + - - + + - MixedTiling - A well formed tessellation with at least a junction tile. - MixedTiling - A well formed tessellation with at least a junction tile. + + + + MolecularConcentration + Number of molecules of a substance in a mixture per volume. + MolecularConcentration + https://qudt.org/vocab/quantitykind/MolecularConcentration + https://www.wikidata.org/wiki/Q88865973 + 9-9.2 + Number of molecules of a substance in a mixture per volume. - - - - ElectronProbeMicroanalysis - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - ElectronProbeMicroanalysis - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + + + + + + Hypothesis + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + Hypothesis + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - - - - OrdinaryMatter - Matter composed of only matter particles, excluding anti-matter particles. - OrdinaryMatter - Matter composed of only matter particles, excluding anti-matter particles. + + + + Theory + A 'conventional' that stand for a 'physical'. + The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. + +It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. + +In Peirce semiotics: legisign-symbol-argument + Theory + A 'conventional' that stand for a 'physical'. - - - - - - - - - - - - - - - - - - - - - + + + + - - + + T0 L-1 M0 I0 Θ0 N0 J0 - - - SampleInspection - - Analysis of the sample in order to determine information that are relevant for the characterisation method. - SampleInspection - Analysis of the sample in order to determine information that are relevant for the characterisation method. - In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. + + ReciprocalLengthUnit + ReciprocalLengthUnit - + - - SampleInspectionParameter + + XrayPowderDiffraction - Parameter used for the sample inspection process - SampleInspectionParameter - Parameter used for the sample inspection process - - - - - + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + XRPD + XrayPowderDiffraction + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + https://en.wikipedia.org/wiki/Powder_diffraction + + + + + + Calendering + Calendering + + + + + + - - + + T+1 L0 M0 I0 Θ+1 N0 J0 - + + TemperatureTimeUnit + TemperatureTimeUnit + + + + - - + + - + + Vector + 1-dimensional array who's spatial direct parts are numbers. + LinearArray + 1DArray + Vector + 1-dimensional array who's spatial direct parts are numbers. + + + + + + - - + + T0 L0 M+1 I0 Θ0 N0 J0 - - - - - - - - - Declaration - ConventionalSemiosis - Declaration + MassUnit + MassUnit - - - - GravityCasting - GravityCasting + + + + Interpretant + The interpreter's internal representation of the object in a semiosis process. + Interpretant + The interpreter's internal representation of the object in a semiosis process. - - - AtomisticModel - A physics-based model based on a physics equation describing the behaviour of atoms. - AtomisticModel - A physics-based model based on a physics equation describing the behaviour of atoms. + + + + + + + + + + + + + + AntiLepton + AntiLepton - + - - - AmountFraction - The amount of a constituent divided by the total amount of all constituents in a mixture. - MoleFraction - AmountFraction - http://qudt.org/vocab/quantitykind/MoleFraction - The amount of a constituent divided by the total amount of all constituents in a mixture. - https://doi.org/10.1351/goldbook.A00296 + + + + + + + + DissociationConstant + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + DissociationConstant + https://www.wikidata.org/wiki/Q898254 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - + - + - StandardAbsoluteActivityOfSolvent - StandardAbsoluteActivityOfSolvent - https://www.wikidata.org/wiki/Q89556185 - 9-27.3 + EquilibriumConstant + The physical dimension can change based on the stoichiometric numbers of the substances involved. + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + EquilibriumConstantConcentrationBasis + EquilibriumConstant + https://qudt.org/vocab/quantitykind/EquilibriumConstant + https://www.wikidata.org/wiki/Q857809 + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + https://en.wikipedia.org/wiki/Equilibrium_constant + https://doi.org/10.1351/goldbook.E02177 - - + + + + + SlowingDownLength + Square root of the slowing down area. + SlowingDownLength + https://qudt.org/vocab/quantitykind/Slowing-DownLength + https://www.wikidata.org/wiki/Q98996963 + 10-73.1 + Square root of the slowing down area. + + + + - - + + - - IterativeWorkflow - A workflow whose steps (iterative steps) are the repetition of the same workflow type. - IterativeWorkflow - A workflow whose steps (iterative steps) are the repetition of the same workflow type. + + Theorisation + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + Theorization + Theorisation + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - - - - - SerialWorkflow - A workflow whose tasks are tiles of a sequence. - SerialWorkflow - A workflow whose tasks are tiles of a sequence. + + + + ElectronProbeMicroanalysis + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + ElectronProbeMicroanalysis + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - - - - - OsmoticCoefficientOfSolvent - Quantity characterizing the deviation of a solvent from ideal behavior. - OsmoticFactorOfSolvent - OsmoticCoefficientOfSolvent - https://qudt.org/vocab/quantitykind/OsmoticCoefficient - https://www.wikidata.org/wiki/Q5776102 - 9-27.2 - Quantity characterizing the deviation of a solvent from ideal behavior. - https://doi.org/10.1351/goldbook.O04342 + + + + CategorizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + https://physics.nist.gov/cuu/Constants + CategorizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - - + + - T+1 L+1 M0 I+1 Θ0 N0 J0 + T+2 L-1 M-1 I+1 Θ0 N0 J0 - ElectricDipoleMomentUnit - ElectricDipoleMomentUnit + MagneticReluctivityUnit + MagneticReluctivityUnit - - - - - - - - - - - - - - + + + + SurfaceDensityOfElectricCharge + The derivative of the electric charge of a system with respect to the area. + AreicElectricCharge + SurfaceChargeDensity + SurfaceDensityOfElectricCharge + https://www.wikidata.org/wiki/Q12799324 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 + 6-4 + The derivative of the electric charge of a system with respect to the area. + https://doi.org/10.1351/goldbook.S06159 + + + + - - + + - - ProbeSampleInteraction - - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - ProbeSampleInteraction - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + + + ElectricFluxDensity + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. + ElectricDisplacement + ElectricFluxDensity + https://qudt.org/vocab/quantitykind/ElectricDisplacementField + https://www.wikidata.org/wiki/Q371907 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 + 6-12 + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - - + + + Electron + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + Electron + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron + + + + - - * + + - - Multiplication - Multiplication + + + + + + + + SampleExtraction + + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + SampleExtraction + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - - - - PhysicalPhenomenon - A 'process' that is recognized by physical sciences and is categorized accordingly. - While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist - PhysicalPhenomenon - A 'process' that is recognized by physical sciences and is categorized accordingly. + + + + Cleaning + Process for removing unwanted residual or waste material from a given product or material + Cleaning - + + + PseudovectorMeson + A meson with total spin 1 and even parit. + PseudovectorMeson + A meson with total spin 1 and even parit. + https://en.wikipedia.org/wiki/Pseudovector_meson + + + - T0 L+2 M0 I0 Θ+1 N0 J0 + T-1 L+2 M0 I0 Θ0 N0 J0 - AreaTemperatureUnit - AreaTemperatureUnit + AreicSpeedUnit + AreicSpeedUnit - + - - FreeForming - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - Non la metterei - Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). - FreeForming - - - - - ElectronAntiNeutrino - ElectronAntiNeutrino + + ProductionEngineering + ProductionEngineering - + - - - RelativeLinearStrain - Relative change of length with respect the original length. - RelativeLinearStrain - https://qudt.org/vocab/quantitykind/LinearStrain - https://www.wikidata.org/wiki/Q1990546 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 - 4-17.2 - Relative change of length with respect the original length. - https://doi.org/10.1351/goldbook.L03560 + + + + + + + + + MagnetomotiveForce + Scalar line integral of the magnetic field strength along a closed path. + MagnetomotiveForce + https://qudt.org/vocab/quantitykind/MagnetomotiveForce + https://www.wikidata.org/wiki/Q1266982 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 + 6-37.3 + Scalar line integral of the magnetic field strength along a closed path. - - - - - DebyeAngularWaveNumber - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - DebyeAngluarRepetency - DebyeAngularWaveNumber - https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber - https://www.wikidata.org/wiki/Q105554370 - 12-9.3 - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + + + + ConventionalProperty + A property that is associated to an object by convention, or assumption. + A quantitative property attributed by agreement to a quantity for a given purpose. + ConventionalProperty + A quantitative property attributed by agreement to a quantity for a given purpose. + The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. + +If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. + +Then I have two different physical quantities that are properties thanks to two different semiotic processes. - + - - AngularWaveNumber - In condensed matter physics, quotient of momentum and the reduced Planck constant. - AngularRepetency - AngularWaveNumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q105542089 - 12-9.1 - In condensed matter physics, quotient of momentum and the reduced Planck constant. + + IntrinsicCarrierDensity + Square root of the product of electron and hole density in a semiconductor. + IntrinsicCarrierDensity + https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity + https://www.wikidata.org/wiki/Q1303188 + 12-29.3 + Square root of the product of electron and hole density in a semiconductor. - + - - + - - T0 L+4 M0 I0 Θ0 N0 J0 + + - - QuarticLengthUnit - QuarticLengthUnit + + + ReciprocalVolume + ReciprocalVolume - - - Graviton - The class of individuals that stand for gravitons elementary particles. - While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. - -For this reason graviton is an useful concept to homogenize the approach between different fields. - Graviton - The class of individuals that stand for gravitons elementary particles. - While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. - -For this reason graviton is an useful concept to homogenize the approach between different fields. - https://en.wikipedia.org/wiki/Graviton + + + + + DonorDensity + Number of donor levels per volume. + DonorDensity + https://qudt.org/vocab/quantitykind/DonorDensity + https://www.wikidata.org/wiki/Q105979886 + 12-29.4 + Number of donor levels per volume. - - - - CharacterisationExperiment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - CharacterisationExperiment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + + + + MutualInductance + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + MutualInductance + https://www.wikidata.org/wiki/Q78101401 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 + 6-41.2 + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + https://doi.org/10.1351/goldbook.M04076 - - + + - - + + - - Experiment - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - Experiment - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + + + ParticleSourceDensity + Quotient of the mean rate of production of particles in a volume, and that volume. + ParticleSourceDensity + https://qudt.org/vocab/quantitykind/ParticleSourceDensity + https://www.wikidata.org/wiki/Q98915762 + 10-66 + Quotient of the mean rate of production of particles in a volume, and that volume. - - - - AcousticQuantity - Quantities categorised according to ISO 80000-8. - AcousticQuantity - Quantities categorised according to ISO 80000-8. - - - - - - IntermediateSample - - IntermediateSample - - - - - Subjective - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. - -This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. - -A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. - -e.g. you cannot evaluate the beauty of a person on objective basis. - Subjective - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The beauty of that girl. -The style of your clothing. - - - - - GreenStrangeAntiQuark - GreenStrangeAntiQuark + + + IonAtom + A standalone atom with an unbalanced number of electrons with respect to its atomic number. + The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, + IonAtom + A standalone atom with an unbalanced number of electrons with respect to its atomic number. - + - T-2 L-2 M0 I0 Θ0 N0 J0 + T-1 L-3 M0 I0 Θ0 N0 J0 - FrequencyPerAreaTimeUnit - FrequencyPerAreaTimeUnit - - - - - CausalExpansion - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - CausalExpansion - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + FrequencyPerVolumeUnit + FrequencyPerVolumeUnit - - - - - - - - + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - ISQBaseQuantity - Base quantities defined in the International System of Quantities (ISQ). - ISQBaseQuantity - Base quantities defined in the International System of Quantities (ISQ). - https://en.wikipedia.org/wiki/International_System_of_Quantities - - - - - BaseQuantity - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - BaseQuantity - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - base quantity - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Coded + A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. +A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. +A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. - - - - InternationalSystemOfQuantity - Quantities declared under the ISO 80000. - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 - InternationalSystemOfQuantity - Quantities declared under the ISO 80000. - https://en.wikipedia.org/wiki/International_System_of_Quantities +For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. +An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) +Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). +This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. +This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. + Coded + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. + The name "red" that stands for the color of an object. - + - - - - - T-1 L0 M0 I0 Θ0 N+1 J0 - - - CatalyticActivityUnit - CatalyticActivityUnit + + Susceptance + imaginary part of the admittance + Susceptance + https://qudt.org/vocab/quantitykind/Susceptance + https://www.wikidata.org/wiki/Q509598 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 + 6-52.3 + imaginary part of the admittance - - - - KineticEnergy - The energy of an object due to its motion. - KineticEnergy - http://qudt.org/vocab/quantitykind/KineticEnergy - 4-28.2 - The energy of an object due to its motion. - https://doi.org/10.1351/goldbook.K03402 + + + Naming + A declaration that provides a sign for an object that is independent from any assignment rule. + Naming + A declaration that provides a sign for an object that is independent from any assignment rule. + A unique id attached to an entity. - - - - HPPC - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - HybridPulsePowerCharacterisation - HybridPulsePowerCharacterization - HPPC - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + + + Observer + A characteriser that declares a property for an object through the specific interaction required by the property definition. + Observer + A characteriser that declares a property for an object through the specific interaction required by the property definition. - - - - - - - T-1 L+1 M0 I0 Θ0 N0 J0 - - - SpeedUnit - SpeedUnit + + + + Ruby + Ruby - + - - NormalPulseVoltammetry - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - NPV - NormalPulseVoltammetry - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - https://doi.org/10.1515/pac-2018-0109 + + CyclicChronopotentiometry + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + CyclicChronopotentiometry + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + chronopotentiometry where the change in applied current undergoes a cyclic current reversal - + - - LevelWidth - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - LevelWidth - https://qudt.org/vocab/quantitykind/LevelWidth - https://www.wikidata.org/wiki/Q98082340 - 10-26 - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - https://doi.org/10.1351/goldbook.L03507 + + RelativeMassExcess + Quotient of mass excess and the unified atomic mass constant. + RelativeMassExcess + https://qudt.org/vocab/quantitykind/RelativeMassExcess + https://www.wikidata.org/wiki/Q98038610 + 10-22.1 + Quotient of mass excess and the unified atomic mass constant. - + + + + FlexuralForming + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + Biegeumformen + FlexuralForming + + + - + - - ElectricFlux - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - ElectricFlux - https://qudt.org/vocab/quantitykind/ElectricFlux - https://www.wikidata.org/wiki/Q501267 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 - 6-17 - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - - - - - - - DegreeOfDissociation - Dissociation may occur stepwise. - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - DissociationFraction - DegreeOfDissociation - https://qudt.org/vocab/quantitykind/DegreeOfDissociation - https://www.wikidata.org/wiki/Q907334 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 - 9-43 - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - https://doi.org/10.1351/goldbook.D01566 - - - - - - - LossFactor - Inverse of the quality factor. - LossFactor - https://qudt.org/vocab/quantitykind/LossFactor - https://www.wikidata.org/wiki/Q79468728 - 6-54 - Inverse of the quality factor. + + TotalLinearStoppingPower + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + LinearStoppingPower + TotalLinearStoppingPower + https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower + https://www.wikidata.org/wiki/Q908474 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 + 10-54 + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + https://doi.org/10.1351/goldbook.S06035 - - + + - - + + + + + + - - - EnergyFluence - In nuclear physics, incident radiant energy per cross-sectional area. - EnergyFluence - https://qudt.org/vocab/quantitykind/EnergyFluence - https://www.wikidata.org/wiki/Q98538612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 - 10-46 - In nuclear physics, incident radiant energy per cross-sectional area. + + + + + + + + + + SemioticEntity + Semiotic subclasse are defined using Peirce's semiotic theory. + +"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). + +The triadic elements: +- 'sign': the sign A (e.g. a name) +- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) +- 'object': the object C (e.g. the entity to which the sign A and B refer to) + +This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + SemioticEntity + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - - - - - GFactorOfNucleusOrNuclearParticle - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - NuclearGFactor - GFactorOfNucleusOrNuclearParticle - https://qudt.org/vocab/quantitykind/GFactorOfNucleus - https://www.wikidata.org/wiki/Q97591250 - 10-14.2 - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + + + + + Tool + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + Tool + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - - - - - GFactor - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. - GFactor - https://www.wikidata.org/wiki/Q1951266 - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + + + + + + + + + + + + + + PhysicallyInteracting + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + PhysicallyInteracting + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - - - ProcessingReproducibility - - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - ProcessingReproducibility - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + + + + StandardizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + StandardizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - - - RedDownAntiQuark - RedDownAntiQuark + + + + + Service + IntangibleProduct + Service + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 - + - - - - - - - - - ExposureRate - Time derivative of exposure. - ExposureRate - https://qudt.org/vocab/quantitykind/ExposureRate - https://www.wikidata.org/wiki/Q99720212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 - 10-89 - Time derivative of exposure. + + + AbsoluteHumidity + Mass of the contained water vapour per volume. + MassConcentrationOfWaterVapour + AbsoluteHumidity + https://qudt.org/vocab/quantitykind/AbsoluteHumidity + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + 5-28 + Mass of the contained water vapour per volume. - + - + - - - ThermalConductance - Reciprocal of the thermal resistance. - ThermalConductance - https://qudt.org/vocab/quantitykind/ThermalConductance - https://www.wikidata.org/wiki/Q17176562 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 - 5-13 - Reciprocal of the thermal resistance. - https://doi.org/10.1351/goldbook.T06298 + + AtomicPhysicsCrossSection + Measure of probability that a specific process will take place in a collision of two particles. + AtomicPhysicsCrossSection + https://qudt.org/vocab/quantitykind/Cross-Section.html + https://www.wikidata.org/wiki/Q17128025 + 10-38.1 + Measure of probability that a specific process will take place in a collision of two particles. - + - + + - - + + T-1 L+2 M-1 I0 Θ+1 N0 J0 - - - - NuclearMagneton - Absolute value of the magnetic moment of a nucleus. - NuclearMagneton - https://www.wikidata.org/wiki/Q1166093 - 10-9.3 - Absolute value of the magnetic moment of a nucleus. - https://doi.org/10.1351/goldbook.N04236 + + TemperatureAreaPerMassTimeUnit + TemperatureAreaPerMassTimeUnit - - - - - - MetricPrefix - Dimensionless multiplicative unit prefix. - https://en.wikipedia.org/wiki/Metric_prefix - MetricPrefix - Dimensionless multiplicative unit prefix. + + + + FourierTransformInfraredSpectroscopy + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + FTIR + FourierTransformInfraredSpectroscopy + https://www.wikidata.org/wiki/Q901559 + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy - - - - Constant - A variable that stand for a numerical constant, even if it is unknown. - Constant - A variable that stand for a numerical constant, even if it is unknown. + + + PhysicallyNonInteracting + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + PhysicallyNonInteracting + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - - - - GasAdsorptionPorosimetry - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - GasAdsorptionPorosimetry - GasAdsorptionPorosimetry - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + + + + + + + T0 L-2 M0 I+1 Θ-2 N0 J0 + + + RichardsonConstantUnit + RichardsonConstantUnit - - - - Cementing - Cementing + + + + + + + + + + + UnifiedAtomicMassConstant + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + UnifiedAtomicMassConstant + https://www.wikidata.org/wiki/Q4817337 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 + 10-4.3 + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + https://doi.org/10.1351/goldbook.A00497 - - - - ArchetypeJoin - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - ArchetypeJoin - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + + + + + + + + + + + + + + + PhysicalConstant + Physical constants are categorised into "exact" and measured constants. + +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + PhysicalConstant + Physical constants are categorised into "exact" and measured constants. + +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + https://en.wikipedia.org/wiki/List_of_physical_constants - - - - MeasuredProperty - A quantity that is the result of a well-defined measurement procedure. - The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. + + + + IonActivity + Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. + The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + IonActivity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + --- VIM - MeasuredProperty - A quantity that is the result of a well-defined measurement procedure. + + + + + ActivityOfSolute + RelativeActivityOfSolute + ActivityOfSolute + https://www.wikidata.org/wiki/Q89408862 + 9-24 - + - T+1 L0 M0 I+1 Θ0 N0 J0 + T0 L-3 M0 I+1 Θ0 N-1 J0 - ElectricChargeUnit - ElectricChargeUnit + ElectricCurrentPerAmountVolumeUnit + ElectricCurrentPerAmountVolumeUnit - - - SpatialTile - A direct part that is obtained by partitioning a whole purely in spatial parts. - SpatialTile - A direct part that is obtained by partitioning a whole purely in spatial parts. + + + + + DebyeAngularFrequency + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + DebyeAngularFrequency + https://qudt.org/vocab/quantitykind/DebyeAngularFrequency + https://www.wikidata.org/wiki/Q105580986 + 12-10 + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - + - - - MigrationLength - Square root of the migration area, M^2. - MigrationLength - https://qudt.org/vocab/quantitykind/MigrationLength - https://www.wikidata.org/wiki/Q98998318 - 10-73.3 - Square root of the migration area, M^2. + + + MassFractionOfDryMatter + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + MassFractionOfDryMatter + https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter + https://www.wikidata.org/wiki/Q76379189 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 + 5-32 + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - + - + - - DensityOfVibrationalStates - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - DensityOfVibrationalStates - https://qudt.org/vocab/quantitykind/DensityOfStates - https://www.wikidata.org/wiki/Q105637294 - 12-12 - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume + + BohrMagneton + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + BohrMagneton + https://www.wikidata.org/wiki/Q737120 + 10-9.2 + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - + + + HiggsBoson + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + HiggsBoson + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + https://en.wikipedia.org/wiki/Higgs_boson + + + - - - - - T-4 L+2 M+1 I-1 Θ0 N0 J0 - - - ElectricPotentialPerTimeUnit - ElectricPotentialPerTimeUnit + + + RelativeMassDensity + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + RelativeDensity + RelativeMassDensity + https://www.wikidata.org/wiki/Q11027905 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 + 4-4 + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + https://doi.org/10.1351/goldbook.R05262 - + - + - - - - - - - + + - BottomQuark - BottomQuark - https://en.wikipedia.org/wiki/Bottom_quark - - - - - BlueTopQuark - BlueTopQuark + FundamentalMatterParticle + FundamentalMatterParticle - - - - - - - - - - - - - - ResourceIdentifier - A formal computer-interpretable identifier of a system resource. - ResourceIdentifier - A formal computer-interpretable identifier of a system resource. + + + + + FermiAnglularWaveNumber + angular wavenumber of electrons in states on the Fermi sphere + FermiAnglularRepetency + FermiAnglularWaveNumber + https://qudt.org/vocab/quantitykind/FermiAngularWavenumber + https://www.wikidata.org/wiki/Q105554303 + 12-9.2 + angular wavenumber of electrons in states on the Fermi sphere - + - - - - - - - - - MagneticVectorPotential - Vector potential of the magnetic flux density. - MagneticVectorPotential - https://qudt.org/vocab/quantitykind/MagneticVectorPotential - https://www.wikidata.org/wiki/Q2299100 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 - 6-32 - Vector potential of the magnetic flux density. + + + AngularWavenumber + Magnitude of the wave vector. + AngularRepetency + AngularWavenumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q30338487 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 + 3-22 + Magnitude of the wave vector. - - - - ScanningTunnelingMicroscopy - - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - STM - ScanningTunnelingMicroscopy - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + + + GluonType1 + GluonType1 - - - - - - - - - - - - - - - - - - - TopQuark - TopQuark - https://en.wikipedia.org/wiki/Top_quark + + + + LiquidPhaseSintering + ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed + LiquidPhaseSintering - + - - ScanningProbeMicroscopy + + ReferenceSample - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - ScanningProbeMicroscopy - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - - - - - - - - - - - - - - - - - - - - - - PhysicalQuantity - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. -ISO 80000-1 - Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. - -Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. - Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. - -For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. - -However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. - -For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. -As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). - — quantities of the same kind have the same quantity dimension, -— quantities of different quantity dimensions are always of different kinds, and -— quantities having the same quantity dimension are not necessarily of the same kind. -ISO 80000-1 - PhysicalQuantity - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - +-- International Vocabulary of Metrology(VIM) + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + ReferenceSpecimen + Certified Reference Material + Reference material + ReferenceSample + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - - - - ManufacturingDevice - A device that is designed to participate to a manufacturing process. - ManufacturingDevice - A device that is designed to participate to a manufacturing process. +-- International Vocabulary of Metrology(VIM) + Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Reference material - - - - Welding - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. - Schweißen - Welding + + + + + ElectronAffinity + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor + ElectronAffinity + https://qudt.org/vocab/quantitykind/ElectronAffinity + https://www.wikidata.org/wiki/Q105846486 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 + 12-25 + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - + - - - MultiplicationFactor - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - MultiplicationFactor - https://qudt.org/vocab/quantitykind/MultiplicationFactor - https://www.wikidata.org/wiki/Q99440471 - 10-78.1 - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + + + + + T0 L-1 M0 I0 Θ-1 N0 J0 + + + PerLengthTemperatureUnit + PerLengthTemperatureUnit - - - - - GrueneisenParamter - Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. - GrueneisenParamter - https://www.wikidata.org/wiki/Q444656 - 12-14 - Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + + + + + + + + + + + + + + + + + + + + + Role + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + HolisticPart + Part + Role + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - + - - MeanLinearRange - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - MeanLinearRange - https://qudt.org/vocab/quantitykind/MeanLinearRange - https://www.wikidata.org/wiki/Q98681589 - 10-56 - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - https://doi.org/10.1351/goldbook.M03782 + + LandeFactor + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + GFactorOfAtom + LandeFactor + https://qudt.org/vocab/quantitykind/LandeGFactor + https://www.wikidata.org/wiki/Q1191684 + 10-14.1 + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. - + + + + + GFactor + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + GFactor + https://www.wikidata.org/wiki/Q1951266 + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + + + - T0 L0 M0 I0 Θ-1 N0 J0 + T-2 L+2 M+1 I0 Θ0 N0 J0 - PerTemperatureUnit - PerTemperatureUnit + EnergyUnit + EnergyUnit - - - - CharacterisationProperty - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - CharacterisationProperty - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + + + + + ReactionEnergy + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + ReactionEnergy + https://qudt.org/vocab/quantitykind/ReactionEnergy + https://www.wikidata.org/wiki/Q98164745 + 10-37.1 + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - - - GluonType7 - GluonType7 + + + + + + + + + + + + + Hadron + Particles composed of two or more quarks. + Hadron + Particles composed of two or more quarks. + https://en.wikipedia.org/wiki/Hadron - - + + + + FiberReinforcePlasticManufacturing + FiberReinforcePlasticManufacturing + + + + - T-1 L+1 M+1 I0 Θ0 N0 J0 + T-2 L-2 M+1 I0 Θ0 N0 J0 - MomentumUnit - MomentumUnit + MassPerSquareLengthSquareTimeUnit + MassPerSquareLengthSquareTimeUnit - + + + + MaterialRelation + A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + MaterialRelation + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + The Lennard-Jones potential. +A force field. +An Hamiltonian. + + + + + + UnitOne + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Represents the number 1, used as an explicit unit to say something has no units. + Unitless + UnitOne + http://qudt.org/vocab/unit/UNITLESS + Represents the number 1, used as an explicit unit to say something has no units. + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Refractive index or volume fraction. + Typically used for ratios of two units whos dimensions cancels out. + + + - - Susceptance - imaginary part of the admittance - Susceptance - https://qudt.org/vocab/quantitykind/Susceptance - https://www.wikidata.org/wiki/Q509598 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 - 6-52.3 - imaginary part of the admittance + + ElectricPolarization + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + ElectricPolarization + https://qudt.org/vocab/quantitykind/ElectricPolarization + https://www.wikidata.org/wiki/Q1050425 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 + 6-7 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - + - + - - ElectricDipoleMoment - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - ElectricDipoleMoment - http://qudt.org/vocab/quantitykind/ElectricDipoleMoment - https://www.wikidata.org/wiki/Q735135 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 - 6-6 - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - https://doi.org/10.1351/goldbook.E01929 - - - - - - - MaximumEfficiency - Efficiency of an ideal heat engine operating according to the Carnot process. - CarnotEfficiency - MaximumEfficiency - https://www.wikidata.org/wiki/Q93949862 - 5-25.2 - Efficiency of an ideal heat engine operating according to the Carnot process. - - - - - - - - - - - - - - SemioticObject - Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. + + CelsiusTemperature + An objective comparative measure of hot or cold. -The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + CelsiusTemperature + http://qudt.org/vocab/quantitykind/CelciusTemperature + 5-2 + An objective comparative measure of hot or cold. -In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). - The object, in Peirce semiotics, as participant to a semiotic process. - Object - SemioticObject - The object, in Peirce semiotics, as participant to a semiotic process. +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + https://doi.org/10.1351/goldbook.T06261 - - - - VoltagePhasor - Complex representation of an oscillating voltage. - VoltagePhasor - https://qudt.org/vocab/quantitykind/VoltagePhasor - https://www.wikidata.org/wiki/Q78514605 - 6-50 - Complex representation of an oscillating voltage. - - - - - - CalibrationData - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - CalibrationData - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - - - - - - SampleInspectionInstrument - - SampleInspectionInstrument - - - - - - HardnessTesting - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - HardnessTesting - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - - - - - - - StandardAbsoluteActivity - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. - StandardAbsoluteActivityInAMixture - StandardAbsoluteActivity - https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89406159 - 9-23 - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + + + + + + + 1 + + + + + + + 2 + + + Proton + A positive charged subatomic particle found in the atomic nucleus. + Proton + A positive charged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Proton - + - - - LogarithmicDecrement - Product of damping coefficient and period duration. - LogarithmicDecrement - https://www.wikidata.org/wiki/Q1399446 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 - 3-25 - Product of damping coefficient and period duration. + + + + + + + + + EquilibriumPositionVector + In condensed matter physics, position vector of an atom or ion in equilibrium. + EquilibriumPositionVector + https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon + https://www.wikidata.org/wiki/Q105533477 + 12-7.2 + In condensed matter physics, position vector of an atom or ion in equilibrium. - + - T+1 L0 M0 I0 Θ0 N0 J0 + T-3 L+2 M+1 I-2 Θ0 N0 J0 - TimeUnit - TimeUnit + ElectricResistanceUnit + ElectricResistanceUnit - - - - ManufacturingSystem - A system arranged to setup a specific manufacturing process. - ManufacturingSystem - A system arranged to setup a specific manufacturing process. + + + TemporalRole + An holistic temporal part of a whole. + HolisticTemporalPart + TemporalRole + An holistic temporal part of a whole. - - - - OpticalMicroscopy - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - OpticalMicroscopy - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + + + GreenCharmQuark + GreenCharmQuark - - - - Broadcast - Broadcast + + + + + Rotation + Rotation + https://www.wikidata.org/wiki/Q76435127 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 + 3-16 - + + + + Numerical + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + Numerical + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + + + - - LatentHeatOfPhaseTransition - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - LatentHeatOfPhaseTransition - https://www.wikidata.org/wiki/Q106553458 - 9-16 - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + + + ActivityFactor + ActivityFactor + https://www.wikidata.org/wiki/Q89335167 + 9-22 - + - - - LatentHeat - LatentHeat - https://www.wikidata.org/wiki/Q207721 - 5-6.2 + + + ActivityCoefficient + ActivityCoefficient + https://qudt.org/vocab/quantitykind/ActivityCoefficient + https://www.wikidata.org/wiki/Q745224 + 9-25 + https://doi.org/10.1351/goldbook.A00116 - - - - DielectricAndImpedanceSpectroscopy - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - DielectricAndImpedanceSpectroscopy - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + + + RedDownAntiQuark + RedDownAntiQuark - - - Tau - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - Tau - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_(particle) + + + + + + + T+3 L-2 M-1 I0 Θ0 N0 J+1 + + + LuminousEfficacyUnit + LuminousEfficacyUnit - - - - LuminousEfficacyOf540THzRadiation - Defines the Candela base unit in the SI system. - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - LuminousEfficacyOf540THzRadiation - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + + + + Exponent + Exponent - - - GreenDownAntiQuark - GreenDownAntiQuark + + + + AlgebricOperator + AlgebricOperator - + - - NonActivePower - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - NonActivePower - https://qudt.org/vocab/quantitykind/NonActivePower - https://www.wikidata.org/wiki/Q79813060 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 - 6-61 - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + + + + + T0 L+2 M0 I0 Θ+1 N0 J0 + + + AreaTemperatureUnit + AreaTemperatureUnit - - - - SquareWaveVoltammetry - - Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. - The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped - The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - OSWV - OsteryoungSquareWaveVoltammetry - SWV - SquareWaveVoltammetry - https://www.wikidata.org/wiki/Q4016323 - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - https://en.wikipedia.org/wiki/Squarewave_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + OrdinaryMatter + Matter composed of only matter particles, excluding anti-matter particles. + OrdinaryMatter + Matter composed of only matter particles, excluding anti-matter particles. - + + + + + + MetricPrefix + Dimensionless multiplicative unit prefix. + https://en.wikipedia.org/wiki/Metric_prefix + MetricPrefix + Dimensionless multiplicative unit prefix. + + + - - DampingCoefficient - Inverse of the time constant of an exponentially varying quantity. - DampingCoefficient - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 - 3-24 - Inverse of the time constant of an exponentially varying quantity. + + + Gyroradius + Radius of the circular movement of an electrically charged particle in a magnetic field. + LarmorRadius + Gyroradius + https://www.wikidata.org/wiki/Q1194458 + 10-17 + Radius of the circular movement of an electrically charged particle in a magnetic field. - + + + + GravitySintering + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder + Loose-powderSintering + PressurelessSintering + GravitySintering + + + - - - KineticFrictionForce - Force opposing the motion of a body sliding on a surface. - DynamicFrictionForce - KineticFrictionForce - https://www.wikidata.org/wiki/Q91005629 - 4-9.4 - Force opposing the motion of a body sliding on a surface. + + + + + T-1 L+2 M0 I0 Θ0 N-1 J0 + + + DiffusivityUnit + DiffusivityUnit - + + + + + Attenuation + Decrease in magnitude of any kind of flux through a medium. + Extinction + Attenuation + 3-26.1 + Decrease in magnitude of any kind of flux through a medium. + https://en.wikipedia.org/wiki/Attenuation + https://doi.org/10.1351/goldbook.A00515 + + + - + - - MagneticDipoleMoment - For an atom or nucleus, this energy is quantized and can be written as: - - W = g μ M B - -where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. - --- ISO 80000 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - MagneticDipoleMoment - http://qudt.org/vocab/quantitykind/MagneticDipoleMoment - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 - 10-9.1 - 6-30 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + Torque + Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + Torque + http://qudt.org/vocab/quantitykind/Torque + 4-12.2 + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + https://doi.org/10.1351/goldbook.T06400 + - ΔW = −μ · B - http://goldbook.iupac.org/terms/view/M03688 + + + NonEncodedData + Data that occurs naturally without an encoding agent producing it. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + EnvironmentalData + NonEncodedData + Data that occurs naturally without an encoding agent producing it. + A cloud in the sky. The radiative spectrum of a star. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - + - T+4 L-2 M-1 I+2 Θ0 N0 J0 + T-2 L0 M0 I0 Θ0 N0 J0 - CapacitanceUnit - CapacitanceUnit + AngularFrequencyUnit + AngularFrequencyUnit - + - + - ThermalConductivity - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - In an anisotropic medium, thermal conductivity is a tensor quantity. - ThermalConductivity - https://qudt.org/vocab/quantitykind/ThermalConductivity - https://www.wikidata.org/wiki/Q487005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 - https://dbpedia.org/page/Thermal_conductivity - 5-9 - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + SpecificHeatCapacity + Heat capacity divided by mass. + SpecificHeatCapacity + https://qudt.org/vocab/quantitykind/SpecificHeatCapacity + https://www.wikidata.org/wiki/Q487756 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 + https://dbpedia.org/page/Specific_heat_capacity + 5-16.1 + Heat capacity divided by mass. + https://en.wikipedia.org/wiki/Specific_heat_capacity + https://doi.org/10.1351/goldbook.S05800 - + - - - SlowingDownArea - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - SlowingDownArea - https://qudt.org/vocab/quantitykind/Slowing-DownArea - https://www.wikidata.org/wiki/Q98950918 - 10-72.1 - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + + + OsmoticCoefficientOfSolvent + Quantity characterizing the deviation of a solvent from ideal behavior. + OsmoticFactorOfSolvent + OsmoticCoefficientOfSolvent + https://qudt.org/vocab/quantitykind/OsmoticCoefficient + https://www.wikidata.org/wiki/Q5776102 + 9-27.2 + Quantity characterizing the deviation of a solvent from ideal behavior. + https://doi.org/10.1351/goldbook.O04342 - + + + + + GrueneisenParamter + Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + GrueneisenParamter + https://www.wikidata.org/wiki/Q444656 + 12-14 + Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + + + - + - - - Area - Extent of a surface. - Area - http://qudt.org/vocab/quantitykind/Area - 3-3 - https://doi.org/10.1351/goldbook.A00429 + + + + + + ParticleConcentration + ParticleConcentration + https://www.wikidata.org/wiki/Q39078574 + 9-9.1 - + - - - - - T0 L-3 M0 I+1 Θ0 N-1 J0 - - - ElectricCurrentPerAmountVolumeUnit - ElectricCurrentPerAmountVolumeUnit - - - - - - Riveting - Riveting + + VolumetricNumberDensity + Count per volume. + VolumetricNumberDensity + Count per volume. - - + + - - + + - - Gradient - Gradient - - - - - - DifferentialOperator - DifferentialOperator + + + ParticleNumberDensity + Mean number of particles per volume. + ParticleNumberDensity + https://qudt.org/vocab/quantitykind/ParticleNumberDensity + https://www.wikidata.org/wiki/Q98601569 + 10-62.1 + Mean number of particles per volume. + https://doi.org/10.1351/goldbook.N04262 - - - - - ShearCutting - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - Scherschneiden - ShearCutting + + + + CharacterisationHardwareSpecification + + CharacterisationHardwareSpecification - - - - - - - T-2 L+1 M+1 I-1 Θ0 N0 J0 - - - MagneticPotentialUnit - MagneticPotentialUnit + + + + ThermalCutting + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + Thermisches Abtragen + ThermalCutting + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - - - - - LinearExpansionCoefficient - Relative change of length per change of temperature. - LinearExpansionCoefficient - https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient - https://www.wikidata.org/wiki/Q74760821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 - 5-3.1 - Relative change of length per change of temperature. + + + + PermanentLiquidPhaseSintering + PermanentLiquidPhaseSintering - - - - - - - - - - - - - - PhysicalParticle - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. - The union of hadron and lepton, or fermion and bosons. - Particle - PhysicalParticle - The union of hadron and lepton, or fermion and bosons. - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + + + + PulsedElectroacousticMethod + + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + PulsedElectroacousticMethod + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + https://doi.org/10.1007/s10832-023-00332-y - - - - - RelativeMassExcess - Quotient of mass excess and the unified atomic mass constant. - RelativeMassExcess - https://qudt.org/vocab/quantitykind/RelativeMassExcess - https://www.wikidata.org/wiki/Q98038610 - 10-22.1 - Quotient of mass excess and the unified atomic mass constant. + + + + ChargeDistribution + + ChargeDistribution - - - - ApplicationProgram - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - App - Application - ApplicationProgram - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - Word processors, graphic image processing programs, database management systems, numerical simulation software and games. + + + RedDownQuark + RedDownQuark - - - - - - - T+3 L-2 M-1 I+1 Θ0 N0 J0 - - - ElectricCurrentPerUnitEnergyUnit - ElectricCurrentPerUnitEnergyUnit + + + + + SolidSol + A type of sol in the form of one solid dispersed in another continuous solid. + SolidSol + A type of sol in the form of one solid dispersed in another continuous solid. - - - - - - - - - - - - - - WBoson - A charged vector boson that mediate the weak interaction. - ChargedWeakBoson - IntermediateVectorBoson - WBoson - A charged vector boson that mediate the weak interaction. - https://en.wikipedia.org/wiki/W_and_Z_bosons + + + + Sol + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + Sol + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - + - - Viscometry - - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - Viscosity - Viscometry - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + Exafs + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + Exafs + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - + - + - - MassEnergyTransferCoefficient - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - MassEnergyTransferCoefficient - https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient - https://www.wikidata.org/wiki/Q99714619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 - 10-87 - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - - - - - - HardeningByForming - Verfestigen durch Umformen - HardeningByForming + + ElectricDipoleMoment + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + ElectricDipoleMoment + http://qudt.org/vocab/quantitykind/ElectricDipoleMoment + https://www.wikidata.org/wiki/Q735135 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 + 6-6 + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + https://doi.org/10.1351/goldbook.E01929 - + - - - - - T-2 L0 M0 I0 Θ0 N0 J0 - - - AngularFrequencyUnit - AngularFrequencyUnit - - - - - - - Bending - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - Bending + + TotalCurrentDensity + Sum of electric current density and displacement current density. + TotalCurrentDensity + https://qudt.org/vocab/quantitykind/TotalCurrentDensity + https://www.wikidata.org/wiki/Q77680811 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 + 6-20 + Sum of electric current density and displacement current density. - - - - Numeral - Numeral + + + + - + + - - QualityFactor - Dimensionless quantity in electromagnetism. - QualityFactor - https://qudt.org/vocab/quantitykind/QualityFactor - https://www.wikidata.org/wiki/Q79467569 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 - 6-53 - Dimensionless quantity in electromagnetism. - - - - - - Folding - Folding + CouplingFactor + InductiveCouplingFactor + CouplingFactor + https://www.wikidata.org/wiki/Q78101715 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 + 6-42.1 - + - - - - - T0 L-2 M0 I0 Θ0 N0 J+1 - - - LuminanceUnit - LuminanceUnit - - - - - - - SerialStep - SerialStep + + + AlphaDisintegrationEnergy + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + AlphaDisintegrationEnergy + http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98146025 + 10-32 + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - - - TemporalTile - A direct part that is obtained by partitioning a whole purely in temporal parts. - TemporalTile - A direct part that is obtained by partitioning a whole purely in temporal parts. + + + + UTF8 + UTF8 - - - - Holder - An object which supports the specimen in the correct position for the characterisation process. - Holder - An object which supports the specimen in the correct position for the characterisation process. + + + + + + + + + + + + + + + + + + + + + Declarer + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + Declarer + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). + Someone who assigns a name to an object. - + - + - - SurfaceActivityDensity - Quotient of the activity A of a sample and the total area S of the surface of that sample. - SurfaceActivityDensity - https://qudt.org/vocab/quantitykind/SurfaceActivityDensity - https://www.wikidata.org/wiki/Q98103005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 - 10-30 - Quotient of the activity A of a sample and the total area S of the surface of that sample. - - - - - - MicrowaveSintering - MicrowaveSintering - - - - - - LightScattering - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - LightScattering - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + + CoefficientOfHeatTransfer + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + ThermalTransmittance + CoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q634340 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 + 5-10.1 + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - - - - SubjectiveProperty - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - SubjectiveProperty - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - The measure of beauty on a scale from 1 to 10. + + + + + MeanFreePathOfPhonons + average distance that phonons travel between two successive interactions + MeanFreePathOfPhonons + https://qudt.org/vocab/quantitykind/PhononMeanFreePath + https://www.wikidata.org/wiki/Q105672255 + 12-15.1 + average distance that phonons travel between two successive interactions - - - - Amperometry - Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - Amperometry - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - https://doi.org/10.1515/pac-2018-0109 + + + ResemblanceIcon + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + An icon that mimics the spatial or temporal shape of the object. + The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). + ResemblanceIcon + An icon that mimics the spatial or temporal shape of the object. + A geographical map that imitates the shape of the landscape and its properties at a specific historical time. + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. - - + + - T0 L+2 M0 I0 Θ0 N0 J0 + T0 L+2 M0 I0 Θ-1 N0 J0 - AreaUnit - AreaUnit - - - - - Muon - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - Muon - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon - - - - - - DataFiltering - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - DataFiltering - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - - - - - - - IterativeStep - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - IterativeStep - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. + AreaPerTemperatureUnit + AreaPerTemperatureUnit - + - + - - - AmountOfSubstance - "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." + + + MagneticFlux + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + MagneticFlux + http://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q177831 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 + https://dbpedia.org/page/Magnetic_flux + 6-22.1 + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + https://en.wikipedia.org/wiki/Magnetic_flux + https://doi.org/10.1351/goldbook.M03684 + --- SI Brochure - The number of elementary entities present. - AmountOfSubstance - http://qudt.org/vocab/quantitykind/AmountOfSubstance - 9-2 - The number of elementary entities present. - https://doi.org/10.1351/goldbook.A00297 + + + GreenBottomAntiQuark + GreenBottomAntiQuark - - - - - MeanDurationOfLife - Reciprocal of the decay constant λ. - MeanLifeTime - MeanDurationOfLife - https://qudt.org/vocab/quantitykind/MeanLifetime - https://www.wikidata.org/wiki/Q1758559 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 - 10-25 - Reciprocal of the decay constant λ. + + + + + Stage + A process which is an holistic temporal part of a process. + Stage + A process which is an holistic temporal part of a process. + Moving a leg is a stage of the process of running. - - - - HandlingDevice - HandlingDevice + + + + + ExchangeIntegral + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + ExchangeIntegral + https://qudt.org/vocab/quantitykind/ExchangeIntegral + https://www.wikidata.org/wiki/Q10882959 + 12-34 + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - + + + + SpinQuantumNumber + Characteristic quantum number s of a particle, related to its spin. + SpinQuantumNumber + https://qudt.org/vocab/quantitykind/SpinQuantumNumber + https://www.wikidata.org/wiki/Q3879445 + 10-13.5 + Characteristic quantum number s of a particle, related to its spin. + + + + - - RelativeMassDefect - Quotient of mass defect and the unified atomic mass constant. - RelativeMassDefect - https://qudt.org/vocab/quantitykind/RelativeMassDefect - https://www.wikidata.org/wiki/Q98038718 - 10-22.2 - Quotient of mass defect and the unified atomic mass constant. + HartreeEnergy + Energy of the electron in a hydrogen atom in its ground state + HartreeEnergy + https://qudt.org/vocab/unit/E_h.html + https://www.wikidata.org/wiki/Q476572 + https://dbpedia.org/page/Hartree + 10-8 + Energy of the electron in a hydrogen atom in its ground state + https://en.wikipedia.org/wiki/Hartree + https://doi.org/10.1351/goldbook.H02748 - + - - - - - T+1 L-1 M0 I+1 Θ0 N0 J0 - - - ElectricChargePerLengthUnit - ElectricChargePerLengthUnit + + GyromagneticRatioOfTheElectron + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + GyromagneticCoefficientOfTheElectron + MagnetogyricRatioOfTheElectron + GyromagneticRatioOfTheElectron + https://www.wikidata.org/wiki/Q97543076 + 10-12.2 + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - + - - - PoissonNumber - Ratio of transverse strain to axial strain. - PoissonsRatio - PoissonNumber - https://www.wikidata.org/wiki/Q190453 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 - 4-18 - Ratio of transverse strain to axial strain. + + RadialDistance + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + RadialDistance + https://qudt.org/vocab/quantitykind/RadialDistance + https://www.wikidata.org/wiki/Q1578234 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 + 3-1.9 + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - + - - - MicrocanonicalPartitionFunction - MicrocanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96106546 - 9-35.1 + + Distance + Distance is the norm of Displacement. + Shortest path length between two points in a metric space. + Distance + https://qudt.org/vocab/quantitykind/Distance + https://www.wikidata.org/wiki/Q126017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 + https://dbpedia.org/page/Distance + 3-1.8 + Shortest path length between two points in a metric space. + https://en.wikipedia.org/wiki/Distance - - - - - Status - An object which is an holistic temporal part of a process. - State - Status - An object which is an holistic temporal part of a process. - A semi-naked man is a status in the process of a man's dressing. + + + + + NeutronYieldPerAbsorption + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. + NeutronYieldPerAbsorption + https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption + https://www.wikidata.org/wiki/Q99159075 + 10-74.2 + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - + - - - - - - - - MeasurementSystemAdjustment - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - MeasurementParameterAdjustment - MeasurementSystemAdjustment - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - Adjustment + + CalibrationData + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + CalibrationData + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - + + + + SpecificGibbsEnergy + Gibbs energy per unit mass. + SpecificGibbsEnergy + https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy + https://www.wikidata.org/wiki/Q76360636 + 5-21.5 + Gibbs energy per unit mass. + + + + + + + RybergConstant + The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. + RybergConstant + http://qudt.org/vocab/constant/RydbergConstant + https://doi.org/10.1351/goldbook.R05430 + + + - T+1 L-3 M0 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ-1 N0 J0 - TimePerVolumeUnit - TimePerVolumeUnit + PerTemperatureUnit + PerTemperatureUnit - - - - PressureFractionUnit - Unit for quantities of dimension one that are the fraction of two pressures. - PressureFractionUnit - Unit for quantities of dimension one that are the fraction of two pressures. + + + + + + + + + + + + + + + + + + + UpQuark + UpQuark + https://en.wikipedia.org/wiki/Up_quark - - - - - HelmholtzEnergy - HelmholtzFreeEnergy - HelmholtzEnergy - https://www.wikidata.org/wiki/Q865821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 - 5-20.4 - https://doi.org/10.1351/goldbook.H02772 + + + + + + + + + + + + + + + + + MathematicalConstruct + MathematicalConstruct - - - - - CyclotronAngularFrequency - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - CyclotronAngularFrequency - https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency - https://www.wikidata.org/wiki/Q97708211 - 10-16 - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - - - - - - Measurer - An observer that makes use of a measurement tool and provides a quantitative property. - Measurer - An observer that makes use of a measurement tool and provides a quantitative property. - - - - - - Shape3Vector - A real vector with 3 elements. - Shape3Vector - A real vector with 3 elements. - The quantity value of physical quantities if real space is a Shape3Vector. - - - - - - - FastFissionFactor - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - FastFissionFactor - https://qudt.org/vocab/quantitykind/FastFissionFactor - https://www.wikidata.org/wiki/Q99197493 - 10-75 - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + + + + PlasticModeling + PlasticModeling - + - - - Curvature - Inverse of the radius of curvature. - Curvature - https://qudt.org/vocab/quantitykind/CurvatureFromRadius - https://www.wikidata.org/wiki/Q214881 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 - https://dbpedia.org/page/Curvature - 3-2 - Inverse of the radius of curvature. - - - - - - - - - - - - - - Coupled - Coupled - - - - - - MultiSimulation - A physics based simulation with multiple physics based models. - MultiSimulation - A physics based simulation with multiple physics based models. - - - - - - CoulometricTitration - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - CoulometricTitration - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - - - - - - ProductionSystem - A network of objects that implements a production process through a series of interconnected elements. - ProductionSystem - A network of objects that implements a production process through a series of interconnected elements. + + AcousticQuantity + Quantities categorised according to ISO 80000-8. + AcousticQuantity + Quantities categorised according to ISO 80000-8. - + - - - LarmonFrequency - Quotient of Larmor angular frequency and 2π. - LarmonFrequency - 10-15.2 - Quotient of Larmor angular frequency and 2π. + + + + + + + + + Magnetization + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. + Magnetization + https://qudt.org/vocab/quantitykind/Magnetization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 + 6-24 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - - + + - T+2 L0 M-1 I+1 Θ0 N0 J0 + T0 L0 M-2 I0 Θ0 N0 J0 - ElectricMobilityUnit - ElectricMobilityUnit - - - - - - XpsVariableKinetic - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - Electron spectroscopy for chemical analysis (ESCA) - X-ray photoelectron spectroscopy (XPS) - XpsVariableKinetic - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - - - - - - StepChronopotentiometry - - chronopotentiometry where the applied current is changed in steps - StepChronopotentiometry - chronopotentiometry where the applied current is changed in steps - - - - - - - - CubicExpansionCoefficient - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - alpha_V = (1/V) * (dV/dT) - CubicExpansionCoefficient - https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient - https://www.wikidata.org/wiki/Q74761076 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 - 5-3.2 - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - - - - - - RawSample - - RawSample + InverseSquareMassUnit + InverseSquareMassUnit - + - T0 L-2 M+1 I0 Θ+1 N0 J0 + T+1 L-1 M0 I0 Θ0 N0 J0 - TemperatureMassPerAreaUnit - TemperatureMassPerAreaUnit + TimePerLengthUnit + TimePerLengthUnit - - + + - - + + + - - - MolarVolume - Volume per amount of substance. - MolarVolume - https://qudt.org/vocab/quantitykind/MolarVolume - https://www.wikidata.org/wiki/Q487112 - 9-5 - Volume per amount of substance. - - - - - - MeasurementTime - The overall time needed to acquire the measurement data. - The overall time needed to acquire the measurement data. - MeasurementTime - The overall time needed to acquire the measurement data. + + Plus + Plus - - - CausalCollapse - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. - CausalCollapse - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + + + + ArithmeticOperator + ArithmeticOperator - - - - - LiquidFoam - A foam of trapped gas in a liquid. - LiquidFoam - A foam of trapped gas in a liquid. + + + + Constant + A variable that stand for a numerical constant, even if it is unknown. + Constant + A variable that stand for a numerical constant, even if it is unknown. - - - - - ResonanceEnergy - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. - ResonanceEnergy - https://qudt.org/vocab/quantitykind/ResonanceEnergy - https://www.wikidata.org/wiki/Q98165187 - 10-37.2 - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + + + + + + + + + + + + + Component + A constituent of a system. + Component + A constituent of a system. - - - - - NumberOfTurnsInAWinding - NumberOfTurnsInAWinding - https://www.wikidata.org/wiki/Q77995997 - 6-38 + + + + + ElectronBackscatterDiffraction + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + EBSD + ElectronBackscatterDiffraction + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - - - - - Aerosol - A colloid composed of fine solid particles or liquid droplets in air or another gas. - Aerosol - A colloid composed of fine solid particles or liquid droplets in air or another gas. + + + + ScanningElectronMicroscopy + + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + SEM + ScanningElectronMicroscopy + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - - - - Gas - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - Gas - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + + + + AccessConditions + Describes what is needed to repeat the experiment + AccessConditions + Describes what is needed to repeat the experiment + In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? - - - - - - - - - - - ModulusOfRigidity - Ratio of shear stress to the shear strain. - ShearModulus - ModulusOfRigidity - https://qudt.org/vocab/quantitykind/ShearModulus - https://www.wikidata.org/wiki/Q461466 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 - 4-19.2 - Ratio of shear stress to the shear strain. - https://doi.org/10.1351/goldbook.S05635 + + + + DataExchangeLanguage + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + DataExchangeLanguage + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + JSON, YAML, XML + https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages - + + + + + + + + + + + + + + CausalStructure + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + A self-connected composition of more than one quantum entities. + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + CausalObject + CausalStructure + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + A self-connected composition of more than one quantum entities. + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + + + + + + CharacterisationComponent + + CharacterisationComponent + + + + + + Viscometry + + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + Viscosity + Viscometry + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + + + + GreenDownQuark + GreenDownQuark + + + - T-3 L+2 M+1 I0 Θ0 N0 J0 + T-3 L0 M+1 I0 Θ-4 N0 J0 - PowerUnit - PowerUnit + MassPerCubicTimeQuarticTemperatureUnit + MassPerCubicTimeQuarticTemperatureUnit - - + + - - - - - - + + - - - - - - - - - Determiner - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - Determiner - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - - - - - - - - - T0 L-2 M+1 I0 Θ0 N0 J0 - - - AreaDensityUnit - AreaDensityUnit - - - - - - - CouplingFactor - InductiveCouplingFactor - CouplingFactor - https://www.wikidata.org/wiki/Q78101715 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 - 6-42.1 - - - - + - + - - + + + + + + + + + + + + - ElementaryParticle - A chausal chain whose quantum parts are of the same standard model fundamental type. - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - SingleParticleChain - ElementaryParticle - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - A chausal chain whose quantum parts are of the same standard model fundamental type. + MaterialsModel + A solvable set of one Physics Equation and one or more Materials Relations. + https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 + MaterialsModel + A solvable set of one Physics Equation and one or more Materials Relations. - - - - - - - - - - - ElectricInductance - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - Inductance - ElectricInductance - http://qudt.org/vocab/quantitykind/Inductance - https://www.wikidata.org/wiki/Q177897 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 - 6-41.1 - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - https://doi.org/10.1351/goldbook.M04076 + + + + Homonuclear + A molecule composed of only one element type. + ElementalMolecule + Homonuclear + A molecule composed of only one element type. + Hydrogen molecule (H₂). - + - + + + + + + Entropy + Logarithmic measure of the number of available states of a system. + May also be referred to as a measure of order of a system. + Entropy + http://qudt.org/vocab/quantitykind/Entropy + 5-18 + https://doi.org/10.1351/goldbook.E02149 + + + + + + + LossFactor + Inverse of the quality factor. + LossFactor + https://qudt.org/vocab/quantitykind/LossFactor + https://www.wikidata.org/wiki/Q79468728 + 6-54 + Inverse of the quality factor. + + + + + + + CoherenceLength + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + CoherenceLength + https://www.wikidata.org/wiki/Q1778793 + 12-38.2 + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + + + + + + ModellingLanguage + An artificial computer language used to express information or knowledge, often for use in computer system design. + ModellingLanguage + An artificial computer language used to express information or knowledge, often for use in computer system design. + Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + Hardware description language – used to model integrated circuits. + +Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + +Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. + https://en.wikipedia.org/wiki/Modeling_language + + + + + + Drilling + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + Bohren + Drilling + + + + + + Machining + A manufacturing in which material is removed from the workpiece in the form of chips. + RemovingChipsFromWorkpiece + Machining + A manufacturing in which material is removed from the workpiece in the form of chips. + + + + + + + + - ParticleCurrentDensity - Number of particles per time and area crossing a surface. - ParticleCurrentDensity - https://qudt.org/vocab/quantitykind/ParticleCurrent - https://www.wikidata.org/wiki/Q2400689 - 10-48 - Number of particles per time and area crossing a surface. + AbsorbedDoseRate + Differential quotient of the absorbed dose with respect to time. + AbsorbedDoseRate + https://qudt.org/vocab/quantitykind/AbsorbedDoseRate + https://www.wikidata.org/wiki/Q69428958 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 + 10-84 + Differential quotient of the absorbed dose with respect to time. - - - - SpecialUnit - A unit symbol that stands for a derived unit. - Special units are semiotic shortcuts to more complex composed symbolic objects. - SpecialUnit - A unit symbol that stands for a derived unit. - Pa stands for N/m2 -J stands for N m + + + + SpecificationLanguage + A language used to describe what a computer system should do. + SpecificationLanguage + A language used to describe what a computer system should do. + ACSL, VDM, LOTUS, MML, ... + https://en.wikipedia.org/wiki/Specification_language - + - - NuclearSpinQuantumNumber - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - NuclearSpinQuantumNumber - https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber - https://www.wikidata.org/wiki/Q97577403 - 10-13.7 - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. + + + CoefficientOfFriction + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + FrictionCoefficient + FrictionFactor + CoefficientOfFriction + https://www.wikidata.org/wiki/Q1932524 + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + https://doi.org/10.1351/goldbook.F02530 - - - TauAntiNeutrino - TauAntiNeutrino + + + + KineticEnergy + The energy of an object due to its motion. + KineticEnergy + http://qudt.org/vocab/quantitykind/KineticEnergy + 4-28.2 + The energy of an object due to its motion. + https://doi.org/10.1351/goldbook.K03402 - + - PhysicallyNonInteracting - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - PhysicallyNonInteracting - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + BlueDownQuark + BlueDownQuark - + - - - SolidAngularMeasure - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - SolidAngle - SolidAngularMeasure - https://qudt.org/vocab/quantitykind/SolidAngle - https://www.wikidata.org/wiki/Q208476 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 - https://dbpedia.org/page/Solid_angle - 3-8 - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - https://en.wikipedia.org/wiki/Solid_angle + + + VacuumMagneticPermeability + The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. + The value of magnetic permeability in a classical vacuum. + PermeabilityOfVacuum + VacuumMagneticPermeability + http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum + 6-26.1 - + - T0 L0 M-1 I0 Θ0 N+1 J0 + T+1 L+1 M0 I0 Θ+1 N0 J0 - AmountPerMassUnit - AmountPerMassUnit + LengthTimeTemperatureUnit + LengthTimeTemperatureUnit - + + + + + + + + + + Luminance + Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). + a photometric measure of the luminous intensity per unit area of light travelling in a given direction. + Luminance + http://qudt.org/vocab/quantitykind/Luminance + https://doi.org/10.1351/goldbook.L03640 + + + + + + + Emulsion + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Emulsion + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Mayonnaise, milk. + + + - T-2 L+2 M+1 I-2 Θ0 N0 J0 + T+2 L-2 M-1 I0 Θ0 N0 J0 - InductanceUnit - InductanceUnit + PerEnergyUnit + PerEnergyUnit - - - AnalogicalIcon - An icon that focus on HOW the object works. - An icon that represents the internal logical structure of the object. - AnalogicalIcon - An icon that represents the internal logical structure of the object. - A physics equation is replicating the mechanisms internal to the object. - Electrical diagram is diagrammatic and resemblance - MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. - An icon that focus on HOW the object works. - The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). - - - - - - Enthalpy - Measurement of energy in a thermodynamic system. - Enthalpy - http://qudt.org/vocab/quantitykind/Enthalpy - 5.20-3 - https://doi.org/10.1351/goldbook.E02141 - - - + - - - - - - + + - - - AtomicNumber - Number of protons in an atomic nucleus. - AtomicNumber - http://qudt.org/vocab/quantitykind/AtomicNumber - Number of protons in an atomic nucleus. - 10-1.1 - https://doi.org/10.1351/goldbook.A00499 + + FundamentalReciprocalLatticeVector + Fundamental translation vectors for the reciprocal lattice. + FundamentalReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475399 + 12-2.2 + Fundamental translation vectors for the reciprocal lattice. - - - - - - - - - - - TotalMassStoppingPower - Quotient of the total linear stopping power S and the mass density ρ of the material. - MassStoppingPower - TotalMassStoppingPower - https://qudt.org/vocab/quantitykind/TotalMassStoppingPower - https://www.wikidata.org/wiki/Q98642795 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 - 10-55 - Quotient of the total linear stopping power S and the mass density ρ of the material. + + + + XpsVariableKinetic + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + Electron spectroscopy for chemical analysis (ESCA) + X-ray photoelectron spectroscopy (XPS) + XpsVariableKinetic + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - - - - - AbsoluteHumidity - Mass of the contained water vapour per volume. - MassConcentrationOfWaterVapour - AbsoluteHumidity - https://qudt.org/vocab/quantitykind/AbsoluteHumidity - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - 5-28 - Mass of the contained water vapour per volume. + + + + + + + + + + + + + + WBoson + A charged vector boson that mediate the weak interaction. + ChargedWeakBoson + IntermediateVectorBoson + WBoson + A charged vector boson that mediate the weak interaction. + https://en.wikipedia.org/wiki/W_and_Z_bosons - - - - - - Hypothesis - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - Hypothesis - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + + + + UltrasonicTesting + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + UltrasonicTesting + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - + - - Theory - A 'conventional' that stand for a 'physical'. - The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. - -It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. - -In Peirce semiotics: legisign-symbol-argument - Theory - A 'conventional' that stand for a 'physical'. + + PhysicsEquationSolution + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + This must be a mathematical function v(t), x(t). +A dataset as solution is a conventional sign. + PhysicsEquationSolution + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. - - - Estimated - Estimated - The biography of a person that the author have not met. + + + + HardeningByDrawing + HardeningByDrawing - - - - Heat - Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. - AmountOfHeat - Heat - http://qudt.org/vocab/quantitykind/Heat - 5-6.1 - https://doi.org/10.1351/goldbook.H02752 + + + + HardeningByForming + Verfestigen durch Umformen + HardeningByForming - + - - + - - T-1 L+2 M0 I0 Θ0 N0 J0 + + - - AreicSpeedUnit - AreicSpeedUnit + + + + NuclearMagneton + Absolute value of the magnetic moment of a nucleus. + NuclearMagneton + https://www.wikidata.org/wiki/Q1166093 + 10-9.3 + Absolute value of the magnetic moment of a nucleus. + https://doi.org/10.1351/goldbook.N04236 - - - - - PowerFactor - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - PowerFactor - https://qudt.org/vocab/quantitykind/PowerFactor - https://www.wikidata.org/wiki/Q750454 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 - 6-58 - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + + + + XrdGrazingIncidence + + XrdGrazingIncidence - - - - Nailing - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). - Nageln - Nailing + + + GreenUpAntiQuark + GreenUpAntiQuark - - - - Pressing - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - Anpressen - Pressing + + + + + + + + + + + + + + + + + + + + NeutrinoType + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + NeutrinoType + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + https://en.wikipedia.org/wiki/Neutrino - - - - Admittance - Inverse of the impendance. - ComplexAdmittance - Admittance - https://qudt.org/vocab/quantitykind/Admittance - https://www.wikidata.org/wiki/Q214518 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 - https://dbpedia.org/page/Admittance - 6-52.1 - Inverse of the impendance. - - - - - - - - - - - - MeasurementResult - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - Result of a measurement. - -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. - --- VIM - MeasurementResult - Result of a measurement. - -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. - --- VIM - measurement result - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. - - - - - - FormingBlasting - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - Umformstrahlen - FormingBlasting - - - + - - - - - - - - - - - - - - - FirstGenerationFermion - FirstGenerationFermion + + + + + + + + + + + + + + + + + DownAntiQuarkType + DownAntiQuarkType - + - - IonMobilitySpectrometry - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - IMS - IonMobilitySpectrometry - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + + DifferentialThermalAnalysis + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + DTA + DifferentialThermalAnalysis + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - + - ZBoson - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - NeutralWeakBoson - ZBoson - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - https://en.wikipedia.org/wiki/W_and_Z_bosons - - - - - - SpecificInternalEnergy - Internal energy per unit mass. - SpecificInternalEnergy - https://qudt.org/vocab/quantitykind/SpecificInternalEnergy - https://www.wikidata.org/wiki/Q76357367 - 5-21.2 - Internal energy per unit mass. + GluonType3 + GluonType3 - - - AnalogData - Data that are decoded retaining its continuous variations characteristic. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - AnalogData - Data that are decoded retaining its continuous variations characteristic. - A vynil contain continuous information about the recorded sound. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + + + + HPPC + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + HybridPulsePowerCharacterisation + HybridPulsePowerCharacterization + HPPC + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - + - - - MolarGasConstant - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - MolarGasConstant - http://qudt.org/vocab/constant/MolarGasConstant - 9-37.1 - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - https://doi.org/10.1351/goldbook.G02579 + + + AbsoluteActivity + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + AbsoluteActivity + https://qudt.org/vocab/quantitykind/AbsoluteActivity + https://www.wikidata.org/wiki/Q56638155 + 9-18 + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + https://goldbook.iupac.org/terms/view/A00019 - + - + - - - SpecificGasConstant - SpecificGasConstant - https://www.wikidata.org/wiki/Q94372268 - 5-26 + + SolubilityProduct + For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + SolubilityProductConstant + SolubilityProduct + https://www.wikidata.org/wiki/Q11229788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + https://doi.org/10.1351/goldbook.S05742 - + - - - - - T-3 L+1 M+1 I0 Θ0 N0 J0 - - - MassLengthPerCubicTimeUnit - MassLengthPerCubicTimeUnit + + + IonTransportNumber + Faction of electrical current carried by given ionic species. + CurrentFraction + TransferrenceNumber + IonTransportNumber + https://qudt.org/vocab/quantitykind/IonTransportNumber + https://www.wikidata.org/wiki/Q331854 + 9-46 + Faction of electrical current carried by given ionic species. + https://doi.org/10.1351/goldbook.I03181 + https://doi.org/10.1351/goldbook.T06489 - + - T0 L-1 M+1 I0 Θ0 N0 J0 + T+1 L-2 M0 I+1 Θ0 N0 J0 - MassPerLengthUnit - MassPerLengthUnit + ElectricDisplacementFieldUnit + ElectricDisplacementFieldUnit - - - - - - - - - - PhaseHeterogeneousMixture - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. + + + + ApplicationSpecificScript + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + ApplicationSpecificScript + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. + -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - PhaseHeterogeneousMixture - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. + + + + CriticalAndSupercriticalChromatography + + CriticalAndSupercriticalChromatography + -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + + + + Determined + Determined - - - - - - - - - - - - - - - - - ThirdGenerationFermion - ThirdGenerationFermion + + + + + + + + + + + EnergyFluenceRate + In nuclear physics, time derivative of the energy fluence. + EnergyFluenceRate + https://qudt.org/vocab/quantitykind/EnergyFluenceRate + https://www.wikidata.org/wiki/Q98538655 + 10-47 + In nuclear physics, time derivative of the energy fluence. - - - - FormingFromLiquid - FormingFromLiquid + + + + ShearOrTorsionTesting + + ShearOrTorsionTesting - + - - DisplacementCurrent - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. - DisplacementCurrent - https://qudt.org/vocab/quantitykind/DisplacementCurrent - https://www.wikidata.org/wiki/Q853178 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 - 6-19.1 - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + + InternalEnergy + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + ThermodynamicEnergy + InternalEnergy + http://qudt.org/vocab/quantitykind/InternalEnergy + 5.20-2 + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + https://doi.org/10.1351/goldbook.I03103 - + - - Screwing - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - Schrauben - Screwing + + BlowMolding + BlowMolding - + - + - VolumicTotalCrossSection - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - MacroscopicTotalCrossSection - VolumicTotalCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection - https://www.wikidata.org/wiki/Q98280548 - 10-42.2 - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms + MassEnergyTransferCoefficient + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + MassEnergyTransferCoefficient + https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient + https://www.wikidata.org/wiki/Q99714619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 + 10-87 + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - - - - - Behaviour - A process which is an holistic temporal part of an object. - Behaviour - A process which is an holistic temporal part of an object. - Accelerating is a behaviour of a car. + + + + ProductionSystem + A network of objects that implements a production process through a series of interconnected elements. + ProductionSystem + A network of objects that implements a production process through a series of interconnected elements. - + + + + Network + A system whose is mainly characterised by the way in which elements are interconnected. + Network + A system whose is mainly characterised by the way in which elements are interconnected. + + + + + + + + + + + + + + Reductionistic + A class devoted to categorize causal objects by specifying their granularity levels. + A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: + - are proper parts of y + - covers the entire whole (y = x1 +x2 + ... + xn) + - do not overlap + - are part of one, and one only, whole (inverse functional) + Reductionistic + A class devoted to categorize causal objects by specifying their granularity levels. + A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: + - are proper parts of y + - covers the entire whole (y = x1 +x2 + ... + xn) + - do not overlap + - are part of one, and one only, whole (inverse functional) + Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. + + + + + + Sawing + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + Sägen + Sawing + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + + + + + + Grinding + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + Grinding + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + + + - + - - JouleThomsonCoefficient - JouleThomsonCoefficient - https://www.wikidata.org/wiki/Q93946998 - 5-24 + + Molality + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + AmountPerMass + Molality + https://www.wikidata.org/wiki/Q172623 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 + 9-15 + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + https://doi.org/10.1351/goldbook.M03970 - + - T-1 L0 M0 I0 Θ+1 N0 J0 + T-2 L0 M+1 I0 Θ0 N0 J0 - TemperaturePerTimeUnit - TemperaturePerTimeUnit + ForcePerLengthUnit + ForcePerLengthUnit - - - + + + + - - + + T+3 L-2 M-1 I+2 Θ0 N0 J0 - - - - - RelativePressureCoefficient - RelativePressureCoefficient - https://qudt.org/vocab/quantitykind/RelativePressureCoefficient - https://www.wikidata.org/wiki/Q74761852 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 - 5-3.3 + + ElectricConductanceUnit + ElectricConductanceUnit - + - - Δ + + - - Laplacian - Laplacian + + Matrix + 2-dimensional array who's spatial direct parts are vectors. + 2DArray + Matrix + 2-dimensional array who's spatial direct parts are vectors. - - - - Punctuation - Punctuation + + + + + + + + + + + + + + + + + + + Dispersion + A material in which distributed particles of one phase are dispersed in a different continuous phase. + Dispersion + A material in which distributed particles of one phase are dispersed in a different continuous phase. - - + + + - - - - - - + + + T-3 L+1 M+1 I0 Θ-1 N0 J0 + - CondensedMatter - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - CondensedMatter - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - - - - - CausalInteraction - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - CausalInteraction - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - - - - - - - - - - - - - - - - - - - - - - Fluid - A continuum that has no fixed shape and yields easily to external pressure. - Fluid - A continuum that has no fixed shape and yields easily to external pressure. - Gas, liquid, plasma, - - - - - - - - - - - - - - - - PhysicallyInteracting - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - PhysicallyInteracting - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + ThermalConductivityUnit + ThermalConductivityUnit - - - - EnvironmentalScanningElectronMicroscopy - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - EnvironmentalScanningElectronMicroscopy - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + + + + + + + + + + + ElectricFieldStrength + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + ElectricFieldStrength + https://qudt.org/vocab/quantitykind/ElectricFieldStrength + https://www.wikidata.org/wiki/Q20989 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 + 6-10 + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - + - T0 L+2 M-1 I0 Θ0 N0 J0 + T+1 L0 M0 I0 Θ0 N0 J0 - AreaPerMassUnit - AreaPerMassUnit + TimeUnit + TimeUnit - - - - - - - - + + - - + + + + + + RelativePressureCoefficient + RelativePressureCoefficient + https://qudt.org/vocab/quantitykind/RelativePressureCoefficient + https://www.wikidata.org/wiki/Q74761852 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 + 5-3.3 + + + + - - + + - Deduction - IndexSemiosis - Deduction - - - - - - - - - - - - - - - - FundamentalAntiMatterParticle - FundamentalAntiMatterParticle + + + PressureCoefficient + Change of pressure per change of temperature at constant volume. + PressureCoefficient + https://qudt.org/vocab/quantitykind/PressureCoefficient + https://www.wikidata.org/wiki/Q74762732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 + 5-4 + Change of pressure per change of temperature at constant volume. - - - - PhysicsBasedSimulation - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedSimulation - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. + + + + VoltammetryAtARotatingDiskElectrode + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + VoltammetryAtARotatingDiskElectrode + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + https://doi.org/10.1515/pac-2018-0109 - - - - - Simulation - A estimation of a property using a functional icon. - Modelling - Simulation - A estimation of a property using a functional icon. - I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. + + + + HydrodynamicVoltammetry + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + HydrodynamicVoltammetry + https://www.wikidata.org/wiki/Q17028237 + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - - SubProcess - A process which is an holistic spatial part of a process. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - SubProcess - A process which is an holistic spatial part of a process. - Breathing is a subprocess of living for a human being. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + + + + ResistanceToAlternativeCurrent + Real part of the impedance. + ResistanceToAlternativeCurrent + https://www.wikidata.org/wiki/Q1048490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 + 6-51.2 + Real part of the impedance. - + - - - AngularReciprocalLatticeVector - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - AngularReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475278 - 12-2.1 - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + + + + + T+2 L+1 M-1 I0 Θ+1 N0 J0 + + + TemperaturePerPressureUnit + TemperaturePerPressureUnit - - - - - StaticFrictionCoefficient - CoefficientOfStaticFriction - StaticFrictionFactor - StaticFrictionCoefficient - https://www.wikidata.org/wiki/Q73695673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 - 4-23.1 - - - - - - - CoefficientOfFriction - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - FrictionCoefficient - FrictionFactor - CoefficientOfFriction - https://www.wikidata.org/wiki/Q1932524 - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - https://doi.org/10.1351/goldbook.F02530 + + + DiscreteData + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + Data whose variations are decoded according to a discrete schema. + DiscreteData + Data whose variations are decoded according to a discrete schema. + A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - - - - PrimaryData - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - PrimaryData - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - Baseline subtraction, noise reduction , X and Y axes correction. + + + + + + + T-1 L+1 M0 I0 Θ0 N0 J0 + + + SpeedUnit + SpeedUnit - + - + - - CatalyticActivity - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - CatalyticActivity - http://qudt.org/vocab/quantitykind/CatalyticActivity - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - https://doi.org/10.1351/goldbook.C00881 + + AcceptorDensity + quotient of number of acceptor levels and volume. + AcceptorDensity + https://qudt.org/vocab/quantitykind/AcceptorDensity + https://www.wikidata.org/wiki/Q105979968 + 12-29.5 + quotient of number of acceptor levels and volume. - + - - Grinding - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - Grinding - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + + LevelOfAutomation + Describes the level of automation of the test. + LevelOfAutomation + Describes the level of automation of the test. - + + + + Letter + Letter + + + + + + + + + + + + Existent + 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). + +'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. + +This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. + +e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. + A 'Physical' which is a tessellation of 'State' temporal direct parts. + An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. + +By definition, the tiles are represented by 'State'-s individual. + +Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. + Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. + +Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. + true + Existent + A 'Physical' which is a tessellation of 'State' temporal direct parts. + + + + - + - + - + - - + + + + + + + + + + + + + + + + + + + + + + @@ -16174,508 +15828,514 @@ Since topological connection means causality, then the only way for a real world - StateOfMatter - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - StateOfMatter - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - https://en.wikipedia.org/wiki/State_of_matter + Suspension + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + Suspensions show no significant effect on light. + Suspension + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - - - Electron - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - Electron - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron + + + + ActivePower + Average power over a period. + ActivePower + https://qudt.org/vocab/quantitykind/ActivePower + https://www.wikidata.org/wiki/Q20820042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 + 6-56 + Average power over a period. - - - + + - - - T0 L0 M-2 I0 Θ0 N0 J0 - + + + + + + - InverseSquareMassUnit - InverseSquareMassUnit + GasSolution + A gaseous solution made of more than one component type. + GasMixture + GasSolution + A gaseous solution made of more than one component type. - - - - - - - - - - SolubilityProduct - For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - SolubilityProductConstant - SolubilityProduct - https://www.wikidata.org/wiki/Q11229788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - https://doi.org/10.1351/goldbook.S05742 + + + + Join + A tessellation in wich a tile is next for two or more non spatially connected tiles. + Join + A tessellation in wich a tile is next for two or more non spatially connected tiles. - - - - HardeningByDrawing - HardeningByDrawing + + + Laboratory + The laboratory where the whole characterisation process or some of its stages take place. + Laboratory + The laboratory where the whole characterisation process or some of its stages take place. - - - - - - - - - - - - - - - - - - - - - Cognition - IconSemiosis - Cognition + + + + MathematicalFunction + A function defined using functional notation. + A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). + FunctionDefinition + MathematicalFunction + A function defined using functional notation. + y = f(x) - + + + + DefiningEquation + An equation that define a new variable in terms of other mathematical entities. + DefiningEquation + An equation that define a new variable in terms of other mathematical entities. + The definition of velocity as v = dx/dt. + +The definition of density as mass/volume. + +y = f(x) + + + + + + + UpperCriticalMagneticFluxDensity + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + UpperCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127634 + 12-36.3 + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + + + - T0 L+3 M-1 I0 Θ0 N0 J0 + T+2 L-5 M-1 I0 Θ0 N0 J0 - VolumePerMassUnit - VolumePerMassUnit + EnergyDensityOfStatesUnit + EnergyDensityOfStatesUnit - - - RedUpAntiQuark - RedUpAntiQuark + + + + + LondonPenetrationDepth + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + LondonPenetrationDepth + https://qudt.org/vocab/quantitykind/LondonPenetrationDepth + https://www.wikidata.org/wiki/Q3277853 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 + 12-38.1 + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - - + + - + - + - - - - - - - - - - - - - - - - - - EMMO - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The class of all the OWL individuals declared by EMMO as standing for world entities. - The disjoint union of the Item and Collection classes. - EMMO - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The disjoint union of the Item and Collection classes. - The class of all the OWL individuals declared by EMMO as standing for world entities. - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - - - - - - CompiledLanguage - CompiledLanguage + + MassNumber + Number of nucleons in an atomic nucleus. + AtomicMassNumber + NucleonNumber + MassNumber + http://qudt.org/vocab/quantitykind/MassNumber + Number of nucleons in an atomic nucleus. - + - - ApparentPower - RMS value voltage multiplied by rms value of electric current. - ApparentPower - https://qudt.org/vocab/quantitykind/ApparentPower - https://www.wikidata.org/wiki/Q1930258 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 - 6-57 - RMS value voltage multiplied by rms value of electric current. - - - - - - ElectrochemicalImpedanceSpectroscopy - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - EIS - ElectrochemicalImpedanceSpectroscopy - https://www.wikidata.org/wiki/Q3492904 - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - https://doi.org/10.1515/pac-2018-0109 - - - - - - Foaming - Foaming + + Tortuosity + Parameter for diffusion and fluid flow in porous media. + Tortuosity + https://www.wikidata.org/wiki/Q2301683 + Parameter for diffusion and fluid flow in porous media. - - + + - T-2 L+4 M0 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ0 N-1 J0 - MassStoppingPowerUnit - MassStoppingPowerUnit + PerAmountUnit + PerAmountUnit - - - - Vapor - A liquid aerosol composed of water droplets in air or another gas. - Vapor - A liquid aerosol composed of water droplets in air or another gas. + + + + + + + + + + AngularAcceleration + vector quantity giving the rate of change of angular velocity + AngularAcceleration + https://qudt.org/vocab/quantitykind/AngularAcceleration + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 + https://dbpedia.org/page/Angular_acceleration + 3-13 + vector quantity giving the rate of change of angular velocity + https://en.wikipedia.org/wiki/Angular_acceleration - - - - LiquidAerosol - An aerosol composed of liquid droplets in air or another gas. - LiquidAerosol - An aerosol composed of liquid droplets in air or another gas. + + + + + GibbsEnergy + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + GibbsFreeEnergy + GibbsEnergy + https://www.wikidata.org/wiki/Q334631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 + 5-20.5 + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + https://doi.org/10.1351/goldbook.G02629 - + + + + PhotochemicalProcesses + PhotochemicalProcesses + + + - T0 L+5 M0 I0 Θ0 N0 J0 + T+3 L-1 M-1 I0 Θ0 N0 J+1 - SectionAreaIntegralUnit - SectionAreaIntegralUnit + LuminousEfficacyUnit + LuminousEfficacyUnit - - - - - StoichiometricNumberOfSubstance - StoichiometricNumberOfSubstance - https://qudt.org/vocab/quantitykind/StoichiometricNumber - https://www.wikidata.org/wiki/Q95443720 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 - 9-29 - https://doi.org/10.1351/goldbook.S06025 + + + VectorMeson + A meson with total spin 1 and odd parit. + VectorMeson + A meson with total spin 1 and odd parit. + https://en.wikipedia.org/wiki/Vector_meson - - - - - BohrRadius - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - BohrRadius - https://qudt.org/vocab/constant/BohrRadius - https://www.wikidata.org/wiki/Q652571 - 10-6 - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - https://doi.org/10.1351/goldbook.B00693 + + + + DifferentialOperator + DifferentialOperator - - - - - - - - - - Illuminance - The total luminous flux incident on a surface, per unit area. - Illuminance - http://qudt.org/vocab/quantitykind/Illuminance - The total luminous flux incident on a surface, per unit area. - https://doi.org/10.1351/goldbook.I02941 + + + + + MathematicalOperator + A mapping that acts on elements of one space and produces elements of another space. + MathematicalOperator + A mapping that acts on elements of one space and produces elements of another space. + The algebraic operator '+' that acts on two real numbers and produces one real number. + The differential operator that acts on a C1 real function and produces another real function. - - + + + BaseQuantity + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + BaseQuantity + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + base quantity + + + + - T+4 L-3 M-1 I+2 Θ0 N0 J0 + T+3 L0 M-1 I+2 Θ0 N-1 J0 - PermittivityUnit - PermittivityUnit + AmountConductivityUnit + AmountConductivityUnit - - - - - - - - - - - SecondAxialMomentOfArea - SecondAxialMomentOfArea - https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea - https://www.wikidata.org/wiki/Q91405496 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 - 4-21.1 + + + + + + + + + + + + + + FundamentalAntiMatterParticle + FundamentalAntiMatterParticle - + - + - - - PlanckFunction - Ngative quotient of Gibbs energy and temperature. - PlanckFunction - https://qudt.org/vocab/quantitykind/PlanckFunction - https://www.wikidata.org/wiki/Q76364998 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 - 5-23 - Ngative quotient of Gibbs energy and temperature. + + + LatticeVector + translation vector that maps the crystal lattice on itself + LatticeVector + https://qudt.org/vocab/quantitykind/LatticeVector + https://www.wikidata.org/wiki/Q105435234 + 12-1.1 + translation vector that maps the crystal lattice on itself - + - - - - - T0 L0 M+1 I0 Θ0 N0 J0 - - - MassUnit - MassUnit + + Displacement + vector quantity between any two points in space + Displacement + https://qudt.org/vocab/quantitykind/Displacement + https://www.wikidata.org/wiki/Q190291 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 + https://dbpedia.org/page/Displacement_(geometry) + 3-1.11 + vector quantity between any two points in space + https://en.wikipedia.org/wiki/Displacement_(geometry) - - - - FourierTransformInfraredSpectroscopy - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - FTIR - FourierTransformInfraredSpectroscopy - https://www.wikidata.org/wiki/Q901559 - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy + + + + ElectricCurrentPhasor + ElectricCurrentPhasor + https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor + https://www.wikidata.org/wiki/Q78514596 + 6-49 - + - - - - - - - - - Coercivity - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - Coercivity - https://qudt.org/vocab/quantitykind/Coercivity - https://www.wikidata.org/wiki/Q432635 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 - 6-31 - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. + + + ResonanceEscapeProbability + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + ResonanceEscapeProbability + https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability + https://www.wikidata.org/wiki/Q4108072 + 10-68 + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - + - - - - - T-1 L+2 M0 I0 Θ0 N-1 J0 - - - DiffusivityUnit - DiffusivityUnit + + Probability + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. + Probability + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + https://doi.org/10.1351/goldbook.P04855 - - - - - - - T-3 L-3 M+1 I0 Θ0 N0 J0 - - - PowerPerAreaVolumeUnit - PowerPerAreaVolumeUnit + + + + AlgebricExpression + An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) + AlgebricExpression + 2x+3 - + + + + LiquidSolidSuspension + A coarse dispersion of solids in a liquid continuum phase. + LiquidSolidSuspension + A coarse dispersion of solids in a liquid continuum phase. + Mud + + + - T0 L0 M0 I0 Θ+2 N0 J0 + T+2 L+1 M-2 I0 Θ0 N+1 J0 - SquareTemperatureUnit - SquareTemperatureUnit + AmountPerMassPressureUnit + AmountPerMassPressureUnit - + - - + - - T0 L+1 M+1 I0 Θ0 N0 J0 + + - - LengthMassUnit - LengthMassUnit + + + + DirectionAndEnergyDistributionOfCrossSection + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + DirectionAndEnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection + https://www.wikidata.org/wiki/Q98269571 + 10-41 + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - - - PhysicalPhenomena - A CausalSystem that includes quantum parts that are not bonded with the rest. - PhysicalPhenomena - A CausalSystem that includes quantum parts that are not bonded with the rest. + + + MesoscopicModel + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. + MesoscopicModel + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - + - - - Kerma - Kinetic energy released per mass. - Kerma - https://qudt.org/vocab/quantitykind/Kerma - https://www.wikidata.org/wiki/Q1739288 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 - 10-86.1 - Kinetic energy released per mass. + + + SurfaceCoefficientOfHeatTransfer + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + SurfaceCoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q74770365 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 + 5-10.2 + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. - + - - - - - - - - - Fugacity - Measure of the tendency of a substance to leave a phase. - Fugacity - https://qudt.org/vocab/quantitykind/Fugacity - https://www.wikidata.org/wiki/Q898412 - 9-20 - Measure of the tendency of a substance to leave a phase. - https://doi.org/10.1351/goldbook.F02543 + + + TotalIonization + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. + TotalIonization + https://qudt.org/vocab/quantitykind/TotalIonization + https://www.wikidata.org/wiki/Q98690787 + 10-59 + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - - + + + + SecondaryData + + Data resulting from the application of post-processing or model generation to other data. + Elaborated data + SecondaryData + Data resulting from the application of post-processing or model generation to other data. + Deconvoluted curves + Intensity maps + + + + - T+1 L+1 M0 I+1 Θ0 N0 J0 + T+3 L0 M-1 I0 Θ+1 N0 J0 - LengthTimeCurrentUnit - LengthTimeCurrentUnit + PerThermalTransmittanceUnit + PerThermalTransmittanceUnit - - - ClassicalData - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - ClassicalData - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + + + + + HyperfineTransitionFrequencyOfCs + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. + HyperfineTransitionFrequencyOfCs + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. - - - - - RybergConstant - The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. - RybergConstant - http://qudt.org/vocab/constant/RydbergConstant - https://doi.org/10.1351/goldbook.R05430 + + + + + PreparedSample + The sample after a preparation process. + PreparedSample + The sample after a preparation process. + + + + + + QuantumDecay + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + QuantumDecay + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + + + + + CausalExpansion + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + CausalExpansion + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. @@ -16696,2834 +16356,2520 @@ Raman spectroscopy relies upon inelastic scattering of photons, known as Raman s Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - - - - - - - - - - - ManufacturedMaterial - A material that is obtained through a manufacturing process. - EngineeredMaterial - ProcessedMaterial - ManufacturedMaterial - A material that is obtained through a manufacturing process. - - - - - - ArchetypeManufacturing - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - DIN 8580:2020 - Urformen - PrimitiveForming - ArchetypeManufacturing - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + + + + EnvironmentalScanningElectronMicroscopy + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + EnvironmentalScanningElectronMicroscopy + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - - - - - - - T+2 L+1 M-1 I0 Θ0 N0 J0 - - - PerPressureUnit - PerPressureUnit + + + Description + A coded that is not atomic with respect to a code of description. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + Description + A coded that is not atomic with respect to a code of description. + A biography. + A sentence about some object, depticting its properties. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. - + - - PhaseAngle - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - PhaseAngle - https://www.wikidata.org/wiki/Q415829 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 - 3-7 - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. + + Curvature + Inverse of the radius of curvature. + Curvature + https://qudt.org/vocab/quantitykind/CurvatureFromRadius + https://www.wikidata.org/wiki/Q214881 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 + https://dbpedia.org/page/Curvature + 3-2 + Inverse of the radius of curvature. - - - - - TotalCrossSection - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - TotalCrossSection - https://qudt.org/vocab/quantitykind/TotalCrossSection - https://www.wikidata.org/wiki/Q98206553 - 10-38.2 - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + + + + Annealing + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + Annealing + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - + - + - - AtomicPhysicsCrossSection - Measure of probability that a specific process will take place in a collision of two particles. - AtomicPhysicsCrossSection - https://qudt.org/vocab/quantitykind/Cross-Section.html - https://www.wikidata.org/wiki/Q17128025 - 10-38.1 - Measure of probability that a specific process will take place in a collision of two particles. + + + PlanckFunction + Ngative quotient of Gibbs energy and temperature. + PlanckFunction + https://qudt.org/vocab/quantitykind/PlanckFunction + https://www.wikidata.org/wiki/Q76364998 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 + 5-23 + Ngative quotient of Gibbs energy and temperature. - - - - LowPressureCasting - LowPressureCasting - - - + - - - CanonicalPartitionFunction - CanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96142389 - 9-35.2 - - - - - Positron - Positron - - - - - - - InternalStep - A generic step in a workflow, that is not the begin or the end. - InternalStep - A generic step in a workflow, that is not the begin or the end. - - - - - - IsothermalMicrocalorimetry - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - IMC - IsothermalMicrocalorimetry - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + + ModulusOfAdmittance + ModulusOfAdmittance + https://qudt.org/vocab/quantitykind/ModulusOfAdmittance + https://www.wikidata.org/wiki/Q79466359 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 + 6-52.4 - + - - + - - T-1 L+3 M0 I0 Θ0 N0 J0 + + - - VolumePerTimeUnit - VolumePerTimeUnit + + + + HallCoefficient + The relation between electric field strength and current density in an isotropic conductor. + HallCoefficient + https://qudt.org/vocab/quantitykind/HallCoefficient + https://www.wikidata.org/wiki/Q997439 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 + 12-19 + The relation between electric field strength and current density in an isotropic conductor. - - - - IterativeCoupledModelsSimulation - A chain of linked physics based model simulations solved iteratively, where equations are segregated. - IterativeCoupledModelsSimulation - A chain of linked physics based model simulations solved iteratively, where equations are segregated. + + + + Admittance + Inverse of the impendance. + ComplexAdmittance + Admittance + https://qudt.org/vocab/quantitykind/Admittance + https://www.wikidata.org/wiki/Q214518 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 + https://dbpedia.org/page/Admittance + 6-52.1 + Inverse of the impendance. - + - - - - - T-1 L-1 M0 I0 Θ0 N0 J0 - - - PerLengthTimeUnit - PerLengthTimeUnit + + + MixingRatio + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + The mixing ratio at saturation is denoted xsat. + MassRatioOfWaterVapourToDryGas + MixingRatio + https://www.wikidata.org/wiki/Q76378940 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 + 5-30 + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - + - - - GibbsEnergy - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - GibbsFreeEnergy - GibbsEnergy - https://www.wikidata.org/wiki/Q334631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 - 5-20.5 - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - https://doi.org/10.1351/goldbook.G02629 + + DoseEquivalentRate + Time derivative of the dose equivalent. + DoseEquivalentRate + https://www.wikidata.org/wiki/Q99604810 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-02 + 10-83.2 + Time derivative of the dose equivalent. - + - + - - - VolumicCrossSection - In nuclear physics, product of the number density of atoms of a given type and the cross section. - MacroscopicCrossSection - VolumicCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicCrossSection - https://www.wikidata.org/wiki/Q98280520 - 10-42.1 - In nuclear physics, product of the number density of atoms of a given type and the cross section. - https://doi.org/10.1351/goldbook.M03674 + + FundamentalLatticeVector + Fundamental translation vector for the crystal lattice. + FundamentalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalLatticeVector + https://www.wikidata.org/wiki/Q105451063 + 12-1.2 + Fundamental translation vector for the crystal lattice. - - - - - RatioOfSpecificHeatCapacities - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. - RatioOfSpecificHeatCapacities - https://qudt.org/vocab/quantitykind/HeatCapacityRatio - https://www.wikidata.org/wiki/Q503869 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 - 5-17.1 - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + + + + SecondaryIonMassSpectrometry + + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + SIMS + SecondaryIonMassSpectrometry + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - + - - TransformationLanguage - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - TransformationLanguage - https://en.wikipedia.org/wiki/Transformation_language - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML + + DigitalData + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + BinaryData + DigitalData + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. - + + + + + NumberOfTurnsInAWinding + NumberOfTurnsInAWinding + https://www.wikidata.org/wiki/Q77995997 + 6-38 + + + + + OrdinalQuantity + "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." +International vocabulary of metrology (VIM) + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + OrdinalQuantity + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + Hardness +Resilience + ordinal quantity + + + + - - EffectiveMass - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - EffectiveMass - https://qudt.org/vocab/quantitykind/EffectiveMass - https://www.wikidata.org/wiki/Q1064434 - 12-30 - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + ThermoelectricVoltage + Voltage between substances a and b caused by the thermoelectric effect. + ThermoelectricVoltage + https://www.wikidata.org/wiki/Q105761637 + 12-20 + Voltage between substances a and b caused by the thermoelectric effect. - + - - + - - T+1 L0 M0 I0 Θ+1 N0 J0 + + - - TemperatureTimeUnit - TemperatureTimeUnit + + + AffinityOfAChemicalReaction + Describes elements' or compounds' readiness to form bonds. + ChemicalAffinity + AffinityOfAChemicalReaction + https://qudt.org/vocab/quantitykind/ChemicalAffinity + https://www.wikidata.org/wiki/Q382783 + 9-30 + Describes elements' or compounds' readiness to form bonds. + https://doi.org/10.1351/goldbook.A00178 - - - - - - - - - - - - - - - - - - - TopAntiQuark - TopAntiQuark - - - - - - - InternalConversionFactor - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - InternalConversionCoefficient - InternalConversionFactor - https://qudt.org/vocab/quantitykind/InternalConversionFactor - https://www.wikidata.org/wiki/Q6047819 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 - 10-35 - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - - - - - - Hazard - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - Hazard - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - - - - - - ReactionSintering - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - ReactionSintering - - - - - - Painting - Painting - - - - - DerivedQuantity - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - DerivedQuantity - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - derived quantity - - - - - - - PhysicsEquation - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - PhysicsEquation - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - The Newton's equation of motion. -The Schrödinger equation. -The Navier-Stokes equation. - - - + - + - - AvogadroConstant - The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - -It defines the base unit mole in the SI system. - AvogadroConstant - http://qudt.org/vocab/constant/AvogadroConstant - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + + + SeebeckCoefficient + Measure of voltage induced by change of temperature. + SeebeckCoefficient + https://qudt.org/vocab/quantitykind/SeebeckCoefficient + https://www.wikidata.org/wiki/Q1091448 + 12-21 + Measure of voltage induced by change of temperature. + -It defines the base unit mole in the SI system. - https://doi.org/10.1351/goldbook.A00543 + + + + + MaterialSynthesis + Deals with undefined shapes both input and output. + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + MaterialSynthesis + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + Deals with undefined shapes both input and output. - + - Attenuation - Decrease in magnitude of any kind of flux through a medium. - Extinction - Attenuation - 3-26.1 - Decrease in magnitude of any kind of flux through a medium. - https://en.wikipedia.org/wiki/Attenuation - https://doi.org/10.1351/goldbook.A00515 - - - - - RedBottomQuark - RedBottomQuark + PropagationCoefficient + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + PropagationCoefficient + https://qudt.org/vocab/quantitykind/PropagationCoefficient.html + https://www.wikidata.org/wiki/Q1434913 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 + 3-26.3 + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - + - - TotalCurrentDensity - Sum of electric current density and displacement current density. - TotalCurrentDensity - https://qudt.org/vocab/quantitykind/TotalCurrentDensity - https://www.wikidata.org/wiki/Q77680811 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 - 6-20 - Sum of electric current density and displacement current density. + + + + + T-3 L+2 M+1 I0 Θ-1 N0 J0 + + + ThermalConductanceUnit + ThermalConductanceUnit - - - - - MaximumBetaParticleEnergy - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - MaximumBetaParticleEnergy - https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy - https://www.wikidata.org/wiki/Q98148038 - 10-33 - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + + + TemporallyRedundant + A whole with temporal parts of its same type. + TemporallyRedundant + A whole with temporal parts of its same type. - - - - StandaloneModelSimulation - A standalone simulation, where a single physics equation is solved. - StandaloneModelSimulation - A standalone simulation, where a single physics equation is solved. + + + + TotalAngularMomentumQuantumNumber + Quantum number in an atom describing the magnitude of total angular momentum J. + TotalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1141095 + 10-13.6 + Quantum number in an atom describing the magnitude of total angular momentum J. - - - - - - - - - - - - - - - - - - - DownAntiQuarkType - DownAntiQuarkType + + + + + AverageLogarithmicEnergyDecrement + Average value of the increment of the lethargy per collision. + AverageLogarithmicEnergyDecrement + https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html + https://www.wikidata.org/wiki/Q1940739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 + 10-70 + Average value of the increment of the lethargy per collision. - + - T-3 L0 M+1 I-1 Θ0 N0 J0 + T-3 L+4 M+1 I0 Θ0 N0 J0 - ElectricPotentialPerAreaUnit - ElectricPotentialPerAreaUnit - - - - - - SystemProgram - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - SystemProgram - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - An operating system. A graphic driver. + PowerAreaUnit + PowerAreaUnit - + - - - FermiTemperature - in the free electron model, the Fermi energy divided by the Boltzmann constant - FermiTemperature - https://qudt.org/vocab/quantitykind/FermiTemperature - https://www.wikidata.org/wiki/Q105942324 - 12-28 - in the free electron model, the Fermi energy divided by the Boltzmann constant + + + PhaseCoefficient + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + PhaseChangeCoefficient + PhaseCoefficient + https://qudt.org/vocab/quantitykind/PhaseCoefficient + https://www.wikidata.org/wiki/Q32745742 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 + 3-26.2 + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant - - - - - NeutronNumber - Atomic number (proton number) plus neutron number equals mass number. - Number of neutrons in an atomic nucleus. - NeutronNumber - https://www.wikidata.org/wiki/Q970319 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 - 10-1.2 - Number of neutrons in an atomic nucleus. - Atomic number (proton number) plus neutron number equals mass number. - https://en.wikipedia.org/wiki/Neutron_number - https://doi.org/10.1351/goldbook.N04119 + + + + IsothermalMicrocalorimetry + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + IMC + IsothermalMicrocalorimetry + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - - - - - - - T-2 L0 M0 I0 Θ+1 N0 J0 - - - TemperaturePerSquareTimeUnit - TemperaturePerSquareTimeUnit + + + + + PowerFactor + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + PowerFactor + https://qudt.org/vocab/quantitykind/PowerFactor + https://www.wikidata.org/wiki/Q750454 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 + 6-58 + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - - - - + + + - - T+3 L-1 M-1 I0 Θ0 N0 J+1 + + - - LuminousEfficacyUnit - LuminousEfficacyUnit - - - - - - AccessConditions - Describes what is needed to repeat the experiment - AccessConditions - Describes what is needed to repeat the experiment - In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? + + + + PeltierCoefficient + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + PeltierCoefficient + https://qudt.org/vocab/quantitykind/PeltierCoefficient + https://www.wikidata.org/wiki/Q105801003 + 12-22 + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - + - - DoseEquivalentRate - Time derivative of the dose equivalent. - DoseEquivalentRate - https://www.wikidata.org/wiki/Q99604810 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-02 - 10-83.2 - Time derivative of the dose equivalent. + + + LarmonAngularFrequency + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + LarmonAngularFrequency + 10-15.1 + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - + - + - - AbsorbedDoseRate - Differential quotient of the absorbed dose with respect to time. - AbsorbedDoseRate - https://qudt.org/vocab/quantitykind/AbsorbedDoseRate - https://www.wikidata.org/wiki/Q69428958 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 - 10-84 - Differential quotient of the absorbed dose with respect to time. - - - - - - AnodicStrippingVoltammetry - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - AnodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q939328 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - https://doi.org/10.1515/pac-2018-0109 - - - - - - StrippingVoltammetry - - Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. - Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. - Often the product of the electrochemical stripping is identical to the analyte before the accumulation. - Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. - Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - StrippingVoltammetry - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis - https://doi.org/10.1515/pac-2018-0109 + + ExtentOfReaction + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + ExtentOfReaction + https://qudt.org/vocab/quantitykind/ExtentOfReaction + https://www.wikidata.org/wiki/Q899046 + 9-31 + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + https://doi.org/10.1351/goldbook.E02283 - - - - Rolling - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - Walzen - Rolling + + + + + SolidFoam + A foam of trapped gas in a solid. + SolidFoam + A foam of trapped gas in a solid. + Aerogel - - - GreenStrangeQuark - GreenStrangeQuark + + + + Foam + A colloid formed by trapping pockets of gas in a liquid or solid. + Foam + A colloid formed by trapping pockets of gas in a liquid or solid. - - + + - - - - - - + + - Deducer - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Deducer - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Someone who deduces an emotional status of a persona according to facial expression. - Someone who deduces the occurring of a physical phenomenon through other phenomena. + + MagneticTension + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + MagneticTension + https://qudt.org/vocab/quantitykind/MagneticTension + https://www.wikidata.org/wiki/Q77993836 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 + 6-37.2 + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - - + + - - + + - - - MeanMassRange - Product of the mean linear range R and the mass density ρ of the material. - MeanMassRange - https://qudt.org/vocab/quantitykind/MeanMassRange - https://www.wikidata.org/wiki/Q98681670 - 10-57 - Product of the mean linear range R and the mass density ρ of the material. - https://doi.org/10.1351/goldbook.M03783 + + + + + + + + + + SpatioTemporalTessellation + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + WellFormedTessellation + SpatioTemporalTessellation + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - + - + - - - LatticeVector - translation vector that maps the crystal lattice on itself - LatticeVector - https://qudt.org/vocab/quantitykind/LatticeVector - https://www.wikidata.org/wiki/Q105435234 - 12-1.1 - translation vector that maps the crystal lattice on itself - - - - - - Inequality - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - Inequality - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - f(x) > 0 + + + + Volume + Extent of an object in space. + Volume + http://qudt.org/vocab/quantitykind/Volume + https://www.wikidata.org/wiki/Q39297 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 + https://dbpedia.org/page/Volume + 3-4 - - - - - MathematicalFormula - A mathematical string that express a relation between the elements in one set X to elements in another set Y. - The set X is called domain and the set Y range or codomain. - MathematicalFormula - A mathematical string that express a relation between the elements in one set X to elements in another set Y. + + + + 3DPrinting + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + 3DPrinting + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - + - - + - - T-1 L0 M0 I0 Θ0 N0 J0 + + - - FrequencyUnit - FrequencyUnit - - - - - - FiberboardManufacturing - FiberboardManufacturing + + + + RichardsonConstant + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + RichardsonConstant + https://qudt.org/vocab/quantitykind/RichardsonConstant + https://www.wikidata.org/wiki/Q105883079 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 + 12-26 + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - - - - FormingFromChip - FormingFromChip + + + + Assigner + A estimator that uses its predefined knowledge to declare a property of an object. + Assigner + A estimator that uses its predefined knowledge to declare a property of an object. + I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. - - - - AmountFractionUnit - Unit for quantities of dimension one that are the fraction of two amount of substance. - AmountFractionUnit - Unit for quantities of dimension one that are the fraction of two amount of substance. - Unit for amount fraction. + + + + + + + + + + + + + + + + + + + + + + + + Hyperon + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + Hyperon + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + https://en.wikipedia.org/wiki/Hyperon - + - - SolidAerosol - An aerosol composed of fine solid particles in air or another gas. - SolidAerosol - An aerosol composed of fine solid particles in air or another gas. + + + + + + + + Baryon + Subatomic particle which contains an odd number of valence quarks, at least 3. + Baryon + Subatomic particle which contains an odd number of valence quarks, at least 3. + https://en.wikipedia.org/wiki/Baryon - + - - ElectricPolarization - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - ElectricPolarization - https://qudt.org/vocab/quantitykind/ElectricPolarization - https://www.wikidata.org/wiki/Q1050425 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 - 6-7 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - - - - - - ConcreteOrPlasterPouring - ConcreteOrPlasterPouring - - - - - - GammaSpectrometry - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - GammaSpectrometry - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + + VoltagePhasor + Complex representation of an oscillating voltage. + VoltagePhasor + https://qudt.org/vocab/quantitykind/VoltagePhasor + https://www.wikidata.org/wiki/Q78514605 + 6-50 + Complex representation of an oscillating voltage. - - - AntiMuon - AntiMuon + + + + + + + 1 + + + + + + + 2 + + + Neutron + An uncharged subatomic particle found in the atomic nucleus. + Neutron + An uncharged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Neutron - - - - Join - A tessellation in wich a tile is next for two or more non spatially connected tiles. - Join - A tessellation in wich a tile is next for two or more non spatially connected tiles. + + + + + KineticFrictionForce + Force opposing the motion of a body sliding on a surface. + DynamicFrictionForce + KineticFrictionForce + https://www.wikidata.org/wiki/Q91005629 + 4-9.4 + Force opposing the motion of a body sliding on a surface. - - - - QueryLanguage - A construction language used to make queries in databases and information systems. - QueryLanguage - A construction language used to make queries in databases and information systems. - SQL, SPARQL - https://en.wikipedia.org/wiki/Query_language + + + + + StandardAbsoluteActivityOfSolvent + StandardAbsoluteActivityOfSolvent + https://www.wikidata.org/wiki/Q89556185 + 9-27.3 - - - MultiParticlePath - MultiParticlePath + + + AnalogData + Data that are decoded retaining its continuous variations characteristic. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + AnalogData + Data that are decoded retaining its continuous variations characteristic. + A vynil contain continuous information about the recorded sound. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - - - - ICI - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - IntermittentCurrentInterruptionMethod - ICI - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - - - - - - AdsorptiveStrippingVoltammetry - A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - AdSV - AdsorptiveStrippingVoltammetry - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - https://doi.org/10.1515/pac-2018-0109 - - - + - - + - - T+2 L0 M-1 I0 Θ0 N0 J0 + + - - SquareTimePerMassUnit - SquareTimePerMassUnit - - - - - ResemblanceIcon - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. - An icon that mimics the spatial or temporal shape of the object. - The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). - ResemblanceIcon - An icon that mimics the spatial or temporal shape of the object. - A geographical map that imitates the shape of the landscape and its properties at a specific historical time. - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + + + + AtomicAttenuationCoefficient + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. + AtomicAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592911 + 10-52 + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - + - T0 L-3 M0 I0 Θ0 N-1 J0 + T+2 L0 M0 I0 Θ0 N0 J0 - ReciprocalAmountPerVolumeUnit - ReciprocalAmountPerVolumeUnit + SquareTimeUnit + SquareTimeUnit - - + + - - - - - - - - - + + - - SpatioTemporalTessellation - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - WellFormedTessellation - SpatioTemporalTessellation - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + + PhysicsOfInteraction + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + PhysicsOfInteraction + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - - + + - - + + + + + + - - - ExtentOfReaction - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - ExtentOfReaction - https://qudt.org/vocab/quantitykind/ExtentOfReaction - https://www.wikidata.org/wiki/Q899046 - 9-31 - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - https://doi.org/10.1351/goldbook.E02283 - - - - - + - - - T-2 L+3 M+1 I0 Θ0 N0 J0 - + + + + + + - ForceAreaUnit - ForceAreaUnit + CharacterisationTask + + CharacterisationTask - + + + + ElectrochemicalPiezoelectricMicrogravimetry + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + ElectrochemicalPiezoelectricMicrogravimetry + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + https://doi.org/10.1515/pac-2018-0109 + + + + + + Electrogravimetry + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Electrogravimetry + https://www.wikidata.org/wiki/Q902953 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + https://en.wikipedia.org/wiki/Electrogravimetry + + + - HiggsBoson - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - HiggsBoson - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - https://en.wikipedia.org/wiki/Higgs_boson + MuonAntiNeutrino + MuonAntiNeutrino - + - T+2 L-2 M-1 I+1 Θ0 N0 J0 + T0 L0 M-1 I+1 Θ0 N0 J0 - ElectricCurrentPerEnergyUnit - ElectricCurrentPerEnergyUnit + ElectricCurrentPerMassUnit + ElectricCurrentPerMassUnit - + - - CharacterisationComponent - - CharacterisationComponent + + DifferentialStaircasePulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + DifferentialStaircasePulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - - + + + + CommandLanguage + An interpreted computer language for job control in computing. + CommandLanguage + An interpreted computer language for job control in computing. + Unix shell. +Batch programming languages. + https://en.wikipedia.org/wiki/Command_language + + + + - - + + - - - - ElectricResistivity - Electric field strength divided by the current density. - Resistivity - ElectricResistivity - http://qudt.org/vocab/quantitykind/Resistivity - https://www.wikidata.org/wiki/Q108193 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 - 6-44 - https://doi.org/10.1351/goldbook.R05316 + + + Nucleus + The small, dense region at the centre of an atom consisting of protons and neutrons. + Nucleus + The small, dense region at the centre of an atom consisting of protons and neutrons. - + + - - RelativeMassDensity - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - RelativeDensity - RelativeMassDensity - https://www.wikidata.org/wiki/Q11027905 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 - 4-4 - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - https://doi.org/10.1351/goldbook.R05262 + StaticFrictionForce + StaticFriction + StaticFrictionForce + https://qudt.org/vocab/quantitykind/StaticFriction + https://www.wikidata.org/wiki/Q90862568 + 4-9.3 - - - - ActivePower - Average power over a period. - ActivePower - https://qudt.org/vocab/quantitykind/ActivePower - https://www.wikidata.org/wiki/Q20820042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 - 6-56 - Average power over a period. + + + + FormingFromChip + FormingFromChip - - - - Diameter - The diameter of a circle or a sphere is twice its radius. - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - Diameter - https://qudt.org/vocab/quantitykind/Diameter - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 - https://dbpedia.org/page/Diameter - 3-1.5 - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - https://en.wikipedia.org/wiki/Diameter + + + Observed + Observed + The biography of a person met by the author. - + + + + Measurer + An observer that makes use of a measurement tool and provides a quantitative property. + Measurer + An observer that makes use of a measurement tool and provides a quantitative property. + + + + + + ConductometricTitration + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + ConductometricTitration + https://www.wikidata.org/wiki/Q11778221 + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + https://doi.org/10.1515/pac-2018-0109 + + + - + - - - ParticleSourceDensity - Quotient of the mean rate of production of particles in a volume, and that volume. - ParticleSourceDensity - https://qudt.org/vocab/quantitykind/ParticleSourceDensity - https://www.wikidata.org/wiki/Q98915762 - 10-66 - Quotient of the mean rate of production of particles in a volume, and that volume. + + GaugePressure + GaugePressure + https://www.wikidata.org/wiki/Q109594211 + 4-14.2 - - - - - - - - - - MeasuringSystem - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - MeasuringSystem - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - measuring system + + + + OutlierRemoval + + Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. + OutlierRemoval + Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - - - - - NuclidicMass - Rest mass of a nuclide X in the ground state. - NuclidicMass - https://www.wikidata.org/wiki/Q97010809 - 10-4.2 - Rest mass of a nuclide X in the ground state. - https://doi.org/10.1351/goldbook.N04258 + + + + DataFiltering + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + DataFiltering + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - + - T-1 L-1 M+1 I0 Θ0 N0 J0 + T-3 L+2 M+1 I-1 Θ0 N0 J0 - MassPerLengthTimeUnit - MassPerLengthTimeUnit + ElectricPotentialUnit + ElectricPotentialUnit - - - - - ActiveEnergy - The integral over a time interval of the instantaneous power. - ActiveEnergy - https://qudt.org/vocab/quantitykind/ActiveEnergy - https://www.wikidata.org/wiki/Q79813678 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 - 6-62 - The integral over a time interval of the instantaneous power. + + + + MetrologicalUncertainty + In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. + MetrologicalUncertainty + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + - Standard deviation +- Half-width of an interval with a stated coverage probability + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - - - AmorphousMaterial - NonCrystallineMaterial - AmorphousMaterial + + + + + NuclearPrecessionAngularFrequency + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + NuclearPrecessionAngularFrequency + https://www.wikidata.org/wiki/Q97641779 + 10-15.3 + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - - - - Factory - A building or group of buildings where goods are manufactured or assembled. - IndustrialPlant - Factory - A building or group of buildings where goods are manufactured or assembled. + + + + + PhysicsMathematicalComputation + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + PhysicsMathematicalComputation + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. - + - - - - - - - Minus - Minus - - - - - - Width - Length in a given direction regarded as horizontal. - The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. - Breadth - Width - https://qudt.org/vocab/quantitykind/Width - https://www.wikidata.org/wiki/Q35059 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 - 3-1.2 - Length in a given direction regarded as horizontal. - - - - - - + - + - - - - - - - - - - Declarer - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - Declarer - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). - Someone who assigns a name to an object. + + + KnownConstant + A variable that stand for a well known numerical constant (a known number). + KnownConstant + A variable that stand for a well known numerical constant (a known number). + π refers to the constant number ~3.14 - - - - - - ScientificTheory - A scientific theory is a description, objective and observed, produced with scientific methodology. - ScientificTheory - A scientific theory is a description, objective and observed, produced with scientific methodology. + + + DataProcessingThroughCalibration + Describes how raw data are corrected and/or modified through calibrations. + DataProcessingThroughCalibration + Describes how raw data are corrected and/or modified through calibrations. - - - Observed - Observed - The biography of a person met by the author. + + + + + SolidSolution + A solid solution made of two or more component substances. + SolidSolution + A solid solution made of two or more component substances. - - - - - - - - - - Vergence - In geometrical optics, vergence describes the curvature of optical wavefronts. - Vergence - http://qudt.org/vocab/quantitykind/Curvature + + + + Solution + A solution is a homogeneous mixture composed of two or more substances. + Solutions are characterized by the occurrence of Rayleigh scattering on light, + Solution + A solution is a homogeneous mixture composed of two or more substances. - - - - - - - - - - - - Nucleon - Either a proton or a neutron. - Nucleon - Either a proton or a neutron. - https://en.wikipedia.org/wiki/Nucleon + + + ElectronicModel + A physics-based model based on a physics equation describing the behaviour of electrons. + ElectronicModel + A physics-based model based on a physics equation describing the behaviour of electrons. + Density functional theory. +Hartree-Fock. - + + + Positron + Positron + + + - - - - - T-3 L+2 M+1 I0 Θ-1 N0 J0 - - - ThermalConductanceUnit - ThermalConductanceUnit + + + RelativePermittivity + Permittivity divided by electric constant. + RelativePermittivity + https://qudt.org/vocab/unit/PERMITTIVITY_REL + https://www.wikidata.org/wiki/Q4027242 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 + 6-15 + Permittivity divided by electric constant. - - - - DippingForms - DippingForms + + + + Gathering + Gathering - - + + - T+1 L+2 M0 I0 Θ+1 N0 J0 + T0 L0 M+1 I0 Θ0 N-1 J0 - AreaTimeTemperatureUnit - AreaTimeTemperatureUnit - - - - - - - DeepDrawing - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - Tiefziehen - DeepDrawing - - - - - - Homonuclear - A molecule composed of only one element type. - ElementalMolecule - Homonuclear - A molecule composed of only one element type. - Hydrogen molecule (H₂). + MassPerAmountUnit + MassPerAmountUnit - + - - - VonKlitzingConstant - Resistance quantum. - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. - VonKlitzingConstant - http://qudt.org/vocab/constant/VonKlitzingConstant - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + + + + HeatFlowRate + Amount of heat through a surface during a time interval divided by the duration of this interval. + HeatFlowRate + https://qudt.org/vocab/quantitykind/HeatFlowRate + https://www.wikidata.org/wiki/Q12160631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 + 5-7 + Amount of heat through a surface during a time interval divided by the duration of this interval. - + - + + - - + + T-1 L+1 M0 I0 Θ+1 N0 J0 - - - ReciprocalDuration - InverseDuration - InverseTime - ReciprocalTime - ReciprocalDuration - https://qudt.org/vocab/quantitykind/InverseTime - https://www.wikidata.org/wiki/Q98690850 + + TemperatureLengthPerTimeUnit + TemperatureLengthPerTimeUnit - - - + + + + - - + + T-1 L+3 M0 I0 Θ0 N-1 J0 - - - Existent - 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). - -'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. - -This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. - -e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. - A 'Physical' which is a tessellation of 'State' temporal direct parts. - An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. - -By definition, the tiles are represented by 'State'-s individual. - -Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. - Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. - -Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. - true - Existent - A 'Physical' which is a tessellation of 'State' temporal direct parts. + + VolumePerAmountTimeUnit + VolumePerAmountTimeUnit - - - - Polishing - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - Polishing - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + + + + + + + + + + + NonPrefixedUnit + A measurement unit symbol that do not have a metric prefix as a direct spatial part. + NonPrefixedUnit + A measurement unit symbol that do not have a metric prefix as a direct spatial part. - + - + + - - + + T-1 L0 M0 I0 Θ0 N0 J0 - - - - MolarConductivity - Conductivity per molar concentration of electrolyte. - MolarConductivity - https://qudt.org/vocab/quantitykind/MolarConductivity - https://www.wikidata.org/wiki/Q1943278 - 9-45 - Conductivity per molar concentration of electrolyte. - https://doi.org/10.1351/goldbook.M03976 - - - - - - - PartialPressure - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - PartialPressure - https://qudt.org/vocab/quantitykind/PartialPressure - https://www.wikidata.org/wiki/Q27165 - 9-19 - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - https://doi.org/10.1351/goldbook.P04420 + + FrequencyUnit + FrequencyUnit - + - T+4 L0 M-1 I+2 Θ0 N0 J0 + T-1 L-2 M0 I0 Θ0 N0 J0 - SquareCurrentQuarticTimePerMassUnit - SquareCurrentQuarticTimePerMassUnit + PerAreaTimeUnit + PerAreaTimeUnit - + - - - Lethargy - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - Lethargy - https://qudt.org/vocab/quantitykind/Lethargy - https://www.wikidata.org/wiki/Q25508781 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 - 10-69 - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - - - - - - GalvanostaticIntermittentTitrationTechnique - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - GITT - GalvanostaticIntermittentTitrationTechnique - https://www.wikidata.org/wiki/Q120906986 - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - - - - - - RelativePermeability - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - RelativePermeability - https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio - https://www.wikidata.org/wiki/Q77785645 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 - 6-27 - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - https://doi.org/10.1351/goldbook.R05272 - - - - - - - ConstitutiveProcess - A constitutive process is a process that is holistically relevant for the definition of the whole. - A process which is an holistic spatial part of an object. - ConstitutiveProcess - A process which is an holistic spatial part of an object. - Blood circulation in a human body. - A constitutive process is a process that is holistically relevant for the definition of the whole. - - - - - + + - - + + + T-3 L0 M+1 I-1 Θ0 N0 J0 - - - Plus - Plus + + ElectricPotentialPerAreaUnit + ElectricPotentialPerAreaUnit - + - - + + + + + + - - - MolarMass - Mass per amount of substance. - MolarMass - https://qudt.org/vocab/quantitykind/MolarMass - https://www.wikidata.org/wiki/Q145623 - 9-4 - Mass per amount of substance. + + NumberOfElements + Number of direct parts of a Reductionistic. + Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. + NumberOfElements + Number of direct parts of a Reductionistic. - - - - CSharp - C# - CSharp + + + + InternationalSystemOfQuantity + Quantities declared under the ISO 80000. + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 + InternationalSystemOfQuantity + Quantities declared under the ISO 80000. + https://en.wikipedia.org/wiki/International_System_of_Quantities - - - - VaporPressureDepressionOsmometry - - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - VPO - VaporPressureDepressionOsmometry - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + + + + MergingManufacturing + AddingManufacturing + MergingManufacturing - + - - - - - - - - ActivityDensity - Activity per unit volume of the sample. - ActivityConcentration - VolumetricActivity - VolumicActivity - ActivityDensity - https://qudt.org/vocab/quantitykind/ActivityConcentration - https://www.wikidata.org/wiki/Q423263 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 - 10-29 - Activity per unit volume of the sample. + + GFactorOfNucleusOrNuclearParticle + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + NuclearGFactor + GFactorOfNucleusOrNuclearParticle + https://qudt.org/vocab/quantitykind/GFactorOfNucleus + https://www.wikidata.org/wiki/Q97591250 + 10-14.2 + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - - - ProcedureUnit - A reference unit provided by a measurement procedure. - Procedure units and measurement units are disjoint. - MeasurementProcedure - ProcedureUnit - A reference unit provided by a measurement procedure. - Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) - Procedure units and measurement units are disjoint. + + + TauNeutrino + A neutrino belonging to the third generation of leptons. + TauNeutrino + A neutrino belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_neutrino - + - + + + RestEnergy + E_0 = m_0 * c_0^2 + +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + Product of the rest mass and the square of the speed of light in vacuum. + RestEnergy + https://www.wikidata.org/wiki/Q11663629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 + 10-3 + Product of the rest mass and the square of the speed of light in vacuum. + E_0 = m_0 * c_0^2 + +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy + + + + + + - - + + T+2 L0 M-1 I+1 Θ+1 N0 J0 - - - - ElectromagneticEnergyDensity - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - VolumicElectromagneticEnergy - ElectromagneticEnergyDensity - https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity - https://www.wikidata.org/wiki/Q77989624 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 - 6-33 - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + + TemperaturePerMagneticFluxDensityUnit + TemperaturePerMagneticFluxDensityUnit - - - + + + - - + + + + - Product - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. - Output - Product - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 - https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. + + + + + + + + + ClassicallyDefinedMaterial + ClassicallyDefinedMaterial - - - - - EndStep - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. - EndStep - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. + + + + + + AngularMeasure + The abstract notion of angle. + AngularMeasure + https://qudt.org/vocab/quantitykind/Angle + https://www.wikidata.org/wiki/Q1357788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 + 3-5 + The abstract notion of angle. + https://doi.org/10.1351/goldbook.A00346 - - - - - MigrationArea - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - MigrationArea - https://qudt.org/vocab/quantitykind/MigrationArea - https://www.wikidata.org/wiki/Q98966325 - 10-72.3 - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + + + ZBoson + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + NeutralWeakBoson + ZBoson + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + https://en.wikipedia.org/wiki/W_and_Z_bosons - + - - + + + + + + - - StructureFactor - Mathematical description in crystallography. - StructureFactor - https://qudt.org/vocab/quantitykind/StructureFactor - https://www.wikidata.org/wiki/Q900684 - 12-5.4 - Mathematical description in crystallography. - - - - - - SizeDefinedMaterial - SizeDefinedMaterial - - - - - - - MolarHelmholtzEnergy - Helmholtz energy per amount of substance. - MolarHelmholtzEnergy - https://www.wikidata.org/wiki/Q88862986 - 9-6.3 - Helmholtz energy per amount of substance. + + + AtomicNumber + Number of protons in an atomic nucleus. + AtomicNumber + http://qudt.org/vocab/quantitykind/AtomicNumber + Number of protons in an atomic nucleus. + 10-1.1 + https://doi.org/10.1351/goldbook.A00499 - - - - + + + - - T+3 L0 M-1 I+2 Θ0 N-1 J0 + + + 1 - - AmountConductivityUnit - AmountConductivityUnit - - - - - - Hardening - Heat treatment process that generally produces martensite in the matrix. - Hardening - Heat treatment process that generally produces martensite in the matrix. - - - - - - EffectiveDiffusionCoefficient - Diffusion coefficient through the pore space of a porous media. - EffectiveDiffusionCoefficient - https://www.wikidata.org/wiki/Q258852 - Diffusion coefficient through the pore space of a porous media. - - - - + - - + + - - - ElectricChargeDensity - Electric charge per volume. - VolumeElectricCharge - ElectricChargeDensity - https://qudt.org/vocab/quantitykind/ElectricChargeDensity - https://www.wikidata.org/wiki/Q69425629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 - 6-3 - Electric charge per volume. - https://doi.org/10.1351/goldbook.C00988 - - - - - - SpecificEnthalpy - Enthalpy per unit mass. - SpecificEnthalpy - https://qudt.org/vocab/quantitykind/SpecificEnthalpy - https://www.wikidata.org/wiki/Q21572993 - 5-21.3 - Enthalpy per unit mass. - https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy - - - - - - PhotochemicalProcesses - PhotochemicalProcesses + + + + + + + + Integer + An integer number. + Integer + An integer number. - + - - - - RelativeHumidity - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - The relative humidity is often expressed in per cent. - RelativeHumidity - https://qudt.org/vocab/quantitykind/RelativeHumidity - https://www.wikidata.org/wiki/Q2499617 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 - 5-33 - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - https://en.wikipedia.org/wiki/Humidity#Relative_humidity - - - - - - ConventionalProperty - A property that is associated to an object by convention, or assumption. - A quantitative property attributed by agreement to a quantity for a given purpose. - ConventionalProperty - A quantitative property attributed by agreement to a quantity for a given purpose. - The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. - -If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. - -Then I have two different physical quantities that are properties thanks to two different semiotic processes. - - - - - - MaterialLaw - A law that provides a connection between a material property and other properties of the object. - MaterialLaw - A law that provides a connection between a material property and other properties of the object. - - - - - - + + - - - Nucleus - The small, dense region at the centre of an atom consisting of protons and neutrons. - Nucleus - The small, dense region at the centre of an atom consisting of protons and neutrons. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AntiQuark - AntiQuark - - - - - - Plasma - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - Plasma - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - - - - - - SparkPlasmaSintering - SparkPlasmaSintering - - - - - - ContinuousCasting - ContinuousCasting + + + Fugacity + Measure of the tendency of a substance to leave a phase. + Fugacity + https://qudt.org/vocab/quantitykind/Fugacity + https://www.wikidata.org/wiki/Q898412 + 9-20 + Measure of the tendency of a substance to leave a phase. + https://doi.org/10.1351/goldbook.F02543 - + + + + + + Δ + + + + Laplacian + Laplacian + + + - - SlowingDownLength - Square root of the slowing down area. - SlowingDownLength - https://qudt.org/vocab/quantitykind/Slowing-DownLength - https://www.wikidata.org/wiki/Q98996963 - 10-73.1 - Square root of the slowing down area. + + Kerma + Kinetic energy released per mass. + Kerma + https://qudt.org/vocab/quantitykind/Kerma + https://www.wikidata.org/wiki/Q1739288 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 + 10-86.1 + Kinetic energy released per mass. - - - ElementaryBoson - ElementaryBoson + + + + + ThermodynamicGrueneisenParameter + ThermodynamicGrueneisenParameter + https://www.wikidata.org/wiki/Q105658620 + 12-13 - - - TemporallyRedundant - A whole with temporal parts of its same type. - TemporallyRedundant - A whole with temporal parts of its same type. + + + + + + + + + + + SectionModulus + SectionModulus + https://qudt.org/vocab/quantitykind/SectionModulus + https://www.wikidata.org/wiki/Q1930808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 + 4-22 - + - T-3 L+2 M+1 I-1 Θ0 N0 J0 + T0 L0 M0 I0 Θ+1 N0 J0 - ElectricPotentialUnit - ElectricPotentialUnit - - - - - - NanoMaterial - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - NanoMaterial - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + TemperatureUnit + TemperatureUnit - - - - CharacterisationSoftware - A software application to process characterisation data - CharacterisationSoftware - A software application to process characterisation data - In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. + + + RedStrangeAntiQuark + RedStrangeAntiQuark - - - - MarkupLanguage - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - MarkupLanguage - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - HTML - https://en.wikipedia.org/wiki/Markup_language + + + + SubjectiveProperty + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + SubjectiveProperty + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + The measure of beauty on a scale from 1 to 10. - + - - - MixingRatio - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - The mixing ratio at saturation is denoted xsat. - MassRatioOfWaterVapourToDryGas - MixingRatio - https://www.wikidata.org/wiki/Q76378940 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 - 5-30 - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + + + + + + + + AngularVelocity + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + AngularVelocity + https://qudt.org/vocab/quantitykind/AngularVelocity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 + https://dbpedia.org/page/Angular_velocity + 3-12 + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + https://en.wikipedia.org/wiki/Angular_velocity - - - - RapidPrototyping - Application of additive manufacturing intended for reducing the time needed for producing prototypes. - RapidPrototyping - Application of additive manufacturing intended for reducing the time needed for producing prototypes. + + + + + LatentHeatOfPhaseTransition + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + LatentHeatOfPhaseTransition + https://www.wikidata.org/wiki/Q106553458 + 9-16 + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - + - - IonChromatography - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - IonChromatography - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - https://en.wikipedia.org/wiki/Ion_chromatography + + LevelOfExpertise + Describes the level of expertise required to carry out a process (the entire test or the data processing). + LevelOfExpertise + Describes the level of expertise required to carry out a process (the entire test or the data processing). - - - - Chromatography - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - Chromatography - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - https://en.wikipedia.org/wiki/Chromatography + + + + + EffectiveMass + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + EffectiveMass + https://qudt.org/vocab/quantitykind/EffectiveMass + https://www.wikidata.org/wiki/Q1064434 + 12-30 + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - - - - Namer - An interpreter who assigns a name to an object without any motivations related to the object characters. - Namer - An interpreter who assigns a name to an object without any motivations related to the object characters. + + + + TransformationLanguage + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + TransformationLanguage + https://en.wikipedia.org/wiki/Transformation_language + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML - - - - - - - - - - - ModulusOfElasticity - Mechanical property of linear elastic solid materials. - YoungsModulus - ModulusOfElasticity - https://www.wikidata.org/wiki/Q2091584 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 - 4-19.1 - Mechanical property of linear elastic solid materials. - https://doi.org/10.1351/goldbook.M03966 + + + + CharacterisationProcedureValidation + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + CharacterisationProcedureValidation + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - - - - - - - - - - Mounting - The sample is mounted on a holder. - The sample is mounted on a holder. - Mounting - The sample is mounted on a holder. + + + + TightlyCoupledModelsSimulation + A simulation in which more than one model are solved together with a coupled method. + TightlyCoupledModelsSimulation + A simulation in which more than one model are solved together with a coupled method. + Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. + + + + + + Profilometry + + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + Profilometry + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - - - - - - - - - - - - ThomsonCoefficient - quotient of Thomson heat power developed, and the electric current and temperature difference - ThomsonCoefficient - https://qudt.org/vocab/quantitykind/ThomsonCoefficient - https://www.wikidata.org/wiki/Q105801233 - 12-23 - quotient of Thomson heat power developed, and the electric current and temperature difference + + + CausallHairedSystem + CausallHairedSystem - + - OrdinalQuantity - "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." -International vocabulary of metrology (VIM) - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - OrdinalQuantity - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - Hardness -Resilience - ordinal quantity + + MeasuringInstrument + A measuring instrument that can be used alone is a measuring system. + Device used for making measurements, alone or in conjunction with one or more supplementary devices. + +-- VIM + MeasuringInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary devices. + +-- VIM + measuring instrument - - - - - LiquidSol - A type of sol in the form of one solid dispersed in liquid. - LiquidSol - A type of sol in the form of one solid dispersed in liquid. + + + WPositiveBoson + WPositiveBoson - + - - - MagneticSusceptibility - Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. - MagneticSusceptibility - https://qudt.org/vocab/unit/SUSCEPTIBILITY_MAG.html - https://www.wikidata.org/wiki/Q691463 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37 - 6-28 - Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + + TotalCurrent + Sum of electric current and displacement current + TotalCurrent + https://qudt.org/vocab/quantitykind/TotalCurrent + https://www.wikidata.org/wiki/Q77679732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 + 6-19.2 + Sum of electric current and displacement current - + - + - - Mobility - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - Mobility - https://qudt.org/vocab/quantitykind/Mobility - https://www.wikidata.org/wiki/Q900648 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 - 10-61 - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - https://doi.org/10.1351/goldbook.M03955 + + Compressibility + Measure of the relative volume change of a fluid or solid as a response to a pressure change. + Compressibility + https://qudt.org/vocab/quantitykind/Compressibility + https://www.wikidata.org/wiki/Q8067817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 + 4-20 + Measure of the relative volume change of a fluid or solid as a response to a pressure change. - - - - DynamicMechanicalSpectroscopy - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - DMA - DynamicMechanicalSpectroscopy - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - + + + + Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. - - - - - DensityOfHeatFlowRate - At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - AreicHeatFlowRate - DensityOfHeatFlowRate - https://www.wikidata.org/wiki/Q1478382 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 - 5-8 - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - https://doi.org/10.1351/goldbook.H02755 +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) + Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. + +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) - - - - - - - - - - Intensity - Power transferred per unit area. - Intensity - Power transferred per unit area. - https://en.wikipedia.org/wiki/Intensity_(physics) + + + CrystallineMaterial + Suggestion of Rickard Armiento + CrystallineMaterial - - + + - T-1 L+2 M+1 I0 Θ0 N-1 J0 + T-2 L+3 M+1 I-1 Θ0 N0 J0 - EnergyTimePerAmountUnit - EnergyTimePerAmountUnit - - - - - CeramicMaterial - CeramicMaterial + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - + - - Rationale - A set of reasons or a logical basis for a decision or belief - Rationale - A set of reasons or a logical basis for a decision or belief + + AnodicStrippingVoltammetry + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + AnodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q939328 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + https://doi.org/10.1515/pac-2018-0109 - - - - Modeller - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - Modeller - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + + + + StrippingVoltammetry + + Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. + Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. + Often the product of the electrochemical stripping is identical to the analyte before the accumulation. + Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. + Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + StrippingVoltammetry + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis + https://doi.org/10.1515/pac-2018-0109 - - + + - T0 L+2 M0 I0 Θ-1 N0 J0 + T-3 L+3 M+1 I-1 Θ0 N0 J0 - AreaPerTemperatureUnit - AreaPerTemperatureUnit + ElectricFluxUnit + ElectricFluxUnit - - - - + + + - - - - + + + + + + - - Structural - Structural + + + ArithmeticExpression + ArithmeticExpression + 2+2 - - - - PhysicsEquationSolution - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - This must be a mathematical function v(t), x(t). -A dataset as solution is a conventional sign. - PhysicsEquationSolution - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. + + + + Gluing + Process for joining two (base) materials by means of an adhesive polymer material + Kleben + Gluing - - - - ChargeDistribution - - ChargeDistribution + + + + PrecipitationHardening + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + PrecipitationHardening + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - - - VectorMeson - A meson with total spin 1 and odd parit. - VectorMeson - A meson with total spin 1 and odd parit. - https://en.wikipedia.org/wiki/Vector_meson + + + + MeasurementParameter + Describes the main input parameters that are needed to acquire the signal. + Describes the main input parameters that are needed to acquire the signal. + MeasurementParameter + Describes the main input parameters that are needed to acquire the signal. - - - - - LowerCriticalMagneticFluxDensity - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - LowerCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127355 - 12-36.2 - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + + + + SpecialUnit + A unit symbol that stands for a derived unit. + Special units are semiotic shortcuts to more complex composed symbolic objects. + SpecialUnit + A unit symbol that stands for a derived unit. + Pa stands for N/m2 +J stands for N m - - - - JavaScript - JavaScript + + + DerivedUnit + A measurement unit for a derived quantity. +-- VIM + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + DerivedUnit + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + derived unit + A measurement unit for a derived quantity. +-- VIM - - - - ScriptingLanguage - A programming language that is executed through runtime interpretation. - ScriptingLanguage - A programming language that is executed through runtime interpretation. + + + + + + + T+1 L0 M-1 I+1 Θ0 N0 J0 + + + ElectricChargePerMassUnit + ElectricChargePerMassUnit - - - - MetallicPowderSintering - MetallicPowderSintering + + + ElectronNeutrino + A neutrino belonging to the first generation of leptons. + ElectronNeutrino + A neutrino belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron_neutrino - + - + - AngularAcceleration - vector quantity giving the rate of change of angular velocity - AngularAcceleration - https://qudt.org/vocab/quantitykind/AngularAcceleration - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 - https://dbpedia.org/page/Angular_acceleration - 3-13 - vector quantity giving the rate of change of angular velocity - https://en.wikipedia.org/wiki/Angular_acceleration + + MassFlow + At a point in a fluid, the product of mass density and velocity. + MassFlow + https://www.wikidata.org/wiki/Q3265048 + 4-30.1 + At a point in a fluid, the product of mass density and velocity. - - - BlueCharmQuark - BlueCharmQuark + + + + Widening + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + Weiten + Widening - - - - Shape4x3Matrix - A real matrix with shape 4x3. - Shape4x3Matrix - A real matrix with shape 4x3. + + + + + + + + + + + + + + + + Substance + A composite physical object made of fermions (i.e. having mass and occupying space). + Substance + A composite physical object made of fermions (i.e. having mass and occupying space). - - + + - - + + - - Matrix - 2-dimensional array who's spatial direct parts are vectors. - 2DArray - Matrix - 2-dimensional array who's spatial direct parts are vectors. + + + IonNumberDensity + Number of ions per volume. + IonDensity + IonNumberDensity + https://www.wikidata.org/wiki/Q98831218 + 10-62.2 + Number of ions per volume. - + - - - MassConcentrationOfWater - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - The mass concentration of water at saturation is denoted wsat. - MassConcentrationOfWater - https://qudt.org/vocab/quantitykind/MassConcentrationOfWater - https://www.wikidata.org/wiki/Q76378758 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 - 5-27 - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + + + MolarGibbsEnergy + Gibbs energy per amount of substance. + MolarGibbsEnergy + https://www.wikidata.org/wiki/Q88863324 + 9-6.4 + Gibbs energy per amount of substance. - - - - - - - - - - - - - - - - - - - AntiMatter - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. - AntiMatter - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. + + + Datum + A self-consistent encoded data entity. + Datum + A self-consistent encoded data entity. + A character, a bit, a song in a CD. + + + + + + + NuclidicMass + Rest mass of a nuclide X in the ground state. + NuclidicMass + https://www.wikidata.org/wiki/Q97010809 + 10-4.2 + Rest mass of a nuclide X in the ground state. + https://doi.org/10.1351/goldbook.N04258 - + + + + + RestMass + For particle X, mass of that particle at rest in an inertial frame. + InvariantMass + ProperMass + RestMass + https://qudt.org/vocab/quantitykind/RestMass + https://www.wikidata.org/wiki/Q96941619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 + https://dbpedia.org/page/Mass_in_special_relativity + 10-2 + For particle X, mass of that particle at rest in an inertial frame. + https://en.wikipedia.org/wiki/Invariant_mass + + + - T-2 L+2 M0 I0 Θ0 N0 J0 + T-1 L0 M-1 I0 Θ0 N0 J0 - AbsorbedDoseUnit - AbsorbedDoseUnit + PerTimeMassUnit + PerTimeMassUnit - - - - ScanningElectronMicroscopy - - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - SEM - ScanningElectronMicroscopy - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + + + + + + + T+1 L+1 M-1 I0 Θ0 N0 J0 + + + LengthTimePerMassUnit + LengthTimePerMassUnit - - - ScalarMeson - A meson with spin zero and even parity. - ScalarMeson - A meson with spin zero and even parity. - https://en.wikipedia.org/wiki/Scalar_meson + + + + + + + ThermodynamicCriticalMagneticFluxDensity + ThermodynamicCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106103200 + 12-36.1 - - - - AtomicForceMicroscopy - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - AtomicForceMicroscopy - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + + + + + LowerCriticalMagneticFluxDensity + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + LowerCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127355 + 12-36.2 + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - - + + - T0 L+2 M+1 I0 Θ0 N0 J0 + T0 L+3 M0 I0 Θ0 N0 J0 - MassAreaUnit - MassAreaUnit + VolumeUnit + VolumeUnit - - - - DifferentialStaircasePulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - DifferentialStaircasePulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + + + + + + + + + + + CompositeFermion + CompositeFermion + Examples of composite particles with half-integer spin: +spin 1/2: He3 in ground state, proton, neutron +spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) - - - - - Tool - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - Tool - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + + + + Python + Python - + - + - - DecayConstant - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - DisintegrationConstant - DecayConstant - https://qudt.org/vocab/quantitykind/DecayConstant - https://www.wikidata.org/wiki/Q11477200 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 - 10-24 - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - https://doi.org/10.1351/goldbook.D01538 - - - - - - - - - - - - Theorisation - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - Theorization - Theorisation - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - - - - - - - - - - - - - - - - - - - - - - - - - Determination - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Characterisation - Determination - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. + + MomentOfIntertia + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + MomentOfIntertia + https://qudt.org/vocab/quantitykind/MomentOfInertia + https://www.wikidata.org/wiki/Q165618 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 + 4-7 + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + https://doi.org/10.1351/goldbook.M04006 - + - T0 L-2 M0 I+1 Θ-2 N0 J0 + T-2 L+2 M0 I0 Θ0 N0 J0 - RichardsonConstantUnit - RichardsonConstantUnit + AbsorbedDoseUnit + AbsorbedDoseUnit - - - - - LossAngle - Arctan of the loss factor - LossAngle - https://www.qudt.org/vocab/quantitykind/LossAngle - https://www.wikidata.org/wiki/Q20820438 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 - 6-55 - Arctan of the loss factor + + + + + Behaviour + A process which is an holistic temporal part of an object. + Behaviour + A process which is an holistic temporal part of an object. + Accelerating is a behaviour of a car. - - - - - - - - - - - - - - ArithmeticExpression - ArithmeticExpression - 2+2 + + + + LinearChronopotentiometry + Chronopotentiometry where the applied current is changed linearly. + LinearChronopotentiometry + Chronopotentiometry where the applied current is changed linearly. + chronopotentiometry where the applied current is changed linearly + + + + + + ShellScript + A command language designed to be run by a command-line interpreter, like a Unix shell. + ShellScript + A command language designed to be run by a command-line interpreter, like a Unix shell. + https://en.wikipedia.org/wiki/Shell_script - - - - AlgebricExpression - An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) - AlgebricExpression - 2x+3 + + + + + + + + + + Experiment + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + Experiment + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - - - - - ResidualResistivity - for metals, the resistivity extrapolated to zero thermodynamic temperature - ResidualResistivity - https://qudt.org/vocab/quantitykind/ResidualResistivity - https://www.wikidata.org/wiki/Q25098876 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 - 12-17 - for metals, the resistivity extrapolated to zero thermodynamic temperature + + + + DataAnalysis + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + DataAnalysis + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - - - - LiquidLiquidSuspension - A coarse dispersion of liquid in a liquid continuum phase. - LiquidLiquidSuspension - A coarse dispersion of liquid in a liquid continuum phase. + + + + MercuryPorosimetry + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + MercuryPorosimetry + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - - - - - LeakageFactor - One minus the square of the coupling factor - LeakageFactor - https://www.wikidata.org/wiki/Q78102042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 - 6-42.2 - One minus the square of the coupling factor + + + + Porosimetry + + Porosimetry - - - - UTF8 - UTF8 + + + + + + Guess + A guess is a theory, estimated and subjective, since its premises are subjective. + Guess + A guess is a theory, estimated and subjective, since its premises are subjective. - + - + - - - LinearEnergyTransfer - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - LinearEnergyTransfer - https://qudt.org/vocab/quantitykind/LinearEnergyTransfer - https://www.wikidata.org/wiki/Q1699996 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 - 10-85 - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - https://doi.org/10.1351/goldbook.L03550 + + StructureFactor + Mathematical description in crystallography. + StructureFactor + https://qudt.org/vocab/quantitykind/StructureFactor + https://www.wikidata.org/wiki/Q900684 + 12-5.4 + Mathematical description in crystallography. - - - - - Constituent - An object which is an holistic spatial part of a object. - ObjectPart - Constituent - An object which is an holistic spatial part of a object. - A tire is a constituent of a car. + + + + + WorkFunction + Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. + least energy required for the emission of a conduction electron. + ElectronWorkFunction + WorkFunction + https://www.wikidata.org/wiki/Q783800 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 + 12-24.1 + least energy required for the emission of a conduction electron. + https://doi.org/10.1351/goldbook.E02015 - - - - QuantumDecay - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - QuantumDecay - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + + + + AtomicForceMicroscopy + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + AtomicForceMicroscopy + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - + + + + Plasma + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + Plasma + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + + + + - + - - + + + + + + + - Boson - A physical particle with integer spin that follows Bose–Einstein statistics. - Boson - A physical particle with integer spin that follows Bose–Einstein statistics. - https://en.wikipedia.org/wiki/Boson + Fluid + A continuum that has no fixed shape and yields easily to external pressure. + Fluid + A continuum that has no fixed shape and yields easily to external pressure. + Gas, liquid, plasma, - + - - ModulusOfAdmittance - ModulusOfAdmittance - https://qudt.org/vocab/quantitykind/ModulusOfAdmittance - https://www.wikidata.org/wiki/Q79466359 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 - 6-52.4 + + + + + T-2 L+4 M+1 I0 Θ0 N0 J0 + + + EnergyAreaUnit + EnergyAreaUnit - - - WNegativeBoson - WNegativeBoson + + + + + Status + An object which is an holistic temporal part of a process. + State + Status + An object which is an holistic temporal part of a process. + A semi-naked man is a status in the process of a man's dressing. - - - - HardeningByForging - HardeningByForging + + + + Numeral + Numeral + + + + + + + + + + + + + MassieuFunction + Negative quotient of Helmholtz energy and temperature. + MassieuFunction + https://qudt.org/vocab/quantitykind/MassieuFunction + https://www.wikidata.org/wiki/Q3077625 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 + 5-22 + Negative quotient of Helmholtz energy and temperature. + + + + + + + + + T-2 L+1 M+1 I-2 Θ0 N0 J0 + + + PermeabilityUnit + PermeabilityUnit - + - T+1 L-3 M0 I+1 Θ0 N0 J0 + T-2 L+3 M+1 I0 Θ0 N0 J0 - ElectricChargeDensityUnit - ElectricChargeDensityUnit + ForceAreaUnit + ForceAreaUnit - + - + - - - Volume - Extent of an object in space. - Volume - http://qudt.org/vocab/quantitykind/Volume - https://www.wikidata.org/wiki/Q39297 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 - https://dbpedia.org/page/Volume - 3-4 + + MassChangeRate + Mass increment per time. + MassChangeRate + https://www.wikidata.org/wiki/Q92020547 + 4-30.3 + Mass increment per time. - - - - - - Guess - A guess is a theory, estimated and subjective, since its premises are subjective. - Guess - A guess is a theory, estimated and subjective, since its premises are subjective. + + + + + + + + + + + + Persistence + The interest is on the 4D object as it extends in time (process) or as it persists in time (object): +- object (focus on spatial configuration) +- process (focus on temporal evolution) + +The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. + +For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. + +Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. + +This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). + +The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. + The union of the object or process classes. + Persistence + The union of the object or process classes. - + - + - - EquilibriumPositionVector - In condensed matter physics, position vector of an atom or ion in equilibrium. - EquilibriumPositionVector - https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon - https://www.wikidata.org/wiki/Q105533477 - 12-7.2 - In condensed matter physics, position vector of an atom or ion in equilibrium. - - - - - - + + SurfaceMassDensity + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + AreicMass + SurfaceDensity + SurfaceMassDensity + https://www.wikidata.org/wiki/Q1907514 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 + 4-5 + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + https://doi.org/10.1351/goldbook.S06167 - + - T+1 L-2 M0 I+1 Θ0 N0 J0 + T0 L0 M0 I0 Θ+2 N0 J0 - ElectricDisplacementFieldUnit - ElectricDisplacementFieldUnit + SquareTemperatureUnit + SquareTemperatureUnit - + + + NonActivePower + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + NonActivePower + https://qudt.org/vocab/quantitykind/NonActivePower + https://www.wikidata.org/wiki/Q79813060 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 + 6-61 + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + + + + - T-3 L-1 M+1 I0 Θ+1 N0 J0 + T-3 L+1 M0 I0 Θ0 N0 J0 - TemperaturePressurePerTimeUnit - TemperaturePressurePerTimeUnit + LengthPerCubeTimeUnit + LengthPerCubeTimeUnit - - - - - BeginStep - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. - BeginStep - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. + + + + SpecificHeatCapacityAtSaturatedVaporPressure + Specific heat capacity at saturated vaport pressure. + SpecificHeatCapacityAtSaturatedVaporPressure + https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation + https://www.wikidata.org/wiki/Q75775005 + 5-16.4 + Specific heat capacity at saturated vaport pressure. - - + + - - + + + + + Mobility + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + Mobility + https://qudt.org/vocab/quantitykind/Mobility + https://www.wikidata.org/wiki/Q900648 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 + 10-61 + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + https://doi.org/10.1351/goldbook.M03955 + + + + - - - 1 + + - - - - - - - - Real - A real number. - Real - A real number. + + + + AbsorbedDose + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + AbsorbedDose + http://qudt.org/vocab/quantitykind/AbsorbedDose + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + 10-81.1 + https://doi.org/10.1351/goldbook.A00031 - - - Description - A coded that is not atomic with respect to a code of description. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. - Description - A coded that is not atomic with respect to a code of description. - A biography. - A sentence about some object, depticting its properties. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + + + + Command + A command must be interpretable by the computer system. + An instruction to a computer system to perform a given task. + Command + From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. + A command must be interpretable by the computer system. + Commands are typically performed from a shell or a shell script, but not limited to them. - + + + + + IsentropicCompressibility + IsentropicCompressibility + https://qudt.org/vocab/quantitykind/IsentropicCompressibility + https://www.wikidata.org/wiki/Q2990695 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 + 5-5.2 + + + + - - MobilityRatio - Quotient of electron and hole mobility. - MobilityRatio - https://qudt.org/vocab/quantitykind/MobilityRatio - https://www.wikidata.org/wiki/Q106010255 - 12-31 - Quotient of electron and hole mobility. + GapEnergy + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + BandgapEnergy + GapEnergy + https://www.wikidata.org/wiki/Q103982939 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 + 12-27.2 + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + https://doi.org/10.1351/goldbook.B00593 + + + + + + Painting + Painting - + - - - ShortRangeOrderParameter - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - ShortRangeOrderParameter - https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter - https://www.wikidata.org/wiki/Q105495979 - 12-5.1 - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + + + PhaseSpeedOfElectromagneticWaves + Angular frequency divided by angular wavenumber. + PhaseSpeedOfElectromagneticWaves + https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed + https://www.wikidata.org/wiki/Q77990619 + 6-35.1 + Angular frequency divided by angular wavenumber. - + + + + IonChromatography + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + IonChromatography + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + https://en.wikipedia.org/wiki/Ion_chromatography + + + - - + - + - + @@ -19531,197 +18877,264 @@ A dataset as solution is a conventional sign. - FundamentalInteraction - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - FundamentalInteraction - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + TopQuark + TopQuark + https://en.wikipedia.org/wiki/Top_quark - - - - XrayPowderDiffraction - - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - XRPD - XrayPowderDiffraction - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - https://en.wikipedia.org/wiki/Powder_diffraction + + + + + + + + + + KinematicViscosity + Quotient of dynamic viscosity and mass density of a fluid. + KinematicViscosity + https://qudt.org/vocab/quantitykind/KinematicViscosity + https://www.wikidata.org/wiki/Q15106259 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 + 4-25 + Quotient of dynamic viscosity and mass density of a fluid. + https://doi.org/10.1351/goldbook.K03395 - + + + MuonNeutrino + A neutrino belonging to the second generation of leptons. + MuonNeutrino + A neutrino belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon_neutrino + + + + + + FormingFromPulp + FormingFromPulp + + + - - XrayDiffraction + + HardwareModel - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - XRD - XrayDiffraction - https://www.wikidata.org/wiki/Q12101244 - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - https://en.wikipedia.org/wiki/X-ray_crystallography + HardwareModel - - - - UnitOne - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Represents the number 1, used as an explicit unit to say something has no units. - Unitless - UnitOne - http://qudt.org/vocab/unit/UNITLESS - Represents the number 1, used as an explicit unit to say something has no units. - "The unit one is the neutral element of any system of units – necessary and present automatically." + + + + ThroughTile + A tile that has next and is next of other tiles within the same tessellation. + ThroughTile + A tile that has next and is next of other tiles within the same tessellation. + --- SI Brochure - Refractive index or volume fraction. - Typically used for ratios of two units whos dimensions cancels out. + + + + OpticalMicroscopy + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + OpticalMicroscopy + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - + - + + + + + + + - CarrierLifetime - Time constant for recombination or trapping of minority charge carriers in semiconductors - CarrierLifetime - https://qudt.org/vocab/quantitykind/CarrierLifetime - https://www.wikidata.org/wiki/Q5046374 - 12-32.2 - Time constant for recombination or trapping of minority charge carriers in semiconductors + BurgersVector + Vector characterising a dislocation in a crystal lattice. + BurgersVector + https://qudt.org/vocab/quantitykind/BurgersVector + https://www.wikidata.org/wiki/Q623093 + 12-6 + Vector characterising a dislocation in a crystal lattice. - - - - FlameCutting - FlameCutting + + + + + StaticFrictionCoefficient + CoefficientOfStaticFriction + StaticFrictionFactor + StaticFrictionCoefficient + https://www.wikidata.org/wiki/Q73695673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 + 4-23.1 - + - - - MassFractionOfDryMatter - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - MassFractionOfDryMatter - https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter - https://www.wikidata.org/wiki/Q76379189 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 - 5-32 - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + + + + + T+4 L-2 M-1 I+2 Θ0 N0 J0 + + + CapacitanceUnit + CapacitanceUnit + + + + + + Broadcast + Broadcast + + + + + + ThermomechanicalTreatment + ThermomechanicalTreatment + + + + + + HardeningByRolling + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + VerfestigendurchWalzen + HardeningByRolling + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + + + + VaporPressureDepressionOsmometry + + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + VPO + VaporPressureDepressionOsmometry + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + + + + + + Milling + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + Fräsen + Milling + + + + + NumericalData + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + NumericalData + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - + + + + NaturalProcess + A process occurring by natural (non-intentional) laws. + NonIntentionalProcess + NaturalProcess + A process occurring by natural (non-intentional) laws. + + + - - - NumberOfEntities - Discrete quantity; number of entities of a given kind in a system. - NumberOfEntities - https://www.wikidata.org/wiki/Q614112 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 - 9-1 - Discrete quantity; number of entities of a given kind in a system. - https://doi.org/10.1351/goldbook.N04266 + + RotationalFrequency + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + RotationalFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 + 3-17.2 + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - - - - Smoke - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - Smoke - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + + + RedUpAntiQuark + RedUpAntiQuark - + - + + - - + + T-4 L0 M+1 I0 Θ0 N0 J0 - - - - MassAttenuationCoefficient - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - MassAttenuationCoefficient - https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient - https://www.wikidata.org/wiki/Q98591983 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 - 10-50 - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + + MassPerQuarticTimeUnit + MassPerQuarticTimeUnit - - - - SandMolds - SandMolds + + + + Chronoamperometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + AmperiometricDetection + AmperometricCurrentTimeCurve + Chronoamperometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - + + + - - - - - - - - + + + T0 L+3 M-1 I0 Θ0 N0 J0 + - ClassicallyDefinedMaterial - ClassicallyDefinedMaterial + VolumePerMassUnit + VolumePerMassUnit - + - - - IntrinsicCarrierDensity - Square root of the product of electron and hole density in a semiconductor. - IntrinsicCarrierDensity - https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity - https://www.wikidata.org/wiki/Q1303188 - 12-29.3 - Square root of the product of electron and hole density in a semiconductor. + + + BetaDisintegrationEnergy + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + BetaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98148340 + 10-34 + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - + + + BlueStrangeAntiQuark + BlueStrangeAntiQuark + + + - + - + - + @@ -19729,787 +19142,721 @@ This requirement implies that a physical phenomena is either a decay, annihilati - - - - - - - - - - - - Quark - The class of individuals that stand for quarks elementary particles. - Quark - The class of individuals that stand for quarks elementary particles. - https://en.wikipedia.org/wiki/Quark - - - - - - - - - - - - AlgebricEquation - An 'equation' that has parts two 'polynomial'-s - AlgebricEquation - 2 * a - b = c - - - - - - - - - T+3 L-2 M-1 I0 Θ+1 N0 J0 - - - ThermalResistanceUnit - ThermalResistanceUnit - - - - - - ComputerSystem - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - Computer - ComputerSystem - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - https://en.wikipedia.org/wiki/Computer - - - - - - - - - - - - - LorenzCoefficient - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - LorenzNumber - LorenzCoefficient - https://qudt.org/vocab/quantitykind/LorenzCoefficient - https://www.wikidata.org/wiki/Q105728754 - 12-18 - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - - - - - - Milling - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - Milling - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - - - - - - - PlanckConstant - The quantum of action. It defines the kg base unit in the SI system. - PlanckConstant - http://qudt.org/vocab/constant/PlanckConstant - The quantum of action. It defines the kg base unit in the SI system. - https://doi.org/10.1351/goldbook.P04685 + CharmQuark + CharmQuark + https://en.wikipedia.org/wiki/Charm_quark - - - - - - - T-6 L-2 M+2 I0 Θ0 N0 J0 - - - SquarePressurePerSquareTimeUnit - SquarePressurePerSquareTimeUnit + + + + Hardening + Heat treatment process that generally produces martensite in the matrix. + Hardening + Heat treatment process that generally produces martensite in the matrix. - + - T-1 L0 M0 I0 Θ+2 N0 J0 + T+1 L-3 M0 I0 Θ0 N0 J0 - SquareTemperaturePerTimeUnit - SquareTemperaturePerTimeUnit + TimePerVolumeUnit + TimePerVolumeUnit - - + + - + - - - - - - - - - - - - - - - - - - - - - - + + - RedAntiQuark - RedAntiQuark + Boson + A physical particle with integer spin that follows Bose–Einstein statistics. + Boson + A physical particle with integer spin that follows Bose–Einstein statistics. + https://en.wikipedia.org/wiki/Boson - - - - UserCase - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - UserCase - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + + + + DefinedEdgeCutting + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + Spanen mit geometrisch bestimmten Schneiden + DefinedEdgeCutting - + - + + + + + + + - HalfLife - Mean duration required for the decay of one half of the atoms or nuclei. - HalfLife - https://qudt.org/vocab/quantitykind/Half-Life - https://www.wikidata.org/wiki/Q98118544 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 - 10-31 - Mean duration required for the decay of one half of the atoms or nuclei. + LinearEnergyTransfer + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + LinearEnergyTransfer + https://qudt.org/vocab/quantitykind/LinearEnergyTransfer + https://www.wikidata.org/wiki/Q1699996 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 + 10-85 + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + https://doi.org/10.1351/goldbook.L03550 - - - - - - - T0 L+2 M0 I+1 Θ0 N0 J0 - - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit + + + + CeramicSintering + CeramicSintering - + + + + URN + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + URN + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + + + + StandardUnit + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + ReferenceMaterial + StandardUnit + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + + + TemporallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + TemporallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + - - Rotation - Rotation - https://www.wikidata.org/wiki/Q76435127 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 - 3-16 + + MassRatioOfWaterToDryMatter + The mass concentration of water at saturation is denoted usat. + Ratio of the mass of water to the mass of dry matter in a given volume of matter. + MassRatioOfWaterToDryMatter + https://www.wikidata.org/wiki/Q76378860 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 + 5-29 + Ratio of the mass of water to the mass of dry matter in a given volume of matter. - + + + + Inequality + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + Inequality + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + f(x) > 0 + + + - - - MaterialSynthesis - Deals with undefined shapes both input and output. - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - MaterialSynthesis - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - Deals with undefined shapes both input and output. + + AssemblyLine + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. + AssemblyLine + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + + + + + + MassFractionUnit + Unit for quantities of dimension one that are the fraction of two masses. + MassFractionUnit + Unit for quantities of dimension one that are the fraction of two masses. + Unit for mass fraction. + + + + + + CreepTesting + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + CreepTesting + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + + + + + + + Degenerency + Multiplicity + Degenerency + https://www.wikidata.org/wiki/Q902301 + 9-36.2 + https://doi.org/10.1351/goldbook.D01556 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + FundamentalFermion + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + FundamentalFermion + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - - - - FieldEmissionScanningElectronMicroscopy - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - FE-SEM - FieldEmissionScanningElectronMicroscopy - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + + + + + + + T0 L0 M+1 I0 Θ+1 N0 J0 + + + MassTemperatureUnit + MassTemperatureUnit - - - - Solubility - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. - Solubility - https://www.wikidata.org/wiki/Q170731 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - https://doi.org/10.1351/goldbook.S05740 + + + GluonType2 + GluonType2 - - + + - T+3 L-2 M-1 I0 Θ0 N0 J+1 + T-2 L0 M+2 I0 Θ0 N0 J0 - LuminousEfficacyUnit - LuminousEfficacyUnit + SquareMassPerSquareTimeUnit + SquareMassPerSquareTimeUnit - + + + + ReactionSintering + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + ReactionSintering + + + + + AntiTau + AntiTau + + + + + + FunctionallyDefinedMaterial + FunctionallyDefinedMaterial + + + - T-3 L+2 M+1 I-1 Θ-1 N0 J0 + T-3 L-2 M+2 I0 Θ0 N0 J0 - ElectricPotentialPerTemperatureUnit - ElectricPotentialPerTemperatureUnit + SquarePressureTimeUnit + SquarePressureTimeUnit - - - GreenCharmAntiQuark - GreenCharmAntiQuark + + + AmorphousMaterial + NonCrystallineMaterial + AmorphousMaterial - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GreenQuark - GreenQuark + + + + LinkedModelsSimulation + A chain of linked physics based model simulations, where equations are solved sequentially. + LinkedModelsSimulation + A chain of linked physics based model simulations, where equations are solved sequentially. - - - - AnalyticalElectronMicroscopy - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - AnalyticalElectronMicroscopy - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + + + + MultiSimulation + A physics based simulation with multiple physics based models. + MultiSimulation + A physics based simulation with multiple physics based models. - - - QuantumData - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. - QuantumData - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + + + + CathodicStrippingVoltammetry + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + CSV + CathodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q4016325 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + https://doi.org/10.1515/pac-2018-0109 - - - IonAtom - A standalone atom with an unbalanced number of electrons with respect to its atomic number. - The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, - IonAtom - A standalone atom with an unbalanced number of electrons with respect to its atomic number. + + + + LaserCutting + LaserCutting - - - - - ElectronRadius - Radius of a sphere such that the relativistic electron energy is distributed uniformly. - ElectronRadius - https://www.wikidata.org/wiki/Q2152581 - 10-19.2 - Radius of a sphere such that the relativistic electron energy is distributed uniformly. + + + + + + + + + + + + + BaseUnit + A set of units that correspond to the base quantities in a system of units. + BaseUnit + A set of units that correspond to the base quantities in a system of units. + base unit - + - - OrbitalAngularMomentumQuantumNumber - Atomic quantum number related to the orbital angular momentum l of a one-electron state. - OrbitalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1916324 - 10-13.3 - Atomic quantum number related to the orbital angular momentum l of a one-electron state. + + ComplexPower + Voltage phasor multiplied by complex conjugate of the current phasor. + ComplexApparentPower + ComplexPower + https://qudt.org/vocab/quantitykind/ComplexPower + https://www.wikidata.org/wiki/Q65239736 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 + 6-59 + Voltage phasor multiplied by complex conjugate of the current phasor. - - + + - - + + + + + + - - - - EnergyDensityOfStates - Quantity in condensed matter physics. - EnergyDensityOfStates - https://qudt.org/vocab/quantitykind/EnergyDensityOfStates - https://www.wikidata.org/wiki/Q105687031 - 12-16 - Quantity in condensed matter physics. + + + + + + + + + MetrologicalSymbol + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + MetrologicalSymbol + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + + + + + + Assembled + A system of independent elements that are assembled together to perform a function. + Assembled + A system of independent elements that are assembled together to perform a function. - - - - - RelativePermittivity - Permittivity divided by electric constant. - RelativePermittivity - https://qudt.org/vocab/unit/PERMITTIVITY_REL - https://www.wikidata.org/wiki/Q4027242 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 - 6-15 - Permittivity divided by electric constant. + + + + SparkPlasmaSintering + SparkPlasmaSintering - + - + - - SurfaceMassDensity - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - AreicMass - SurfaceDensity - SurfaceMassDensity - https://www.wikidata.org/wiki/Q1907514 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 - 4-5 - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - https://doi.org/10.1351/goldbook.S06167 - - - - - - - - - T0 L0 M-1 I0 Θ0 N0 J0 - - - ReciprocalMassUnit - ReciprocalMassUnit + + VolumicCrossSection + In nuclear physics, product of the number density of atoms of a given type and the cross section. + MacroscopicCrossSection + VolumicCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicCrossSection + https://www.wikidata.org/wiki/Q98280520 + 10-42.1 + In nuclear physics, product of the number density of atoms of a given type and the cross section. + https://doi.org/10.1351/goldbook.M03674 - + - - + - - T+2 L+2 M-1 I+2 Θ0 N0 J0 + + - - EnergyPerSquareMagneticFluxDensityUnit - EnergyPerSquareMagneticFluxDensityUnit - - - - - - SpecificHeatCapacityAtSaturatedVaporPressure - Specific heat capacity at saturated vaport pressure. - SpecificHeatCapacityAtSaturatedVaporPressure - https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation - https://www.wikidata.org/wiki/Q75775005 - 5-16.4 - Specific heat capacity at saturated vaport pressure. + + + + ElectricFlux + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + ElectricFlux + https://qudt.org/vocab/quantitykind/ElectricFlux + https://www.wikidata.org/wiki/Q501267 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 + 6-17 + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - - - GluonType8 - GluonType8 + + + + SamplePreparationParameter + + Parameter used for the sample preparation process + SamplePreparationParameter + Parameter used for the sample preparation process - + - - PackingFraction - Quotient of relative mass excess and the nucleon number. - PackingFraction - https://qudt.org/vocab/quantitykind/PackingFraction - https://www.wikidata.org/wiki/Q98058276 - 10-23.1 - Quotient of relative mass excess and the nucleon number. - - - - - RightHandedParticle - RightHandedParticle - - - - - - Soldering - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - Löten - Soldering + + MaximumEfficiency + Efficiency of an ideal heat engine operating according to the Carnot process. + CarnotEfficiency + MaximumEfficiency + https://www.wikidata.org/wiki/Q93949862 + 5-25.2 + Efficiency of an ideal heat engine operating according to the Carnot process. - - + + - T0 L+2 M0 I0 Θ0 N-1 J0 + T+4 L-3 M-1 I+2 Θ0 N0 J0 - AreaPerAmountUnit - AreaPerAmountUnit + PermittivityUnit + PermittivityUnit - + - - ElectricImpedance - Measure of the opposition that a circuit presents to a current when a voltage is applied. - Impedance - ElectricImpedance - http://qudt.org/vocab/quantitykind/Impedance - https://www.wikidata.org/wiki/Q179043 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 - 6-51.1 - https://en.wikipedia.org/wiki/Electrical_impedance + + + MassConcentrationOfWaterVapour + Quotient of the mass of water vapour in moist gas by the total gas volume. + The mass concentration of water at saturation is denoted vsat. + MassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + Quotient of the mass of water vapour in moist gas by the total gas volume. - - - - - - - - - - - - - - - KnownConstant - A variable that stand for a well known numerical constant (a known number). - KnownConstant - A variable that stand for a well known numerical constant (a known number). - π refers to the constant number ~3.14 - + + + + + BoltzmannConstant + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - - - - - SolidSol - A type of sol in the form of one solid dispersed in another continuous solid. - SolidSol - A type of sol in the form of one solid dispersed in another continuous solid. - +It defines the Kelvin unit in the SI system. + The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. + BoltzmannConstant + http://qudt.org/vocab/constant/BoltzmannConstant + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - - - - CharacterisedSample - The sample after having been subjected to a characterization process - CharacterisedSample - The sample after having been subjected to a characterization process +It defines the Kelvin unit in the SI system. + https://doi.org/10.1351/goldbook.B00695 - - - PhysicalyUnbonded - PhysicalyUnbonded + + + PhysicalPhenomena + A CausalSystem that includes quantum parts that are not bonded with the rest. + PhysicalPhenomena + A CausalSystem that includes quantum parts that are not bonded with the rest. - - - - MaterialRelationComputation - MaterialRelationComputation + + + + HardnessTesting + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + HardnessTesting + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - - - - - FermiAnglularWaveNumber - angular wavenumber of electrons in states on the Fermi sphere - FermiAnglularRepetency - FermiAnglularWaveNumber - https://qudt.org/vocab/quantitykind/FermiAngularWavenumber - https://www.wikidata.org/wiki/Q105554303 - 12-9.2 - angular wavenumber of electrons in states on the Fermi sphere + + + + + LiquidSol + A type of sol in the form of one solid dispersed in liquid. + LiquidSol + A type of sol in the form of one solid dispersed in liquid. - + - AngularWavenumber - Magnitude of the wave vector. - AngularRepetency - AngularWavenumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q30338487 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 - 3-22 - Magnitude of the wave vector. + Wavenumber + Reciprocal of the wavelength. + Repetency + Wavenumber + https://qudt.org/vocab/quantitykind/Wavenumber + https://www.wikidata.org/wiki/Q192510 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 + https://dbpedia.org/page/Wavenumber + 3-20 + Reciprocal of the wavelength. + https://en.wikipedia.org/wiki/Wavenumber + https://doi.org/10.1351/goldbook.W06664 - + - + + - - + + T0 L+1 M+1 I0 Θ0 N0 J0 - - - AffinityOfAChemicalReaction - Describes elements' or compounds' readiness to form bonds. - ChemicalAffinity - AffinityOfAChemicalReaction - https://qudt.org/vocab/quantitykind/ChemicalAffinity - https://www.wikidata.org/wiki/Q382783 - 9-30 - Describes elements' or compounds' readiness to form bonds. - https://doi.org/10.1351/goldbook.A00178 + + LengthMassUnit + LengthMassUnit - - - - PowderCoating - PowderCoating + + + BlueUpAntiQuark + BlueUpAntiQuark - + - RedUpQuark - RedUpQuark + GreenUpQuark + GreenUpQuark - - - - - - - T-2 L+3 M0 I0 Θ0 N0 J0 - - - VolumePerSquareTimeUnit - VolumePerSquareTimeUnit + + + + LowPressureCasting + LowPressureCasting - - + + - - - - - - + + - - NumberOfElements - Number of direct parts of a Reductionistic. - Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. - NumberOfElements - Number of direct parts of a Reductionistic. + + IterativeWorkflow + A workflow whose steps (iterative steps) are the repetition of the same workflow type. + IterativeWorkflow + A workflow whose steps (iterative steps) are the repetition of the same workflow type. - - - - - - - - - - - - Permeability - Measure for how the magnetization of material is affected by the application of an external magnetic field . - ElectromagneticPermeability - Permeability - http://qudt.org/vocab/quantitykind/ElectromagneticPermeability - 6-26.2 - https://doi.org/10.1351/goldbook.P04503 + + + + + + + + + + + + + + + + + + + GaugeBoson + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + GaugeBoson + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + Gauge bosons can carry any of the four fundamental interactions of nature. + https://en.wikipedia.org/wiki/Gauge_boson - + - - - ThermodynamicEfficiency - ThermalEfficiency - ThermodynamicEfficiency - https://qudt.org/vocab/quantitykind/ThermalEfficiency - https://www.wikidata.org/wiki/Q1452104 - 5-25.1 + + + MassDefect + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + MassDefect + https://qudt.org/vocab/quantitykind/MassDefect + https://www.wikidata.org/wiki/Q26897126 + 10-21.2 + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - - - - Assigned - Assigned + + + + + + + T-2 L+2 M+1 I0 Θ0 N-1 J0 + + + EnergyPerAmountUnit + EnergyPerAmountUnit - + - - - StandardAmountConcentration - Chosen value of amount concentration, usually equal to 1 mol dm−3. - StandardConcentration - StandardMolarConcentration - StandardAmountConcentration - https://www.wikidata.org/wiki/Q88871689 - Chosen value of amount concentration, usually equal to 1 mol dm−3. - 9-12.2 - https://doi.org/10.1351/goldbook.S05909 + + + + + T-2 L+1 M+1 I-1 Θ0 N0 J0 + + + MagneticPotentialUnit + MagneticPotentialUnit - + - + + - - - AmountConcentration - The amount of a constituent divided by the volume of the mixture. - Concentration - MolarConcentration - Molarity - AmountConcentration - http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB - https://doi.org/10.1351/goldbook.A00295 - - - - - - - MassRatioOfWaterToDryMatter - The mass concentration of water at saturation is denoted usat. - Ratio of the mass of water to the mass of dry matter in a given volume of matter. - MassRatioOfWaterToDryMatter - https://www.wikidata.org/wiki/Q76378860 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 - 5-29 - Ratio of the mass of water to the mass of dry matter in a given volume of matter. - - - - - ContinuumModel - A physics-based model based on a physics equation describing the behaviour of continuum volume. - ContinuumModel - A physics-based model based on a physics equation describing the behaviour of continuum volume. - - - - - - - - - T-2 L-2 M+1 I0 Θ0 N0 J0 - - - MassPerSquareLengthSquareTimeUnit - MassPerSquareLengthSquareTimeUnit + Momentum + Product of mass and velocity. + Momentum + http://qudt.org/vocab/quantitykind/Momentum + 4-8 + https://doi.org/10.1351/goldbook.M04007 - - - TemporallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - TemporallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + + + + + + + + + MagneticFieldStrength + Strength of a magnetic field. Commonly denoted H. + MagnetizingFieldStrength + MagneticFieldStrength + http://qudt.org/vocab/quantitykind/MagneticFieldStrength + https://www.wikidata.org/wiki/Q28123 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 + 6-25 + https://doi.org/10.1351/goldbook.M03683 @@ -20523,42 +19870,76 @@ This requirement implies that a physical phenomena is either a decay, annihilati Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - - - - - - - - - - MassieuFunction - Negative quotient of Helmholtz energy and temperature. - MassieuFunction - https://qudt.org/vocab/quantitykind/MassieuFunction - https://www.wikidata.org/wiki/Q3077625 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 - 5-22 - Negative quotient of Helmholtz energy and temperature. + + + + DirectCoulometryAtControlledCurrent + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + DirectCoulometryAtControlledCurrent + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - + + + + AtomProbeTomography + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + 3D Atom Probe + APT + AtomProbeTomography + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + + + + + + Tomography + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + Tomography + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + + + + + + GasAdsorptionPorosimetry + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + GasAdsorptionPorosimetry + GasAdsorptionPorosimetry + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + + + - - - ElectronCharge - The charge of an electron. - The negative of ElementaryCharge. - ElectronCharge - The charge of an electron. - https://doi.org/10.1351/goldbook.E01982 + + + LinearIonization + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + LinearIonization + https://qudt.org/vocab/quantitykind/LinearIonization + https://www.wikidata.org/wiki/Q98690755 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 + 10-58 + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - - - GluonType2 - GluonType2 + + + + MembraneOsmometry + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + MembraneOsmometry + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + + + + + + PhaseHomogeneousMixture + A single phase mixture. + PhaseHomogeneousMixture + A single phase mixture. @@ -20567,159 +19948,80 @@ This requirement implies that a physical phenomena is either a decay, annihilati BlueTopAntiQuark - + - + - - MassChangeRate - Mass increment per time. - MassChangeRate - https://www.wikidata.org/wiki/Q92020547 - 4-30.3 - Mass increment per time. - - - - - - - NuclearPrecessionAngularFrequency - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - NuclearPrecessionAngularFrequency - https://www.wikidata.org/wiki/Q97641779 - 10-15.3 - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + + ThermalResistance + The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. + Thermodynamic temperature difference divided by heat flow rate. + ThermalResistance + https://qudt.org/vocab/quantitykind/ThermalResistance + https://www.wikidata.org/wiki/Q899628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 + 5-12 + Thermodynamic temperature difference divided by heat flow rate. - - - - TotalCurrent - Sum of electric current and displacement current - TotalCurrent - https://qudt.org/vocab/quantitykind/TotalCurrent - https://www.wikidata.org/wiki/Q77679732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 - 6-19.2 - Sum of electric current and displacement current + + + ExactConstant + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + ExactConstant + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - + - - - - - - - - - VolumeFlowRate - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - VolumetricFlowRate - VolumeFlowRate - https://qudt.org/vocab/quantitykind/VolumeFlowRate - https://www.wikidata.org/wiki/Q1134348 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 - 4-31 - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - https://en.wikipedia.org/wiki/Volumetric_flow_rate - - - - - T-3 L+3 M+1 I-1 Θ0 N0 J0 - - - ElectricFluxUnit - ElectricFluxUnit - - - - - - MutualInductance - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - MutualInductance - https://www.wikidata.org/wiki/Q78101401 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 - 6-41.2 - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - https://doi.org/10.1351/goldbook.M04076 - - - - - - - KineticFrictionFactor - DynamicFrictionFactor - KineticFrictionFactor - https://www.wikidata.org/wiki/Q73695445 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 - 4-23.2 - - - - - - ScanningKelvinProbe - - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - SKB - ScanningKelvinProbe - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - - - - - ElectronicModel - A physics-based model based on a physics equation describing the behaviour of electrons. - ElectronicModel - A physics-based model based on a physics equation describing the behaviour of electrons. - Density functional theory. -Hartree-Fock. - - - - - BlueUpQuark - BlueUpQuark + T-6 L+4 M+2 I-2 Θ-2 N0 J0 + + + SquareElectricPotentialPerSquareTemperatureUnit + SquareElectricPotentialPerSquareTemperatureUnit - - - - C - C + + + + + + + T-1 L-2 M+1 I0 Θ0 N0 J0 + + + MassFluxUnit + MassFluxUnit - - - - OpenCircuitHold - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - OCVHold - OpenCircuitHold - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + + + SpatiallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + SpatiallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - Synchrotron - - Synchrotron + + + + + + + T-2 L0 M+1 I-1 Θ0 N0 J0 + + + MagneticFluxDensityUnit + MagneticFluxDensityUnit @@ -20735,226 +20037,165 @@ Hartree-Fock. Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - + - - - - - - - - - MagneticFlux - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - MagneticFlux - http://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q177831 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 - https://dbpedia.org/page/Magnetic_flux - 6-22.1 - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - https://en.wikipedia.org/wiki/Magnetic_flux - https://doi.org/10.1351/goldbook.M03684 - - - - - RedCharmQuark - RedCharmQuark + + + LatticePlaneSpacing + distance between successive lattice planes + LatticePlaneSpacing + https://qudt.org/vocab/quantitykind/LatticePlaneSpacing + https://www.wikidata.org/wiki/Q105488046 + 12-3 + distance between successive lattice planes - - - + + + + - - + + T-1 L-3 M0 I0 Θ0 N+1 J0 - - - Array3D - 3-dimensional array who's spatial direct parts are matrices. - 3DArray - Array3D - 3-dimensional array who's spatial direct parts are matrices. + + AmountPerVolumeTimeUnit + AmountPerVolumeTimeUnit - + - - - Degenerency - Multiplicity - Degenerency - https://www.wikidata.org/wiki/Q902301 - 9-36.2 - https://doi.org/10.1351/goldbook.D01556 + + + FermiEnergy + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + FermiEnergy + https://qudt.org/vocab/quantitykind/FermiEnergy + https://www.wikidata.org/wiki/Q431335 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 + 12-27.1 + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + https://doi.org/10.1351/goldbook.F02340 - - - - - - - - - - - - Persistence - The interest is on the 4D object as it extends in time (process) or as it persists in time (object): -- object (focus on spatial configuration) -- process (focus on temporal evolution) - -The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. - -For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. - -Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. - -This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). - -The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. - The union of the object or process classes. - Persistence - The union of the object or process classes. + + + + Diameter + The diameter of a circle or a sphere is twice its radius. + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + Diameter + https://qudt.org/vocab/quantitykind/Diameter + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 + https://dbpedia.org/page/Diameter + 3-1.5 + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + https://en.wikipedia.org/wiki/Diameter - + - - + + + + + + - - - Capacitance - The derivative of the electric charge of a system with respect to the electric potential. - ElectricCapacitance - Capacitance - http://qudt.org/vocab/quantitykind/Capacitance - 6-13 - The derivative of the electric charge of a system with respect to the electric potential. - https://doi.org/10.1351/goldbook.C00791 - - - - - - - Gel - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - Gel - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - - - - - - - - HeatFlowRate - Amount of heat through a surface during a time interval divided by the duration of this interval. - HeatFlowRate - https://qudt.org/vocab/quantitykind/HeatFlowRate - https://www.wikidata.org/wiki/Q12160631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 - 5-7 - Amount of heat through a surface during a time interval divided by the duration of this interval. - - - - - - - DragForce - Retarding force on a body moving in a fluid. - DragForce - https://www.wikidata.org/wiki/Q206621 - 4-9.6 - Retarding force on a body moving in a fluid. + + AtomicMass + Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. + The atomic mass is often expressed as an average of the commonly found isotopes. + The mass of an atom in the ground state. + AtomicMass + The mass of an atom in the ground state. + 10-4.1 + https://en.wikipedia.org/wiki/Atomic_mass + https://doi.org/10.1351/goldbook.A00496 - - - - - Stage - A process which is an holistic temporal part of a process. - Stage - A process which is an holistic temporal part of a process. - Moving a leg is a stage of the process of running. + + + + SquareWaveVoltammetry + + Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. + The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped + The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + OSWV + OsteryoungSquareWaveVoltammetry + SWV + SquareWaveVoltammetry + https://www.wikidata.org/wiki/Q4016323 + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + https://en.wikipedia.org/wiki/Squarewave_voltammetry + https://doi.org/10.1515/pac-2018-0109 - + - - - - - - - - - Action - Physical quantity of dimension energy × time. - Action - https://qudt.org/vocab/quantitykind/Action - https://www.wikidata.org/wiki/Q846785 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 - 4-32 - Physical quantity of dimension energy × time. + + + LeakageFactor + One minus the square of the coupling factor + LeakageFactor + https://www.wikidata.org/wiki/Q78102042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 + 6-42.2 + One minus the square of the coupling factor - - + + - T-3 L+1 M0 I0 Θ0 N0 J0 + T-6 L+4 M+2 I-2 Θ0 N0 J0 - LengthPerCubeTimeUnit - LengthPerCubeTimeUnit + LorenzNumberUnit + LorenzNumberUnit - - - - - - - - - - - - - - - Fermion - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - Fermion - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion + + + + + + + + + + + File + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + File + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - + + + + DropForging + DropForging + + + - + - + - + @@ -20962,638 +20203,537 @@ The distinction between endurant and perdurant as usually introduced in literatu - DownAntiQuark - DownAntiQuark - - - - - - Exponent - Exponent - - - - - - DrawForming - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - DrawForming + CharmAntiQuark + CharmAntiQuark - - + + - T0 L-3 M0 I0 Θ0 N0 J0 + T+1 L0 M-1 I0 Θ0 N0 J0 - PerVolumeUnit - PerVolumeUnit + MechanicalMobilityUnit + MechanicalMobilityUnit - - - - - ParticlePositionVector - Position vector of a particle. - ParticlePositionVector - https://qudt.org/vocab/quantitykind/ParticlePositionVector - https://www.wikidata.org/wiki/Q105533324 - 12-7.1 - Position vector of a particle. + + + + FormingFromPowder + FormingFromPowder - + - - DirectCurrentInternalResistance - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - DirectCurrentInternalResistance - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - - - - - TauNeutrino - A neutrino belonging to the third generation of leptons. - TauNeutrino - A neutrino belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_neutrino - - - - - - Java - Java + + CharacterisationExperiment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + CharacterisationExperiment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - - - - HardeningByRolling - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - VerfestigendurchWalzen - HardeningByRolling - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + + CoulometricTitration + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + CoulometricTitration + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - - - + + + + - - - - - - + + T-1 L0 M0 I0 Θ+1 N0 J0 - - - - - - - - - MetrologicalSymbol - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - MetrologicalSymbol - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + TemperaturePerTimeUnit + TemperaturePerTimeUnit - + - - - POH - Written as pOH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) - POH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) + + + InfiniteMultiplicationFactor + In nuclear physics, the multiplication factor for an infinite medium. + InfiniteMultiplicationFactor + https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor + https://www.wikidata.org/wiki/Q99440487 + 10-78.2 + In nuclear physics, the multiplication factor for an infinite medium. - - - BlueBottomAntiQuark - BlueBottomAntiQuark + + + + SpecificInternalEnergy + Internal energy per unit mass. + SpecificInternalEnergy + https://qudt.org/vocab/quantitykind/SpecificInternalEnergy + https://www.wikidata.org/wiki/Q76357367 + 5-21.2 + Internal energy per unit mass. + + + + + + Milling + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + Milling + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + + + + + + + MeanLinearRange + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + MeanLinearRange + https://qudt.org/vocab/quantitykind/MeanLinearRange + https://www.wikidata.org/wiki/Q98681589 + 10-56 + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + https://doi.org/10.1351/goldbook.M03782 - + - T0 L+3 M0 I0 Θ0 N-1 J0 + T+7 L-3 M-2 I+3 Θ0 N0 J0 - VolumePerAmountUnit - VolumePerAmountUnit + CubicElectricChargeLengthPerSquareEnergyUnit + CubicElectricChargeLengthPerSquareEnergyUnit - - - BlueCharmAntiQuark - BlueCharmAntiQuark + + + + Planing + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + Hobeln + Planing - - - - SolidLiquidSuspension - A coarse dispersion of liquid in a solid continuum phase. - SolidLiquidSuspension - A coarse dispersion of liquid in a solid continuum phase. + + + + Peening + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + ShotPeening + Verfestigungsstrahlen + Peening + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - + + + PressureFractionUnit + Unit for quantities of dimension one that are the fraction of two pressures. + PressureFractionUnit + Unit for quantities of dimension one that are the fraction of two pressures. + + + + - T-2 L+3 M-1 I0 Θ0 N0 J0 + T-2 L+1 M+1 I0 Θ0 N0 J0 - NewtonianConstantOfGravityUnit - NewtonianConstantOfGravityUnit + ForceUnit + ForceUnit - - - - - - - - - - LuminousFlux - Perceived power of light. - LuminousFlux - http://qudt.org/vocab/quantitykind/LuminousFlux - 7-13 - Perceived power of light. - https://doi.org/10.1351/goldbook.L03646 + + + + Rolling + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + Walzen + Rolling - - - - - StatisticalWeightOfSubsystem - StatisticalWeightOfSubsystem - https://www.wikidata.org/wiki/Q96207431 - 9-36.1 + + + + MarkupLanguage + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + MarkupLanguage + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + HTML + https://en.wikipedia.org/wiki/Markup_language - + - - - - - - - - - RecombinationCoefficient - Coefficient in the law of recombination, - RecombinationCoefficient - https://qudt.org/vocab/quantitykind/RecombinationCoefficient - https://www.wikidata.org/wiki/Q98842099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 - 10-63 - Coefficient in the law of recombination, + + + ElectronCharge + The charge of an electron. + The negative of ElementaryCharge. + ElectronCharge + The charge of an electron. + https://doi.org/10.1351/goldbook.E01982 - - - - Tortuosity - Parameter for diffusion and fluid flow in porous media. - Tortuosity - https://www.wikidata.org/wiki/Q2301683 - Parameter for diffusion and fluid flow in porous media. + + + + BrunauerEmmettTellerMethod + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + BET + BrunauerEmmettTellerMethod + https://www.wikidata.org/wiki/Q795838 + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + https://en.wikipedia.org/wiki/BET_theory - - - - - - - - - - - GasSolution - A gaseous solution made of more than one component type. - GasMixture - GasSolution - A gaseous solution made of more than one component type. + + + + + + + + + + + + + + + + + + + BottomAntiQuark + BottomAntiQuark - - - - - - - - - - - CharacterisationSystem - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - CharacterisationSystem - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Measuring system + + + + Grinding + Removal of material by means of rigid or flexible discs or belts containing abrasives. + Schleifen + Grinding - - - - - NeutronYieldPerAbsorption - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - NeutronYieldPerAbsorption - https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption - https://www.wikidata.org/wiki/Q99159075 - 10-74.2 - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. + + + + UndefinedEdgeCutting + Spanen mit geometrisch unbestimmten Schneiden + UndefinedEdgeCutting - - - - - - - T-3 L0 M+1 I0 Θ-1 N0 J0 - - - ThermalTransmittanceUnit - ThermalTransmittanceUnit + + + + Namer + An interpreter who assigns a name to an object without any motivations related to the object characters. + Namer + An interpreter who assigns a name to an object without any motivations related to the object characters. - - - - - - - - + + + - - - - + + + + - MathematicalConstruct - MathematicalConstruct + Coupled + Coupled - - - - SystemUnit - SystemUnit + + + + + + + + + + + + + + + Fermion + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + Fermion + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - + - - - - - T0 L+3 M0 I0 Θ-1 N0 J0 - - - VolumePerTemperatureUnit - VolumePerTemperatureUnit - - - - - - Peening - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - ShotPeening - Verfestigungsstrahlen - Peening - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + ApparentPower + RMS value voltage multiplied by rms value of electric current. + ApparentPower + https://qudt.org/vocab/quantitykind/ApparentPower + https://www.wikidata.org/wiki/Q1930258 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 + 6-57 + RMS value voltage multiplied by rms value of electric current. - + - - - - - ThermodynamicCriticalMagneticFluxDensity - ThermodynamicCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106103200 - 12-36.1 - - - - - - CommercialProduct - An product that is ready for commercialisation. - Product - CommercialProduct - An product that is ready for commercialisation. + + + Activity + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + Activity + https://qudt.org/vocab/quantitykind/Activity + https://www.wikidata.org/wiki/Q317949 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 + 10-27 + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + https://goldbook.iupac.org/terms/view/A00114 - + - - - DiffusionLength - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - DiffusionLength - https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength - https://www.wikidata.org/wiki/Q106097176 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 - 12-33 - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. + + + POH + Written as pOH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) + POH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) - + - - MagneticQuantumNumber - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - MagneticQuantumNumber - https://qudt.org/vocab/quantitykind/MagneticQuantumNumber - https://www.wikidata.org/wiki/Q2009727 - 10-13.4 - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + + PH + At about 25 °C aqueous solutions with: +pH < 7 are acidic; +pH = 7 are neutral; +pH > 7 are alkaline. +At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + Written as pH + PH + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 + For more details, see ISO 80000-9:2009, Annex C + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + https://doi.org/10.1351/goldbook.P04524 - - - - Assigner - A estimator that uses its predefined knowledge to declare a property of an object. - Assigner - A estimator that uses its predefined knowledge to declare a property of an object. - I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. + + + + CharacterisationProperty + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + CharacterisationProperty + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - + - + - - ParticleFluenceRate - Differential quotient of fluence Φ with respect to time. - ParticleFluenceRate - https://qudt.org/vocab/quantitykind/ParticleFluenceRate - https://www.wikidata.org/wiki/Q98497410 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 - 10-44 - Differential quotient of fluence Φ with respect to time. - - - - - - SourceVoltage - Voltage between the two terminals of a voltage source when there is no electric current through the source. - SourceTension - SourceVoltage - https://qudt.org/vocab/quantitykind/SourceVoltage - https://www.wikidata.org/wiki/Q185329 - 6-36 - Voltage between the two terminals of a voltage source when there is no electric current through the source. - - - - - - Cleaning - Process for removing unwanted residual or waste material from a given product or material - Cleaning + + + SecondPolarMomentOfArea + SecondPolarMomentOfArea + https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea + https://www.wikidata.org/wiki/Q1049636 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 + 4-21.2 - + - + + - GaugePressure - GaugePressure - https://www.wikidata.org/wiki/Q109594211 - 4-14.2 - - - - - - GrowingCrystal - GrowingCrystal + SecondAxialMomentOfArea + SecondAxialMomentOfArea + https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea + https://www.wikidata.org/wiki/Q91405496 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 + 4-21.1 - - - - CyclicVoltammetry - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - CV - CyclicVoltammetry - https://www.wikidata.org/wiki/Q1147647 - https://dbpedia.org/page/Cyclic_voltammetry - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - https://en.wikipedia.org/wiki/Cyclic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + + + T-1 L-1 M0 I0 Θ0 N0 J0 + + + PerLengthTimeUnit + PerLengthTimeUnit - - - - FatigueTesting - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - FatigueTesting - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + + + + + DiffusionCoefficientForParticleNumberDensity + Proportionality constant between the particle current density J and the gradient of the particle number density n. + DiffusionCoefficientForParticleNumberDensity + https://www.wikidata.org/wiki/Q98875545 + 10-64 + Proportionality constant between the particle current density J and the gradient of the particle number density n. - - - - ElectrolyticDeposition - ElectrolyticDeposition + + + + IterativeCoupledModelsSimulation + A chain of linked physics based model simulations solved iteratively, where equations are segregated. + IterativeCoupledModelsSimulation + A chain of linked physics based model simulations solved iteratively, where equations are segregated. - - - - UndefinedEdgeCutting - Spanen mit geometrisch unbestimmten Schneiden - UndefinedEdgeCutting + + + + + + + T-1 L-1 M+1 I0 Θ0 N0 J0 + + + MassPerLengthTimeUnit + MassPerLengthTimeUnit - + + + + ThermalUtilizationFactor + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + ThermalUtilizationFactor + https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor + https://www.wikidata.org/wiki/Q99197650 + 10-76 + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + + + + - T+4 L-1 M-1 I+2 Θ0 N0 J0 + T+1 L+1 M0 I+1 Θ0 N0 J0 - CapacitancePerLengthUnit - CapacitancePerLengthUnit + LengthTimeCurrentUnit + LengthTimeCurrentUnit - + - T-1 L+2 M-1 I0 Θ+1 N0 J0 + T+2 L0 M-1 I+1 Θ0 N0 J0 - TemperatureAreaPerMassTimeUnit - TemperatureAreaPerMassTimeUnit + ElectricMobilityUnit + ElectricMobilityUnit - + - - - PhaseSpeedOfElectromagneticWaves - Angular frequency divided by angular wavenumber. - PhaseSpeedOfElectromagneticWaves - https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed - https://www.wikidata.org/wiki/Q77990619 - 6-35.1 - Angular frequency divided by angular wavenumber. + + + LongRangeOrderParameter + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + LongRangeOrderParameter + https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter + https://www.wikidata.org/wiki/Q105496124 + 12-5.2 + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - + - - PermanentLiquidPhaseSintering - PermanentLiquidPhaseSintering - - - - - - XrdGrazingIncidence - - XrdGrazingIncidence - - - - - - - - BeginTile - BeginTile - - - - - - Python - Python + + DippingForms + DippingForms - - - - - - - - - - - - - - - - - - - CharmAntiQuark - CharmAntiQuark + + + + + ElectrolyticConductivity + ElectrolyticConductivity + https://qudt.org/vocab/quantitykind/ElectrolyticConductivity + https://www.wikidata.org/wiki/Q907564 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 + 9-44 - - - + + + - - - - - - + + + T-3 L+3 M+1 I-2 Θ0 N0 J0 + - Semiotics - Semiotics + ElectricResistivityUnit + ElectricResistivityUnit - + - - PhotoluminescenceMicroscopy - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - PhotoluminescenceMicroscopy - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + + DifferentialRefractiveIndex + + DifferentialRefractiveIndex @@ -21609,647 +20749,805 @@ NOTE 4 A measuring system can be used as a measurement standard.LuminousIntensityUnit - - - - - - - T+3 L-1 M-1 I0 Θ+1 N0 J0 - - - ThermalResistivityUnit - ThermalResistivityUnit + + + + DynamicLightScattering + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + DLS + DynamicLightScattering + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - - - - + + + + Smoke + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + Smoke + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + + + + + + SolidAerosol + An aerosol composed of fine solid particles in air or another gas. + SolidAerosol + An aerosol composed of fine solid particles in air or another gas. + + + + + - - T-2 L+3 M+1 I-1 Θ+1 N0 J0 + + - - NewtonSquareMetrePerAmpereUnit - NewtonSquareMetrePerAmpereUnit + + + + Radioactivity + Decays per unit time. + RadioactiveActivity + Radioactivity + http://qudt.org/vocab/quantitykind/SpecificActivity + Decays per unit time. + https://doi.org/10.1351/goldbook.A00114 - + + + + MeanDurationOfLife + Reciprocal of the decay constant λ. + MeanLifeTime + MeanDurationOfLife + https://qudt.org/vocab/quantitykind/MeanLifetime + https://www.wikidata.org/wiki/Q1758559 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 + 10-25 + Reciprocal of the decay constant λ. + + + + - - + + - - - Exposure - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - Exposure - https://qudt.org/vocab/quantitykind/Exposure - https://www.wikidata.org/wiki/Q336938 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 - 10-88 - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. + + Gradient + Gradient - - + + - T+3 L-3 M-1 I+2 Θ0 N0 J0 + T0 L-2 M0 I0 Θ0 N+1 J0 - ElectricConductivityUnit - ElectricConductivityUnit - - - - - - - - - - - - - - - - - - - SecondGenerationFermion - SecondGenerationFermion + AmountPerAreaUnit + AmountPerAreaUnit - + - - PlasticModeling - PlasticModeling + + GrowingCrystal + GrowingCrystal - - - - FormingFromPlastic - FormingFromPlastic + + + Photon + The class of individuals that stand for photons elementary particles. + Photon + The class of individuals that stand for photons elementary particles. + https://en.wikipedia.org/wiki/Photon - + + - - QualityFactor - Factor taking into account health effects in the determination of the dose equivalent. - QualityFactor - https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor - https://www.wikidata.org/wiki/Q2122099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 - 10-82 - Factor taking into account health effects in the determination of the dose equivalent. + LevelWidth + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + LevelWidth + https://qudt.org/vocab/quantitykind/LevelWidth + https://www.wikidata.org/wiki/Q98082340 + 10-26 + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + https://doi.org/10.1351/goldbook.L03507 - + + + + Unknown + The dependent variable for which an equation has been written. + Unknown + The dependent variable for which an equation has been written. + Velocity, for the Navier-Stokes equation. + + + - - - LandeFactor - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. - GFactorOfAtom - LandeFactor - https://qudt.org/vocab/quantitykind/LandeGFactor - https://www.wikidata.org/wiki/Q1191684 - 10-14.1 - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + + + BraggAngle + Angle between the scattered ray and the lattice plane. + BraggAngle + https://qudt.org/vocab/quantitykind/BraggAngle + https://www.wikidata.org/wiki/Q105488118 + 12-4 + Angle between the scattered ray and the lattice plane. - + - - - - - T0 L0 M-1 I+1 Θ0 N0 J0 - - - ElectricCurrentPerMassUnit - ElectricCurrentPerMassUnit + + JosephsonConstant + Inverse of the magnetic flux quantum. + The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. + JosephsonConstant + http://qudt.org/vocab/constant/JosephsonConstant + Inverse of the magnetic flux quantum. - - - - AbrasiveStrippingVoltammetry - - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - AbrasiveStrippingVoltammetry - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + + + StandardAbsoluteActivity + Property of a solute in a solution. + StandardAbsoluteActivityInASolution + StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89485936 + 9-26 + Property of a solute in a solution. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Gluon - The class of individuals that stand for gluons elementary particles. - Gluon - The class of individuals that stand for gluons elementary particles. - https://en.wikipedia.org/wiki/Gluon + + + + ConductanceForAlternatingCurrent + Real part of the admittance. + ConductanceForAlternatingCurrent + https://www.wikidata.org/wiki/Q79464628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 + 6-52.2 + Real part of the admittance. - - - - - - - - - - - SolidMixture - SolidMixture + + + + Weight + Force of gravity acting on a body. + Weight + http://qudt.org/vocab/quantitykind/Weight + 4-9.2 + https://doi.org/10.1351/goldbook.W06668 + + + + + CausalConvexSystem + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + CausalConvexSystem + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + A CausalSystem whose quantum parts are all bonded to the rest of the system. - - - - - - - - - - Luminance - Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). - a photometric measure of the luminous intensity per unit area of light travelling in a given direction. - Luminance - http://qudt.org/vocab/quantitykind/Luminance - https://doi.org/10.1351/goldbook.L03640 + + + + Folding + Folding - + - GreenTopAntiQuark - GreenTopAntiQuark + RedStrangeQuark + RedStrangeQuark - + - - SpecificationLanguage - A language used to describe what a computer system should do. - SpecificationLanguage - A language used to describe what a computer system should do. - ACSL, VDM, LOTUS, MML, ... - https://en.wikipedia.org/wiki/Specification_language + + FORTRAN + FORTRAN - - - - ShearForming - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - Schubumformen - ShearForming + + + + CompiledLanguage + CompiledLanguage - - - - - - - - - - - NonPrefixedUnit - A measurement unit symbol that do not have a metric prefix as a direct spatial part. - NonPrefixedUnit - A measurement unit symbol that do not have a metric prefix as a direct spatial part. + + + + + + RollingResistance + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. + RollingDrag + RollingFrictionForce + RollingResistance + https://www.wikidata.org/wiki/Q914921 + 4-9.5 + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - - - MesoscopicSubstance - MesoscopicSubstance + + + + DampingCoefficient + Inverse of the time constant of an exponentially varying quantity. + DampingCoefficient + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 + 3-24 + Inverse of the time constant of an exponentially varying quantity. - + - - - - - - - - - - AbsorbedDose - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - AbsorbedDose - http://qudt.org/vocab/quantitykind/AbsorbedDose - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - 10-81.1 - https://doi.org/10.1351/goldbook.A00031 + + PositionVector + Vector quantity from the origin of a coordinate system to a point in space. + PositionVector + https://www.wikidata.org/wiki/Q192388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 + https://dbpedia.org/page/Position_(geometry) + 3-1.10 + Vector quantity from the origin of a coordinate system to a point in space. + https://en.wikipedia.org/wiki/Position_(geometry) - + + + + InspectionDevice + InspectionDevice + + + + + + Spacing + Spacing + + + + + Deduced + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + Deduced + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + + + - - SpecificEnergyImparted - In nuclear physics, energy imparted per mass. - SpecificEnergyImparted - https://qudt.org/vocab/quantitykind/SpecificEnergyImparted - https://www.wikidata.org/wiki/Q99566195 - 10-81.2 - In nuclear physics, energy imparted per mass. + SpecificEnthalpy + Enthalpy per unit mass. + SpecificEnthalpy + https://qudt.org/vocab/quantitykind/SpecificEnthalpy + https://www.wikidata.org/wiki/Q21572993 + 5-21.3 + Enthalpy per unit mass. + https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy - - - - - - / - - - - Division - Division + + + RedBottomQuark + RedBottomQuark - + - - - - - - - - - SpecificActivity - Quotient of the activity A of a sample and the mass m of that sample. - MassicActivity - SpecificActivity - https://qudt.org/vocab/quantitykind/SpecificActivity - https://www.wikidata.org/wiki/Q2823748 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 - 10-28 - Quotient of the activity A of a sample and the mass m of that sample. - https://doi.org/10.1351/goldbook.S05790 + + + SuperconductionTransitionTemperature + Critical thermodynamic temperature of a superconductor. + SuperconductionTransitionTemperature + https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature + https://www.wikidata.org/wiki/Q106103037 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 + 12-35.3 + Critical thermodynamic temperature of a superconductor. - - - - - VacuumMagneticPermeability - The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. - The value of magnetic permeability in a classical vacuum. - PermeabilityOfVacuum - VacuumMagneticPermeability - http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum - 6-26.1 + + + GluonType5 + GluonType5 - - - - - PureParallelWorkflow - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - EmbarassinglyParallelWorkflow - PureParallelWorkflow - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + + + BlueDownAntiQuark + BlueDownAntiQuark + + + + + + + ThermalDiffusionRatio + ThermalDiffusionRatio + https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio + https://www.wikidata.org/wiki/Q96249433 + 9-40.1 - - - - ParallelWorkflow - ParallelWorkflow + + + + RawSample + + RawSample - - - - - - - T+1 L0 M0 I+1 Θ0 N-1 J0 - - - ElectricChargePerAmountUnit - ElectricChargePerAmountUnit + + + + ThermochemicalTreatment + ThermochemicalTreatment - - - - - - - T+1 L+2 M0 I0 Θ0 N0 J0 - - - AreaTimeUnit - AreaTimeUnit + + + + MetallicPowderSintering + MetallicPowderSintering - - - - FromWorkPIecetoWorkPiece - FromWorkPIecetoWorkPiece + + + + Strain + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + Strain + http://qudt.org/vocab/quantitykind/Strain + 4-17.1 + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - + + - + - + - - - - - - - - - - - - - - - - - + + - GreenAntiQuark - GreenAntiQuark + AntiNeutrinoType + AntiNeutrinoType - - - + + + + - - - - - - + + T0 L+4 M0 I0 Θ0 N0 J0 - - - Manufacturer - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - Manufacturer - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + + QuarticLengthUnit + QuarticLengthUnit + + + + + + CSharp + C# + CSharp + + + + + TauAntiNeutrino + TauAntiNeutrino + + + + + ResourceIdentifier + + ResourceIdentifier + + + + + + CentreOfMass + In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + CentreOfMass + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + https://en.wikipedia.org/wiki/Center_of_mass + + + + + + + + + + + + + CompositeBoson + CompositeBoson + Examples of composite particles with integer spin: +spin 0: H1 and He4 in ground state, pion +spin 1: H1 and He4 in first excited state, meson +spin 2: O15 in ground state. + + + + + + TransferMolding + TransferMolding + + + + + + AqueousSolution + A liquid solution in which the solvent is water. + AqueousSolution + A liquid solution in which the solvent is water. + + + + + + + LiquidSolution + A liquid solution made of two or more component substances. + LiquidSolution + A liquid solution made of two or more component substances. + + + + + + AdsorptiveStrippingVoltammetry + A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + AdSV + AdsorptiveStrippingVoltammetry + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + https://doi.org/10.1515/pac-2018-0109 + + + + + + Galvanizing + Galvanizing + + + + + + Flanging + Flanging + + + + + + RadiantFlux + The radiant energy emitted, reflected, transmitted or received, per unit time. + RadiantFlux + http://qudt.org/vocab/quantitykind/RadiantFlux + https://doi.org/10.1351/goldbook.R05046 + + + + + + AdditiveManufacturing + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + GenerativeManufacturing + AdditiveManufacturing + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + + + + + + C + C + + + + + + + ElementaryCharge + The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + ElementaryCharge + http://qudt.org/vocab/quantitykind/ElementaryCharge + 10-5.1 + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + https://doi.org/10.1351/goldbook.E02032 + + + + + BlueCharmQuark + BlueCharmQuark - + + + + + ThermalDiffusionFactor + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + ThermalDiffusionFactor + https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor + https://www.wikidata.org/wiki/Q96249629 + 9-40.2 + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + + + + - T0 L-1 M0 I0 Θ-1 N0 J0 + T0 L0 M+1 I0 Θ0 N+1 J0 - PerLengthTemperatureUnit - PerLengthTemperatureUnit + MassAmountOfSubstanceUnit + MassAmountOfSubstanceUnit - + + + + SolidSolidSuspension + A coarse dispersion of solid in a solid continuum phase. + SolidSolidSuspension + A coarse dispersion of solid in a solid continuum phase. + Granite, sand, dried concrete. + + + - + + + + + + + + DynamicViscosity + The measure of the resistance of a fluid to flow when an external force is applied. + Viscosity + DynamicViscosity + https://qudt.org/vocab/quantitykind/DynamicViscosity + https://www.wikidata.org/wiki/Q15152757 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 + 4-24 + The measure of the resistance of a fluid to flow when an external force is applied. + https://doi.org/10.1351/goldbook.D01877 + + + + + - NeelTemperature - Critical thermodynamic temperature of an antiferromagnet. - NeelTemperature - https://www.wikidata.org/wiki/Q830311 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 - 12-35.2 - Critical thermodynamic temperature of an antiferromagnet. + DebyeTemperature + DebyeTemperature + https://qudt.org/vocab/quantitykind/DebyeTemperature + https://www.wikidata.org/wiki/Q3517821 + 12-11 - - - - FORTRAN - FORTRAN + + + + + + + + + + Mounting + The sample is mounted on a holder. + The sample is mounted on a holder. + Mounting + The sample is mounted on a holder. - + - - IsothermalConversion - IsothermalConversion + + Cementing + Cementing - + + + + InterferenceFitting + InterferenceFitting + + + - - Porosity - Ratio of void volume and total volume of a porous material. - Porosity - https://www.wikidata.org/wiki/Q622669 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 - Ratio of void volume and total volume of a porous material. - https://doi.org/10.1351/goldbook.P04762 + + + + + T0 L-2 M0 I+1 Θ-1 N0 J0 + + + ElectricCurrentDensityPerTemperatureUnit + ElectricCurrentDensityPerTemperatureUnit - + - - - EnergyImparted - Sum of energies deposited by ionizing radiation in a given volume. - EnergyImparted - https://qudt.org/vocab/quantitykind/EnergyImparted - https://www.wikidata.org/wiki/Q99526944 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 - 10-80.1 - Sum of energies deposited by ionizing radiation in a given volume. + + + + CubicExpansionCoefficient + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + alpha_V = (1/V) * (dV/dT) + CubicExpansionCoefficient + https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient + https://www.wikidata.org/wiki/Q74761076 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 + 5-3.2 + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - + + + QuantumData + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + QuantumData + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + + + - - Chronoamperometry - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - AmperiometricDetection - AmperometricCurrentTimeCurve - Chronoamperometry - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - https://doi.org/10.1515/pac-2018-0109 + + CompressionTesting + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + CompressionTesting + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - - - - RadiusOfCurvature - Radius of the osculating circle of a planar curve at a particular point of the curve. - RadiusOfCurvature - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 - https://dbpedia.org/page/Radius_of_curvature - 3-1.12 - Radius of the osculating circle of a planar curve at a particular point of the curve. - https://en.wikipedia.org/wiki/Radius_of_curvature + + + + + Gel + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + Gel + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - - - - IsobaricHeatCapacity - Heat capacity at constant pressure. - HeatCapacityAtConstantPressure - IsobaricHeatCapacity - https://www.wikidata.org/wiki/Q112187490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 - 5-16.2 - Heat capacity at constant pressure. + + + + TransientLiquidPhaseSintering + TransientLiquidPhaseSintering - + - - PulsedElectroacousticMethod + + + HardwareManufacturer - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - PulsedElectroacousticMethod - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - https://doi.org/10.1007/s10832-023-00332-y + HardwareManufacturer - + - - - IsentropicCompressibility - IsentropicCompressibility - https://qudt.org/vocab/quantitykind/IsentropicCompressibility - https://www.wikidata.org/wiki/Q2990695 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 - 5-5.2 + + MagneticPolarisation + Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. + MagneticPolarisation + https://qudt.org/vocab/quantitykind/MagneticPolarization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54 + 6-29 + Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - + - - - - - T+2 L-5 M-1 I0 Θ0 N0 J0 - - - EnergyDensityOfStatesUnit - EnergyDensityOfStatesUnit + + SpecificHelmholtzEnergy + Helmholtz energy per unit mass. + SpecificHelmholtzEnergy + https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy + https://www.wikidata.org/wiki/Q76359554 + 5-21.4 + Helmholtz energy per unit mass. - + - T-2 L+4 M+1 I0 Θ0 N0 J0 + T-1 L-4 M+1 I0 Θ0 N0 J0 - EnergyAreaUnit - EnergyAreaUnit - - - - - - SpeedFractionUnit - Unit for quantities of dimension one that are the fraction of two speeds. - SpeedFractionUnit - Unit for quantities of dimension one that are the fraction of two speeds. - Unit for refractive index. + MassPerQuarticLengthTimeUnit + MassPerQuarticLengthTimeUnit - - - - NaturalMaterial - A Material occurring in nature, without the need of human intervention. - NaturalMaterial - A Material occurring in nature, without the need of human intervention. + + + + + + + + + + LuminousIntensity + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. + LuminousIntensity + http://qudt.org/vocab/quantitykind/LuminousIntensity + 7-14 + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - - - - QuantumAnnihilation - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - QuantumAnnihilation - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + + + + LightAndRadiationQuantity + Quantities categorised according to ISO 80000-7. + LightAndRadiationQuantity + Quantities categorised according to ISO 80000-7. @@ -22275,468 +21573,764 @@ NOTE 4 A measuring system can be used as a measurement standard.https://en.wikipedia.org/wiki/Strange_quark - + + + + ConcreteOrPlasterPouring + ConcreteOrPlasterPouring + + + + + + + + + + + + + + + + + + + + + BottomQuark + BottomQuark + https://en.wikipedia.org/wiki/Bottom_quark + + + - - SecondaryIonMassSpectrometry + + SamplePreparationInstrument - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - SIMS - SecondaryIonMassSpectrometry - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + SamplePreparationInstrument + + + + + + FatigueTesting + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + FatigueTesting + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + + + + + + + + + + + + + SpecificEntropy + SpecificEntropy + https://qudt.org/vocab/quantitykind/SpecificEntropy + https://www.wikidata.org/wiki/Q69423705 + 5-19 + + + + + + + + + T+1 L+2 M0 I0 Θ+1 N0 J0 + + + AreaTimeTemperatureUnit + AreaTimeTemperatureUnit + + + + + + + ProtonMass + The rest mass of a proton. + ProtonMass + http://qudt.org/vocab/constant/ProtonMass + https://doi.org/10.1351/goldbook.P04914 + + + + + + NeutronSpinEchoSpectroscopy + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + NSE + NeutronSpinEchoSpectroscopy + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + + + + + + + + + T0 L+1 M0 I0 Θ-1 N0 J0 + + + LengthPerTemperatureUnit + LengthPerTemperatureUnit + + + + + + + Extrusion + Extrusion + + + + + + + KineticFrictionFactor + DynamicFrictionFactor + KineticFrictionFactor + https://www.wikidata.org/wiki/Q73695445 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 + 4-23.2 + + + + + + + + / + + + + Division + Division + + + + + + SolidGasSuspension + A coarse dispersion of gas in a solid continuum phase. + SolidGasSuspension + A coarse dispersion of gas in a solid continuum phase. + + + + + + + + + T+3 L-1 M-1 I0 Θ+1 N0 J0 + + + ThermalResistivityUnit + ThermalResistivityUnit + + + + + + + NonLeakageProbability + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + NonLeakageProbability + https://qudt.org/vocab/quantitykind/Non-LeakageProbability + https://www.wikidata.org/wiki/Q99415566 + 10-77 + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + + + + + + FiberboardManufacturing + FiberboardManufacturing + + + + + + Dust + A suspension of fine particles in the atmosphere. + Dust + A suspension of fine particles in the atmosphere. + + + + + + VaporDeposition + VaporDeposition - - - - Calorimetry - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - Calorimetry - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + + + + FormingFromGas + FormingFromGas - + - - ComplexPower - Voltage phasor multiplied by complex conjugate of the current phasor. - ComplexApparentPower - ComplexPower - https://qudt.org/vocab/quantitykind/ComplexPower - https://www.wikidata.org/wiki/Q65239736 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 - 6-59 - Voltage phasor multiplied by complex conjugate of the current phasor. + + + OsmoticPressure + Measure of the tendency of a solution to take in pure solvent by osmosis. + OsmoticPressure + https://qudt.org/vocab/quantitykind/OsmoticPressure + https://www.wikidata.org/wiki/Q193135 + 9-28 + Measure of the tendency of a solution to take in pure solvent by osmosis. + https://doi.org/10.1351/goldbook.O04344 - + + + + + Expression + A well-formed finite combination of mathematical symbols according to some specific rules. + Expression + A well-formed finite combination of mathematical symbols according to some specific rules. + + + - + - BindingFraction - The ratio of the binding energy of a nucleus to the atomic mass number. - BindingFraction - https://qudt.org/vocab/quantitykind/BindingFraction - https://www.wikidata.org/wiki/Q98058362 - 10-23.2 - The ratio of the binding energy of a nucleus to the atomic mass number. + GrandCanonicalPartionFunction + GrandPartionFunction + GrandCanonicalPartionFunction + https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96176022 + 9-35.3 - + - + - - Molality - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - AmountPerMass - Molality - https://www.wikidata.org/wiki/Q172623 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 - 9-15 - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - https://doi.org/10.1351/goldbook.M03970 + + Coercivity + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. + Coercivity + https://qudt.org/vocab/quantitykind/Coercivity + https://www.wikidata.org/wiki/Q432635 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 + 6-31 + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - + - AntiTau - AntiTau + WNegativeBoson + WNegativeBoson - - - + + + + + + + + + - - T0 L0 M0 I0 Θ+1 N0 J0 + + - TemperatureUnit - TemperatureUnit - - - - - - Gathering - Gathering - - - - - - - ElectronBackscatterDiffraction - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - EBSD - ElectronBackscatterDiffraction - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + Boolean + A boolean number. + Boolean + A boolean number. - + - - - IsentropicExponent - For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. - IsentropicExponent - https://qudt.org/vocab/quantitykind/IsentropicExponent - https://www.wikidata.org/wiki/Q75775739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 - 5-17.2 + + + + + + + + + LinearDensityOfElectricCharge + The derivative of the electric charge of a system with respect to the length. + LinearDensityOfElectricCharge + https://www.wikidata.org/wiki/Q77267838 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 + 6-5 + The derivative of the electric charge of a system with respect to the length. - + - - - ProtonMass - The rest mass of a proton. - ProtonMass - http://qudt.org/vocab/constant/ProtonMass - https://doi.org/10.1351/goldbook.P04914 + + + + + T-1 L0 M0 I0 Θ0 N+1 J0 + + + CatalyticActivityUnit + CatalyticActivityUnit - - - - JosephsonConstant - Inverse of the magnetic flux quantum. - The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. - JosephsonConstant - http://qudt.org/vocab/constant/JosephsonConstant - Inverse of the magnetic flux quantum. + + + + Dilatometry + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. + Dilatometry + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - - - RedTopQuark - RedTopQuark + + + + ChipboardManufacturing + ChipboardManufacturing - - - BlueDownQuark - BlueDownQuark + + + + ElectricImpedance + Measure of the opposition that a circuit presents to a current when a voltage is applied. + Impedance + ElectricImpedance + http://qudt.org/vocab/quantitykind/Impedance + https://www.wikidata.org/wiki/Q179043 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 + 6-51.1 + https://en.wikipedia.org/wiki/Electrical_impedance - - - + + + - - - - - - + + + T-2 L+2 M0 I0 Θ-1 N0 J0 + - Replica - An icon that not only resembles the object, but also can express some of the object's functions. - Replica - An icon that not only resembles the object, but also can express some of the object's functions. - A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. - Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). + EntropyPerMassUnit + EntropyPerMassUnit - + + + + Soldering + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + Löten + Soldering + + + - - - SuperconductorEnergyGap - Width of the forbidden energy band in a superconductor. - SuperconductorEnergyGap - https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap - https://www.wikidata.org/wiki/Q106127898 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 - 12-37 - Width of the forbidden energy band in a superconductor. + + Solubility + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. + Solubility + https://www.wikidata.org/wiki/Q170731 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + https://doi.org/10.1351/goldbook.S05740 - + - - OutlierRemoval - - Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. - OutlierRemoval - Outlier removal refers to the process of identifying and eliminating anomalous data points that deviate significantly from the overall pattern of a dataset. These outliers are generally considered to be observations that are unusually distant from other values and can potentially distort the results of analyses. + + Fractography + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + Fractography + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - - - GreenDownQuark - GreenDownQuark + + + + + + + + + + + AreaDensity + Mass per unit area. + AreaDensity + http://qudt.org/vocab/quantitykind/SurfaceDensity + https://doi.org/10.1351/goldbook.S06167 - - - - - - - - - - - - - - - - - - - UpAntiQuarkType - UpAntiQuarkType + + + + GasLiquidSuspension + A coarse dispersion of liquid in a gas continuum phase. + GasLiquidSuspension + A coarse dispersion of liquid in a gas continuum phase. + Rain, spray. - - - - CPlusPlus - A language object respecting the syntactic rules of C++. - C++ - CPlusPlus - A language object respecting the syntactic rules of C++. + + + + + + + T+3 L-3 M-1 I+2 Θ0 N-1 J0 + + + ElectricConductivityPerAmountUnit + ElectricConductivityPerAmountUnit - - - CausallHairedSystem - CausallHairedSystem + + + + ElectricReactance + The imaginary part of the impedance. + The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. + Reactance + ElectricReactance + http://qudt.org/vocab/quantitykind/Reactance + https://www.wikidata.org/wiki/Q193972 + 6-51.3 + The imaginary part of the impedance. + https://en.wikipedia.org/wiki/Electrical_reactance + https://doi.org/10.1351/goldbook.R05162 - - - - MathematicalFunction - A function defined using functional notation. - A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). - FunctionDefinition - MathematicalFunction - A function defined using functional notation. - y = f(x) + + + + + + + T-2 L+3 M+1 I-1 Θ+1 N0 J0 + + + NewtonSquareMetrePerAmpereUnit + NewtonSquareMetrePerAmpereUnit - - - - Grinding - Removal of material by means of rigid or flexible discs or belts containing abrasives. - Schleifen - Grinding + + + + + + + + + + + + + + SimulationLanguage + A computer language used to describe simulations. + SimulationLanguage + A computer language used to describe simulations. + https://en.wikipedia.org/wiki/Simulation_language - + - + - - HallCoefficient - The relation between electric field strength and current density in an isotropic conductor. - HallCoefficient - https://qudt.org/vocab/quantitykind/HallCoefficient - https://www.wikidata.org/wiki/Q997439 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 - 12-19 - The relation between electric field strength and current density in an isotropic conductor. + + ThermalInsulance + Reciprocal of the coefficient of heat transfer. + CoefficientOfThermalInsulance + ThermalInsulance + https://qudt.org/vocab/quantitykind/ThermalInsulance + https://www.wikidata.org/wiki/Q2596212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 + 5-11 + Reciprocal of the coefficient of heat transfer. - - - - ArithmeticEquation - ArithmeticEquation - 1 + 1 = 2 + + + + FlameCutting + FlameCutting - + + + + + StatisticalWeightOfSubsystem + StatisticalWeightOfSubsystem + https://www.wikidata.org/wiki/Q96207431 + 9-36.1 + + + - - BrunauerEmmettTellerMethod - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - BET - BrunauerEmmettTellerMethod - https://www.wikidata.org/wiki/Q795838 - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - https://en.wikipedia.org/wiki/BET_theory + + FieldEmissionScanningElectronMicroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + FE-SEM + FieldEmissionScanningElectronMicroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + + + + + + PeriodDuration + duration of one cycle of a periodic event + Period + PeriodDuration + https://qudt.org/vocab/quantitykind/Period + https://www.wikidata.org/wiki/Q2642727 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 + 3-14 + duration of one cycle of a periodic event + https://doi.org/10.1351/goldbook.P04493 + + + + + + + CountingUnit + Unit for dimensionless quantities that have the nature of count. + CountingUnit + http://qudt.org/vocab/unit/NUM + 1 + Unit for dimensionless quantities that have the nature of count. + Unit of atomic number +Unit of number of cellular +Unit of degeneracy in quantum mechanics + + + + + + Assigned + Assigned - + + + + + HoleDensity + Number of holes in valence band per volume. + HoleDensity + https://qudt.org/vocab/quantitykind/HoleDensity + https://www.wikidata.org/wiki/Q105971101 + 12-29.2 + Number of holes in valence band per volume. + + + - T+2 L+2 M0 I0 Θ0 N0 J0 + T0 L0 M-1 I0 Θ0 N0 J0 - AreaSquareTimeUnit - AreaSquareTimeUnit + ReciprocalMassUnit + ReciprocalMassUnit - - - - ThermomechanicalTreatment - ThermomechanicalTreatment + + + + + ShortRangeOrderParameter + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + ShortRangeOrderParameter + https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter + https://www.wikidata.org/wiki/Q105495979 + 12-5.1 + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - - - - DefinedEdgeCutting - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - Spanen mit geometrisch bestimmten Schneiden - DefinedEdgeCutting + + + GreenBottomQuark + GreenBottomQuark - + - - - WaveVector - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - WaveVector - https://www.wikidata.org/wiki/Q657009 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 - 3-21 - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - https://en.wikipedia.org/wiki/Wave_vector + + + + + T+2 L-3 M-1 I0 Θ0 N+1 J0 + + + AmountSquareTimePerMassVolumeUnit + AmountSquareTimePerMassVolumeUnit - + - - - - - - - - - - - - - - - - - UpAntiQuark - UpAntiQuark + GreenStrangeQuark + GreenStrangeQuark - - - - - - - - - - - - - - - - - - - - AntiNeutrinoType - AntiNeutrinoType + + + + HardeningByForging + HardeningByForging - + - T-2 L0 M+2 I0 Θ0 N0 J0 + T0 L0 M-1 I0 Θ0 N+1 J0 - SquareMassPerSquareTimeUnit - SquareMassPerSquareTimeUnit + AmountPerMassUnit + AmountPerMassUnit - - - - CriticalAndSupercriticalChromatography - - CriticalAndSupercriticalChromatography + + + + + + + + + + + + + + + + + + + + + + Meson + Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. + Most mesons are composed of one quark and one antiquark. + Meson + Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. + Most mesons are composed of one quark and one antiquark. + https://en.wikipedia.org/wiki/Meson - + + + + + + + + + + + IonicStrength + Charge number is a quantity of dimension one defined in ChargeNumber. + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + IonicStrength + https://qudt.org/vocab/quantitykind/IonicStrength + https://www.wikidata.org/wiki/Q898396 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 + 9-42 + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + https://doi.org/10.1351/goldbook.I03180 + + + - T-4 L+2 M0 I0 Θ0 N0 J0 + T-6 L-2 M+2 I0 Θ0 N0 J0 - AreaPerQuarticTimeUnit - AreaPerQuarticTimeUnit + SquarePressurePerSquareTimeUnit + SquarePressurePerSquareTimeUnit - + - - - GrandCanonicalPartionFunction - GrandPartionFunction - GrandCanonicalPartionFunction - https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96176022 - 9-35.3 - - - - - - Dilatometry - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. - Dilatometry - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + + + + + + + + + DoseEquivalent + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + DoseEquivalent + http://qudt.org/vocab/quantitykind/DoseEquivalent + 10-83.1 + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + https://doi.org/10.1351/goldbook.E02101 - - - - NuclearMagneticResonance - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - Magnetic resonance spectroscopy (MRS) - NMR - NuclearMagneticResonance - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + + + RedCharmQuark + RedCharmQuark - - - - StandardizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - StandardizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + + + + + + + T-1 L-2 M0 I0 Θ0 N+1 J0 + + + AmountPerAreaTimeUnit + AmountPerAreaTimeUnit @@ -22752,193 +22346,354 @@ NOTE 4 A measuring system can be used as a measurement standard.AmountPerMassTimeUnit - + + + + EmpiricalSimulationSoftware + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + EmpiricalSimulationSoftware + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + + + - + - SuperconductionTransitionTemperature - Critical thermodynamic temperature of a superconductor. - SuperconductionTransitionTemperature - https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature - https://www.wikidata.org/wiki/Q106103037 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 - 12-35.3 - Critical thermodynamic temperature of a superconductor. + RelaxationTime + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + RelaxationTime + https://www.wikidata.org/wiki/Q106041085 + 12-32.1 + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - + + + + + + + + + + + + + + + + + + + UpAntiQuark + UpAntiQuark + + + + + + + + + + + + + + + + + + + + + DownAntiQuark + DownAntiQuark + + + + + + + + + + + + + + + + + + + + + TopAntiQuark + TopAntiQuark + + + - + - - ThermalDiffusivity - ThermalDiffusionCoefficient - ThermalDiffusivity - https://qudt.org/vocab/quantitykind/ThermalDiffusivity - https://www.wikidata.org/wiki/Q3381809 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 - 5-14 + + Exposure + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. + Exposure + https://qudt.org/vocab/quantitykind/Exposure + https://www.wikidata.org/wiki/Q336938 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 + 10-88 + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - - - - PeriodDuration - duration of one cycle of a periodic event - Period - PeriodDuration - https://qudt.org/vocab/quantitykind/Period - https://www.wikidata.org/wiki/Q2642727 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 - 3-14 - duration of one cycle of a periodic event - https://doi.org/10.1351/goldbook.P04493 + + + + Java + Java - - - - DrawForms - DrawForms + + + MetallicMaterial + MetallicMaterial - - - - EmpiricalSimulationSoftware - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. - EmpiricalSimulationSoftware - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + + + + + + * + + + + Multiplication + Multiplication - + - - PaperManufacturing - PaperManufacturing + + DeepFreezing + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + Cryogenic treatment, Deep-freeze + Tieftemperaturbehandeln + DeepFreezing + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - - - - - - - - - - - ParticulateMatter - ParticulateMatter + + + + + StandardEquilibriumConstant + ThermodynamicEquilibriumConstant + StandardEquilibriumConstant + https://www.wikidata.org/wiki/Q95993378 + 9-32 + https://doi.org/10.1351/goldbook.S05915 + + + + + + Nanoindentation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + Nanoindentation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Gluon + The class of individuals that stand for gluons elementary particles. + Gluon + The class of individuals that stand for gluons elementary particles. + https://en.wikipedia.org/wiki/Gluon - - - SpatiallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - SpatiallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + + CharacterisationDataValidation + Procedure to validate the characterisation data. + CharacterisationDataValidation + Procedure to validate the characterisation data. - - - - Irradiate - Irradiate + + + + LuminousEfficacyOf540THzRadiation + Defines the Candela base unit in the SI system. + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + LuminousEfficacyOf540THzRadiation + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - + + + + Signal + + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + Signal + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + + + - - + - - T-6 L+4 M+2 I-2 Θ-2 N0 J0 + + - - SquareElectricPotentialPerSquareTemperatureUnit - SquareElectricPotentialPerSquareTemperatureUnit + + + + MolarMass + Mass per amount of substance. + MolarMass + https://qudt.org/vocab/quantitykind/MolarMass + https://www.wikidata.org/wiki/Q145623 + 9-4 + Mass per amount of substance. - - - - InterferenceFitting - InterferenceFitting + + + + + TotalCrossSection + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + TotalCrossSection + https://qudt.org/vocab/quantitykind/TotalCrossSection + https://www.wikidata.org/wiki/Q98206553 + 10-38.2 + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - - - - ElectricCurrentAssistedSintering - ElectricCurrentAssistedSintering + + + DerivedQuantity + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + DerivedQuantity + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + derived quantity - + - T+2 L-2 M-1 I+2 Θ0 N0 J0 + T0 L+1 M0 I0 Θ0 N-1 J0 - MagneticReluctanceUnit - MagneticReluctanceUnit + LengthPerAmountUnit + LengthPerAmountUnit - + - - - - - T-1 L-3 M0 I0 Θ0 N+1 J0 - - - AmountPerVolumeTimeUnit - AmountPerVolumeTimeUnit + + + AngularReciprocalLatticeVector + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + AngularReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475278 + 12-2.1 + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - - - - + + + - - T0 L0 M0 I0 Θ0 N-1 J0 + + - - PerAmountUnit - PerAmountUnit - - - - - - TightlyCoupledModelsSimulation - A simulation in which more than one model are solved together with a coupled method. - TightlyCoupledModelsSimulation - A simulation in which more than one model are solved together with a coupled method. - Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. + + + + VolumicTotalCrossSection + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms + MacroscopicTotalCrossSection + VolumicTotalCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection + https://www.wikidata.org/wiki/Q98280548 + 10-42.2 + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - + - + - + - + @@ -22946,123 +22701,108 @@ NOTE 4 A measuring system can be used as a measurement standard. - BottomAntiQuark - BottomAntiQuark - - - - - - SolidAngle - Ratio of area on a sphere to its radius squared. - SolidAngle - http://qudt.org/vocab/quantitykind/SolidAngle - 3-6 - Ratio of area on a sphere to its radius squared. - https://doi.org/10.1351/goldbook.S05732 - - - - - - - VolumeFraction - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - VolumeFraction - http://qudt.org/vocab/quantitykind/VolumeFraction - 9-14 - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - https://doi.org/10.1351/goldbook.V06643 - - - - - - RadiantFlux - The radiant energy emitted, reflected, transmitted or received, per unit time. - RadiantFlux - http://qudt.org/vocab/quantitykind/RadiantFlux - https://doi.org/10.1351/goldbook.R05046 + + + + + + + + + + + + AntiQuark + AntiQuark - + - - + - - T-1 L-2 M0 I0 Θ0 N+1 J0 + + - - AmountPerAreaTimeUnit - AmountPerAreaTimeUnit + + + + SpecificActivity + Quotient of the activity A of a sample and the mass m of that sample. + MassicActivity + SpecificActivity + https://qudt.org/vocab/quantitykind/SpecificActivity + https://www.wikidata.org/wiki/Q2823748 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 + 10-28 + Quotient of the activity A of a sample and the mass m of that sample. + https://doi.org/10.1351/goldbook.S05790 - - - - VaporDeposition - VaporDeposition + + + MultiParticlePath + MultiParticlePath - - - - FormingFromGas - FormingFromGas + + + AnalogicalIcon + An icon that focus on HOW the object works. + An icon that represents the internal logical structure of the object. + AnalogicalIcon + An icon that represents the internal logical structure of the object. + A physics equation is replicating the mechanisms internal to the object. + Electrical diagram is diagrammatic and resemblance + MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. + An icon that focus on HOW the object works. + The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). - + - - BlowMolding - BlowMolding + + Presses + Presses - + - - ConfocalMicroscopy - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - ConfocalMicroscopy - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - - - - - - - CountingUnit - Unit for dimensionless quantities that have the nature of count. - CountingUnit - http://qudt.org/vocab/unit/NUM - 1 - Unit for dimensionless quantities that have the nature of count. - Unit of atomic number -Unit of number of cellular -Unit of degeneracy in quantum mechanics + + IonMobilitySpectrometry + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + IMS + IonMobilitySpectrometry + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - + - T-2 L+3 M+1 I0 Θ0 N-1 J0 + T-4 L+2 M0 I0 Θ0 N0 J0 - EnergyLengthPerAmountUnit - EnergyLengthPerAmountUnit + AreaPerQuarticTimeUnit + AreaPerQuarticTimeUnit - - - RedDownQuark - RedDownQuark + + + + + + + T+3 L-2 M-1 I0 Θ+1 N0 J0 + + + ThermalResistanceUnit + ThermalResistanceUnit - + @@ -23072,261 +22812,371 @@ Unit of degeneracy in quantum mechanics - AcceptorDensity - quotient of number of acceptor levels and volume. - AcceptorDensity - https://qudt.org/vocab/quantitykind/AcceptorDensity - https://www.wikidata.org/wiki/Q105979968 - 12-29.5 - quotient of number of acceptor levels and volume. + ElectronDensity + Number of electrons in conduction band per volume. + ElectronDensity + https://qudt.org/vocab/quantitykind/ElectronDensity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 + 12-29.1 + Number of electrons in conduction band per volume. - + - - - - - - - - Stress - Force per unit oriented surface area . - Measure of the internal forces that neighboring particles of a continuous material exert on each other. - Stress - http://qudt.org/vocab/quantitykind/Stress - 4-15 + + + IsothermalCompressibility + IsothermalCompressibility + https://qudt.org/vocab/quantitykind/IsothermalCompressibility + https://www.wikidata.org/wiki/Q2990696 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 + 5-5.1 - - - + + + GreenDownAntiQuark + GreenDownAntiQuark + + + + + Graviton + The class of individuals that stand for gravitons elementary particles. + While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + +For this reason graviton is an useful concept to homogenize the approach between different fields. + Graviton + The class of individuals that stand for gravitons elementary particles. + While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + +For this reason graviton is an useful concept to homogenize the approach between different fields. + https://en.wikipedia.org/wiki/Graviton + + + + - + - + - PhysicalConstant - Physical constants are categorised into "exact" and measured constants. + PhysicallyInteractingConvex + PhysicallyInteractingConvex + -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - PhysicalConstant - Physical constants are categorised into "exact" and measured constants. + + + + + + + T0 L-3 M0 I0 Θ0 N+1 J0 + + + AmountConcentrationUnit + AmountConcentrationUnit + -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - https://en.wikipedia.org/wiki/List_of_physical_constants + + + + RapidPrototyping + Application of additive manufacturing intended for reducing the time needed for producing prototypes. + RapidPrototyping + Application of additive manufacturing intended for reducing the time needed for producing prototypes. - - - - - ParticleEmissionRate - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - ParticleEmissionRate - https://www.wikidata.org/wiki/Q98153151 - 10-36 - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedAntiQuark + RedAntiQuark - - - - - MeanFreePathOfPhonons - average distance that phonons travel between two successive interactions - MeanFreePathOfPhonons - https://qudt.org/vocab/quantitykind/PhononMeanFreePath - https://www.wikidata.org/wiki/Q105672255 - 12-15.1 - average distance that phonons travel between two successive interactions + + + + Nexafs + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Nexafs + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - + - - - CoherenceLength - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature - CoherenceLength - https://www.wikidata.org/wiki/Q1778793 - 12-38.2 - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + + + + + + + + Stress + Force per unit oriented surface area . + Measure of the internal forces that neighboring particles of a continuous material exert on each other. + Stress + http://qudt.org/vocab/quantitykind/Stress + 4-15 - - - - CeramicSintering - CeramicSintering + + + + PhaseVelocity + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + PhaseSpeed + PhaseVelocity + https://www.wikidata.org/wiki/Q13824 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 + https://dbpedia.org/page/Phase_velocity + 3-23.1 + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + https://en.wikipedia.org/wiki/Phase_velocity - + - + - - ScalarMagneticPotential - Scalar potential of an irrotational magnetic field strength. - ScalarMagneticPotential - https://www.wikidata.org/wiki/Q17162107 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 - 6-37.1 - Scalar potential of an irrotational magnetic field strength. + + SurfaceActivityDensity + Quotient of the activity A of a sample and the total area S of the surface of that sample. + SurfaceActivityDensity + https://qudt.org/vocab/quantitykind/SurfaceActivityDensity + https://www.wikidata.org/wiki/Q98103005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 + 10-30 + Quotient of the activity A of a sample and the total area S of the surface of that sample. - - + + + + PseudoOpenCircuitVoltageMethod + + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + PseudoOCV + PseudoOpenCircuitVoltageMethod + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + + + + - - + + - - - - MagneticReluctance - Magnetic tension divided by magnetic flux. - Reluctance - MagneticReluctance - https://qudt.org/vocab/quantitykind/Reluctance - https://www.wikidata.org/wiki/Q863390 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 - 6-39 - Magnetic tension divided by magnetic flux. + + Minus + Minus - + - - SpecificGibbsEnergy - Gibbs energy per unit mass. - SpecificGibbsEnergy - https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy - https://www.wikidata.org/wiki/Q76360636 - 5-21.5 - Gibbs energy per unit mass. + + + RelativeVolumeStrain + Quotient of change of volume and original volume. + BulkStrain + VolumeStrain + RelativeVolumeStrain + https://qudt.org/vocab/quantitykind/VolumeStrain + https://www.wikidata.org/wiki/Q73432507 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 + 4-17.4 + Quotient of change of volume and original volume. + https://doi.org/10.1351/goldbook.V06648 - + + + BlueStrangeQuark + BlueStrangeQuark + + + - T-3 L-1 M+1 I0 Θ0 N0 J0 + T+2 L+2 M-1 I+2 Θ0 N0 J0 - PressurePerTimeUnit - PressurePerTimeUnit + EnergyPerSquareMagneticFluxDensityUnit + EnergyPerSquareMagneticFluxDensityUnit - + - - SpinQuantumNumber - Characteristic quantum number s of a particle, related to its spin. - SpinQuantumNumber - https://qudt.org/vocab/quantitykind/SpinQuantumNumber - https://www.wikidata.org/wiki/Q3879445 - 10-13.5 - Characteristic quantum number s of a particle, related to its spin. + + + IsentropicExponent + For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. + IsentropicExponent + https://qudt.org/vocab/quantitykind/IsentropicExponent + https://www.wikidata.org/wiki/Q75775739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 + 5-17.2 - - - - - - - - - - - - - - - - - - - DownQuarkType - DownQuarkType + + + + Polynomial + Polynomial + 2 * x^2 + x + 3 - + - T-3 L+2 M+1 I-2 Θ0 N0 J0 + T+2 L-2 M-1 I+2 Θ0 N0 J0 - ElectricResistanceUnit - ElectricResistanceUnit + MagneticReluctanceUnit + MagneticReluctanceUnit - - - - - - + + + + + - - + - - - - FundamentalMatterParticle - FundamentalMatterParticle + + + + + + Manufacturer + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + Manufacturer + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - + + + + + + + + + + + MeanMassRange + Product of the mean linear range R and the mass density ρ of the material. + MeanMassRange + https://qudt.org/vocab/quantitykind/MeanMassRange + https://www.wikidata.org/wiki/Q98681670 + 10-57 + Product of the mean linear range R and the mass density ρ of the material. + https://doi.org/10.1351/goldbook.M03783 + + + + + + Polishing + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Polishing + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + + + - - TransportationDevice - TransportationDevice + + MicrowaveSintering + MicrowaveSintering - + - - NuclearRadius - Conventional radius of sphere in which the nuclear matter is included, - NuclearRadius - https://qudt.org/vocab/quantitykind/NuclearRadius - https://www.wikidata.org/wiki/Q3535676 - 10-19.1 - Conventional radius of sphere in which the nuclear matter is included, + + MultiplicationFactor + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + MultiplicationFactor + https://qudt.org/vocab/quantitykind/MultiplicationFactor + https://www.wikidata.org/wiki/Q99440471 + 10-78.1 + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - + + + + + MigrationLength + Square root of the migration area, M^2. + MigrationLength + https://qudt.org/vocab/quantitykind/MigrationLength + https://www.wikidata.org/wiki/Q98998318 + 10-73.3 + Square root of the migration area, M^2. + + + - + - + - + @@ -23334,584 +23184,629 @@ With "exact" constants, we refer to physical constants that have an exact numeri - GaugeBoson - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - GaugeBoson - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - Gauge bosons can carry any of the four fundamental interactions of nature. - https://en.wikipedia.org/wiki/Gauge_boson + DownQuarkType + DownQuarkType - - - - Ruby - Ruby + + + + PaperManufacturing + PaperManufacturing - - - - Gluing - Process for joining two (base) materials by means of an adhesive polymer material - Kleben - Gluing + + + + + InternalStep + A generic step in a workflow, that is not the begin or the end. + InternalStep + A generic step in a workflow, that is not the begin or the end. - - - - FunctionallyDefinedMaterial - FunctionallyDefinedMaterial + + + + + + + + + + + + Semiotics + Semiotics - + - T0 L+1 M0 I0 Θ-1 N0 J0 + T+1 L0 M0 I+1 Θ-1 N0 J0 - LengthPerTemperatureUnit - LengthPerTemperatureUnit - - - - - - DataExchangeLanguage - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - DataExchangeLanguage - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - JSON, YAML, XML - https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages + ElectricChargePerTemperatureUnit + ElectricChargePerTemperatureUnit - - + + - T0 L-2 M0 I+1 Θ0 N0 J0 + T+1 L0 M0 I+1 Θ0 N-1 J0 - ElectricCurrentDensityUnit - ElectricCurrentDensityUnit + ElectricChargePerAmountUnit + ElectricChargePerAmountUnit - - - - Calendering - Calendering + + + + + + + + + + + + + + + + + + + StrangeAntiQuark + StrangeAntiQuark - + - RadiantEnergy - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - RadiantEnergy - https://www.wikidata.org/wiki/Q1259526 - 10-45 - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - - - - - GluonType4 - GluonType4 - - - - - Naming - A declaration that provides a sign for an object that is independent from any assignment rule. - Naming - A declaration that provides a sign for an object that is independent from any assignment rule. - A unique id attached to an entity. - - - - - - - Extrusion - Extrusion - - - - - - - - - - - - - GasMixture - GasMixture + AverageEnergyLossPerElementaryChargeProduced + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + AverageEnergyLossPerElementaryChargeProduced + https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced + https://www.wikidata.org/wiki/Q98793042 + 10-60 + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - + - - - - - T0 L+6 M0 I0 Θ0 N0 J0 - - - SexticLengthUnit - SexticLengthUnit + + + MolarEnthalpy + MolarEnthalpy + https://www.wikidata.org/wiki/Q88769977 + Enthalpy per amount of substance. + 9-6.2 - - - - - - - T-6 L+4 M+2 I-2 Θ0 N0 J0 - - - LorenzNumberUnit - LorenzNumberUnit + + + + Shape4x3Matrix + A real matrix with shape 4x3. + Shape4x3Matrix + A real matrix with shape 4x3. - - - - - - - T+2 L0 M+1 I0 Θ0 N0 J0 - - - MassSquareTimeUnit - MassSquareTimeUnit + + + + DifferentialLinearPulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + DifferentialLinearPulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - + - - - - - T+1 L0 M0 I+1 Θ-1 N0 J0 - - - ElectricChargePerTemperatureUnit - ElectricChargePerTemperatureUnit + + + RelativePermeability + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + RelativePermeability + https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio + https://www.wikidata.org/wiki/Q77785645 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 + 6-27 + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + https://doi.org/10.1351/goldbook.R05272 - - + + - T-1 L0 M-1 I0 Θ0 N0 J0 + T+4 L-2 M-1 I+1 Θ0 N0 J0 - - PerTimeMassUnit - PerTimeMassUnit - - - - - - Polynomial - Polynomial - 2 * x^2 + x + 3 + + JosephsonConstantUnit + JosephsonConstantUnit - - + + - T+2 L-2 M-1 I0 Θ0 N0 J0 + T0 L+2 M0 I+1 Θ0 N0 J0 - PerEnergyUnit - PerEnergyUnit - - - - - - DataProcessingApplication - DataProcessingApplication - - - - - - NeutronSpinEchoSpectroscopy - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - NSE - NeutronSpinEchoSpectroscopy - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - + - T+1 L-1 M0 I0 Θ0 N0 J0 + T0 L0 M0 I+1 Θ-1 N0 J0 - TimePerLengthUnit - TimePerLengthUnit + ElectricCurrentPerTemperatureUnit + ElectricCurrentPerTemperatureUnit - - - - LiquidSolidSuspension - A coarse dispersion of solids in a liquid continuum phase. - LiquidSolidSuspension - A coarse dispersion of solids in a liquid continuum phase. - Mud + + + + CPlusPlus + A language object respecting the syntactic rules of C++. + C++ + CPlusPlus + A language object respecting the syntactic rules of C++. - - + + + + + RelativeMassFractionOfVapour + RelativeMassFractionOfVapour + 5-35 + + + + + ElementaryBoson + ElementaryBoson + + + + - - + + - - - - - - - - Boolean - A boolean number. - Boolean - A boolean number. - + + MeasuringSystem + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - - - - TransferMolding - TransferMolding - +-- VIM + MeasuringSystem + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - - - - FreezingPointDepressionOsmometry - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - FreezingPointDepressionOsmometry - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. +-- VIM + measuring system - - - - - - - - - - - - - - Lepton - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - Lepton - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - https://en.wikipedia.org/wiki/Lepton + + + + CurrentLinkage + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + CurrentLinkage + https://qudt.org/vocab/quantitykind/CurrentLinkage + https://www.wikidata.org/wiki/Q77995703 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 + 6-37.4 + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - - - - ApplicationSpecificScript - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - ApplicationSpecificScript - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. + + + + ICI + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + IntermittentCurrentInterruptionMethod + ICI + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - + - - - DragCoefficient - Dimensionless parameter to quantify fluid resistance. - DragFactor - DragCoefficient - https://qudt.org/vocab/quantitykind/DragCoefficient - https://www.wikidata.org/wiki/Q1778961 - 4-23.4 - Dimensionless parameter to quantify fluid resistance. + + + SuperconductorEnergyGap + Width of the forbidden energy band in a superconductor. + SuperconductorEnergyGap + https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap + https://www.wikidata.org/wiki/Q106127898 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 + 12-37 + Width of the forbidden energy band in a superconductor. - + - T-2 L-1 M+1 I0 Θ-1 N0 J0 + T0 L-2 M0 I0 Θ0 N0 J0 - PressurePerTemperatureUnit - PressurePerTemperatureUnit + PerAreaUnit + PerAreaUnit - - - - - - - T-2 L+3 M+1 I-1 Θ0 N0 J0 - - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit + + + + PlasmaCutting + PlasmaCutting + + + + + + + DiffusionCoefficientForFluenceRate + Proportionality constant between the particle current density J and the gradient of the particle fluence rate. + DiffusionCoefficientForFluenceRate + https://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate + https://www.wikidata.org/wiki/Q98876254 + 10-65 + Proportionality constant between the particle current density J and the gradient of the particle fluence rate. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ISQBaseQuantity + Base quantities defined in the International System of Quantities (ISQ). + ISQBaseQuantity + Base quantities defined in the International System of Quantities (ISQ). + https://en.wikipedia.org/wiki/International_System_of_Quantities - + + + + + RadiantEnergy + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + RadiantEnergy + https://www.wikidata.org/wiki/Q1259526 + 10-45 + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + + + - + - - - UnifiedAtomicMassConstant - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - UnifiedAtomicMassConstant - https://www.wikidata.org/wiki/Q4817337 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 - 10-4.3 - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - https://doi.org/10.1351/goldbook.A00497 + + + LorenzCoefficient + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + LorenzNumber + LorenzCoefficient + https://qudt.org/vocab/quantitykind/LorenzCoefficient + https://www.wikidata.org/wiki/Q105728754 + 12-18 + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - + - T+1 L+1 M0 I0 Θ+1 N0 J0 + T0 L-2 M+1 I0 Θ+1 N0 J0 - LengthTimeTemperatureUnit - LengthTimeTemperatureUnit + TemperatureMassPerAreaUnit + TemperatureMassPerAreaUnit - + - - ThermalSprayingForming - ThermalSprayingForming + + ArchetypeManufacturing + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + DIN 8580:2020 + Urformen + PrimitiveForming + ArchetypeManufacturing + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - + - ElectronNeutrino - A neutrino belonging to the first generation of leptons. - ElectronNeutrino - A neutrino belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron_neutrino + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedQuark + RedQuark - - - - - LinearAttenuationCoefficient - In nuclear physics, fraction of interacting particles per distance traversed in a given material. - LinearAttenuationCoefficient - https://www.wikidata.org/wiki/Q98583077 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 - 10-49 - In nuclear physics, fraction of interacting particles per distance traversed in a given material. + + + + + + + + + + + + Structural + Structural - - - - + + + + ReactiveMaterial + A material that takes active part in a chemical reaction. + ReactiveMaterial + A material that takes active part in a chemical reaction. + + + + + - - T-1 L+2 M0 I0 Θ0 N0 J0 + + - - AreaPerTimeUnit - AreaPerTimeUnit + + + + CharacterisationSystem + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + CharacterisationSystem + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Measuring system - - - RedCharmAntiQuark - RedCharmAntiQuark + + + + Shape3Vector + A real vector with 3 elements. + Shape3Vector + A real vector with 3 elements. + The quantity value of physical quantities if real space is a Shape3Vector. - - - - - - - - - - - - - - AntiLepton - AntiLepton + + + + MagneticQuantumNumber + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + MagneticQuantumNumber + https://qudt.org/vocab/quantitykind/MagneticQuantumNumber + https://www.wikidata.org/wiki/Q2009727 + 10-13.4 + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - + - - - ExchangeIntegral - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - ExchangeIntegral - https://qudt.org/vocab/quantitykind/ExchangeIntegral - https://www.wikidata.org/wiki/Q10882959 - 12-34 - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + + HyperfineStructureQuantumNumber + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + HyperfineStructureQuantumNumber + https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber + https://www.wikidata.org/wiki/Q97577449 + 10-13.8 + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + + + + + MesoscopicSubstance + MesoscopicSubstance + + + + + + SizeDefinedMaterial + SizeDefinedMaterial + + + + + + DataNormalisation + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + DataNormalisation + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - + - T-1 L+3 M0 I0 Θ0 N-1 J0 - - - VolumePerAmountTimeUnit - VolumePerAmountTimeUnit - - - - - - - - - T+4 L-2 M-1 I+1 Θ0 N0 J0 + T-4 L+2 M+1 I-1 Θ0 N0 J0 - JosephsonConstantUnit - JosephsonConstantUnit - - - - - - AssemblyLine - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. - Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. - AssemblyLine - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. - - - - - - FiberReinforcePlasticManufacturing - FiberReinforcePlasticManufacturing + ElectricPotentialPerTimeUnit + ElectricPotentialPerTimeUnit - + - - Galvanizing - Galvanizing + + DrawForming + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + DrawForming - - - RedStrangeQuark - RedStrangeQuark + + + TensorMeson + A meson with spin two. + TensorMeson + A meson with spin two. - + - T+1 L-2 M0 I0 Θ0 N0 J+1 + T-4 L+3 M+1 I-2 Θ0 N0 J0 - IlluminanceTimeUnit - IlluminanceTimeUnit - - - - - - Nexafs - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - Nexafs - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + InversePermittivityUnit + InversePermittivityUnit - + - + + - - + + T+1 L-3 M0 I+1 Θ0 N0 J0 - - - - NuclearQuadrupoleMoment - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - NuclearQuadrupoleMoment - https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment - https://www.wikidata.org/wiki/Q97921226 - 10-18 - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). + + ElectricChargeDensityUnit + ElectricChargeDensityUnit - - + + - + - + - + @@ -23919,403 +23814,239 @@ With "exact" constants, we refer to physical constants that have an exact numeri - Dispersion - A material in which distributed particles of one phase are dispersed in a different continuous phase. - Dispersion - A material in which distributed particles of one phase are dispersed in a different continuous phase. - - - - - MesoscopicModel - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - MesoscopicModel - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - - - - - - ModulusOfImpedance - ModulusOfImpedance - https://qudt.org/vocab/quantitykind/ModulusOfImpedance - https://www.wikidata.org/wiki/Q25457909 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 - 6-51.4 - - - - - - MassFractionUnit - Unit for quantities of dimension one that are the fraction of two masses. - MassFractionUnit - Unit for quantities of dimension one that are the fraction of two masses. - Unit for mass fraction. - - - - - - - RotationalDisplacement - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - AngularDisplacement - RotationalDisplacement - https://www.wikidata.org/wiki/Q3305038 - 3-6 - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - https://en.wikipedia.org/wiki/Angular_displacement - - - - - - VoltammetryAtARotatingDiskElectrode - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - VoltammetryAtARotatingDiskElectrode - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - https://doi.org/10.1515/pac-2018-0109 - - - - - - - Activity - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - Activity - https://qudt.org/vocab/quantitykind/Activity - https://www.wikidata.org/wiki/Q317949 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 - 10-27 - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - https://goldbook.iupac.org/terms/view/A00114 - - - - - - - MassDefect - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - MassDefect - https://qudt.org/vocab/quantitykind/MassDefect - https://www.wikidata.org/wiki/Q26897126 - 10-21.2 - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - - - - - - HardwareModel - - HardwareModel + ElectronType + ElectronType - - - - Exafs - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - Exafs - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + + + + NaturalMaterial + A Material occurring in nature, without the need of human intervention. + NaturalMaterial + A Material occurring in nature, without the need of human intervention. - - - - - - - - - - - Radioactivity - Decays per unit time. - RadioactiveActivity - Radioactivity - http://qudt.org/vocab/quantitykind/SpecificActivity - Decays per unit time. - https://doi.org/10.1351/goldbook.A00114 + + + ClassicalData + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + ClassicalData + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - - - - - - - T0 L-2 M0 I0 Θ0 N+1 J0 - - - AmountPerAreaUnit - AmountPerAreaUnit + + + CausalInteraction + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. + CausalInteraction + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - + - T-1 L+4 M0 I0 Θ0 N0 J0 + T-1 L0 M0 I0 Θ+2 N0 J0 - QuarticLengthPerTimeUnit - QuarticLengthPerTimeUnit + SquareTemperaturePerTimeUnit + SquareTemperaturePerTimeUnit - + + + + + StandardAbsoluteActivity + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + StandardAbsoluteActivityInAMixture + StandardAbsoluteActivity + https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89406159 + 9-23 + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + + + - + - + - - + + + + + + + + + + + + + + + + + - ElectronType - ElectronType - - - - - - PlasticSintering - PlasticSintering + BlueQuark + BlueQuark - - - - Spacing - Spacing + + + + ArithmeticEquation + ArithmeticEquation + 1 + 1 = 2 - + - - - RelativeMassFractionOfVapour - RelativeMassFractionOfVapour - 5-35 + + + ElectronRadius + Radius of a sphere such that the relativistic electron energy is distributed uniformly. + ElectronRadius + https://www.wikidata.org/wiki/Q2152581 + 10-19.2 + Radius of a sphere such that the relativistic electron energy is distributed uniformly. - - - - Molds - Molds + + + + FibDic + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + FIBDICResidualStressAnalysis + FibDic + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - + - - - - - T+2 L-1 M-1 I+1 Θ0 N0 J0 - - - MagneticReluctivityUnit - MagneticReluctivityUnit + + OrbitalAngularMomentumQuantumNumber + Atomic quantum number related to the orbital angular momentum l of a one-electron state. + OrbitalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1916324 + 10-13.3 + Atomic quantum number related to the orbital angular momentum l of a one-electron state. - - - - - - - T-2 L+1 M+1 I-2 Θ0 N0 J0 - - - PermeabilityUnit - PermeabilityUnit + + + RedTopAntiQuark + RedTopAntiQuark - + - - - - - - - - - - SecondPolarMomentOfArea - SecondPolarMomentOfArea - https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea - https://www.wikidata.org/wiki/Q1049636 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 - 4-21.2 - - - - - T+3 L-2 M-1 I+2 Θ0 N0 J0 + T-3 L-3 M+1 I0 Θ0 N0 J0 - ElectricConductanceUnit - ElectricConductanceUnit - - - - - - Strain - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - Strain - http://qudt.org/vocab/quantitykind/Strain - 4-17.1 - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - - - - - - ConductanceForAlternatingCurrent - Real part of the admittance. - ConductanceForAlternatingCurrent - https://www.wikidata.org/wiki/Q79464628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 - 6-52.2 - Real part of the admittance. - - - - - - - PreparedSample - The sample after a preparation process. - PreparedSample - The sample after a preparation process. - - - - - - VolumeFractionUnit - Unit for quantities of dimension one that are the fraction of two volumes. - VolumeFractionUnit - Unit for quantities of dimension one that are the fraction of two volumes. - Unit for volume fraction. + PowerPerAreaVolumeUnit + PowerPerAreaVolumeUnit - + - T0 L0 M0 I0 Θ+1 N+1 J0 + T+1 L-2 M0 I0 Θ0 N0 J+1 - AmountTemperatureUnit - AmountTemperatureUnit + IlluminanceTimeUnit + IlluminanceTimeUnit - + - T+1 L+2 M0 I+1 Θ0 N0 J0 + T-3 L+2 M+1 I0 Θ0 N0 J0 - ElectricChargeAreaUnit - ElectricChargeAreaUnit - - - - - - - - - - - - - Acceleration - Derivative of velocity with respect to time. - Acceleration - http://qudt.org/vocab/quantitykind/Acceleration - 3-9.1 - https://doi.org/10.1351/goldbook.A00051 + PowerUnit + PowerUnit - - + + - - + + - - FundamentalReciprocalLatticeVector - Fundamental translation vectors for the reciprocal lattice. - FundamentalReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475399 - 12-2.2 - Fundamental translation vectors for the reciprocal lattice. + + MeasurementSystemAdjustment + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + MeasurementParameterAdjustment + MeasurementSystemAdjustment + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Adjustment - - - - - - - T0 L0 M+1 I0 Θ+1 N0 J0 - - - MassTemperatureUnit - MassTemperatureUnit + + + GluonType8 + GluonType8 - + + + + DrawForms + DrawForms + + + - + - + - + - + - + - + @@ -24329,408 +24060,668 @@ With "exact" constants, we refer to physical constants that have an exact numeri - BlueAntiQuark - BlueAntiQuark + GreenQuark + GreenQuark - + + + + + IonizationEnergy + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + IonizationEnergy + https://qudt.org/vocab/quantitykind/IonizationEnergy + https://www.wikidata.org/wiki/Q483769 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 + 12-24.2 + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + https://doi.org/10.1351/goldbook.I03199 + + + - T+7 L-3 M-2 I+3 Θ0 N0 J0 + T0 L+2 M-1 I0 Θ0 N0 J0 - CubicElectricChargeLengthPerSquareEnergyUnit - CubicElectricChargeLengthPerSquareEnergyUnit + AreaPerMassUnit + AreaPerMassUnit - + - T0 L+1 M0 I0 Θ+1 N0 J0 + T-2 L+3 M+1 I0 Θ0 N-1 J0 - LengthTemperatureUnit - LengthTemperatureUnit + EnergyLengthPerAmountUnit + EnergyLengthPerAmountUnit - - - - - HardwareManufacturer - - HardwareManufacturer + + + + + CanonicalPartitionFunction + CanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96142389 + 9-35.2 - - - - ElectroSinterForging - ElectroSinterForging + + + PolymericMaterial + PolymericMaterial - - + + + ContinuumModel + A physics-based model based on a physics equation describing the behaviour of continuum volume. + ContinuumModel + A physics-based model based on a physics equation describing the behaviour of continuum volume. + + + + + PhysicalyUnbonded + PhysicalyUnbonded + + + + - T-3 L0 M+1 I0 Θ-4 N0 J0 + T0 L+5 M0 I0 Θ0 N0 J0 - MassPerCubicTimeQuarticTemperatureUnit - MassPerCubicTimeQuarticTemperatureUnit + SectionAreaIntegralUnit + SectionAreaIntegralUnit - - - - Filling - Filling + + + + + + + T+2 L+2 M0 I0 Θ0 N0 J0 + + + AreaSquareTimeUnit + AreaSquareTimeUnit - - - - DirectCoulometryAtControlledPotential - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - DirectCoulometryAtControlledPotential - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - https://doi.org/10.1515/pac-2018-0109 + + + + MaterialRelationComputation + MaterialRelationComputation - - + + - T+3 L-3 M-1 I+2 Θ0 N-1 J0 + T-2 L+3 M-1 I0 Θ0 N0 J0 - ElectricConductivityPerAmountUnit - ElectricConductivityPerAmountUnit + NewtonianConstantOfGravityUnit + NewtonianConstantOfGravityUnit - - - - PhysicalBasedSimulationSoftware - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - PhysicalBasedSimulationSoftware - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + + + + ElectricCurrentAssistedSintering + ElectricCurrentAssistedSintering - - - - PlasmaCutting - PlasmaCutting + + + + BondedAtom + A real bond between atoms is always something hybrid between covalent, metallic and ionic. + +In general, metallic and ionic bonds have atoms sharing electrons. + An bonded atom that shares at least one electron to the atom-based entity of which is part of. + The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. + This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. + BondedAtom + An bonded atom that shares at least one electron to the atom-based entity of which is part of. - - - - MachineCell - A group of machineries used to process a group of similar parts. - Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. - MachineCell - A group of machineries used to process a group of similar parts. + + + + TransmissionElectronMicroscopy + + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + TEM + TransmissionElectronMicroscopy + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - + - T-3 L+4 M+1 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ+1 N+1 J0 - PowerAreaUnit - PowerAreaUnit + AmountTemperatureUnit + AmountTemperatureUnit - - - - LinkedModelsSimulation - A chain of linked physics based model simulations, where equations are solved sequentially. - LinkedModelsSimulation - A chain of linked physics based model simulations, where equations are solved sequentially. + + + + + + + T-3 L+1 M+1 I-1 Θ0 N0 J0 + + + ElectricFieldStrengthUnit + ElectricFieldStrengthUnit - - - - NewtonianConstantOfGravity - Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. - NewtonianConstantOfGravity - http://qudt.org/vocab/constant/NewtonianConstantOfGravitation - https://doi.org/10.1351/goldbook.G02695 + + + + SandMolds + SandMolds + + + + + + + DisplacementVector + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + DisplacementVector + https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon + https://www.wikidata.org/wiki/Q105533558 + 12-7.3 + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - + - T-4 L0 M+1 I0 Θ0 N0 J0 + T-1 L+2 M+1 I0 Θ0 N-1 J0 - MassPerQuarticTimeUnit - MassPerQuarticTimeUnit - - - - - - CathodicStrippingVoltammetry - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - CSV - CathodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q4016325 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - https://doi.org/10.1515/pac-2018-0109 - - - - - - Presses - Presses - - - - - - - InjectionMolding - InjectionMolding + EnergyTimePerAmountUnit + EnergyTimePerAmountUnit - + - - TransientLiquidPhaseSintering - TransientLiquidPhaseSintering + + PorcelainOrCeramicCasting + PorcelainOrCeramicCasting - - - - Assignment - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - Assignment - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. + + + + ConfocalMicroscopy + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + ConfocalMicroscopy + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - + - T0 L0 M0 I+1 Θ-1 N0 J0 + T0 L-1 M0 I0 Θ+1 N0 J0 - ElectricCurrentPerTemperatureUnit - ElectricCurrentPerTemperatureUnit + TemperaturePerLengthUnit + TemperaturePerLengthUnit - - - GluonType3 - GluonType3 + + + + HandlingDevice + HandlingDevice - - - - DropForging - DropForging + + + + + DiffusionLength + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. + DiffusionLength + https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength + https://www.wikidata.org/wiki/Q106097176 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 + 12-33 + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - - - CausalConvexSystem - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - CausalConvexSystem - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - A CausalSystem whose quantum parts are all bonded to the rest of the system. + + + CompositeMaterial + CompositeMaterial - + - - GroupVelocity - Speed with which the envelope of a wave propagates in space. - GroupSpeed - GroupVelocity - https://www.wikidata.org/wiki/Q217361 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 - https://dbpedia.org/page/Group_velocity - 3-23.2 - Speed with which the envelope of a wave propagates in space. - https://en.wikipedia.org/wiki/Group_velocity + + + + + + + + + MagneticVectorPotential + Vector potential of the magnetic flux density. + MagneticVectorPotential + https://qudt.org/vocab/quantitykind/MagneticVectorPotential + https://www.wikidata.org/wiki/Q2299100 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 + 6-32 + Vector potential of the magnetic flux density. - + + + + + MagneticSusceptibility + Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + MagneticSusceptibility + https://qudt.org/vocab/unit/SUSCEPTIBILITY_MAG.html + https://www.wikidata.org/wiki/Q691463 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37 + 6-28 + Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + + + + + + DifferentialScanningCalorimetry + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + DSC + DifferentialScanningCalorimetry + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + + + - BlueStrangeQuark - BlueStrangeQuark + GluonType7 + GluonType7 - + - RedBottomAntiQuark - RedBottomAntiQuark + GreenStrangeAntiQuark + GreenStrangeAntiQuark - + - GluonType5 - GluonType5 + GluonType6 + GluonType6 - + - - - - - T0 L0 M+1 I0 Θ0 N+1 J0 - - - MassAmountOfSubstanceUnit - MassAmountOfSubstanceUnit + + LengthFractionUnit + Unit for quantities of dimension one that are the fraction of two lengths. + LengthFractionUnit + Unit for quantities of dimension one that are the fraction of two lengths. + Unit for plane angle. - - - NumericalData - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - NumericalData - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + + + + ScanningProbeMicroscopy + + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + ScanningProbeMicroscopy + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + + + + + HotDipGalvanizing + Hot-dipGalvanizing + HotDipGalvanizing + + + + + + ThermalSprayingForming + ThermalSprayingForming + + + + + + Calorimetry + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + Calorimetry + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + + + + + + Punctuation + Punctuation + + + + + + NanoMaterial + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + NanoMaterial + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - + - T0 L-3 M+1 I0 Θ0 N0 J0 + T-1 L+4 M0 I0 Θ0 N0 J0 - DensityUnit - DensityUnit + QuarticLengthPerTimeUnit + QuarticLengthPerTimeUnit - + - T+2 L+1 M-2 I0 Θ0 N+1 J0 + T+4 L-1 M-1 I+2 Θ0 N0 J0 - AmountPerMassPressureUnit - AmountPerMassPressureUnit + CapacitancePerLengthUnit + CapacitancePerLengthUnit - - + + - T+1 L0 M-1 I0 Θ0 N0 J0 + T-1 L+3 M0 I-1 Θ0 N0 J0 - MechanicalMobilityUnit - MechanicalMobilityUnit + ReciprocalElectricChargeDensityUnit + ReciprocalElectricChargeDensityUnit - - - - Electroplating - Electroplating + + + + URL + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + URL + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - + + + + + LiquidFoam + A foam of trapped gas in a liquid. + LiquidFoam + A foam of trapped gas in a liquid. + + + + + + + RatioOfSpecificHeatCapacities + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + RatioOfSpecificHeatCapacities + https://qudt.org/vocab/quantitykind/HeatCapacityRatio + https://www.wikidata.org/wiki/Q503869 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 + 5-17.1 + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + + + + + + + + + + + + Illuminance + The total luminous flux incident on a surface, per unit area. + Illuminance + http://qudt.org/vocab/quantitykind/Illuminance + The total luminous flux incident on a surface, per unit area. + https://doi.org/10.1351/goldbook.I02941 + + + - T0 L-1 M0 I0 Θ+1 N0 J0 + T-3 L+1 M+1 I0 Θ0 N0 J0 - TemperaturePerLengthUnit - TemperaturePerLengthUnit + MassLengthPerCubicTimeUnit + MassLengthPerCubicTimeUnit - + + + + SpeedFractionUnit + Unit for quantities of dimension one that are the fraction of two speeds. + SpeedFractionUnit + Unit for quantities of dimension one that are the fraction of two speeds. + Unit for refractive index. + + + + + + DirectCurrentInternalResistance + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + DirectCurrentInternalResistance + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + + + + + + + + + + + + + + + + + + + + + AntiElectronType + AntiElectronType + + + + + + + + + + + + + + + + + + + SecondGenerationFermion + SecondGenerationFermion + + + + + + + + + + + + + SolidMixture + SolidMixture + + + + + + + + + + + + AlgebricEquation + An 'equation' that has parts two 'polynomial'-s + AlgebricEquation + 2 * a - b = c + + + + + + SampleExtractionInstrument + + SampleExtractionInstrument + + + + + + Thermogravimetry + + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + TGA + Thermogravimetry + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + + + + + + + + + + + + + ParticulateMatter + ParticulateMatter + + + - - ChipboardManufacturing - ChipboardManufacturing + + GravityCasting + GravityCasting - - - - Weight - Force of gravity acting on a body. - Weight - http://qudt.org/vocab/quantitykind/Weight - 4-9.2 - https://doi.org/10.1351/goldbook.W06668 + + + + Magnetizing + Magnetizing - - - - universe - The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. - universe - The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. - + + + + Spray + A suspension of liquid droplets dispersed in a gas through an atomization process. + Spray + A suspension of liquid droplets dispersed in a gas through an atomization process. + + + + + + Foaming + Foaming + - + - Pierluigi Del Nostro + Gerhard Goldbeck - Pierluigi Del Nostro - Pierluigi Del Nostro + Gerhard Goldbeck + Gerhard Goldbeck - + - Gerhard Goldbeck + Pierluigi Del Nostro - Gerhard Goldbeck - Gerhard Goldbeck + Pierluigi Del Nostro + Pierluigi Del Nostro @@ -24742,6 +24733,15 @@ So, a photon leaving a body is not part of the body as convex system, while a ph Daniele Toti + + + + universe + The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. + universe + The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. + + @@ -24758,72 +24758,18 @@ So, a photon leaving a body is not part of the body as convex system, while a ph Indicate a resource that might provide additional information about the subject resource. - - - - - - - - - - - hasGatheredPart - A proper part relation with domain restricted to collections. - hasGatheredPart - A proper part relation with domain restricted to collections. - - - - - - - - - hasProperPart - The relation between an entity and one of its parts, when both entities are distinct. - hasProperPart - The relation between an entity and one of its parts, when both entities are distinct. - - - + - - - - isProperPartOf - The inverse relation for hasProperPart. - isProperPartOf - The inverse relation for hasProperPart. - - - - - - - - - - - - - hasPortionPart - A proper part relation with domain restricted to items. - hasPortionPart - A proper part relation with domain restricted to items. - - - - - - - - hasScatteredPart - A proper part relation with range restricted to collections. - hasScatteredPart - A proper part relation with range restricted to collections. + + + + isPredecessorOf + A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). + isAntecedentOf + isPredecessorOf + A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). @@ -24835,38 +24781,25 @@ So, a photon leaving a body is not part of the body as convex system, while a ph isTemporallyBefore - - - - - - - hasMember - The relation between a collection and one of its item members. - hasMember - The relation between a collection and one of its item members. - - - + - - - - - hasDirectPart - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - hasDirectPart - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + + + + + hasNext + A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. +This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. + A time contact occurs when x isDirectCause y and not(y isCauseOf x). + Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. + isBefore + hasNext + A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. +This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. + A time contact occurs when x isDirectCause y and not(y isCauseOf x). + Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. + This relation is asymmetric and irreflexive. @@ -24882,6 +24815,10 @@ The direct parts (tiles) and the tessellated entity (tessellation) are causally A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. + + + + @@ -24914,69 +24851,156 @@ The label of this class was also changed from PhysicsDimension to PhysicalDimens hasMetrologicalReference - - + + + + + + + + + hasPortionPart + A proper part relation with domain restricted to items. + hasPortionPart + A proper part relation with domain restricted to items. + + + + + + + + + + hasSpatioTemporalTile + This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. + A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. + hasWellFormedTile + hasSpatioTemporalTile + A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. + This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. + + + + + + + + + hasSpatialTile + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + hasSpatialDirectPart + hasSpatialTile + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + + + + + + + + hasScatteredPart + A proper part relation with range restricted to collections. + hasScatteredPart + A proper part relation with range restricted to collections. + + + + + + + + + hasProperPart + The relation between an entity and one of its parts, when both entities are distinct. + hasProperPart + The relation between an entity and one of its parts, when both entities are distinct. + + + + + + + + hasEndTile + The relation between the whole and a temporal tile that has only ingoing temporal connections. + hasTemporalLast + hasEndTile + The relation between the whole and a temporal tile that has only ingoing temporal connections. + + + + + + + + + hasJunctionTile + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + hasJunctionTile + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + + + + + + + + + + hasDirectPart + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + hasDirectPart + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + + + - - - - isPredecessorOf - A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). - isAntecedentOf - isPredecessorOf - A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). + + + + hasMember + The relation between a collection and one of its item members. + hasMember + The relation between a collection and one of its item members. - - + - - - - hasSpatialTile - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - hasSpatialDirectPart - hasSpatialTile - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + + + + + hasGatheredPart + A proper part relation with domain restricted to collections. + hasGatheredPart + A proper part relation with domain restricted to collections. - + - - - - hasNext - A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. -This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. - A time contact occurs when x isDirectCause y and not(y isCauseOf x). - Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. - isBefore - hasNext - A temporal relation between two entities occurs when the two entities are in a one directional causality relation. The idea is that a temporal relation always implies a one-directional causality between two entities, leading to a asymmetric relation. -This means that the causing entity can be in direct and optionally indirect causality relation with the effect entity. On the contrary, the effect entity cannot be in any causal relation (direct or indirect) with the causing entity. - A time contact occurs when x isDirectCause y and not(y isCauseOf x). - Each pair of entities in direct causality relation is either in hasNext or hasTwoWayCauseWith relation. The two are mutually exclusive. - This relation is asymmetric and irreflexive. + + + + isProperPartOf + The inverse relation for hasProperPart. + isProperPartOf + The inverse relation for hasProperPart. - - - - - - - - hasSpatioTemporalTile - This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. - hasWellFormedTile - hasSpatioTemporalTile - A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. - This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - + @@ -24990,31 +25014,6 @@ This means that the causing entity can be in direct and optionally indirect caus The relation between the whole and a temporal tile that has only outgoing temporal connections. - - - - - - - - - hasNumericalPart - Relates a quantity to its numerical value through spatial direct parthood. - hasNumericalPart - - - - - - - - - hasJunctionTile - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. - hasJunctionTile - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. - - @@ -25027,20 +25026,21 @@ This means that the causing entity can be in direct and optionally indirect caus A proper part relation with range restricted to items. - + + - - - hasEndTile - The relation between the whole and a temporal tile that has only ingoing temporal connections. - hasTemporalLast - hasEndTile - The relation between the whole and a temporal tile that has only ingoing temporal connections. + + + + + hasNumericalPart + Relates a quantity to its numerical value through spatial direct parthood. + hasNumericalPart - 1 + 2 @@ -25052,11 +25052,11 @@ This means that the causing entity can be in direct and optionally indirect caus - 1 + 1 - 4 + 1 @@ -25064,7 +25064,7 @@ This means that the causing entity can be in direct and optionally indirect caus - 2 + 1 @@ -25072,11 +25072,11 @@ This means that the causing entity can be in direct and optionally indirect caus - 1 + 3 - 3 + 4 @@ -25088,11 +25088,11 @@ This means that the causing entity can be in direct and optionally indirect caus - 1 + 1 - 1 + 1 @@ -25103,11 +25103,60 @@ This means that the causing entity can be in direct and optionally indirect caus 1 + + + + DIN 65099-4:1989-11 + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + + - - DIN EN 62047-1:2016-12 - Process for joining two (base) materials by means of an adhesive polymer material + + DIN 8584-2:2003-09 + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + + + + + + + + + + + + + + + + All EMMO individuals are part of the most comprehensive entity which is the universe. + + + + + + DIN EN 14943:2006-03 + Conversion of materials and assembly of components for the manufacture of products + + + + + + Factory + From Latin factor, from fact- ‘done’, from the verb facere (to do). + + + + + + + + + + + + Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. @@ -25117,16 +25166,17 @@ This means that the causing entity can be in direct and optionally indirect caus - + - - - - + + + + + @@ -25138,42 +25188,65 @@ This means that the causing entity can be in direct and optionally indirect caus - - + + + Transitivity for parthood. + + + + https://www.ietf.org/rfc/rfc3986.txt + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + + + + + isPredecessorOf + From Latin prae ("beforehand") and decedere ("depart"). + + - - - + + + + + + + + + + - - DIN 8589-0:2003-09 - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + + Part + From Latin partire, partiri ‘divide, share’. - - - - DIN 8588:2013-08 - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - + + + + + + + - - - Dedomena - From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) + + + DIN EN ISO 4885:2018-07 + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite @@ -25183,26 +25256,15 @@ This means that the causing entity can be in direct and optionally indirect caus A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - - - - - - - - - - Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. - - - + - - + + + @@ -25211,7 +25273,7 @@ This means that the causing entity can be in direct and optionally indirect caus - + @@ -25219,191 +25281,229 @@ This means that the causing entity can be in direct and optionally indirect caus - Enforcing the fact that an entity cannot cause itself. + Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. + + + + Data + From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). + + - - DIN 8584-1:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + + DIN EN 13956:2013-03 + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + + + + + + mereological + Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). +https://en.wiktionary.org/wiki/mereology + + + + + + Tool + Old English tōl, from a Germanic base meaning ‘prepare’. + + + + + + Variable + Fom Latin variabilis ("changeable"). + + + + + + Observation + From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”), - + - - + + + - + + + + + + + + + + + + - + - - - + + - Enforcing parthood reflexivity. + Implementation of equality based on mereology. - - - Manufacturing - From Latin manu factum ("made by hand"). - - - - - - Cogniser - From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” + + + Machine + From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. - - Matter - From Latin materia (“matter, stuff, material”), from mater (“mother”). + + AnalogicalIcon + From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). - - - Crystal - From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - + - ManufacturedProduct - From Latin manufacture: "made by hand". + Artifact + From Latin arte ‘by or using art’ + factum ‘something made’. - - - https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5 - ISO 8887-1:2017 -manufacturing: production of components + + + DIN 8586:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - - - Observation - From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”), + + + DIN EN 13831:2007-12 + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - - https://en.wiktionary.org/wiki/Wiktionary - Definitions are usually taken from Wiktionary. - - - - - - Simulacrum - From Latin simulacrum ("likeness, semblance") + + DIN 65099-7:1989-11 + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - - DIN 8586:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + + EN 16603-11:2019-11 + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - - FundamentalBoson - 1940s: named after S.N. Bose. - - - - - - DIN EN ISO 472/A1:2019-03 - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + + ResemblanceIcon + From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). - - - https://en.wiktionary.org/wiki/workpiece - The raw material or partially finished piece that is shaped by performing various operations. + + + http://www.linfo.org/program.html + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - Software - From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. + + Whole + From Middle English hole (“healthy, unhurt, whole”). - - - Tool - Old English tōl, from a Germanic base meaning ‘prepare’. + + + DIN EN 12258-1:2012-08 + Removal of material by means of rigid or flexible discs or belts containing abrasives. - - DIN 8587:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + + DIN 8583-1:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - - Quantum - From Latin quantum (plural quanta) "as much as, so much as". + + Symbolic + From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). - - - DIN EN 13831:2007-12 - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + + + ISO/TR 10809-1:2009, 0000_19 + Heat treatment process that generally produces martensite in the matrix. - - - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. + + + Collection + From Latin collectio, from colligere ‘gather together’. - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - the time between changes in potential in step 2 is related to the concentration of analyte in the solution + + + Item + From Latin item, "likewise, just so, moreover". - - - ISO/ASTM 52900:2021(en), 3.3.1 - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + + Perspective + From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. + + + + + + Language + From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). @@ -25413,20 +25513,10 @@ Note 1 to entry: This term is often used in a non-technical context synonymously - + - - - - - - - - - - - + @@ -25435,162 +25525,128 @@ Note 1 to entry: This term is often used in a non-technical context synonymously - + + Enforcing exclusivity between overlapping and causality. - - - Symbolic - From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). - - - - - - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + + + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). - - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder + + + DIN EN ISO 15156-3:2015-12 + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - - - Boson - 1940s: named after S.N. Bose. - + + + https://dictionary.iucr.org/Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. - - - - ISO 23704-1:2022(en), 3.1.2 - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - - - Computation - From Latin con- +‎ putō (“I reckon”). - - - - - Perspective - From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. +H=∑ni=1hia∗i (n≥3) - - - TangibleProduct - From late Latin tangibilis, from tangere ‘to touch’. + + + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + https://en.wikipedia.org/wiki/Tessellation - - DIN 8580:2022-12 - Verfestigen durch Umformen + + DIN 8589-0:2003-09 + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - - - Variable - Fom Latin variabilis ("changeable"). + + + International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - - DIN 8589-2:2003-09 - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + + DIN 8590 Berichtigung 1:2004-02 + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - - - Index - From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + the accumulation is similar to that used in stripping voltammetry - - http://www.linfo.org/program.html - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + + EN 10028-1:2017-07 + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - - - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - - Assemblying - From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. + + FunctionalIcon + From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). - - - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - DIN EN 14943:2006-03 - Conversion of materials and assembly of components for the manufacture of products - - - - - - ISO 13574:2015-02 - Process for removing unwanted residual or waste material from a given product or material - - - - - - Item - From Latin item, "likewise, just so, moreover". + https://www.collinsdictionary.com/it/dizionario/inglese/technology + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - - DIN 65099-5:1989-11 - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + + DIN 8593-0:2003-09 + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - - - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - https://en.wikipedia.org/wiki/Condensed_matter_physics + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. @@ -25602,197 +25658,228 @@ manufacturing: function or act of converting or transforming material from raw m - - DIN EN 12258-1:2012-08 - Removal of material by means of rigid or flexible discs or belts containing abrasives. - - - - - - DIN 8584-2:2003-09 - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - - - - - - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - https://en.wikipedia.org/wiki/Phase_(matter) + + https://en.wiktionary.org/wiki/workpiece + The raw material or partially finished piece that is shaped by performing various operations. - - - - DIN 8593-0:2003-09 - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing a strict one-way causality direction. - + + + + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + - - AnalogicalIcon - From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). + + Quantum + From Latin quantum (plural quanta) "as much as, so much as". - - - PhysicalObject - From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + + ISO 23704-1:2022(en), 3.1.2 + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - - https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] + + DIN 8588:2013-08 + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - - - Product - From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. + + + DIN EN 62047-1:2016-12 + Process for joining two (base) materials by means of an adhesive polymer material - - - https://datatracker.ietf.org/doc/rfc3987/ - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + + + DIN 55405:2014-12 + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - - - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - https://en.wikipedia.org/wiki/Tessellation + + + https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - - - EMMO - EMMO is the acronym of Elementary Multiperspective Material Ontology. + + + DIN 8580:2022-12 + Verfestigen durch Umformen - - - ISO 14034:2016-11 - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + + + Index + From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). - - - Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + DIN 8589-3:2003-09 + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - - - DIN 65099-3:1989-11 - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + + + DIN 65099-7:1989-11 + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + + DIN EN ISO 472/A1:2019-03 + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + + https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing parthood reflexivity. + + - - - https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + + + DIN 8585-3:2003-09 + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - - - Model - From Latin modus (“measure”). + + + Crystal + From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). - - DIN 65099-7:1989-11 - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + DIN EN 9110:2018-08 + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - - - https://www.iso.org/standard/45324.html - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + + + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - - DIN 65099-7:1989-11 - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - - - Engineered - From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). + + + CausalSystem + From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”). + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - Collection - From Latin collectio, from colligere ‘gather together’. + + CausalPath + From Ancient Greek πάτος (pátos, “path”). @@ -25802,17 +25889,16 @@ The term phase is sometimes used as a synonym for state of matter, but there can - + - - - - - + + + + @@ -25824,93 +25910,61 @@ The term phase is sometimes used as a synonym for state of matter, but there can - - + + + + + + + + + + + + + DIN 8588:2013-08 + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + + + + + + ManufacturedProduct + From Latin manufacture: "made by hand". + + + + + + + + + + + + + + + + + + + + + - Transitivity for parthood. + Enforcing the fact that an entity cannot cause itself. - - - - DIN EN 9110:2018-08 - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - - - - - - http://www.linfo.org/program.html - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - - - - - Procedure - From Latin pro-cedere (“to go forward, to proceed”). - - - - - - The disjoint union of the Item and Collection classes. - The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). -Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. - - - - - - CausalChain - From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). - - - - - - DIN EN ISO 5349-2:2015-12 - Object that is processed with a machine - - - - - - DIN 55405:2014-12 - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - - - - - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - - - https://www.collinsdictionary.com/it/dizionario/inglese/technology - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - - - - - - DIN 8583-1:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - - - - - - ISO/TR 10809-1:2009, 0000_19 - Heat treatment process that generally produces martensite in the matrix. + ISO 14034:2016-11 + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process @@ -25921,75 +25975,53 @@ liquid-phase sintering: sintering of a powder or compact containing at least two - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - the accumulation is similar to that used in stripping voltammetry - - - - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - chronopotentiometry where the change in applied current undergoes a cyclic current reversal - - - - - - DIN 65099-3:1989-11 - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + + + FundamentalBoson + 1940s: named after S.N. Bose. - - - - - - - - - - - - - All EMMO individuals are part of the most comprehensive entity which is the universe. + + + https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5 + ISO 8887-1:2017 +manufacturing: production of components - - - DIN 8586:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + + + CausalObject + From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). - - - Artifact - From Latin arte ‘by or using art’ + factum ‘something made’. + + + isCauseOf + From Latin causa (“reason, sake, cause”). - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + + + Matter + From Latin materia (“matter, stuff, material”), from mater (“mother”). - - https://www.ietf.org/rfc/rfc3986.txt - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + chronopotentiometry where the applied current is changed in steps - - - CausalParticle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + DIN EN ISO 5349-2:2015-12 + Object that is processed with a machine @@ -25999,255 +26031,139 @@ liquid-phase sintering: sintering of a powder or compact containing at least two hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - - - - - - - - - - - - - - - - - - - isCauseOf - From Latin causa (“reason, sake, cause”). - - - - - http://www.linfo.org/source_code.html - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - - - - Wholistic - From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. + + + DIN 8589-2:2003-09 + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - - - DIN 65099-4:1989-11 - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + + + :isCauseOf owl:propertyDisjointWith :overlaps + Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. - - mereological - Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). -https://en.wiktionary.org/wiki/mereology - - - - - - CausalObject - From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + Cogniser + From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - - - - - - Existent - ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). - - - - - - Part - From Latin partire, partiri ‘divide, share’. +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - - - Factory - From Latin factor, from fact- ‘done’, from the verb facere (to do). + + + https://www.ietf.org/rfc/rfc3986.txt + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - - - Equipment - From French équipement, from équiper ‘equip’. + + + Fundamental + From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). - - - Particle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + Boson + 1940s: named after S.N. Bose. - - - ResemblanceIcon - From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). + + + Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - - - EN 10028-1:2017-07 - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + + + Simulacrum + From Latin simulacrum ("likeness, semblance") - - - DIN EN 10210-3:2020-11 - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + + + https://de.wikipedia.org/wiki/Werkst%C3%BCck + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - - - DIN 65099-5:1989-11 - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + chronopotentiometry where the applied current is changed linearly - - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + + + CausalParticle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). - - - DIN 8585-3:2003-09 - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + + + Wholistic + From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. - - DIN 8589-3:2003-09 - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + + ISO 23952:2020(en), 3.4.143 + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - - International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + https://en.wikipedia.org/wiki/Variable_(mathematics) - - - - - - - 2 - - - Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). + + + Procedure + From Latin pro-cedere (“to go forward, to proceed”). - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing reflexivity of overlapping. - - - - - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). + + + Property + From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). - - - Holistic - Holism (from Greek ὅλος holos "all, whole, entire"). + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder - - - - - - - - - - - - - - - - - - - - - - - - - - Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. - - - - - DIN EN 13956:2013-03 - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + + + https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) @@ -26264,21 +26180,10 @@ Entities are not placed in space or time: space and time are always relative bet - + - - - - - - - - - - - - + @@ -26292,14 +26197,13 @@ Entities are not placed in space or time: space and time are always relative bet - Implementation of equality based on mereology. - - - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury @@ -26310,138 +26214,184 @@ Entities are not placed in space or time: space and time are always relative bet - - - Whole - From Middle English hole (“healthy, unhurt, whole”). + + + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + + + + + + ISO/ASTM 52900:2021(en), 3.3.1 + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + + + + + Icon + From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). + + + + + + Particle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + + + + Estimation + From Latin aestimatus (“to value, rate, esteem”). + + + + + + https://datatracker.ietf.org/doc/rfc3987/ + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + + + + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + chronopotentiometry where the change in applied current undergoes a cyclic current reversal + + + + + + DIN 65099-3:1989-11 + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + + + + + + TangibleProduct + From late Latin tangibilis, from tangere ‘to touch’. - - - EN 16603-11:2019-11 - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + + + Existent + ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). - - - Property - From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). + + + DIN 8589-6:2003-09 + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - - - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + + + DIN 8590 Berichtigung 1:2004-02 + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - - isPredecessorOf - From Latin prae ("beforehand") and decedere ("depart"). + + Computation + From Latin con- +‎ putō (“I reckon”). - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - chronopotentiometry where the applied current is changed in steps + + + https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] - Elementary - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - - - - - :isCauseOf owl:propertyDisjointWith :overlaps - Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. + CausalChain + From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). - - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - https://en.wikipedia.org/wiki/Supply_chain + + https://www.ietf.org/rfc/rfc3986.txt + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - - - DIN 8588:2013-08 - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + + + CausalStructure + From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + + + http://www.linfo.org/program.html + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - - - DIN 8589-6:2003-09 - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + + + Manufacturing + From Latin manu factum ("made by hand"). - - - https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + + + Model + From Latin modus (“measure”). - - - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen. + + + Role + From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. - + DIN 65099-3:1989-11 - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - - - - - - Device - From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - - - https://www.ietf.org/rfc/rfc3986.txt - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + + Lifetime + From Middle English liftime, equivalent to life +‎ time. - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - chronopotentiometry where the applied current is changed linearly + + + Product + From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. - - - Role - From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. + + + ISO 13574:2015-02 + Process for removing unwanted residual or waste material from a given product or material @@ -26483,143 +26433,57 @@ We call "interpreting" the act of providing semantic meaning to data, which is c Transitivity for proper parthood. - - - - Icon - From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - - - - - - Estimation - From Latin aestimatus (“to value, rate, esteem”). - - - - - - CausalStructure - From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). - - - - - - FunctionalIcon - From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). - - - - DIN EN ISO 4885:2018-07 - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - - - - - - https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - - - - - - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - https://en.wikipedia.org/wiki/Variable_(mathematics) - - - - - - Fundamental - From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). - - - - - - Lifetime - From Middle English liftime, equivalent to life +‎ time. + + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen. - - Data - From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). + + Holistic + Holism (from Greek ὅλος holos "all, whole, entire"). - - https://en.wikipedia.org/wiki/Technology - Technology is the application of knowledge for achieving practical goals in a reproducible way. - - - - - - https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - - - - - - CausalSystem - From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”). - - - - - - https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - - - - - - - - - - - - - - - + + DIN 8584-1:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + - - - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + + + EMMO + EMMO is the acronym of Elementary Multiperspective Material Ontology. + + + + + + https://en.wiktionary.org/wiki/Wiktionary + Definitions are usually taken from Wiktionary. - Machine - From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. + Equipment + From French équipement, from équiper ‘equip’. - + - - - + + @@ -26629,61 +26493,66 @@ organization: person or group of people that has its own functions with responsi - - + + - Enforcing exclusivity between overlapping and causality. + Enforcing reflexivity of overlapping. - - https://www.ietf.org/rfc/rfc3986.txt - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + https://en.wikipedia.org/wiki/Supply_chain - - https://de.wikipedia.org/wiki/Werkst%C3%BCck - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + + DIN 8587:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - - - DIN 8590 Berichtigung 1:2004-02 - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + + + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - - - https://dictionary.iucr.org/Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + https://en.wikipedia.org/wiki/Phase_(matter) + -H=∑ni=1hia∗i (n≥3) + + + + The disjoint union of the Item and Collection classes. + The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). +Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. - - DIN EN ISO 15156-3:2015-12 - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + DIN EN 10210-3:2020-11 + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - + - CausalPath - From Ancient Greek πάτος (pátos, “path”). + Elementary + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). @@ -26693,7 +26562,7 @@ H=∑ni=1hia∗i (n≥3) - + @@ -26702,21 +26571,30 @@ H=∑ni=1hia∗i (n≥3) - - - - + + + + + + Enforcing a strict one-way causality direction. - - - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + http://www.linfo.org/source_code.html + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + + + + + + https://en.wikipedia.org/wiki/Technology + Technology is the application of knowledge for achieving practical goals in a reproducible way. @@ -26726,11 +26604,125 @@ H=∑ni=1hia∗i (n≥3) Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + + + + DIN 65099-5:1989-11 + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + + + + + + Engineered + From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). + + + + + + https://www.iso.org/standard/45324.html + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + + + + + + DIN 65099-5:1989-11 + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + + + + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + + + + + + Dedomena + From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) + + - - Language - From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). + + Assemblying + From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. + + + + + + + + + + 2 + + + Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). + + + + + + DIN 8586:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + + + + + + Device + From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". + + + + + + Software + From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. + + + + + + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + https://en.wikipedia.org/wiki/Condensed_matter_physics + + + + + + PhysicalObject + From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). @@ -26742,16 +26734,24 @@ H=∑ni=1hia∗i (n≥3) - - ISO 23952:2020(en), 3.4.143 - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + + DIN 65099-3:1989-11 + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - - - DIN 8590 Berichtigung 1:2004-02 - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + + + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. diff --git a/chameo.ttl b/chameo.ttl index f2cd9a0..544b60c 100644 --- a/chameo.ttl +++ b/chameo.ttl @@ -1922,9 +1922,9 @@ ns1:EMMO_39348191_08fd_4bb6_9b1e_012d5b2f1ff6 a owl:Class ; rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_4207e895_8b83_4318_996a_72cfb32acd94 ; owl:equivalentClass [ a owl:Class ; - owl:unionOf ( ns1:EMMO_0afc19b0_2d43_4b3d_8da0_9ffb63bc1492 ns1:EMMO_f1025834_0cd2_42a1_bfeb_13bec41c8655 ) ], + owl:unionOf ( ns1:EMMO_4c1f58cd_6e2c_48fb_8098_1cbb762abb05 ns1:EMMO_c5e9e390_8836_4440_b4fd_c906fdd4f438 ns1:EMMO_f678173d_f036_4df1_a86b_2894560be617 ns1:EMMO_fb27e6d6_159e_48a6_9c29_76dc31d8a860 ) ], [ a owl:Class ; - owl:unionOf ( ns1:EMMO_4c1f58cd_6e2c_48fb_8098_1cbb762abb05 ns1:EMMO_c5e9e390_8836_4440_b4fd_c906fdd4f438 ns1:EMMO_f678173d_f036_4df1_a86b_2894560be617 ns1:EMMO_fb27e6d6_159e_48a6_9c29_76dc31d8a860 ) ] ; + owl:unionOf ( ns1:EMMO_0afc19b0_2d43_4b3d_8da0_9ffb63bc1492 ns1:EMMO_f1025834_0cd2_42a1_bfeb_13bec41c8655 ) ] ; skos:prefLabel "ClassicallyDefinedMaterial"@en . ns1:EMMO_394390c8_7b29_4c0a_9104_2d2bc8780138 a owl:Class ; @@ -8148,12 +8148,12 @@ ns1:EMMO_f87e79eb_f549_4a06_9c27_a3d1412444c6 a owl:Class ; "This form of matter may exist in a stable form within the core of some neutron stars."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ; - owl:someValuesFrom ns1:EMMO_22a6f189_7ad7_424d_af15_5efe002c1365 ], - [ a owl:Restriction ; owl:allValuesFrom [ a owl:Class ; owl:unionOf ( ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ns1:EMMO_22a6f189_7ad7_424d_af15_5efe002c1365 ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ) ] ; owl:onProperty ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ; + owl:someValuesFrom ns1:EMMO_22a6f189_7ad7_424d_af15_5efe002c1365 ], ns1:EMMO_24dda193_ada8_433b_bb74_6ca4a0b89a20 ; skos:prefLabel "Hyperon"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A baryon containing one or more strange quarks, but no charm, bottom, or top quark."@en ; @@ -11524,11 +11524,11 @@ This can be used in material characterization, to define exactly the type of mea owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; owl:someValuesFrom ns1:EMMO_10a5fd39_06aa_4648_9e70_f962a9cb2069 ] ; owl:equivalentClass [ a owl:Class ; - owl:unionOf ( ns1:EMMO_251cfb4f_5c75_4778_91ed_6c8395212fd8 ns1:EMMO_2a888cdf_ec4a_4ec5_af1c_0343372fc978 ) ], + owl:unionOf ( ns1:EMMO_1b6a95fb_3df7_44c9_ad3d_419c9c5fe7cb ns1:EMMO_9b87d718_9dcc_4f7d_ad20_12c2aa4c76be ) ], [ a owl:Class ; - owl:unionOf ( ns1:EMMO_35d4c439_fcb6_4399_a855_a89a207b41e9 ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ) ], + owl:unionOf ( ns1:EMMO_251cfb4f_5c75_4778_91ed_6c8395212fd8 ns1:EMMO_2a888cdf_ec4a_4ec5_af1c_0343372fc978 ) ], [ a owl:Class ; - owl:unionOf ( ns1:EMMO_1b6a95fb_3df7_44c9_ad3d_419c9c5fe7cb ns1:EMMO_9b87d718_9dcc_4f7d_ad20_12c2aa4c76be ) ] ; + owl:unionOf ( ns1:EMMO_35d4c439_fcb6_4399_a855_a89a207b41e9 ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ) ] ; skos:prefLabel "Coded"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A conventional that stands for an object according to a code of interpretation to which the interpreter refers."@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "A biography that makes use of a code that is provided by the meaning of the element of the language used by the author."@en, @@ -11818,8 +11818,8 @@ ns1:EMMO_8dbaf3ca_8f0d_4c45_92e1_c6d805b83c87 a owl:Class ; rdfs:label "FundamentalFermion"@en ; rdfs:comment "A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics."@en ; rdfs:isDefinedBy ; - owl:disjointUnionOf ( ns1:EMMO_124c07b7_38ea_405c_81b1_5c65eee1a41a ns1:EMMO_7773f63a_cd7c_4393_b36b_cd1b8a71565a ns1:EMMO_82d6c4b3_a037_49de_9622_0407af40bdeb ), - ( ns1:EMMO_07bb613c_e8d0_425f_abcc_47c58b14704e ns1:EMMO_8ab3ff9d_35d4_44b7_9d66_7b0b30c40da8 ), + owl:disjointUnionOf ( ns1:EMMO_07bb613c_e8d0_425f_abcc_47c58b14704e ns1:EMMO_8ab3ff9d_35d4_44b7_9d66_7b0b30c40da8 ), + ( ns1:EMMO_124c07b7_38ea_405c_81b1_5c65eee1a41a ns1:EMMO_7773f63a_cd7c_4393_b36b_cd1b8a71565a ns1:EMMO_82d6c4b3_a037_49de_9622_0407af40bdeb ), ( ns1:EMMO_9226c7af_573f_4762_865c_e3a68a4832dd ns1:EMMO_dad35c10_dd6c_4602_8474_f4ef68517fe9 ) ; skos:prefLabel "FundamentalFermion"@en ; ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 "A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics."@en ; @@ -11851,13 +11851,13 @@ ns1:EMMO_8f87e700_99a8_4427_8ffb_e493de05c217 a owl:Class ; rdfs:comment "A positive charged subatomic particle found in the atomic nucleus."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onClass ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ; + owl:onClass ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ], + owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], [ a owl:Restriction ; - owl:onClass ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ; + owl:onClass ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] ; + owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ] ; skos:prefLabel "Proton"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A positive charged subatomic particle found in the atomic nucleus."@en ; ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Proton"^^xsd:string . @@ -13116,12 +13116,12 @@ ns1:EMMO_f8bd64d5_5d3e_4ad4_a46e_c30714fecb7f a owl:Class ; rdfs:comment "An integer number."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ], - [ a owl:Restriction ; owl:onDataRange xsd:integer ; owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ; owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ], ns1:EMMO_21f56795_ee72_4858_b571_11cfaa59c1a8 ; owl:equivalentClass [ a owl:Restriction ; owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ; @@ -14259,14 +14259,14 @@ ns1:EMMO_463bcfda_867b_41d9_a967_211d4d437cfb a owl:Class ; "An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom ns1:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e ], + [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom ns1:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom ns1:EMMO_7dea2572_ab42_45bd_9fd7_92448cec762a ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom ns1:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e ], ns1:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68, ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; skos:prefLabel "Measurement"@en ; @@ -14776,7 +14776,7 @@ ns1:EMMO_88470739_03d3_4c47_a03e_b30a1288d50c a owl:Class ; rdfs:label "MathematicalFormula"@en ; rdfs:comment "A mathematical string that express a relation between the elements in one set X to elements in another set Y."@en, "The set X is called domain and the set Y range or codomain."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0, ns1:EMMO_89a0c87c_0804_4013_937a_6fe234d9499c ; skos:prefLabel "MathematicalFormula"@en ; @@ -14807,7 +14807,7 @@ ns1:EMMO_891d1351_3843_4da3_906b_3b30411bd512 a owl:Class ; ns1:EMMO_8944581c_64da_46a9_be29_7074f7cc8098 a owl:Class ; rdfs:label "SpatialTiling"@en ; rdfs:comment "A well formed tessellation with tiles that all spatial."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ; owl:onProperty ns1:EMMO_7efab93d_c8fe_49c7_ba8e_d21d13b38c85 ] ; @@ -14942,7 +14942,7 @@ ns1:EMMO_9bb271f2_80a1_481a_ba78_368c4dccc235 a owl:Class ; ns1:EMMO_9be5fcc4_0d8b_481d_b984_6338d4b55588 a owl:Class ; rdfs:label "Measurer"@en ; rdfs:comment "An observer that makes use of a measurement tool and provides a quantitative property."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 ; skos:prefLabel "Measurer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An observer that makes use of a measurement tool and provides a quantitative property."@en . @@ -15154,7 +15154,7 @@ ns1:EMMO_b9277e83_016c_405f_b90a_7e93642c775b a owl:Class ; ns1:EMMO_b9522e56_1fac_4766_97e6_428605fabd3e a owl:Class ; rdfs:label "HolisticArrangement"@en ; rdfs:comment "A system which is mainly characterised by the spatial configuration of its elements."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_65a007dc_2550_46b0_b394_3346c67fbb69 ; skos:prefLabel "HolisticArrangement"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A system which is mainly characterised by the spatial configuration of its elements."@en . @@ -15202,7 +15202,7 @@ ns1:EMMO_c9c8f824_9127_4f93_bc21_69fe78a7f6f2 a owl:Class ; ns1:EMMO_caa63d00_80b1_4408_ac1b_cd0d23b0ec50 a owl:Class ; rdfs:label "ThroughTile"@en ; rdfs:comment "A tile that has next and is next of other tiles within the same tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; skos:prefLabel "ThroughTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tile that has next and is next of other tiles within the same tessellation."@en . @@ -15402,7 +15402,7 @@ ns1:EMMO_eb95a619_ca07_4678_a809_10021b25a13f a owl:Class ; ns1:EMMO_edf72228_e040_4edc_8b46_78b2a47c72d7 a owl:Class ; rdfs:label "EndTile"@en ; rdfs:comment ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; skos:prefLabel "EndTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e . @@ -15552,7 +15552,7 @@ ns1:EMMO_f8a2fe9f_458b_4771_9aba_a50e76afc52d a owl:Class ; ns1:EMMO_f93fe78b_9646_4a15_b88b_1c93686a764d a owl:Class ; rdfs:label "Network"@en ; rdfs:comment "A system whose is mainly characterised by the way in which elements are interconnected."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_65a007dc_2550_46b0_b394_3346c67fbb69 ; skos:prefLabel "Network"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A system whose is mainly characterised by the way in which elements are interconnected."@en . @@ -15580,7 +15580,7 @@ ns1:EMMO_fa3c9d4d_9fc9_4e8a_82c1_28c84e34133a a owl:Class ; ns1:EMMO_fa595892_070d_455e_9459_06c97179c080 a owl:Class ; rdfs:label "BeginTile"@en ; rdfs:comment ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; skos:prefLabel "BeginTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b . @@ -15794,11 +15794,11 @@ ns1:EMMO_0527413c_b286_4e9c_b2d0_03fb2a038dee a owl:Class ; On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity."""@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; - owl:someValuesFrom ns1:EMMO_008fd3b2_4013_451f_8827_52bceab11841 ], - [ a owl:Restriction ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:someValuesFrom ns1:EMMO_054af807_85cd_4a13_8eba_119dfdaaf38b ] ; + owl:someValuesFrom ns1:EMMO_054af807_85cd_4a13_8eba_119dfdaaf38b ], + [ a owl:Restriction ; + owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; + owl:someValuesFrom ns1:EMMO_008fd3b2_4013_451f_8827_52bceab11841 ] ; owl:equivalentClass [ a owl:Class ; owl:unionOf ( ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec ns1:EMMO_2d72e38c_d587_437f_98f6_f2718fb130eb ns1:EMMO_36a4c1ca_5085_49ca_9e13_4c70d00c50a5 ) ] ; skos:prefLabel "Interpreter"@en ; @@ -15893,7 +15893,7 @@ A set of quantites being attributed to a measurand (measured quantitative proper ns1:EMMO_13191289_6c2b_4741_93e1_82d53bd0e703 a owl:Class ; rdfs:label "Participant"@en ; rdfs:comment "An object which is an holistic spatial part of a process."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_90ae56e4_d197_49b6_be1a_0049e4756606, ns1:EMMO_fcae603e_aa6e_4940_9fa1_9f0909cabf3b ; skos:prefLabel "Participant"@en ; @@ -15998,7 +15998,7 @@ ns1:EMMO_22496460_c849_4bd7_8be0_9a1202506f18 a owl:Class ; ns1:EMMO_2337e25c_3c60_43fc_a8f9_b11a3f974291 a owl:ObjectProperty ; rdfs:label "semiotical"@en ; rdfs:comment "The generic EMMO semiotical relation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subPropertyOf ns1:EMMO_ec2472ae_cf4a_46a5_8555_1556f5a6c3c5 ; skos:prefLabel "semiotical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The generic EMMO semiotical relation."@en . @@ -16095,7 +16095,7 @@ ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 a owl:Class ; """The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself."""@en, "The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_8944581c_64da_46a9_be29_7074f7cc8098 ; skos:altLabel "MereologicalState"@en ; skos:prefLabel "Arrangement"@en ; @@ -16109,13 +16109,13 @@ ns1:EMMO_39a4e2a4_d835_426d_b497_182d06e1caff a owl:Class ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_0cd58641_824c_4851_907f_f4c3be76630c ], + owl:someValuesFrom ns1:EMMO_669d2749_bece_460a_b26a_9a909fd8ca4d ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_36a4c1ca_5085_49ca_9e13_4c70d00c50a5 ], + owl:someValuesFrom ns1:EMMO_0cd58641_824c_4851_907f_f4c3be76630c ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_669d2749_bece_460a_b26a_9a909fd8ca4d ] ; + owl:someValuesFrom ns1:EMMO_36a4c1ca_5085_49ca_9e13_4c70d00c50a5 ] ; skos:altLabel "IndexSemiosis"@en ; skos:prefLabel "Deduction"@en . @@ -16188,10 +16188,10 @@ ns1:EMMO_47bf3513_4ae6_4858_9c45_76e23230d68d a owl:Class ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_2d72e38c_d587_437f_98f6_f2718fb130eb ], + owl:someValuesFrom ns1:EMMO_35d2e130_6e01_41ed_94f7_00b333d46cf9 ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_35d2e130_6e01_41ed_94f7_00b333d46cf9 ], + owl:someValuesFrom ns1:EMMO_2d72e38c_d587_437f_98f6_f2718fb130eb ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; owl:someValuesFrom ns1:EMMO_c9805ac9_a943_4be4_ac4b_6da64ba36c73 ] ; @@ -16360,13 +16360,13 @@ ns1:EMMO_7cdc375d_d371_4d78_acd5_d51732f52126 a owl:Class ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec ], + owl:someValuesFrom ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_881606d0_6f2f_4947_bc8b_75c5b7b2b688 ], + owl:someValuesFrom ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ] ; + owl:someValuesFrom ns1:EMMO_881606d0_6f2f_4947_bc8b_75c5b7b2b688 ] ; skos:altLabel "IconSemiosis"@en ; skos:prefLabel "Cognition"@en . @@ -16455,7 +16455,7 @@ ns1:EMMO_90798691_3b86_4d8c_910f_be2b39c98b39 a owl:Class ; ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 a owl:Class ; rdfs:label "Sequence"@en ; rdfs:comment "A tessellation of temporal slices."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c ; skos:prefLabel "Sequence"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tessellation of temporal slices."@en . @@ -16559,7 +16559,7 @@ The unity criterion beyond the definition of a causal structure (the most genera - is made of at least two quantums (a structure is not a simple entity) - all quantum parts form a causally connected graph"""@en, "The union of CausalPath and CausalSystem classes."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; owl:disjointUnionOf [ a rdf:List ; rdf:first ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; rdf:rest [ a rdf:List ; @@ -16645,7 +16645,7 @@ ns1:EMMO_e97af6ec_4371_4bbc_8936_34b76e33302f a owl:Class ; ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 a owl:Class ; rdfs:label "Observer"@en ; rdfs:comment "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Observer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en . @@ -16943,14 +16943,14 @@ ns1:EMMO_1c7f2dfe_0db4_4bf6_a0f6_853054a34ead a owl:Class ; rdfs:comment "A computation that provides a data output following the elaboration of some input data, using a data processing application."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 ], + [ a owl:Restriction ; owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; owl:someValuesFrom ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_ae2d1a96_bfa1_409a_a7d2_03d69e8a125a ; owl:someValuesFrom ns1:EMMO_cbf42aa6_9e11_4be8_932a_ae3c792ab17d ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 ], ns1:EMMO_eff42cb3_208e_4768_9a39_f8b6b3c3d7a2 ; skos:prefLabel "DataProcessing"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A computation that provides a data output following the elaboration of some input data, using a data processing application."@en . @@ -17002,12 +17002,12 @@ ns1:EMMO_2b1fb71c_0eb0_445c_9be7_fb5d30ae79fd a owl:Class ; ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 a owl:Class ; rdfs:label "SpatioTemporalTile"^^xsd:string ; rdfs:comment "https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a"^^xsd:string ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 ; owl:equivalentClass [ a owl:Class ; - owl:unionOf ( ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ns1:EMMO_d4c95fa1_5bda_4063_a22d_62c81fcea284 ) ], + owl:unionOf ( ns1:EMMO_caa63d00_80b1_4408_ac1b_cd0d23b0ec50 ns1:EMMO_edf72228_e040_4edc_8b46_78b2a47c72d7 ns1:EMMO_fa595892_070d_455e_9459_06c97179c080 ) ], [ a owl:Class ; - owl:unionOf ( ns1:EMMO_caa63d00_80b1_4408_ac1b_cd0d23b0ec50 ns1:EMMO_edf72228_e040_4edc_8b46_78b2a47c72d7 ns1:EMMO_fa595892_070d_455e_9459_06c97179c080 ) ] ; + owl:unionOf ( ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ns1:EMMO_d4c95fa1_5bda_4063_a22d_62c81fcea284 ) ] ; skos:altLabel "WellFormedTile"@en ; skos:prefLabel "SpatioTemporalTile"^^xsd:string ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_22c91e99_61f8_4433_8853_432d44a2a46a . @@ -17104,14 +17104,14 @@ ns1:EMMO_3ecff38b_b3cf_4a78_b49f_8580abf8715b a owl:Class ; ns1:EMMO_4a1c73f1_b6f5_4d10_a3a6_5de90bac7cd0 a owl:Class ; rdfs:label "Estimator"@en ; rdfs:comment "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Estimator"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en . ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b a owl:Class ; rdfs:label "TemporalTile"@en ; rdfs:comment "A direct part that is obtained by partitioning a whole purely in temporal parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "TemporalTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A direct part that is obtained by partitioning a whole purely in temporal parts."@en . @@ -17304,7 +17304,7 @@ ns1:EMMO_961d1aba_f75e_4411_aaa4_457f7516ed6b a owl:Class ; ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 a owl:Class ; rdfs:label "Tile"@en ; rdfs:comment "A causal object that is direct part of a tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty [ owl:inverseOf ns1:EMMO_74a75cf1_3418_4244_b43c_b5db94635d42 ] ; owl:someValuesFrom ns1:EMMO_ee0466e4_780d_4236_8281_ace7ad3fc5d2 ] ; @@ -17406,7 +17406,7 @@ ns1:EMMO_b6292331_94af_4f00_976b_ea55960c2f1c a owl:DatatypeProperty ; ns1:EMMO_bafc17b5_9be4_4823_8bbe_ab4e90b6738c a owl:Class ; rdfs:label "IntentionalProcess"@en ; rdfs:comment "A process occurring with the active participation of an agent that drives the process according to a specific objective (intention)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_cd24eb82_a11c_4a31_96ea_32f870c5580a ; owl:someValuesFrom ns1:EMMO_c130614a_2985_476d_a7ed_8a137847703c ], @@ -17437,12 +17437,12 @@ ns1:EMMO_c6d4a5e0_7e95_44df_a6db_84ee0a8bbc8e a owl:Class ; rdfs:comment "A measurement unit that is made of a metric prefix and a unit symbol."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onClass ns1:EMMO_216f448e_cdbc_4aeb_a529_7a5fe7fc38bb ; - owl:onProperty ns1:EMMO_d4e0a0ab_2f67_4f87_a0db_b544e6dceed4 ; - owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], - [ a owl:Restriction ; owl:onClass ns1:EMMO_442bd91e_a724_4e9f_89c1_18423016fb75 ; owl:onProperty ns1:EMMO_4be0acad_af05_426f_aa6d_fe7531072564 ; + owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], + [ a owl:Restriction ; + owl:onClass ns1:EMMO_216f448e_cdbc_4aeb_a529_7a5fe7fc38bb ; + owl:onProperty ns1:EMMO_d4e0a0ab_2f67_4f87_a0db_b544e6dceed4 ; owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] ; skos:prefLabel "PrefixedUnit"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A measurement unit that is made of a metric prefix and a unit symbol."@en . @@ -17476,7 +17476,7 @@ ns1:EMMO_d5f98475_00ce_4987_99fb_262aed395e46 a owl:Class ; ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 a owl:Class ; rdfs:label "Language"@en ; rdfs:comment "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; skos:prefLabel "Language"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en . @@ -17548,7 +17548,7 @@ ns1:EMMO_f4a30d7e_8e8b_41e6_9695_d33a68f54f4b a owl:Class ; ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c a owl:Class ; rdfs:label "TemporalTiling"@en ; rdfs:comment "A well formed tessellation with tiles that are all temporal."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ; owl:onProperty ns1:EMMO_7efab93d_c8fe_49c7_ba8e_d21d13b38c85 ] ; @@ -17657,14 +17657,14 @@ ns1:EMMO_ffb73b1e_5786_43e4_a964_cb32ac7affb7 a owl:Class ; "Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal"@en ; rdfs:isDefinedBy : ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom :Signal ], + [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :Probe ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :Sample ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom :Signal ], ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce ; skos:prefLabel "ProbeSampleInteraction"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal"@en . @@ -17676,10 +17676,10 @@ ns1:EMMO_ffb73b1e_5786_43e4_a964_cb32ac7affb7 a owl:Class ; rdfs:isDefinedBy : ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; - owl:someValuesFrom :SampleInspectionInstrument ], + owl:someValuesFrom :Sample ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; - owl:someValuesFrom :Sample ], + owl:someValuesFrom :SampleInspectionInstrument ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; owl:someValuesFrom :SampleInspectionParameter ], @@ -17736,7 +17736,7 @@ ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 a owl:Class ; rdfs:comment "A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules."@en, """A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 ; owl:equivalentClass [ a owl:Class ; owl:unionOf ( ns1:EMMO_89a0c87c_0804_4013_937a_6fe234d9499c ns1:EMMO_a1083d0a_c1fb_471f_8e20_a98f881ad527 ) ] ; @@ -17976,7 +17976,7 @@ ns1:EMMO_60577dea_9019_4537_ac41_80b0fb563d41 a owl:ObjectProperty ; rdfs:label "hasSign"@en ; rdfs:comment "A relation that connects the semiotic object to the sign in a semiotic process."@en ; rdfs:domain ns1:EMMO_6f5af708_f825_4feb_a0d1_a8d813d3022b ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:range ns1:EMMO_b21a56ed_f969_4612_a6ec_cb7766f7f31d ; rdfs:subPropertyOf ns1:EMMO_2337e25c_3c60_43fc_a8f9_b11a3f974291 ; skos:prefLabel "hasSign"@en ; @@ -18016,7 +18016,7 @@ ns1:EMMO_89a0c87c_0804_4013_937a_6fe234d9499c a owl:Class ; rdfs:label "SymbolicConstruct"@en ; rdfs:comment "A symbolic entity made of other symbolic entities according to a specific spatial configuration."@en, "This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ; owl:someValuesFrom ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ], @@ -18151,7 +18151,7 @@ f(v0, v1, ..., vn) = g(v0, v1, ..., vn) where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables."""@en, "The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; owl:someValuesFrom ns1:EMMO_f9bc8b52_85e9_4b53_b969_dd7724d5b8e4 ], @@ -18234,10 +18234,10 @@ NOTE 2 A measuring instrument is either an indicating measuring instrument or a rdfs:isDefinedBy : ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; - owl:someValuesFrom :Detector ], + owl:someValuesFrom :Probe ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; - owl:someValuesFrom :Probe ], + owl:someValuesFrom :Detector ], ns1:EMMO_f2d5d3ad_2e00_417f_8849_686f3988d929, :CharacterisationHardware ; skos:prefLabel "CharacterisationMeasurementInstrument"^^xsd:string ; @@ -18272,15 +18272,15 @@ system specifications. rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :CharacterisationMeasurementInstrument ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; - owl:someValuesFrom :MeasurementParameter ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :CharacterisationEnvironment ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :Sample ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; + owl:someValuesFrom :MeasurementParameter ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; owl:someValuesFrom :CharacterisationData ], @@ -18573,8 +18573,8 @@ ns1:EMMO_e7aac247_31d6_4b2e_9fd2_e842b1b7ccac a owl:Class ; rdfs:comment "A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type)."@en, "A non-path causal structure"@en ; rdfs:isDefinedBy ; - owl:disjointUnionOf ( ns1:EMMO_09f0ac34_c349_46b5_acf0_0edeae52cca1 ns1:EMMO_0f19d84e_05b4_47c9_a5de_bb2a913d211b ), - ( ns1:EMMO_a6d8e2e2_5e61_4838_977b_9a5dea421fc1 ns1:EMMO_4bb03d40_78d2_45a4_9cb0_4336c9fc3b70 ) ; + owl:disjointUnionOf ( ns1:EMMO_a6d8e2e2_5e61_4838_977b_9a5dea421fc1 ns1:EMMO_4bb03d40_78d2_45a4_9cb0_4336c9fc3b70 ), + ( ns1:EMMO_09f0ac34_c349_46b5_acf0_0edeae52cca1 ns1:EMMO_0f19d84e_05b4_47c9_a5de_bb2a913d211b ) ; skos:prefLabel "CausalSystem"@en ; ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 "A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type)."@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A non-path causal structure"@en ; @@ -18672,7 +18672,7 @@ A collection can be partitioned in maximally connected items called members. The The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be."""@en, "The class of not direct causally self-connected world entities."@en ; rdfs:isDefinedBy ; - rdfs:subClassOf _:135 ; + rdfs:subClassOf _:83 ; skos:prefLabel "Collection"@en ; ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 """A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. @@ -18718,7 +18718,7 @@ ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 a owl:Class ; rdfs:comment "A procedure can be considered as an intentional process with a plan."@en, "The process in which an agent works with some entities according to some existing formalised operative rules."@en, "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_bafc17b5_9be4_4823_8bbe_ab4e90b6738c ; skos:altLabel "Elaboration"@en, "Work"@en ; @@ -18735,7 +18735,7 @@ ns1:EMMO_49267eba_5548_4163_8f36_518d65b583f9 a owl:Class ; rdfs:comment "The class of causal objects that stand for world objects according to a specific representational perspective."@en, """This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; skos:prefLabel "Perspective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of causal objects that stand for world objects according to a specific representational perspective."@en ; @@ -18746,7 +18746,7 @@ ns1:EMMO_65a007dc_2550_46b0_b394_3346c67fbb69 a owl:Class ; rdfs:label "HolisticSystem"@en ; rdfs:comment "A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time."@en, "An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_dba27ca1_33c9_4443_a912_1519ce4c39ec ; owl:someValuesFrom ns1:EMMO_f76884f7_964e_488e_9bb7_1b2453e9e817 ] ; @@ -18806,7 +18806,7 @@ ns1:EMMO_eb3518bf_f799_4f9e_8c3e_ce59af11453b a owl:ObjectProperty ; rdfs:label "hasConvention"@en ; rdfs:comment "A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process."@en ; rdfs:domain ns1:EMMO_c9805ac9_a943_4be4_ac4b_6da64ba36c73 ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:range ns1:EMMO_35d2e130_6e01_41ed_94f7_00b333d46cf9 ; rdfs:subPropertyOf ns1:EMMO_60577dea_9019_4537_ac41_80b0fb563d41 ; skos:prefLabel "hasConvention"@en ; @@ -18817,11 +18817,11 @@ ns1:EMMO_ed4af7ae_63a2_497e_bb88_2309619ea405 a owl:Class ; rdfs:comment "Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty ns1:EMMO_bed1d005_b04e_4a90_94cf_02bc678a8569 ; - owl:someValuesFrom ns1:EMMO_77e9dc31_5b19_463e_b000_44c6e79f98aa ], - [ a owl:Restriction ; owl:allValuesFrom ns1:EMMO_5b2222df_4da6_442f_8244_96e9e45887d1 ; owl:onProperty [ owl:inverseOf ns1:EMMO_e1097637_70d2_4895_973f_2396f04fa204 ] ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_bed1d005_b04e_4a90_94cf_02bc678a8569 ; + owl:someValuesFrom ns1:EMMO_77e9dc31_5b19_463e_b000_44c6e79f98aa ], ns1:EMMO_194100e1_e11a_4b7c_bb5a_171655679fc8, ns1:EMMO_be76ad52_2e29_4202_be6f_0a15eb9c1817 ; skos:prefLabel "Mass"@en ; @@ -18848,21 +18848,21 @@ ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 a owl:Class ; "The class of entities that possess a temporal structure but no spatial structure."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom [ a owl:Class ; + owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ; + owl:someValuesFrom [ a owl:Class ; owl:unionOf [ a rdf:List ; rdf:first ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; rdf:rest [ a rdf:List ; rdf:first ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; - rdf:rest () ] ] ] ; - owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ], + rdf:rest () ] ] ] ], [ a owl:Restriction ; - owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ; - owl:someValuesFrom [ a owl:Class ; + owl:allValuesFrom [ a owl:Class ; owl:unionOf [ a rdf:List ; rdf:first ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; rdf:rest [ a rdf:List ; rdf:first ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; - rdf:rest () ] ] ] ] ; + rdf:rest () ] ] ] ; + owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ] ; owl:disjointUnionOf ( ns1:EMMO_7b79b2ac_3cf2_4d3b_8cdc_bcabb59d869e ns1:EMMO_5e00b1db_48fc_445b_82e8_ab0e2255bf52 ) ; skos:altLabel "CausalChain"@en, "Elementary"@en ; @@ -18926,7 +18926,7 @@ ns1:EMMO_53bd0c90_41c3_46e2_8779_cd2a80f7e18b a owl:Class ; ns1:EMMO_64963ed6_39c9_4258_85e0_6466c4b5420c a owl:Class ; rdfs:label "Workflow"@en ; rdfs:comment "A procedure that has at least two procedures (tasks) as proper parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; owl:someValuesFrom ns1:EMMO_4299e344_a321_4ef2_a744_bacfcce80afc ], @@ -18961,14 +18961,14 @@ manufacturing: function or act of converting or transforming material from raw m """ISO 18435-1:2009 manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area"""@en ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; - owl:someValuesFrom ns1:EMMO_c0afb341_7d31_4883_a307_ae4606df2a1b ], + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ], [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ], + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:someValuesFrom ns1:EMMO_c0afb341_7d31_4883_a307_ae4606df2a1b ], ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; skos:prefLabel "Manufacturing"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes."@en ; @@ -18981,8 +18981,8 @@ ns1:EMMO_b081b346_7279_46ef_9a3d_2c088fcd79f4 a owl:Class ; ISO 80000-1"""@en, "A metrological reference for a physical quantity."@en ; rdfs:isDefinedBy ; - owl:disjointUnionOf ( ns1:EMMO_868ae137_4d25_493e_b270_21ea3d94849e ns1:EMMO_c6d4a5e0_7e95_44df_a6db_84ee0a8bbc8e ), - ( ns1:EMMO_3227b821_26a5_4c7c_9c01_5c24483e0bd0 ns1:EMMO_cbdea88b_fef1_4c7c_b69f_ae1f0f241c4a ) ; + owl:disjointUnionOf ( ns1:EMMO_3227b821_26a5_4c7c_9c01_5c24483e0bd0 ns1:EMMO_cbdea88b_fef1_4c7c_b69f_ae1f0f241c4a ), + ( ns1:EMMO_868ae137_4d25_493e_b270_21ea3d94849e ns1:EMMO_c6d4a5e0_7e95_44df_a6db_84ee0a8bbc8e ) ; owl:disjointWith ns1:EMMO_c9c8f824_9127_4f93_bc21_69fe78a7f6f2 ; skos:prefLabel "MeasurementUnit"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A metrological reference for a physical quantity."@en ; @@ -19234,8 +19234,8 @@ Entities are not placed in space or time: space and time are always relative bet "The class of all the OWL individuals declared by EMMO as standing for world entities."@en, "The disjoint union of the Item and Collection classes."@en ; rdfs:isDefinedBy ; - rdfs:subClassOf _:119, - _:132 ; + rdfs:subClassOf _:102, + _:111 ; owl:disjointUnionOf [ a rdf:List ; rdf:first ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; rdf:rest [ a rdf:List ; @@ -19475,7 +19475,7 @@ ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 a owl:Class ; rdfs:label "Mathematical"@en ; rdfs:comment "A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions."^^xsd:string, "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; skos:prefLabel "Mathematical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en . @@ -19609,7 +19609,7 @@ ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce a owl:Class ; """Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). For this reason, the definition of every specific process subclass requires the introduction of a primitive concept."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:altLabel "Occurrent"@en, "Perdurant"@en ; skos:prefLabel "Process"@en ; @@ -19874,102 +19874,49 @@ Examples of correspondance between dimensional units and their dimensional units - TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" - ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0\""""@en . -[] a swrl:Imp ; - rdfs:comment "Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities."^^rdfs:Literal ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_499e24a5_5072_4c83_8625_fe3f96ae4a8d ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; - rdf:rest () ] . - -[] a swrl:Imp ; - rdfs:comment "Implementation of equality based on mereology."^^rdfs:Literal ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest () ] ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:SameIndividualAtom ; - swrl:argument1 ; - swrl:argument2 ] ; - rdf:rest () ] . - -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_6835537c_d294_4005_a770_ec9621f29ed1 ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:SameIndividualAtom ; - swrl:argument1 ; - swrl:argument2 ] ; - rdf:rest () ] . - [] a owl:Axiom ; - rdfs:seeAlso "https://en.wiktionary.org/wiki/Wiktionary"@en ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 ; - owl:annotatedTarget "Definitions are usually taken from Wiktionary."@en . + owl:annotatedProperty ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 ; + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget "The disjoint union of the Item and Collection classes."@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f """The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). +Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time."""@en . [] a owl:Axiom ; owl:annotatedProperty rdfs:subClassOf ; owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget _:119 ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "All EMMO individuals are part of the most comprehensive entity which is the universe."@en . - -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:ClassAtom ; - swrl:argument1 ; - swrl:classPredicate ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing the fact that an entity cannot cause itself."@en . + owl:annotatedTarget _:111 ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_fc859d37_408d_44b6_b345_a0ea0b65121e ; - owl:annotatedTarget "Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_3f2e4ac2_8ef3_4a14_b826_60d37f15f8ee ; + owl:annotatedTarget "mereological"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 """Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). +https://en.wiktionary.org/wiki/mereology"""@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "ManufacturedProduct"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manufacture: \"made by hand\"."@en . + owl:annotatedSource ns1:EMMO_6c03574f_6daa_4488_a970_ee355cca2530 ; + owl:annotatedTarget "CausalParticle"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-2:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_c1dad83e_974f_432e_ac92_d016f2445279 ; - owl:annotatedTarget "machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound)."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_e7aac247_31d6_4b2e_9fd2_e842b1b7ccac ; + owl:annotatedTarget "CausalSystem"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”)."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8583-2:2003-09"^^xsd:string ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; + owl:annotatedTarget "CausalObject"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . + +[] a owl:Axiom ; + rdfs:seeAlso "ISO 23952:2020(en), 3.4.143"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_91c2db4b_83e2_4c36_aadf_453acc72e6d2 ; - owl:annotatedTarget "Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools"^^xsd:string . + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation"^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -19978,72 +19925,65 @@ Examples of correspondance between dimensional units and their dimensional units ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manu factum (\"made by hand\")."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-3:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_44f91d47_3faf_48e2_844c_d44bbe3e22f6 ; - owl:annotatedTarget "Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface."^^xsd:string . - -[] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_8786cb47_8e1f_4968_9b15_f6d41fc51252 ; - owl:annotatedTarget """ISO 15531-1:2004 -discrete manufacturing: production of discrete items."""@en . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_68ee441e_c89e_4391_93c3_e68fef59fe14 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress"^^xsd:string . + owl:annotatedSource ns1:EMMO_46f70544_818e_495e_99ef_d342c54ee7dc ; + owl:annotatedTarget "Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO 23952:2020(en), 3.4.143"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation"^^xsd:string . + rdfs:seeAlso "DIN EN ISO 15156-3:2015-12"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_dacfc7dc_5ddb_4f67_986b_dcd01d649d60 ; + owl:annotatedTarget "Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_912ac3a2_a124_4233_92dd_06c9aebea46c ; - owl:annotatedTarget "Assemblying"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’."@en . + rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_fc859d37_408d_44b6_b345_a0ea0b65121e ; + owl:annotatedTarget "Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_1a2cbca8_3d3b_4e2c_9a71_e39273937786 ; - owl:annotatedTarget "Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) \"process in the effective zone on the surface of the workpiece\": - thermal ablation; - chemical ablation; - electrochemical ablation."^^xsd:string . + rdfs:seeAlso "EN 10028-1:2017-07"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_9900d51c_bdd3_40e8_aa82_ad1aa7092f71 ; + owl:annotatedTarget "heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://en.wikipedia.org/wiki/Technology"^^xsd:string ; + rdfs:seeAlso "DIN 8589-2:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "Technology is the application of knowledge for achieving practical goals in a reproducible way."^^xsd:string . + owl:annotatedSource ns1:EMMO_c1dad83e_974f_432e_ac92_d016f2445279 ; + owl:annotatedTarget "machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-6:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_c7d004db_59fa_5ae3_adb1_e75736aa721a ; - owl:annotatedTarget "Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool"^^xsd:string . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; + owl:annotatedTarget "Artifact"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin arte ‘by or using art’ + factum ‘something made’."@en . [] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; - owl:annotatedTarget "Elementary"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; + owl:annotatedTarget "Device"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French \"deviser\", meaning: arrange, plan, contrive. Literally \"dispose in portions,\" from Vulgar Latin \"divisare\", frequentative of Latin dividere, meaning \"to divide\"."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8585-3:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_214e9a99_58de_40e2_86cf_fa6aa1d180a8 ; - owl:annotatedTarget "Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging."^^xsd:string . + rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_dc0874e8_36e1_44df_947d_0d7c81167a09 ; + owl:annotatedTarget "(according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982)"^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32"^^xsd:anyURI ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_3cb27225_df45_4616_aa3b_32dba383524c ; + owl:annotatedSource ns1:EMMO_2b524942_4e3e_403a_b4ab_2b53750f3d3b ; owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed"""@en . +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering"""@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; + owl:annotatedTarget "Machine"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical."@en . [] a owl:Axiom ; rdfs:seeAlso "DIN 8584-2:2003-09"^^xsd:string ; @@ -20051,35 +19991,47 @@ liquid-phase sintering: sintering of a powder or compact containing at least two owl:annotatedSource ns1:EMMO_01048432_3722_40a9_aa37_ea009da44272 ; owl:annotatedTarget "Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction."^^xsd:string . -[] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_6800c3fd_bf5d_4a2a_8e6e_9e909eefc16c ; - owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70)."^^xsd:string . - [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; - owl:annotatedTarget "Machine"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical."@en . + owl:annotatedTarget "Equipment"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From French équipement, from équiper ‘equip’."@en . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN EN 13956:2013-03"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_06c415dc_ba26_407d_b596_283bd4d9a66f ; + owl:annotatedTarget "Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together."^^xsd:string . [] a owl:Axiom ; + rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "Engineered"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin ingenium \"innate qualities, ability; inborn character,\" in Late Latin \"a war engine, battering ram\"; literally \"that which is inborn,\" from in- (\"in\") + gignere (\"give birth, beget\")."@en . + owl:annotatedSource ns1:EMMO_46dc0d51_b60f_49cd_8650_9aba7be3726c ; + owl:annotatedTarget "Verfestigen durch Umformen"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://de.wikipedia.org/wiki/Werkst%C3%BCck"^^xsd:string ; + rdfs:seeAlso "DIN 8583-2:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone )."^^xsd:string . + owl:annotatedSource ns1:EMMO_91c2db4b_83e2_4c36_aadf_453acc72e6d2 ; + owl:annotatedTarget "Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_82fc8506_1f84_4add_9683_abea077bd1e3 ; + owl:annotatedTarget "Product"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’."@en . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 65099-4:1989-11"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_c9f0abb6_d3e8_459e_bacc_c14ed5481998 ; + owl:annotatedTarget "Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN"^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8593-0:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_1d6b63d5_9938_483c_ad62_a09ac34153c9 ; - owl:annotatedTarget "Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard])."^^xsd:string . + owl:annotatedSource ns1:EMMO_6ab555fd_5803_4f03_82e8_127c01aabfea ; + owl:annotatedTarget "The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole."^^xsd:string . [] a owl:Axiom ; rdfs:seeAlso "ISO/TR 10809-1:2009, 0000_19"^^xsd:string ; @@ -20088,67 +20040,53 @@ liquid-phase sintering: sintering of a powder or compact containing at least two owl:annotatedTarget "Heat treatment process that generally produces martensite in the matrix."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_46dc0d51_b60f_49cd_8650_9aba7be3726c ; - owl:annotatedTarget "Verfestigen durch Umformen"^^xsd:string . + rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_aced32dd_1a13_49b0_8d8f_c79313942d19 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress."^^xsd:string . -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; - rdf:rest [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; - rdf:rest () ] ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for proper parthood."@en . +[] a owl:Axiom ; + rdfs:seeAlso "DIN EN ISO 4885:2018-07"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_61846411_8c6f_410b_ae7b_8999ec18f2b2 ; + owl:annotatedTarget "Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite"^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_02122e58_e0b3_4274_bdd4_745f64a61645 ; - owl:annotatedTarget "Factory"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin factor, from fact- ‘done’, from the verb facere (to do)."@en . + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource ns1:EMMO_0c7ad550_00ae_45ff_a4e2_58d6a61f48eb ; + owl:annotatedTarget "A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer."@en ; + ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Supply_chain"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 13956:2013-03"^^xsd:string ; + rdfs:seeAlso "DIN 8589-6:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_06c415dc_ba26_407d_b596_283bd4d9a66f ; - owl:annotatedTarget "Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together."^^xsd:string . + owl:annotatedSource ns1:EMMO_c7d004db_59fa_5ae3_adb1_e75736aa721a ; + owl:annotatedTarget "Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool"^^xsd:string . [] a owl:Axiom ; + rdfs:seeAlso "DIN 8589-0:2003-09"^^xsd:string ; owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; - owl:annotatedTarget "Equipment"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From French équipement, from équiper ‘equip’."@en . + owl:annotatedSource ns1:EMMO_8679c7d3_fd5d_49ba_bc1f_1bb820a1f73f ; + owl:annotatedTarget "Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8584-1:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_6fba4018_24bd_450c_abc3_354e2c7809c9 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; + owl:annotatedTarget "CausalStructure"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”)."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; - owl:annotatedTarget """ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion"""@en . + rdfs:seeAlso "ISO/ASTM 52900:2021(en), 3.3.1"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_253e1d54_69af_4931_90d0_5ccfd7e690ad ; + owl:annotatedTarget """fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use."""^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 12258-1:2012-08"^^xsd:string ; + rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2138677c_845a_4bc2_8be7_7b0a07b4777d ; - owl:annotatedTarget "Removal of material by means of rigid or flexible discs or belts containing abrasives."^^xsd:string . + owl:annotatedSource ns1:EMMO_b8ce01a5_1e0c_4c69_8e54_7235fd4fe47e ; + owl:annotatedTarget "A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching)."^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20157,22 +20095,16 @@ manufacturing: function or act of converting or transforming material from raw m ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Old English tōl, from a Germanic base meaning ‘prepare’."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN ISO 15156-3:2015-12"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_dacfc7dc_5ddb_4f67_986b_dcd01d649d60 ; - owl:annotatedTarget "Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties."^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "ISO 23704-1:2022(en), 3.1.2"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_03eb9b46_8ff0_4fcd_b1a0_73f65ae7434e ; - owl:annotatedTarget "process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies,"^^xsd:string . + rdfs:seeAlso "DIN 55405:2014-12"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_c790c7ff_2d10_4336_94ad_4f4e173109a9 ; + owl:annotatedTarget "Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://www.collinsdictionary.com/it/dizionario/inglese/technology"^^xsd:string ; + rdfs:seeAlso "https://en.wikipedia.org/wiki/Technology"^^xsd:string ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes."^^xsd:string . + owl:annotatedTarget "Technology is the application of knowledge for achieving practical goals in a reproducible way."^^xsd:string . [] a owl:Axiom ; rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; @@ -20181,78 +20113,84 @@ manufacturing: function or act of converting or transforming material from raw m owl:annotatedTarget "Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material."^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16"^^xsd:anyURI ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; - owl:annotatedTarget """ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area"""@en . + owl:annotatedTarget """ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8593-0:2003-09"^^xsd:string ; + rdfs:seeAlso "ISO 13574:2015-02"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_6ab555fd_5803_4f03_82e8_127c01aabfea ; - owl:annotatedTarget "The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole."^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_dc0874e8_36e1_44df_947d_0d7c81167a09 ; - owl:annotatedTarget "(according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982)"^^xsd:string . + owl:annotatedSource ns1:EMMO_92eaefcb_50be_4237_9ec0_4a019ce24921 ; + owl:annotatedTarget "Process for removing unwanted residual or waste material from a given product or material"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 9110:2018-08"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_c7171429_b9e3_4812_95c1_e97309370538 ; - owl:annotatedTarget "action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage"^^xsd:string . + rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_410b5956_a06d_4370_b7df_b1bd2126fb4b ; + owl:annotatedTarget "Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; + rdfs:seeAlso "DIN 8584-1:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_7432b843_cfd2_4345_a3d2_eaa539b27e61 ; - owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other."^^xsd:string . + owl:annotatedSource ns1:EMMO_6fba4018_24bd_450c_abc3_354e2c7809c9 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "EN 10028-1:2017-07"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_9900d51c_bdd3_40e8_aa82_ad1aa7092f71 ; - owl:annotatedTarget "heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium"^^xsd:string . + rdfs:seeAlso "DIN EN ISO 5349-2:2015-12"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "Object that is processed with a machine"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://en.wiktionary.org/wiki/workpiece"^^xsd:string ; + rdfs:seeAlso "DIN EN 13831:2007-12"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "The raw material or partially finished piece that is shaped by performing various operations."^^xsd:string . + owl:annotatedSource ns1:EMMO_ecf78412_f0ca_4368_9078_559ffe8935d3 ; + owl:annotatedTarget "Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added"^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_82fc8506_1f84_4add_9683_abea077bd1e3 ; - owl:annotatedTarget "Product"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’."@en . + owl:annotatedSource ns1:EMMO_912ac3a2_a124_4233_92dd_06c9aebea46c ; + owl:annotatedTarget "Assemblying"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60"^^xsd:anyURI ; + rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_68ee441e_c89e_4391_93c3_e68fef59fe14 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress"^^xsd:string . + +[] a owl:Axiom ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_03441eb3_d1fd_4906_b953_b83312d7589e ; - owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles"""@en . + owl:annotatedSource ns1:EMMO_8786cb47_8e1f_4968_9b15_f6d41fc51252 ; + owl:annotatedTarget """ISO 15531-1:2004 +discrete manufacturing: production of discrete items."""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 14943:2006-03"^^xsd:string ; + rdfs:seeAlso "EN 16603-11:2019-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "Conversion of materials and assembly of components for the manufacture of products"^^xsd:string . + owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_aced32dd_1a13_49b0_8d8f_c79313942d19 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress."^^xsd:string . + owl:annotatedSource ns1:EMMO_6800c3fd_bf5d_4a2a_8e6e_9e909eefc16c ; + owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; + rdfs:seeAlso "DIN EN 12258-1:2012-08"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_4f46c5ab_1c21_4639_90d5_3c4ebf3b156b ; - owl:annotatedTarget "Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85)."^^xsd:string . + owl:annotatedSource ns1:EMMO_2138677c_845a_4bc2_8be7_7b0a07b4777d ; + owl:annotatedTarget "Removal of material by means of rigid or flexible discs or belts containing abrasives."^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8589-3:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_44f91d47_3faf_48e2_844c_d44bbe3e22f6 ; + owl:annotatedTarget "Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface."^^xsd:string . [] a owl:Axiom ; rdfs:seeAlso "DIN EN ISO 472/A1:2019-03"^^xsd:string ; @@ -20261,58 +20199,89 @@ sintering: thermal treatment of a powder or compact, at a temperature below the owl:annotatedTarget "Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO 14034:2016-11"^^xsd:string ; + owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget _:102 ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "All EMMO individuals are part of the most comprehensive entity which is the universe."@en . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN EN 10210-3:2020-11"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_6fa330f7_3289_4228_81df_12ee8a9708ac ; + owl:annotatedTarget "Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air."^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8593-3:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process"^^xsd:string . + owl:annotatedSource ns1:EMMO_bbf12904_e25e_4f49_87f3_8bd210a6b535 ; + owl:annotatedTarget "A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget "EMMO"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "EMMO is the acronym of Elementary Multiperspective Material Ontology."@en . + rdfs:seeAlso "DIN EN 14943:2006-03"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; + owl:annotatedTarget "Conversion of materials and assembly of components for the manufacture of products"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 62047-1:2016-12"^^xsd:string ; + rdfs:seeAlso "DIN 8583-1:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_ecc10f05_b301_4dcf_8c84_b6f511117234 ; - owl:annotatedTarget "Process for joining two (base) materials by means of an adhesive polymer material"^^xsd:string . + owl:annotatedSource ns1:EMMO_39d5c9c4_7d24_4409_ba3b_60ca3afde902 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; + owl:annotatedTarget """ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area"""@en . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8585-3:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_b8ce01a5_1e0c_4c69_8e54_7235fd4fe47e ; - owl:annotatedTarget "A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching)."^^xsd:string . + owl:annotatedSource ns1:EMMO_214e9a99_58de_40e2_86cf_fa6aa1d180a8 ; + owl:annotatedTarget "Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-4:1989-11"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_c9f0abb6_d3e8_459e_bacc_c14ed5481998 ; - owl:annotatedTarget "Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN"^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; + owl:annotatedTarget "ManufacturedProduct"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manufacture: \"made by hand\"."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 10210-3:2020-11"^^xsd:string ; + rdfs:seeAlso "DIN 8587:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_22744495_4f32_4a17_b189_259c644268f9 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by shear stress."^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "ISO 23704-1:2022(en), 3.1.2"^^xsd:string ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_6fa330f7_3289_4228_81df_12ee8a9708ac ; - owl:annotatedTarget "Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air."^^xsd:string . + owl:annotatedSource ns1:EMMO_03eb9b46_8ff0_4fcd_b1a0_73f65ae7434e ; + owl:annotatedTarget "process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies,"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_46f70544_818e_495e_99ef_d342c54ee7dc ; - owl:annotatedTarget "Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82)."^^xsd:string . + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury"@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; - owl:annotatedTarget "Device"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French \"deviser\", meaning: arrange, plan, contrive. Literally \"dispose in portions,\" from Vulgar Latin \"divisare\", frequentative of Latin dividere, meaning \"to divide\"."@en . + owl:annotatedSource ns1:EMMO_3733bd38_ca2b_4264_a92a_3075a1715598 ; + owl:annotatedTarget "isPredecessorOf"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin prae (\"beforehand\") and decedere (\"depart\")."@en . [] a owl:Axiom ; - rdfs:seeAlso "ISO 4885:2018-02"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_3c7affee_09ed_42e7_a190_4a10c75ab6dd ; - owl:annotatedTarget "hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution"^^xsd:string . + rdfs:seeAlso "https://de.wikipedia.org/wiki/Werkst%C3%BCck"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone )."^^xsd:string . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_02122e58_e0b3_4274_bdd4_745f64a61645 ; + owl:annotatedTarget "Factory"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin factor, from fact- ‘done’, from the verb facere (to do)."@en . [] a owl:Axiom ; rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; @@ -20321,78 +20290,73 @@ sintering: thermal treatment of a powder or compact, at a temperature below the owl:annotatedTarget "Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless)."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_0c7ad550_00ae_45ff_a4e2_58d6a61f48eb ; - owl:annotatedTarget "A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer."@en ; - ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Supply_chain"^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-0:2003-09"^^xsd:string ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_8679c7d3_fd5d_49ba_bc1f_1bb820a1f73f ; - owl:annotatedTarget "Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined"^^xsd:string . + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_03441eb3_d1fd_4906_b953_b83312d7589e ; + owl:annotatedTarget """ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion"""@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_2b524942_4e3e_403a_b4ab_2b53750f3d3b ; - owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering"""@en . + rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_7432b843_cfd2_4345_a3d2_eaa539b27e61 ; + owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other."^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33"^^xsd:anyURI ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_3ec45f3b_677d_4e71_be75_6f8966b4f808 ; + owl:annotatedSource ns1:EMMO_03441eb3_d1fd_4906_b953_b83312d7589e ; owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder"""@en . +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles"""@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "Artifact"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin arte ‘by or using art’ + factum ‘something made’."@en . + owl:annotatedTarget "TangibleProduct"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From late Latin tangibilis, from tangere ‘to touch’."@en . [] a owl:Axiom ; - rdfs:seeAlso "EN 16603-11:2019-11"^^xsd:string ; + rdfs:seeAlso "ISO 14034:2016-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective"^^xsd:string . + owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN ISO 4885:2018-07"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_61846411_8c6f_410b_ae7b_8999ec18f2b2 ; - owl:annotatedTarget "Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite"^^xsd:string . + rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_4f46c5ab_1c21_4639_90d5_3c4ebf3b156b ; + owl:annotatedTarget "Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN ISO 5349-2:2015-12"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "Object that is processed with a machine"^^xsd:string . + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_3ec45f3b_677d_4e71_be75_6f8966b4f808 ; + owl:annotatedTarget """ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder"""@en . [] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; - owl:annotatedTarget "CausalObject"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . + rdfs:seeAlso "DIN EN 9110:2018-08"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_c7171429_b9e3_4812_95c1_e97309370538 ; + owl:annotatedTarget "action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8587:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_22744495_4f32_4a17_b189_259c644268f9 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by shear stress."^^xsd:string . + owl:annotatedSource ns1:EMMO_1a2cbca8_3d3b_4e2c_9a71_e39273937786 ; + owl:annotatedTarget "Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) \"process in the effective zone on the surface of the workpiece\": - thermal ablation; - chemical ablation; - electrochemical ablation."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 55405:2014-12"^^xsd:string ; + rdfs:seeAlso "https://en.wiktionary.org/wiki/workpiece"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_c790c7ff_2d10_4336_94ad_4f4e173109a9 ; - owl:annotatedTarget "Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents"^^xsd:string . + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "The raw material or partially finished piece that is shaped by performing various operations."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO 13574:2015-02"^^xsd:string ; + rdfs:seeAlso "https://www.collinsdictionary.com/it/dizionario/inglese/technology"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_92eaefcb_50be_4237_9ec0_4a019ce24921 ; - owl:annotatedTarget "Process for removing unwanted residual or waste material from a given product or material"^^xsd:string . + owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; + owl:annotatedTarget "Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes."^^xsd:string . [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5"^^xsd:anyURI ; @@ -20402,95 +20366,140 @@ loose-powder sintering, gravity sintering: sintering of uncompacted powder"""@en manufacturing: production of components"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8593-3:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_bbf12904_e25e_4f49_87f3_8bd210a6b535 ; - owl:annotatedTarget "A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection."^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "ISO/ASTM 52900:2021(en), 3.3.1"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_253e1d54_69af_4931_90d0_5ccfd7e690ad ; - owl:annotatedTarget """fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use."""^^xsd:string . - -[] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9"^^xsd:anyURI ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_03441eb3_d1fd_4906_b953_b83312d7589e ; - owl:annotatedTarget """ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion"""@en . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN EN 13831:2007-12"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_ecf78412_f0ca_4368_9078_559ffe8935d3 ; - owl:annotatedTarget "Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added"^^xsd:string . + owl:annotatedSource ns1:EMMO_3cb27225_df45_4616_aa3b_32dba383524c ; + owl:annotatedTarget """ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; + rdfs:seeAlso "DIN EN 62047-1:2016-12"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_410b5956_a06d_4370_b7df_b1bd2126fb4b ; - owl:annotatedTarget "Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85)."^^xsd:string . + owl:annotatedSource ns1:EMMO_ecc10f05_b301_4dcf_8c84_b6f511117234 ; + owl:annotatedTarget "Process for joining two (base) materials by means of an adhesive polymer material"^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "TangibleProduct"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From late Latin tangibilis, from tangere ‘to touch’."@en . + owl:annotatedTarget "Engineered"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin ingenium \"innate qualities, ability; inborn character,\" in Late Latin \"a war engine, battering ram\"; literally \"that which is inborn,\" from in- (\"in\") + gignere (\"give birth, beget\")."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8583-1:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_39d5c9c4_7d24_4409_ba3b_60ca3afde902 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress."^^xsd:string . + owl:annotatedSource ns1:EMMO_1d6b63d5_9938_483c_ad62_a09ac34153c9 ; + owl:annotatedTarget "Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard])."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3f2e4ac2_8ef3_4a14_b826_60d37f15f8ee ; - owl:annotatedTarget "mereological"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 """Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). -https://en.wiktionary.org/wiki/mereology"""@en . + rdfs:seeAlso "ISO 4885:2018-02"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_3c7affee_09ed_42e7_a190_4a10c75ab6dd ; + owl:annotatedTarget "hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution"^^xsd:string . + +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ] ; + rdf:rest () ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_aa987900_caf1_4ce2_82fa_6b1d6fbd2ead ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing exclusivity between overlapping and causality."@en . + +[] a swrl:Imp ; + rdfs:comment "Implementation of equality based on mereology."^^rdfs:Literal ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest () ] ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:SameIndividualAtom ; + swrl:argument1 ; + swrl:argument2 ] ; + rdf:rest () ] . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; - owl:annotatedTarget "CausalStructure"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”)."@en . + owl:annotatedSource ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; + owl:annotatedTarget "Quantum"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin quantum (plural quanta) \"as much as, so much as\"."@en . [] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget """The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions."""@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon)."@en . + owl:annotatedProperty ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; + owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; + owl:annotatedTarget ":isCauseOf owl:propertyDisjointWith :overlaps"@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; - owl:annotatedTarget _:135 ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item)."@en . + owl:annotatedTarget "Collection"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin collectio, from colligere ‘gather together’."@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3733bd38_ca2b_4264_a92a_3075a1715598 ; - owl:annotatedTarget "isPredecessorOf"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin prae (\"beforehand\") and decedere (\"depart\")."@en . + rdfs:seeAlso "https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; + owl:annotatedTarget "Axiom not included in the theory because of OWL 2 DL global restrictions for decidability."@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_e7aac247_31d6_4b2e_9fd2_e842b1b7ccac ; - owl:annotatedTarget "CausalSystem"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”)."@en . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; + owl:annotatedTarget "Elementary"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . + +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + rdf:rest [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + rdf:rest () ] ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for proper parthood."@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; - owl:annotatedTarget "Collection"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin collectio, from colligere ‘gather together’."@en . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; + owl:annotatedTarget "CausalChain"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French chaine, chaene (“chain”), from Latin catēna (“chain”)."@en . + +[] a swrl:Imp ; + rdfs:comment "Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities."^^rdfs:Literal ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_499e24a5_5072_4c83_8625_fe3f96ae4a8d ] ; + rdf:rest () ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; + rdf:rest () ] . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; @@ -20502,9 +20511,29 @@ Entities are not placed in space or time: space and time are always relative bet rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_d893d373_b579_4867_841e_1c2b31a8d2c6 ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing reflexivity of overlapping."@en . + +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest () ] ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing parthood reflexivity."@en . + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for parthood."@en . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; @@ -20516,74 +20545,44 @@ Entities are not placed in space or time: space and time are always relative bet rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_d893d373_b579_4867_841e_1c2b31a8d2c6 ] ; + swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing reflexivity of overlapping."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; - owl:annotatedTarget "isCauseOf"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”)."@en . - -[] a owl:Axiom ; - rdfs:seeAlso "https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; - owl:annotatedTarget "Axiom not included in the theory because of OWL 2 DL global restrictions for decidability."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; - owl:annotatedTarget "CausalChain"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French chaine, chaene (“chain”), from Latin catēna (“chain”)."@en . + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing the fact that an entity cannot cause itself."@en . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ] ; + swrl:propertyPredicate ns1:EMMO_6835537c_d294_4005_a770_ec9621f29ed1 ] ; rdf:rest () ] ; swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; + rdf:first [ a swrl:SameIndividualAtom ; swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_aa987900_caf1_4ce2_82fa_6b1d6fbd2ead ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing exclusivity between overlapping and causality."@en . + swrl:argument2 ] ; + rdf:rest () ] . [] a owl:Axiom ; - owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget _:132 ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO."@en . + owl:annotatedTarget """The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions."""@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; - owl:annotatedTarget "Quantum"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin quantum (plural quanta) \"as much as, so much as\"."@en . + owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; + owl:annotatedTarget "Software"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953."@en . -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest () ] ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for parthood."@en . +[] a owl:Axiom ; + rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource ns1:EMMO_6470bbfa_04a6_4360_9534_1aa18d68329b ; + owl:annotatedTarget "A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource."@en . [] a owl:Axiom ; rdfs:isDefinedBy "http://www.linfo.org/source_code.html"^^xsd:anyURI ; @@ -20592,10 +20591,10 @@ Entities are not placed in space or time: space and time are always relative bet owl:annotatedTarget "Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters)."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en"@en ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_db99b1e5_2f34_467b_a784_d104946d9f00 ; - owl:annotatedTarget "The term \"Uniform Resource Name\" (URN) has been used historically to refer to both URIs under the \"urn\" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name."@en . + owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; + owl:annotatedTarget "All or part of the programs, procedures, rules, and associated documentation of an information processing system."@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://datatracker.ietf.org/doc/rfc3987/"^^xsd:anyURI ; @@ -20604,16 +20603,17 @@ Entities are not placed in space or time: space and time are always relative bet owl:annotatedTarget "An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_8a8f664b_dc59_4e00_ae00_81fdf1e1d12e ; - owl:annotatedTarget "The term \"Uniform Resource Locator\" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network \"location\")."@en . + rdfs:isDefinedBy "http://www.linfo.org/program.html"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_65411b3d_c8d3_4111_86a9_a2ce0a64c647 ; + owl:annotatedTarget "A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data."@en . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :LinearChronopotentiometry ; - owl:annotatedTarget "chronopotentiometry where the applied current is changed linearly"@en . + rdfs:seeAlso "http://www.linfo.org/program.html"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; + owl:annotatedTarget """Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users."""@en . [] a owl:Axiom ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; @@ -20622,35 +20622,19 @@ Entities are not placed in space or time: space and time are always relative bet ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention"^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en"@en ; + rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; - owl:annotatedTarget "All or part of the programs, procedures, rules, and associated documentation of an information processing system."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; - owl:annotatedTarget "Software"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953."@en . - -[] a owl:Axiom ; - rdfs:isDefinedBy "http://www.linfo.org/program.html"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_65411b3d_c8d3_4111_86a9_a2ce0a64c647 ; - owl:annotatedTarget "A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data."@en . + owl:annotatedSource ns1:EMMO_8a8f664b_dc59_4e00_ae00_81fdf1e1d12e ; + owl:annotatedTarget "The term \"Uniform Resource Locator\" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network \"location\")."@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_6470bbfa_04a6_4360_9534_1aa18d68329b ; - owl:annotatedTarget "A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource."@en . + owl:annotatedSource ns1:EMMO_db99b1e5_2f34_467b_a784_d104946d9f00 ; + owl:annotatedTarget "The term \"Uniform Resource Name\" (URN) has been used historically to refer to both URIs under the \"urn\" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name."@en . -[] a owl:Axiom ; - rdfs:seeAlso "http://www.linfo.org/program.html"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; - owl:annotatedTarget """Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users."""@en . +[] a owl:AllDisjointClasses ; + owl:members ( :CalibrationProcess :CharacterisationDataValidation :CharacterisationMeasurementProcess :DataAnalysis :DataPostProcessing :DataPreparation :SampleExtraction :SampleInspection :SamplePreparation ) . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20659,15 +20643,15 @@ Here we explicitly include in the definition also all the data (e.g. source code ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin con- +‎ putō (“I reckon”)."@en . [] a owl:Axiom ; - rdfs:seeAlso "https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf"^^xsd:anyURI ; + rdfs:seeAlso "https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf"^^xsd:string ; owl:annotatedProperty rdfs:isDefinedBy ; - owl:annotatedSource ns1:EMMO_b29fd350_39aa_4af7_9459_3faa0544cba6 ; + owl:annotatedSource ns1:EMMO_e97af6ec_4371_4bbc_8936_34b76e33302f ; owl:annotatedTarget "CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata”"@en . [] a owl:Axiom ; - rdfs:seeAlso "https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf"^^xsd:string ; + rdfs:seeAlso "https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf"^^xsd:anyURI ; owl:annotatedProperty rdfs:isDefinedBy ; - owl:annotatedSource ns1:EMMO_e97af6ec_4371_4bbc_8936_34b76e33302f ; + owl:annotatedSource ns1:EMMO_b29fd350_39aa_4af7_9459_3faa0544cba6 ; owl:annotatedTarget "CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata”"@en . [] a owl:Axiom ; @@ -20682,15 +20666,18 @@ Here we explicitly include in the definition also all the data (e.g. source code owl:annotatedTarget "Variable"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Fom Latin variabilis (\"changeable\")."@en . -[] a owl:AllDisjointClasses ; - owl:members ( ns1:EMMO_1d6b63d5_9938_483c_ad62_a09ac34153c9 :SampleExtractionByCutting :SamplePreparationByCutting ) . - -[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . - [] owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger . [] owl:qualifiedCardinality "4"^^xsd:nonNegativeInteger . +[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; + owl:annotatedTarget "Language"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”)."@en . + [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; @@ -20698,10 +20685,17 @@ Here we explicitly include in the definition also all the data (e.g. source code ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”)."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; - owl:annotatedTarget "Language"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”)."@en . + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :DifferentialLinearPulseVoltammetry ; + owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential."@en . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_3e7add3d_e6ed_489a_a796_8e31fef9b490 ; + owl:annotatedTarget """We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective."""@en ; + ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen."@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; @@ -20715,13 +20709,6 @@ Here we explicitly include in the definition also all the data (e.g. source code owl:annotatedTarget "Data"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”)."@en . -[] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_3e7add3d_e6ed_489a_a796_8e31fef9b490 ; - owl:annotatedTarget """We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective."""@en ; - ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen."@en . - [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_49267eba_5548_4163_8f36_518d65b583f9 ; @@ -20729,33 +20716,27 @@ We call "interpreting" the act of providing semantic meaning to data, which is c ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’."@en . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :CyclicChronopotentiometry ; - owl:annotatedTarget "chronopotentiometry where the change in applied current undergoes a cyclic current reversal"@en . - -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :DifferentialLinearPulseVoltammetry ; - owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential."@en . + owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; + owl:annotatedSource ns1:EMMO_ee0466e4_780d_4236_8281_ace7ad3fc5d2 ; + owl:annotatedTarget "A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps."@en ; + ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Tessellation"^^xsd:anyURI . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_b2282816_b7a3_44c6_b2cb_3feff1ceb7fe ] ; + swrl:propertyPredicate ns1:EMMO_65a2c5b8_e4d8_4a51_b2f8_e55effc0547d ] ; rdf:rest [ a swrl:AtomList ; rdf:first [ a swrl:ClassAtom ; swrl:argument1 ; - swrl:classPredicate ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 ] ; + swrl:classPredicate ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 ] ; rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ] ; + swrl:propertyPredicate ns1:EMMO_2a33ee61_8235_4da4_b9a1_ca62cb87a016 ] ; rdf:rest () ] . [] a owl:Axiom ; @@ -20769,42 +20750,30 @@ We call "interpreting" the act of providing semantic meaning to data, which is c rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_65a2c5b8_e4d8_4a51_b2f8_e55effc0547d ] ; + swrl:propertyPredicate ns1:EMMO_b2282816_b7a3_44c6_b2cb_3feff1ceb7fe ] ; rdf:rest [ a swrl:AtomList ; rdf:first [ a swrl:ClassAtom ; swrl:argument1 ; - swrl:classPredicate ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 ] ; + swrl:classPredicate ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 ] ; rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_2a33ee61_8235_4da4_b9a1_ca62cb87a016 ] ; + swrl:propertyPredicate ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ] ; rdf:rest () ] . -[] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; - owl:annotatedSource ns1:EMMO_ee0466e4_780d_4236_8281_ace7ad3fc5d2 ; - owl:annotatedTarget "A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps."@en ; - ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Tessellation"^^xsd:anyURI . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_c7013b53_3071_410b_a5e4_a8d266dcdfb5 ; - owl:annotatedTarget "FunctionalIcon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”)."@en . - [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_4f2d1fcc_e20c_4479_9ad7_7a0480dd3e44 ; - owl:annotatedTarget "AnalogicalIcon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”)."@en . + owl:annotatedSource ns1:EMMO_1c0b22a2_be82_4fa8_9e2b_a569a625d442 ; + owl:annotatedTarget "Estimation"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin aestimatus (“to value, rate, esteem”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_0cd58641_824c_4851_907f_f4c3be76630c ; - owl:annotatedTarget "Index"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”)."@en . + owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; + owl:annotatedTarget "Icon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20812,23 +20781,23 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedTarget "Property"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”)."@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; - owl:annotatedTarget "Model"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin modus (“measure”)."@en . - [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_1c0b22a2_be82_4fa8_9e2b_a569a625d442 ; - owl:annotatedTarget "Estimation"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin aestimatus (“to value, rate, esteem”)."@en . + owl:annotatedSource ns1:EMMO_0cd58641_824c_4851_907f_f4c3be76630c ; + owl:annotatedTarget "Index"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; - owl:annotatedTarget "Simulacrum"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin simulacrum (\"likeness, semblance\")"@en . + owl:annotatedTarget "Model"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin modus (“measure”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_c7013b53_3071_410b_a5e4_a8d266dcdfb5 ; + owl:annotatedTarget "FunctionalIcon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”)."@en . [] a owl:Axiom ; rdfs:seeAlso "https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol"^^xsd:anyURI ; @@ -20841,10 +20810,16 @@ We call "interpreting" the act of providing semantic meaning to data, which is c [Wikipedia]"""@en . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :StepChronopotentiometry ; - owl:annotatedTarget "chronopotentiometry where the applied current is changed in steps"@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_8c537c06_8e1d_4a3b_a251_1c89bb2c4790 ; + owl:annotatedTarget "ResemblanceIcon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_4f2d1fcc_e20c_4479_9ad7_7a0480dd3e44 ; + owl:annotatedTarget "AnalogicalIcon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20859,28 +20834,22 @@ We call "interpreting" the act of providing semantic meaning to data, which is c ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”),"@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; + owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; - owl:annotatedTarget "Icon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_8c537c06_8e1d_4a3b_a251_1c89bb2c4790 ; - owl:annotatedTarget "ResemblanceIcon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”)."@en . + owl:annotatedTarget "Simulacrum"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin simulacrum (\"likeness, semblance\")"@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_985bec21_989f_4b9e_a4b3_735d88099c3c ; - owl:annotatedTarget "Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2)"@en . + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :LinearChronopotentiometry ; + owl:annotatedTarget "chronopotentiometry where the applied current is changed linearly"@en . [] a owl:Axiom ; - dcterms:source "Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71;"^^xsd:string ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :AbrasiveStrippingVoltammetry ; - owl:annotatedTarget "electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve"@en . + owl:annotatedSource :StepChronopotentiometry ; + owl:annotatedTarget "chronopotentiometry where the applied current is changed in steps"@en . [] a owl:Axiom ; owl:annotatedProperty ns1:EMMO_bb49844b_45d7_4f0d_8cae_8e552cbc20d6 ; @@ -20888,12 +20857,24 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedTarget "measurand"@en ; ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity."@en . +[] a owl:Axiom ; + rdfs:isDefinedBy "https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_985bec21_989f_4b9e_a4b3_735d88099c3c ; + owl:annotatedTarget "Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2)"@en . + [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/standard/45324.html"^^xsd:anyURI ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource ns1:EMMO_463bcfda_867b_41d9_a967_211d4d437cfb ; owl:annotatedTarget "A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity."@en . +[] a owl:Axiom ; + rdfs:seeAlso "https://en.wiktionary.org/wiki/procedure"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; + owl:annotatedSource ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; + owl:annotatedTarget "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en . + [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; @@ -20906,9 +20887,6 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedTarget "IntentionalProcess"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin intentionem, derived from intendere (\"stretching out\")"@en . -[] a owl:AllDisjointClasses ; - owl:members ( :CalibrationProcess :CharacterisationDataValidation :CharacterisationMeasurementProcess :DataAnalysis :DataPostProcessing :DataPreparation :SampleExtraction :SampleInspection :SamplePreparation ) . - [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; @@ -20917,10 +20895,16 @@ We call "interpreting" the act of providing semantic meaning to data, which is c organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives"""@en . [] a owl:Axiom ; - rdfs:seeAlso "https://en.wiktionary.org/wiki/procedure"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; - owl:annotatedSource ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; - owl:annotatedTarget "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_57c75ca1_bf8a_42bc_85d9_58cfe38c7df2 ; + owl:annotatedTarget "Fundamental"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_0277f24a_ea7f_4917_81b7_fb0406c8fc62 ; + owl:annotatedTarget "Wholistic"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'."@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; @@ -20928,12 +20912,6 @@ organization: person or group of people that has its own functions with responsi owl:annotatedTarget "Lifetime"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Middle English liftime, equivalent to life +‎ time."@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_1efe8b96_e006_4a33_bc9a_421406cbb9f0 ; - owl:annotatedTarget "Whole"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Middle English hole (“healthy, unhurt, whole”)."@en . - [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_4f226cf3_6d02_4d35_8566_a9e641bc6ff3 ; @@ -20942,21 +20920,9 @@ organization: person or group of people that has its own functions with responsi [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_57c75ca1_bf8a_42bc_85d9_58cfe38c7df2 ; - owl:annotatedTarget "Fundamental"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_0277f24a_ea7f_4917_81b7_fb0406c8fc62 ; - owl:annotatedTarget "Wholistic"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'."@en . - -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution"@en . + owl:annotatedSource ns1:EMMO_1efe8b96_e006_4a33_bc9a_421406cbb9f0 ; + owl:annotatedTarget "Whole"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Middle English hole (“healthy, unhurt, whole”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20978,9 +20944,9 @@ organization: person or group of people that has its own functions with responsi [] a owl:Axiom ; dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedProperty rdfs:comment ; owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential"@en . + owl:annotatedTarget "the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution"@en . [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . @@ -20989,22 +20955,22 @@ organization: person or group of people that has its own functions with responsi [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "the time between changes in potential in step 2 is related to the concentration of analyte in the solution"@en . + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :CyclicChronopotentiometry ; + owl:annotatedTarget "chronopotentiometry where the change in applied current undergoes a cyclic current reversal"@en . [] a owl:Axiom ; dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury"@en . + owl:annotatedTarget "the accumulation is similar to that used in stripping voltammetry"@en . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "the accumulation is similar to that used in stripping voltammetry"@en . + dcterms:source "Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71;"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :AbrasiveStrippingVoltammetry ; + owl:annotatedTarget "electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve"@en . [] a owl:Axiom ; dcterms:source "International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org"^^xsd:string ; @@ -21012,12 +20978,30 @@ organization: person or group of people that has its own functions with responsi owl:annotatedSource :Electrogravimetry ; owl:annotatedTarget "method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode."@en . +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :DifferentialStaircasePulseVoltammetry ; + owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp."@en . + +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "the time between changes in potential in step 2 is related to the concentration of analyte in the solution"@en . + [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_0bb3b434_73aa_428f_b4e8_2a2468648e19 ; owl:annotatedTarget "Crystal"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”)."@en . +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential"@en . + [] a owl:Axiom ; rdfs:isDefinedBy "https://dictionary.iucr.org/Crystal"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; @@ -21029,22 +21013,34 @@ A solid is a crystal if it has essentially a sharp diffraction pattern. The word H=∑ni=1hia∗i (n≥3)"""^^xsd:string . +[] owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger . + [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . -[] a owl:AllDisjointClasses ; - owl:members ( :CompressionTesting :CreepTesting :DynamicMechanicalAnalysis :FatigueTesting :FibDic :HardnessTesting :Nanoindentation :ShearOrTorsionTesting :TensileTesting :WearTesting ) . +[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . [] owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger . [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . +[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . + [] owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger . -[] owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger . +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_5b2222df_4da6_442f_8244_96e9e45887d1 ; + owl:annotatedTarget "Matter"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin materia (“matter, stuff, material”), from mater (“mother”)."@en . -[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . +[] a owl:AllDisjointClasses ; + owl:members ( ns1:EMMO_1d6b63d5_9938_483c_ad62_a09ac34153c9 :SampleExtractionByCutting :SamplePreparationByCutting ) . -[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_a15cea10_9946_4d2b_95c5_cfc333fd2abb ; + owl:annotatedTarget "Particle"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . [] a owl:Axiom ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; @@ -21054,17 +21050,14 @@ H=∑ni=1hia∗i (n≥3)"""^^xsd:string . The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used."""@en ; ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Phase_(matter)"@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_a15cea10_9946_4d2b_95c5_cfc333fd2abb ; - owl:annotatedTarget "Particle"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . +[] a owl:AllDisjointClasses ; + owl:members ( :CompressionTesting :CreepTesting :DynamicMechanicalAnalysis :FatigueTesting :FibDic :HardnessTesting :Nanoindentation :ShearOrTorsionTesting :TensileTesting :WearTesting ) . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :DifferentialStaircasePulseVoltammetry ; - owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp."@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_38b579de_4331_40e0_803d_09efa298e726 ; + owl:annotatedTarget "PhysicalObject"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin physica \"study of nature\" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . [] a owl:Axiom ; owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; @@ -21073,10 +21066,16 @@ The term phase is sometimes used as a synonym for state of matter, but there can ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Condensed_matter_physics"@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; - owl:annotatedTarget "Item"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin item, \"likewise, just so, moreover\"."@en . + owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; + owl:annotatedTarget _:83 ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item)."@en . + +[] a owl:Axiom ; + rdfs:seeAlso "https://en.wiktionary.org/wiki/Wiktionary"@en ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 ; + owl:annotatedTarget "Definitions are usually taken from Wiktionary."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -21086,27 +21085,27 @@ The term phase is sometimes used as a synonym for state of matter, but there can [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_6c03574f_6daa_4488_a970_ee355cca2530 ; - owl:annotatedTarget "CausalParticle"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . + owl:annotatedSource ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; + owl:annotatedTarget "Item"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin item, \"likewise, just so, moreover\"."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_5b2222df_4da6_442f_8244_96e9e45887d1 ; - owl:annotatedTarget "Matter"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin materia (“matter, stuff, material”), from mater (“mother”)."@en . + owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; + owl:annotatedTarget "isCauseOf"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”)."@en . [] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; - owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; - owl:annotatedTarget ":isCauseOf owl:propertyDisjointWith :overlaps"@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_fa3c9d4d_9fc9_4e8a_82c1_28c84e34133a ; + owl:annotatedTarget "FundamentalBoson"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "1940s: named after S.N. Bose."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_38b579de_4331_40e0_803d_09efa298e726 ; - owl:annotatedTarget "PhysicalObject"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin physica \"study of nature\" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . + owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; + owl:annotatedTarget "CausalPath"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek πάτος (pátos, “path”)."@en . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; @@ -21125,21 +21124,29 @@ The term phase is sometimes used as a synonym for state of matter, but there can [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_fa3c9d4d_9fc9_4e8a_82c1_28c84e34133a ; - owl:annotatedTarget "FundamentalBoson"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "1940s: named after S.N. Bose."@en . + owl:annotatedSource ns1:EMMO_7b79b2ac_3cf2_4d3b_8cdc_bcabb59d869e ; + owl:annotatedTarget "ElementaryParticle"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; - owl:annotatedTarget "CausalPath"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek πάτος (pátos, “path”)."@en . + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget "EMMO"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "EMMO is the acronym of Elementary Multiperspective Material Ontology."@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_7b79b2ac_3cf2_4d3b_8cdc_bcabb59d869e ; - owl:annotatedTarget "ElementaryParticle"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:ClassAtom ; + swrl:argument1 ; + swrl:classPredicate ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ] ; + rdf:rest () ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing parthood reflexivity."@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; @@ -21147,24 +21154,17 @@ The term phase is sometimes used as a synonym for state of matter, but there can owl:annotatedTarget "ElementaryParticle"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . -[] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget "The disjoint union of the Item and Collection classes."@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f """The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). -Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time."""@en . - -_:167 owl:inverseOf ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f . +_:103 owl:inverseOf ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f . -_:119 a owl:Restriction ; +_:102 a owl:Restriction ; owl:hasValue ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 ; - owl:onProperty _:167 . + owl:onProperty _:103 . -_:132 a owl:Restriction ; +_:111 a owl:Restriction ; owl:onProperty ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ; owl:someValuesFrom ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 . -_:135 a owl:Restriction ; +_:83 a owl:Restriction ; owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ; owl:onClass ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; owl:onProperty ns1:EMMO_6b7276a4_4b9d_440a_b577_0277539c0fc4 .