diff --git a/.doctrees/chameo.doctree b/.doctrees/chameo.doctree index 5f627ce..9fcf7ff 100644 Binary files a/.doctrees/chameo.doctree and b/.doctrees/chameo.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index 7a3c129..2c3dd05 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/_sources/chameo.rst.txt b/_sources/chameo.rst.txt index b917d76..c0ce14a 100644 --- a/_sources/chameo.rst.txt +++ b/_sources/chameo.rst.txt @@ -37,10 +37,6 @@ ACVoltammetry Elucidation voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - - Wikidatareference - https://www.wikidata.org/wiki/Q120895154 - Preflabel ACVoltammetry @@ -49,6 +45,10 @@ ACVoltammetry Altlabel ACV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. @@ -62,8 +62,8 @@ ACVoltammetry - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q120895154 Label @@ -202,6 +202,10 @@ AdsorptiveStrippingVoltammetry Altlabel AdSV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. @@ -210,10 +214,6 @@ AdsorptiveStrippingVoltammetry Comment Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label AdsorptiveStrippingVoltammetry @@ -296,6 +296,10 @@ Amperometry Preflabel Amperometry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. @@ -304,10 +308,6 @@ Amperometry Comment The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label Amperometry @@ -386,21 +386,21 @@ AnodicStrippingVoltammetry Elucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - - Wikidatareference - https://www.wikidata.org/wiki/Q939328 - Preflabel AnodicStrippingVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q939328 Label @@ -566,10 +566,6 @@ BrunauerEmmettTellerMethod Elucidation A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - - Wikidatareference - https://www.wikidata.org/wiki/Q795838 - Preflabel BrunauerEmmettTellerMethod @@ -582,6 +578,10 @@ BrunauerEmmettTellerMethod Comment A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + + Wikidatareference + https://www.wikidata.org/wiki/Q795838 + Wikipediareference https://en.wikipedia.org/wiki/BET_theory @@ -868,10 +868,6 @@ CathodicStrippingVoltammetry Elucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - - Wikidatareference - https://www.wikidata.org/wiki/Q4016325 - Preflabel CathodicStrippingVoltammetry @@ -880,13 +876,17 @@ CathodicStrippingVoltammetry Altlabel CSV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q4016325 Label @@ -2080,14 +2080,14 @@ Chronoamperometry Altlabel AmperometricCurrentTimeCurve - - Comment - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Label Chronoamperometry @@ -2127,14 +2127,14 @@ Chronocoulometry Preflabel Chronocoulometry - - Comment - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Label Chronocoulometry @@ -2174,14 +2174,14 @@ Chronopotentiometry Preflabel Chronopotentiometry - - Comment - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Label Chronopotentiometry @@ -2260,21 +2260,21 @@ ConductometricTitration Elucidation Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - - Wikidatareference - https://www.wikidata.org/wiki/Q11778221 - Preflabel ConductometricTitration + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q11778221 Label @@ -2311,30 +2311,30 @@ Conductometry Elucidation Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - - Wikidatareference - https://www.wikidata.org/wiki/Q901180 - Preflabel Conductometry - - Comment - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Iupacreference https://doi.org/10.1515/pac-2018-0109 - Wikipediareference - https://en.wikipedia.org/wiki/Conductometry + Comment + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + + + Wikidatareference + https://www.wikidata.org/wiki/Q901180 Example Monitoring of the purity of deionized water. + + Wikipediareference + https://en.wikipedia.org/wiki/Conductometry + Label Conductometry @@ -2456,25 +2456,25 @@ Coulometry Elucidation Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - - Wikidatareference - https://www.wikidata.org/wiki/Q1136979 - Preflabel Coulometry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 + Wikidatareference + https://www.wikidata.org/wiki/Q1136979 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 Wikipediareference @@ -2644,14 +2644,6 @@ CyclicVoltammetry Elucidation Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - - Dbpediareference - https://dbpedia.org/page/Cyclic_voltammetry - - - Wikidatareference - https://www.wikidata.org/wiki/Q1147647 - Preflabel CyclicVoltammetry @@ -2660,13 +2652,21 @@ CyclicVoltammetry Altlabel CV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q1147647 + + + Dbpediareference + https://dbpedia.org/page/Cyclic_voltammetry Wikipediareference @@ -2711,14 +2711,14 @@ DCPolarography Preflabel DCPolarography - - Comment - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + Label DCPolarography @@ -3208,14 +3208,14 @@ Dielectrometry Preflabel Dielectrometry - - Comment - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Label Dielectrometry @@ -3294,10 +3294,6 @@ DifferentialPulseVoltammetry Elucidation Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - - Wikidatareference - https://www.wikidata.org/wiki/Q5275361 - Preflabel DifferentialPulseVoltammetry @@ -3306,13 +3302,17 @@ DifferentialPulseVoltammetry Altlabel DPV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q5275361 Wikipediareference @@ -3623,6 +3623,10 @@ DirectCoulometryAtControlledPotential Preflabel DirectCoulometryAtControlledPotential + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. @@ -3631,10 +3635,6 @@ DirectCoulometryAtControlledPotential Comment In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label DirectCoulometryAtControlledPotential @@ -3850,10 +3850,6 @@ ElectrochemicalImpedanceSpectroscopy Elucidation Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - - Wikidatareference - https://www.wikidata.org/wiki/Q3492904 - Preflabel ElectrochemicalImpedanceSpectroscopy @@ -3862,13 +3858,17 @@ ElectrochemicalImpedanceSpectroscopy Altlabel EIS + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q3492904 Label @@ -3909,14 +3909,14 @@ ElectrochemicalPiezoelectricMicrogravimetry Preflabel ElectrochemicalPiezoelectricMicrogravimetry - - Comment - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + Label ElectrochemicalPiezoelectricMicrogravimetry @@ -4003,10 +4003,6 @@ Electrogravimetry Elucidation method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - - Wikidatareference - https://www.wikidata.org/wiki/Q902953 - Preflabel Electrogravimetry @@ -4015,6 +4011,10 @@ Electrogravimetry Comment Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + + Wikidatareference + https://www.wikidata.org/wiki/Q902953 + Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 @@ -4195,10 +4195,6 @@ EnergyDispersiveXraySpectroscopy Elucidation An analytical technique used for the elemental analysis or chemical characterization of a sample. - - Wikidatareference - https://www.wikidata.org/wiki/Q386334 - Preflabel EnergyDispersiveXraySpectroscopy @@ -4215,6 +4211,10 @@ EnergyDispersiveXraySpectroscopy Comment An analytical technique used for the elemental analysis or chemical characterization of a sample. + + Wikidatareference + https://www.wikidata.org/wiki/Q386334 + Wikipediareference https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy @@ -4477,10 +4477,6 @@ FourierTransformInfraredSpectroscopy Elucidation A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - - Wikidatareference - https://www.wikidata.org/wiki/Q901559 - Preflabel FourierTransformInfraredSpectroscopy @@ -4493,6 +4489,10 @@ FourierTransformInfraredSpectroscopy Comment A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + + Wikidatareference + https://www.wikidata.org/wiki/Q901559 + Wikipediareference https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy @@ -4618,10 +4618,6 @@ GalvanostaticIntermittentTitrationTechnique Elucidation Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - Wikidatareference - https://www.wikidata.org/wiki/Q120906986 - Preflabel GalvanostaticIntermittentTitrationTechnique @@ -4634,6 +4630,10 @@ GalvanostaticIntermittentTitrationTechnique Comment Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + + Wikidatareference + https://www.wikidata.org/wiki/Q120906986 + Label GalvanostaticIntermittentTitrationTechnique @@ -5060,21 +5060,21 @@ HydrodynamicVoltammetry Elucidation Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - - Wikidatareference - https://www.wikidata.org/wiki/Q17028237 - Preflabel HydrodynamicVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q17028237 Wikipediareference @@ -5166,14 +5166,14 @@ Impedimetry Preflabel Impedimetry - - Comment - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Label Impedimetry @@ -5667,10 +5667,6 @@ LinearScanVoltammetry Elucidation Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - - Wikidatareference - https://www.wikidata.org/wiki/Q620700 - Preflabel LinearScanVoltammetry @@ -5687,13 +5683,17 @@ LinearScanVoltammetry Altlabel LinearSweepVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q620700 Wikipediareference @@ -5879,6 +5879,10 @@ MeasurementSystemAdjustment Preflabel MeasurementSystemAdjustment + + Altlabel + MeasurementParameterAdjustment + Comment Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. @@ -6412,14 +6416,14 @@ NormalPulseVoltammetry Altlabel NPV - - Comment - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + Label NormalPulseVoltammetry @@ -7031,25 +7035,25 @@ Potentiometry Elucidation Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - - Wikidatareference - https://www.wikidata.org/wiki/Q900632 - Preflabel Potentiometry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 + Wikidatareference + https://www.wikidata.org/wiki/Q900632 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 Label @@ -7270,6 +7274,14 @@ ProbeSampleInteraction Subclass Of Process + + Subclass Of + hasTemporaryParticipant some Probe + + + Subclass Of + hasTemporaryParticipant some Sample + Subclass Of hasOutput some Signal @@ -7447,6 +7459,10 @@ PulsedElectroacousticMethod Preflabel PulsedElectroacousticMethod + + Iupacreference + https://doi.org/10.1007/s10832-023-00332-y + Comment The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. @@ -7455,10 +7471,6 @@ PulsedElectroacousticMethod Comment - - Iupacreference - https://doi.org/10.1007/s10832-023-00332-y - Label PulsedElectroacousticMethod @@ -8177,6 +8189,10 @@ SampledDCPolarography Altlabel TASTPolarography + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. @@ -8189,10 +8205,6 @@ SampledDCPolarography Comment - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label SampledDCPolarography @@ -8824,10 +8836,6 @@ SquareWaveVoltammetry Elucidation voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - - Wikidatareference - https://www.wikidata.org/wiki/Q4016323 - Preflabel SquareWaveVoltammetry @@ -8844,6 +8852,10 @@ SquareWaveVoltammetry Altlabel SWV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. @@ -8865,8 +8877,8 @@ SquareWaveVoltammetry - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q4016323 Wikipediareference @@ -8958,6 +8970,10 @@ StrippingVoltammetry Preflabel StrippingVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. @@ -8986,10 +9002,6 @@ StrippingVoltammetry Comment - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Wikipediareference https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis @@ -9221,10 +9233,6 @@ ThreePointBendingTesting Elucidation Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - - Wikidatareference - https://www.wikidata.org/wiki/Q2300905 - Preflabel ThreePointBendingTesting @@ -9241,6 +9249,10 @@ ThreePointBendingTesting Comment + + Wikidatareference + https://www.wikidata.org/wiki/Q2300905 + Wikipediareference https://en.wikipedia.org/wiki/Three-point_flexural_test @@ -9562,14 +9574,14 @@ Voltammetry Elucidation Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - - Wikidatareference - https://www.wikidata.org/wiki/Q904093 - Preflabel Voltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment The current vs. potential (I-E) curve is called a voltammogram. @@ -9583,12 +9595,12 @@ Voltammetry - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 + Wikidatareference + https://www.wikidata.org/wiki/Q904093 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 Wikipediareference @@ -9633,14 +9645,14 @@ VoltammetryAtARotatingDiskElectrode Preflabel VoltammetryAtARotatingDiskElectrode - - Comment - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + Label VoltammetryAtARotatingDiskElectrode @@ -9770,10 +9782,6 @@ XrayDiffraction Elucidation a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - - Wikidatareference - https://www.wikidata.org/wiki/Q12101244 - Preflabel XrayDiffraction @@ -9790,6 +9798,10 @@ XrayDiffraction Comment + + Wikidatareference + https://www.wikidata.org/wiki/Q12101244 + Wikipediareference https://en.wikipedia.org/wiki/X-ray_crystallography @@ -10928,37 +10940,6 @@ hasInstrumentForCalibration -.. raw:: html - -
- - -hasInstrumentToBeCalibrated -^^^^^^^^^^^^^^^^^^^^^^^^^^^ - -.. raw:: html - - - - - - - - - - - - - - - - - - - - -
Irihttps://w3id.org/emmo/domain/characterisation-methodology/chameo#hasInstrumentToBeCalibrated
Annotations
Formal description
Subclass OfObjectProperty
Subclass OfhasTemporaryParticipant
- .. raw:: html
diff --git a/chameo-inferred.owl b/chameo-inferred.owl index c303a62..75720e4 100644 --- a/chameo-inferred.owl +++ b/chameo-inferred.owl @@ -5,9 +5,9 @@ xmlns:owl="http://www.w3.org/2002/07/owl#" xml:base="https://w3id.org/emmo/domain/characterisation-methodology/chameo" xmlns="https://w3id.org/emmo/domain/characterisation-methodology/chameo#" + xmlns:term="http://purl.org/dc/terms/" xmlns:emmo="https://w3id.org/emmo#" xmlns:swrl="http://www.w3.org/2003/11/swrl#" - xmlns:term="http://purl.org/dc/terms/" xmlns:core="http://www.w3.org/2004/02/skos/core#" xmlns:x_0.1="http://xmlns.com/foaf/0.1/" xmlns:bibo="http://purl.org/ontology/bibo/" @@ -51,6 +51,70 @@ https://raw.githubusercontent.com/emmo-repo/domain-characterisation-methodology/main/images/chameo_logo_small.png + + + + + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + isCauseOf + isCauseOf + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + :isCauseOf owl:propertyDisjointWith :overlaps + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. + The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. +While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. + + + + + + + + + The relation between a collection and one of its item members. + hasMember + hasMember + The relation between a collection and one of its item members. + + + + + + + hasMaximalPart + hasMaximalPart + + + + + + + + hasSubItem + hasSubItem + + + + + + + + A proper part relation with domain restricted to collections. + hasGatheredPart + hasGatheredPart + A proper part relation with domain restricted to collections. + + @@ -62,30 +126,6 @@ Length hasUnit only LengthUnit - - - - - - The relation between the whole and a temporal tile that has only ingoing temporal connections. - hasEndTile - hasTemporalLast - hasEndTile - The relation between the whole and a temporal tile that has only ingoing temporal connections. - - - - - - - All other mereology relations can be defined in FOL using hasPart as primitive. - The primitive relation that express the concept of an entity being part of another one. - hasPart - hasPart - The primitive relation that express the concept of an entity being part of another one. - All other mereology relations can be defined in FOL using hasPart as primitive. - - @@ -103,35 +143,27 @@ hasProductOutput - - - - - The input of a process. - hasInput - hasInput - The input of a process. - - - - - - - - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - hasTemporaryParticipant - hasTemporaryParticipant - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + + + + + + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + hasHolisticPart + hasHolisticPart + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + An holistic part of water fluid is a water molecule. - - - - - - hasCharacterisationSoftware - hasCharacterizationSoftware - hasCharacterisationSoftware + + + + + + The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + hasHolisticRelation + hasHolisticRelation + The relation between a holistic whole and its related entities, being them parts or other overlapping entities. @@ -146,45 +178,22 @@ The relation between an entity and one of its parts, when both entities are distinct. - - - - - - hasMeasurementDetector - hasMeasurementDetector - - - - - - - - - - The inverse relation for hasProperPart. - isProperPartOf - isProperPartOf - The inverse relation for hasProperPart. - - - - - - isPartOf - isPartOf + + + + + + hasStage + hasStage - - - - - - The relation between the whole and a temporal tile that has only outgoing temporal connections. - hasBeginTile - hasTemporalFirst - hasBeginTile - The relation between the whole and a temporal tile that has only outgoing temporal connections. + + + + + + hasHolisticTemporalPart + hasHolisticTemporalPart @@ -200,104 +209,186 @@ A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. - - - + + + + + - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - hasOutput - hasOutput - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + The relation between a object whole and its spatial part of the same type. + hasPortion + hasPortion + The relation between a object whole and its spatial part of the same type. + A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). - + - - + + - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - hasHolisticOverlap - hasHolisticOverlap - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - A man and the process of building a house. -The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. -The process of building a house is a whole that possesses an holistic spatial part which is a builder. -The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. -In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - + The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. - - - - - - hasSampleInspectionInstrument - hasSampleInspectionInstrument - +On the contrary, the holistic parthood, is expected to go that deep. + The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. + hasRedundantPart + hasRedundantPart + The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. + A volume of water has redundand parts other volumes of water. All this volumes have holistic parts some water molecules. + The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. - - - - - - - hasBeginCharacterisationTask - hasBeginCharacterizationTask - hasBeginCharacterisationTask +On the contrary, the holistic parthood, is expected to go that deep. - - - - hasBeginTask - hasBeginTask - + + + + + + Relates a prefixed unit to its metric prefix part. + hasMetricPrefix + hasMetricPrefix + - - - - + + + + + + + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + hasSpatialTile + hasSpatialDirectPart + hasSpatialTile + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + + + + + + - hasSampledSample - hasSampledSample + hasPhysicsOfInteraction + hasPhysicsOfInteraction - - - - + + + + hasModel + hasModel + + + - - - - Relates a quantity to its metrological reference through a semiotic process. - hasMetrologicalReference - In EMMO version 1.0.0-beta7, physical quantities used the hasMetrologicalReference object property to relate them to their units via physical dimensionality. This was simplified in 1.0.0-alpha3 in order to make reasoning faster. + + + + A semiotic relation that connects a semiotic object to a property in a declaration process. + hasProperty + hasProperty + A semiotic relation that connects a semiotic object to a property in a declaration process. + -The restriction (e.g. for the physical quantity Length) + + + + + + + + A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). + isPredecessorOf + isAntecedentOf + isPredecessorOf + A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). + - Length hasMetrologicalReference only (hasPhysicsDimension only LengthDimension) + + + + + A causal relation between the effected and the causing entities with intermediaries. + An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. + isIndirectCauseOf + isIndirectCauseOf + An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. + A causal relation between the effected and the causing entities with intermediaries. + -was in 1.0.0-alpha3 changed to + + + + + + isTemporallyBefore + isTemporallyBefore + - Length hasPhysicsDimension some LengthDimension + + + + + + + The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + isConcomitantWith + alongsideOf + isConcomitantWith + The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + -Likewise were the universal restrictions on the corresponding unit changed to excistential. E.g. + + + + + + + + + A proper part relation with domain restricted to items. + hasPortionPart + hasPortionPart + A proper part relation with domain restricted to items. + - Metre hasPhysicsDimension only LengthDimension + + + + hasNonMaximalPart + hasNonMaximalPart + -was changed to + + + + isPortionPartOf + isPortionPartOf + - Metre hasPhysicsDimension some LengthDimension + + + + + + The relation between two entities that overlaps and neither of both is part of the other. + properOverlaps + properOverlaps + The relation between two entities that overlaps and neither of both is part of the other. + -The label of this class was also changed from PhysicsDimension to PhysicalDimension. - hasMetrologicalReference + + + + + + + The relation between an entity that overlaps another without being its part. + overcrosses + overcrosses + The relation between an entity that overlaps another without being its part. @@ -339,15 +430,6 @@ It does not exclude the possibility of indirect causal routes between proper par Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. - - - - - - isTemporallyBefore - isTemporallyBefore - - @@ -370,149 +452,144 @@ Contacts between two entities exclude the possibility of other causal relations The contact relation is not an ordering relation since is symmetric. - - - - - + + + - A proper part relation with range restricted to items. - hasItemPart - hasItemPart - A proper part relation with range restricted to items. + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + hasSpatialPart + hasSpatialPart + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - A proper part relation with range restricted to collections. - hasScatteredPart - hasScatteredPart - A proper part relation with range restricted to collections. + + + + + + hasOperator + hasOperator - - - - - - - isSpatiallyRelatedWith - isSpatiallyRelatedWith + + + + + The relation within a process and an agengt participant. + hasAgent + hasAgent + The relation within a process and an agengt participant. - + - - - - - - - A proper part relation with domain restricted to items. - hasPortionPart - hasPortionPart - A proper part relation with domain restricted to items. + + + + + + A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. + This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. + hasSpatioTemporalTile + hasWellFormedTile + hasSpatioTemporalTile + A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. + This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - - + + - hasNonMaximalPart - hasNonMaximalPart + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. + hasSpatialSlice + hasSpatialIntegralPart + hasSpatialSlice + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - - - - isPortionPartOf - isPortionPartOf + + + + + + + hasSamplePreparationParameter + hasSamplePreparationParameter - - - - + + + + + The input of a process. + hasInput + hasInput + The input of a process. + + + + + + The generic EMMO semiotical relation. + semiotical + semiotical + The generic EMMO semiotical relation. + + + + + + - A proper part relation with domain restricted to collections. - hasGatheredPart - hasGatheredPart - A proper part relation with domain restricted to collections. + The class for all relations used by the EMMO. + EMMORelation + EMMORelation + The class for all relations used by the EMMO. - - + + - + - hasMeasurementSample - hasMeasurementSample - - - - - - - - - Equality is here defined following a mereological approach. - The relation between two entities that stands for the same individuals. - equalsTo - equalsTo - The relation between two entities that stands for the same individuals. - Equality is here defined following a mereological approach. + hasDataProcessingThroughCalibration + hasDataProcessingThroughCalibration - - - - - - - - A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. - This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - hasSpatioTemporalTile - hasWellFormedTile - hasSpatioTemporalTile - A tile that is connected with other tiles with bi-directional causal relations that fall under hasNext (or its inverse) or hasContact. - This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. + + + + + + + hasInteractionWithSample + hasInteractionWithSample - - - - - - - - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - hasDirectPart - hasDirectPart - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. + + + + + + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + hasTemporaryParticipant + hasTemporaryParticipant + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - + - - - - A semiotic relation that connects a declared semiotic object to a description in a declaration process. - hasDescription - hasDescription - A semiotic relation that connects a declared semiotic object to a description in a declaration process. + + + Relates a resource to its identifier. + hasResourceIdentifier + hasResourceIdentifier + Relates a resource to its identifier. @@ -526,59 +603,6 @@ The direct parts (tiles) and the tessellated entity (tessellation) are causally A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - - - - - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - hasSpatialPart - hasSpatialPart - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - - - x isNotCauseOf y iff not(x isCauseOf y) - isNotCauseOf - isNotCauseOf - x isNotCauseOf y iff not(x isCauseOf y) - - - - - - - - hasHolisticNonTemporalPart - hasHolisticNonTemporalPart - - - - - - - - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - hasHolisticPart - hasHolisticPart - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - An holistic part of water fluid is a water molecule. - - - - - - The part is not connected with the rest item or members with hasNext relation (or its inverse). - hasNonTemporalPart - hasNonTemporalPart - The part is not connected with the rest item or members with hasNext relation (or its inverse). - - @@ -600,67 +624,45 @@ The direct parts (tiles) and the tessellated entity (tessellation) are causally A relation that connects the semiotic object to the sign in a semiotic process. - - - - - - - - A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). - isPredecessorOf - isAntecedentOf - isPredecessorOf - A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). - - - - - - - A causal relation between the effected and the causing entities with intermediaries. - An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. - isIndirectCauseOf - isIndirectCauseOf - An indirect cause is a relation between two entities that is mediated by a intermediate entity. In other words, there are no quantum parts of the causing entity that are direct cause of quantum parts of the caused entity. - A causal relation between the effected and the causing entities with intermediaries. + + + + + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + hasOutput + hasOutput + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - - - - - - - The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). - isConcomitantWith - alongsideOf - isConcomitantWith - The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). + + + + + + + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + hasHolisticOverlap + hasHolisticOverlap + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + A man and the process of building a house. +The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. +The process of building a house is a whole that possesses an holistic spatial part which is a builder. +The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. +In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - - - - - - - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - hasSpatialTile - hasSpatialDirectPart - hasSpatialTile - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - - - - - - - - Relates a quantity to its reference unit through spatial direct parthood. - hasReferencePart - hasReferencePart - Relates a quantity to its reference unit through spatial direct parthood. + + + + + + + hasHolder + hasHolder @@ -686,88 +688,35 @@ The direct parts (tiles) and the tessellated entity (tessellation) are causally A relation that connects the interpreter to the semiotic object in a semiotic process. - - - - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - hasSpatialSlice - hasSpatialIntegralPart - hasSpatialSlice - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - - - - - - + + + + - hasCharacterisationEnvironmentProperty - hasCharacterizationEnvironmentProperty - hasCharacterisationEnvironmentProperty - - - - - - - - A semiotic relation that connects a semiotic object to a property in a declaration process. - hasProperty - hasProperty - A semiotic relation that connects a semiotic object to a property in a declaration process. - - - - - - - The relation between two entities that share at least one of their parts. - overlaps - overlaps - The relation between two entities that share at least one of their parts. - - - - - - - - hasComponent - hasComponent - - - - - - - - The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. - hasConstituent - hasConstituent - The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. + hasCharacterisationProperty + hasCharacterizationProperty + hasCharacterisationProperty - - - - - - - hasMeasurementTime - hasMeasurementTime + + + + + Assigns a quantity to an object via a well-defined measurement procedure. + hasMeasuredProperty + hasMeasuredProperty + Assigns a quantity to an object via a well-defined measurement procedure. - + - + - hasInteractionVolume - hasInteractionVolume + hasInteractionWithProbe + hasInteractionWithProbe @@ -784,66 +733,24 @@ Participation is not under direct parthood since a process is not strictly relat The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - - - - - Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. - hasObjectiveProperty - hasObjectiveProperty - - - - - - - - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - hasMetrologicalUncertainty - hasMetrologicalUncertainty - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - - - - - - + + + + - hasCharacterisationMeasurementInstrument - hasCharacterizationMeasurementInstrument - hasCharacterisationMeasurementInstrument + hasSampledSample + hasSampledSample - - - - + + + - hasSubItem - hasSubItem - - - - - - - - hasCharacteriser - hasCharacteriser - - - - - - - - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - hasDeclarer - hasDeclarer - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. + The relation between two entities that share at least one of their parts. + overlaps + overlaps + The relation between two entities that share at least one of their parts. @@ -857,66 +764,179 @@ Participation is not under direct parthood since a process is not strictly relat The EMMO adheres to Atomistic General Extensional Mereology (AGEM). - - - - - - The class for all relations used by the EMMO. - EMMORelation - EMMORelation - The class for all relations used by the EMMO. - - - - - - + + + + - hasCharacterisationProcedureValidation - hasCharacterisationProcedureValidation + hasMeasurementParameter + hasMeasurementParameter - - - - - - hasCharacterised - hasCharacterised + + + + hasBeginTask + hasBeginTask - - - - - - The relation between a holistic whole and its related entities, being them parts or other overlapping entities. - hasHolisticRelation - hasHolisticRelation - The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + + + + + + hasTask + hasTask - - + + + - - - The relation between two entities that overlaps and neither of both is part of the other. - properOverlaps - properOverlaps - The relation between two entities that overlaps and neither of both is part of the other. - + + + + + Relates a quantity to its metrological reference through a semiotic process. + hasMetrologicalReference + In EMMO version 1.0.0-beta7, physical quantities used the hasMetrologicalReference object property to relate them to their units via physical dimensionality. This was simplified in 1.0.0-alpha3 in order to make reasoning faster. - +The restriction (e.g. for the physical quantity Length) + + Length hasMetrologicalReference only (hasPhysicsDimension only LengthDimension) + +was in 1.0.0-alpha3 changed to + + Length hasPhysicsDimension some LengthDimension + +Likewise were the universal restrictions on the corresponding unit changed to excistential. E.g. + + Metre hasPhysicsDimension only LengthDimension + +was changed to + + Metre hasPhysicsDimension some LengthDimension + +The label of this class was also changed from PhysicsDimension to PhysicalDimension. + hasMetrologicalReference + + + + + + + + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + hasDeduced + hasDeduced + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + + + + + + + + hasSampleInspectionInstrument + hasSampleInspectionInstrument + + + + + + + + + hasSampleBeforeSamplePreparation + hasSampleForPreparation + hasSampleBeforeSamplePreparation + + + - - + + - hasAccessConditions - hasAccessConditions + hasHardwareSpecification + hasHardwareSpecification + + + + + + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + hasSpatialSection + hasSpatialPartialPart + hasSpatialSection + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. +A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. + + + + + + + + The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. + hasConstituent + hasConstituent + The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. + + + + + + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + The superclass of all causal EMMO relations. + causal + causal + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + The superclass of all causal EMMO relations. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + + + + + + isOvercrossedBy + isOvercrossedBy + + + + + + + + + hasPeerReviewedArticle + hasPeerReviewedArticle + + + + + + + + hasStatus + hasStatus + + + + + + + + + hasSampleInspectionParameter + hasSampleInspectionParameter @@ -941,38 +961,114 @@ Participation is not under direct parthood since a process is not strictly relat A relation connecting a sign to the interpreter in a semiotic process. - + + + + + + + isSpatiallyRelatedWith + isSpatiallyRelatedWith + + + + + + + + + hasDataQuality + hasDataQuality + + + + + + + + hasHolisticNonTemporalPart + hasHolisticNonTemporalPart + + + + + + + + + hasEndCharacterisationTask + hasEndCharacterizationTask + hasEndCharacterisationTask + + + + + + hasEndTask + hasEndTask + + + - + - hasReferenceSample - hasReferenceSample + hasInstrumentForCalibration + hasInstrumentForCalibration - + + + + + + A semiotic relation that connects a declared semiotic object to a description in a declaration process. + hasDescription + hasDescription + A semiotic relation that connects a declared semiotic object to a description in a declaration process. + + + + + + + + + notOverlaps + notOverlaps + + + - - + - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. - hasJunctionTile - hasJunctionTile - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + The relation between the whole and a temporal tile that has only ingoing temporal connections. + hasEndTile + hasTemporalLast + hasEndTile + The relation between the whole and a temporal tile that has only ingoing temporal connections. - - - - - - - The relation between an entity that overlaps another without being its part. - overcrosses - overcrosses - The relation between an entity that overlaps another without being its part. + + + + + + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + hasCognised + hasCognised + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + + + + + + + + hasHazard + hasHazard @@ -986,176 +1082,155 @@ Participation is not under direct parthood since a process is not strictly relat Relates a prefixed unit to its unit symbol part. - - - - - isGatheredPartOf - isGatheredPartOf + + + + + + Relates a prefixed unit to its non-prefixed part. + hasUnitNonPrefixPart + hasUnitNonPrefixPart + Relates a prefixed unit to its non-prefixed part. + For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". - - - + + + - hasOperator - hasOperator - - - - - - - The relation within a process and an agengt participant. - hasAgent - hasAgent - The relation within a process and an agengt participant. + hasLab + hasLab - + - + + - hasHazard - hasHazard + hasCharacterisationProcedureValidation + hasCharacterisationProcedureValidation - - - - - - hasMaximalCollection - hasMaximalCollection + + + + + + The relation between the whole and a temporal tile that has only outgoing temporal connections. + hasBeginTile + hasTemporalFirst + hasBeginTile + The relation between the whole and a temporal tile that has only outgoing temporal connections. - - - - - hasMaximalPart - hasMaximalPart + + + + + + requiresLevelOfExpertise + requiresLevelOfExpertise - - - - + + + - hasSubCollection - hasSubCollection + + x isNotCauseOf y iff not(x isCauseOf y) + isNotCauseOf + isNotCauseOf + x isNotCauseOf y iff not(x isCauseOf y) - - - - - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - isCauseOf - isCauseOf - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - :isCauseOf owl:propertyDisjointWith :overlaps - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. - The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. -While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. + + + + + + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + hasCogniser + hasCogniser + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - - - - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - The superclass of all causal EMMO relations. - causal - causal - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - The superclass of all causal EMMO relations. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + + + + + + + hasCharacterisationTask + hasCharacterizationTask + hasCharacterisationTask - - - - - - - The relation between a object whole and its spatial part of the same type. - hasPortion - hasPortion - The relation between a object whole and its spatial part of the same type. - A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). + + + + - - - - - - - The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. + + + + + hasCharacterisationOutput + hasCharacterizationOutput + hasCharacterisationOutput + -On the contrary, the holistic parthood, is expected to go that deep. - The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. - hasRedundantPart - hasRedundantPart - The superproperty of the relations between a whole and its mereological parts that are still holistic wholes of the same type. - A volume of water has redundand parts other volumes of water. All this volumes have holistic parts some water molecules. - The purpose of this relation is to provide a parhood relation that does not go deep enough, in terms of decomposition, to break the holistic definition of the whole. + + + + + All other mereology relations can be defined in FOL using hasPart as primitive. + The primitive relation that express the concept of an entity being part of another one. + hasPart + hasPart + The primitive relation that express the concept of an entity being part of another one. + All other mereology relations can be defined in FOL using hasPart as primitive. + -On the contrary, the holistic parthood, is expected to go that deep. + + + + isPartOf + isPartOf - - - - - - - hasSamplePreparationInstrument - hasSamplePreparationInstrument + + + + + + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. + hasDeclarer + hasDeclarer + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - + - + - hasSampleBeforeSamplePreparation - hasSampleForPreparation - hasSampleBeforeSamplePreparation + hasSampleForInspection + hasSampleForInspection - + - - + + - hasConstitutiveProcess - hasConstitutiveProcess - - - - - - - - hasFractionalCollection - hasFractionalCollection + The relation between a process and one of its process parts. + hasSubProcess + hasSubProcess + The relation between a process and one of its process parts. @@ -1187,106 +1262,202 @@ A temporal part is not constraint to be causally self-connected, i.e. it can be In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - + + + + - The relation between a collection and one of its item members. - hasMember - hasMember - The relation between a collection and one of its item members. + hasConnectedPortion + hasConnectedPortion - - - - - Assigns a quantity to an object via a well-defined measurement procedure. - hasMeasuredProperty - hasMeasuredProperty - Assigns a quantity to an object via a well-defined measurement procedure. + + + + + + + A proper part relation with range restricted to items. + hasItemPart + hasItemPart + A proper part relation with range restricted to items. - - - - - - - hasScatteredPortion - hasScatteredPortion + + + + + + hasComponent + hasComponent - - - - - - hasConnectedPortion - hasConnectedPortion + + + + + + hasCharacteriser + hasCharacteriser - - - - - Assigns a quantity to an object by convention. - An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. + + + + + + A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + hasIcon + hasIcon + A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + -The quantity is selected without an observation aimed to measure its actual value, but by convention. - hasConventionalProperty - hasConventionalProperty - Assigns a quantity to an object by convention. - An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. + + + + + + hasConstitutiveProcess + hasConstitutiveProcess - - - - + + + + - hasPhysicsOfInteraction - hasPhysicsOfInteraction + hasBeginCharacterisationTask + hasBeginCharacterizationTask + hasBeginCharacterisationTask - - - - hasModel - hasModel + + + + + + hasCharacterisationSoftware + hasCharacterizationSoftware + hasCharacterisationSoftware - - - + + + + - hasDataset - hasDataset + hasLevelOfAutomation + hasLevelOfAutomation - + + + + + A temporal part that is an item. + hasTemporalItemSlice + hasTemporalItemSlice + A temporal part that is an item. + + + + + + A temporal part that capture the overall spatial extension of the causal object. + hasTemporalSlice + hasTemporalSlice + A temporal part that capture the overall spatial extension of the causal object. + + + - - + + - hasSampleForInspection - hasSampleForInspection + hasSamplePreparationInstrument + hasSamplePreparationInstrument - - - - - - A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. - hasIcon - hasIcon - A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. + + + + + hasCharacterisationComponent + hasCharacterizationComponent + hasCharacterisationComponent + + + + + + + The relation between a process and the entity that represents how things have turned out. + hasOutcome + hasOutcome + The relation between a process and the entity that represents how things have turned out. + + + + + + The part is not connected with the rest item or members with hasNext relation (or its inverse). + hasNonTemporalPart + hasNonTemporalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). + + + + + + + + + + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + hasDirectPart + hasDirectPart + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. + + + + + + + + + + + + + + + + + + Relates a quantity to its numerical value through spatial direct parthood. + hasNumericalPart + hasNumericalPart + + + + + + + + hasVariable + hasVariable @@ -1309,261 +1480,323 @@ The quantity is selected without an observation aimed to measure its actual valu The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - - - - - - hasTask - hasTask - - - + - - + + - Relates a prefixed unit to its non-prefixed part. - hasUnitNonPrefixPart - hasUnitNonPrefixPart - Relates a prefixed unit to its non-prefixed part. - For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". + Relates a quantity to its reference unit through spatial direct parthood. + hasReferencePart + hasReferencePart + Relates a quantity to its reference unit through spatial direct parthood. - + - - + - hasPostProcessingModel - hasPostProcessingModel + hasMeasurementProbe + hasMeasurementProbe - - - - - - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - hasCogniser - hasCogniser - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + + + + + + hasSubCollection + hasSubCollection - - - - - - - hasDataAcquisitionRate - hasDataAcquisitionRate + + + + + + A proper part relation with range restricted to collections. + hasScatteredPart + hasScatteredPart + A proper part relation with range restricted to collections. - - - - - - - hasPeerReviewedArticle - hasPeerReviewedArticle + + + + + + + + The inverse relation for hasProperPart. + isProperPartOf + isProperPartOf + The inverse relation for hasProperPart. - - + + + + - hasCharacterisationOutput - hasCharacterizationOutput - hasCharacterisationOutput - - - - - - isOvercrossedBy - isOvercrossedBy - - - - - - - - hasBehaviour - hasBehaviour + hasCharacterisationEnvironment + hasCharacterizationEnvironment + hasCharacterisationEnvironment - - - - - - hasHolisticTemporalPart - hasHolisticTemporalPart + + + + + + hasCollaborationWith + hasCollaborationWith - - - - + + + + + hasDataset + hasDataset - - - - - - hasStage - hasStage - - - - - - The generic EMMO semiotical relation. - semiotical - semiotical - The generic EMMO semiotical relation. + + + + + + + hasPostProcessingModel + hasPostProcessingModel - - - + + + - Relates the result of a semiotic process to ont of its optained quantities. - hasQuantity - hasQuantity - Relates the result of a semiotic process to ont of its optained quantities. + Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. + hasObjectiveProperty + hasObjectiveProperty - - - - - - Relates a prefixed unit to its metric prefix part. - hasMetricPrefix - hasMetricPrefix + + + + + + + hasInteractionVolume + hasInteractionVolume - + - - + + - hasDataQuality - hasDataQuality + hasMeasurementTime + hasMeasurementTime - - - - + + + + - hasSamplePreparationParameter - hasSamplePreparationParameter + hasMeasurementSample + hasMeasurementSample - - + + + + + Assigns a quantity to an object via a well-defined modelling procedure. + hasModelledProperty + hasModelledProperty + Assigns a quantity to an object via a well-defined modelling procedure. + + + + - hasFractionalMember - hasFractionalMember + hasFractionalCollection + hasFractionalCollection - - - - - hasCharacterisationComponent - hasCharacterizationComponent - hasCharacterisationComponent + + + + + hasServiceOutput + hasServiceOutput - - - - - - - hasCharacterisationTask - hasCharacterizationTask - hasCharacterisationTask + + + + + + + Equality is here defined following a mereological approach. + The relation between two entities that stands for the same individuals. + equalsTo + equalsTo + The relation between two entities that stands for the same individuals. + Equality is here defined following a mereological approach. - - - - - - - hasInstrumentForCalibration - hasInstrumentForCalibration + + + + + + Relates a dataset to its datum. + hasDatum + hasDatum + Relates a dataset to its datum. - - - - - - - + + + + + + + hasScatteredPortion + hasScatteredPortion + + + + + - Relates a quantity to its numerical value through spatial direct parthood. - hasNumericalPart - hasNumericalPart + Assigns a quantity to an object by convention. + An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. + +The quantity is selected without an observation aimed to measure its actual value, but by convention. + hasConventionalProperty + hasConventionalProperty + Assigns a quantity to an object by convention. + An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. - - - - + + + + - hasInteractionWithProbe - hasInteractionWithProbe + hasReferenceSample + hasReferenceSample - - - + + + + + + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + hasMetrologicalUncertainty + hasMetrologicalUncertainty + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + + + + + + - hasMeasurementProbe - hasMeasurementProbe + hasProcessingReproducibility + hasProcessingReproducibility - - - - + + + + - hasCharacterisationProperty - hasCharacterizationProperty - hasCharacterisationProperty + hasCharacterisationMeasurementInstrument + hasCharacterizationMeasurementInstrument + hasCharacterisationMeasurementInstrument - - + + + - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - hasSpatialSection - hasSpatialPartialPart - hasSpatialSection - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. -A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. + isGatheredPartOf + isGatheredPartOf + + + + + + + + hasCharacterised + hasCharacterised + + + + + + + + hasMaximalCollection + hasMaximalCollection + + + + + + + Relates the result of a semiotic process to ont of its optained quantities. + hasQuantity + hasQuantity + Relates the result of a semiotic process to ont of its optained quantities. + + + + + + + + + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + hasJunctionTile + hasJunctionTile + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + + + + + + + + hasMeasurementDetector + hasMeasurementDetector + + + + + + + + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + hasIndex + hasIndex + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. @@ -1575,14 +1808,22 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa hasSubObject - - - - - Relates a resource to its identifier. - hasResourceIdentifier - hasResourceIdentifier - Relates a resource to its identifier. + + + + + + hasFractionalMember + hasFractionalMember + + + + + + A temporal part that is not a slice. + hasTemporalSection + hasTemporalSection + A temporal part that is not a slice. @@ -1594,437 +1835,249 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa hasCharacterisationInput - - - - + + + - - hasCharacterisationEnvironment - hasCharacterizationEnvironment - hasCharacterisationEnvironment - + - + + - requiresLevelOfExpertise - requiresLevelOfExpertise + hasDataAcquisitionRate + hasDataAcquisitionRate - - - - + + + + + A temporal part that is a collection. + hasTemporalCollectionSlice + hasTemporalCollectionSlice + A temporal part that is a collection. + + + + + + - hasEndCharacterisationTask - hasEndCharacterizationTask - hasEndCharacterisationTask + hasAccessConditions + hasAccessConditions - - - - hasEndTask - hasEndTask + + + + + + + hasCharacterisationEnvironmentProperty + hasCharacterizationEnvironmentProperty + hasCharacterisationEnvironmentProperty - - - - - - Relates a dataset to its datum. - hasDatum - hasDatum - Relates a dataset to its datum. + + + + + + hasBehaviour + hasBehaviour - - - - - hasServiceOutput - hasServiceOutput - - - - - - - A temporal part that is an item. - hasTemporalItemSlice - hasTemporalItemSlice - A temporal part that is an item. - - - - - - A temporal part that capture the overall spatial extension of the causal object. - hasTemporalSlice - hasTemporalSlice - A temporal part that capture the overall spatial extension of the causal object. - + + + + Relates a SI dimensional unit to a dimension string. + hasDimensionString + hasDimensionString + Relates a SI dimensional unit to a dimension string. + - - - - - The relation between a process and the entity that represents how things have turned out. - hasOutcome - hasOutcome - The relation between a process and the entity that represents how things have turned out. - + + + + + + The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + hasNumericalValue + hasNumericalValue + The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. + - - - - - - - hasInteractionWithSample - hasInteractionWithSample - + + + + + + + The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. + hasSymbolValue + hasSymbolValue + The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. + - - - - + + + + - - hasMeasurementParameter - hasMeasurementParameter - - - - - - - Assigns a quantity to an object via a well-defined modelling procedure. - hasModelledProperty - hasModelledProperty - Assigns a quantity to an object via a well-defined modelling procedure. - + A string representing the UniqueID of a CharacterisationHardware + hasUniqueID + hasUniqueID + A string representing the UniqueID of a CharacterisationHardware + - - - - - - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - hasDeduced - hasDeduced - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - + + + + + The owl:dataProperty that provides a serialisation of an EMMO data entity. + This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). + hasDataValue + hasDataValue + The owl:dataProperty that provides a serialisation of an EMMO data entity. + This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). + - - - + + + + - - hasLab - hasLab - + A string representing the model of a CharacterisationHardware + hasModel + hasModel + A string representing the model of a CharacterisationHardware + - - + + + + + + + The owl:dataProperty that provides a serialisation of an EMMO string data entity. + hasStringValue + hasStringValue + The owl:dataProperty that provides a serialisation of an EMMO string data entity. + + + + - + - - hasHardwareSpecification - hasHardwareSpecification - + A string representing the Manufacturer of a CharacterisationHardware + hasManufacturer + hasManufacturer + A string representing the Manufacturer of a CharacterisationHardware + - - - - + + + + - hasHolder - hasHolder - + hasDateOfCalibration + hasDateOfCalibration + - - - - - - - notOverlaps - notOverlaps - + + + + hasURNValue + hasURNValue + - - - - - - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - hasCognised - hasCognised - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - + + + + + hasURIValue + hasURIValue + - - - - - - - hasDataProcessingThroughCalibration - hasDataProcessingThroughCalibration - + + + + hasURLValue + hasURLValue + - - - - - - - hasLevelOfAutomation - hasLevelOfAutomation - + + + - - - - - - The relation between a process and one of its process parts. - hasSubProcess - hasSubProcess - The relation between a process and one of its process parts. - + + + - - - - - - + + + + metrologicalReference + metrologicalReference + - - - - - - - hasSampleInspectionParameter - hasSampleInspectionParameter - - - - - - - - - hasProcessingReproducibility - hasProcessingReproducibility - - - - - - - - hasStatus - hasStatus - + + + + + + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + uneceCommonCode + uneceCommonCode + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + - - - + - A temporal part that is a collection. - hasTemporalCollectionSlice - hasTemporalCollectionSlice - A temporal part that is a collection. - - - - - - - - hasCollaborationWith - hasCollaborationWith - - - - - - - - hasVariable - hasVariable - - - - - - - - - - - - - - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. - hasIndex - hasIndex - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. - + + - - + - A temporal part that is not a slice. - hasTemporalSection - hasTemporalSection - A temporal part that is not a slice. - - - - - - - - - - - - Relates a SI dimensional unit to a dimension string. - hasDimensionString - hasDimensionString - Relates a SI dimensional unit to a dimension string. - - - - - - - - A string representing the Manufacturer of a CharacterisationHardware - hasManufacturer - hasManufacturer - A string representing the Manufacturer of a CharacterisationHardware - - - - - - - - - The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - hasSymbolValue - hasSymbolValue - The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - - - - - - - The owl:dataProperty that provides a serialisation of an EMMO data entity. - This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). - hasDataValue - hasDataValue - The owl:dataProperty that provides a serialisation of an EMMO data entity. - This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). - - - - - - - - The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. - hasNumericalValue - hasNumericalValue - The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. - - - - - - hasURNValue - hasURNValue - - - - - - - hasURIValue - hasURIValue - - - - - - - - A string representing the model of a CharacterisationHardware - hasModel - hasModel - A string representing the model of a CharacterisationHardware - - - - - - - - A string representing the UniqueID of a CharacterisationHardware - hasUniqueID - hasUniqueID - A string representing the UniqueID of a CharacterisationHardware - + + A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. + A text that add some information about the entity. + comment + comment + A text that add some information about the entity. + A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. + - - - - - - - The owl:dataProperty that provides a serialisation of an EMMO string data entity. - hasStringValue - hasStringValue - The owl:dataProperty that provides a serialisation of an EMMO string data entity. - + + + + A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + Precise and univocal description of an ontological entity in the framework of an axiomatic system. + definition + definition + Precise and univocal description of an ontological entity in the framework of an axiomatic system. + A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. + - - - - + - - hasDateOfCalibration - hasDateOfCalibration - - - - - - hasURLValue - hasURLValue - - - - - - + + + + + URL to corresponding Wikipedia entry. + wikipediaReference + https://www.wikipedia.org/ + wikipediaReference + URL to corresponding Wikipedia entry. @@ -2038,57 +2091,46 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. - - - - A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. - The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. - conceptualisation - conceptualisation - The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. - A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. - An elucidation can provide references to external knowledge sources (i.e. ISO, Goldbook, RoMM). - - - + - - - - URL for the entry in the International Electrotechnical Vocabulary (IEV). - IEVReference - https://www.electropedia.org/ - IEVReference - URL for the entry in the International Electrotechnical Vocabulary (IEV). + + + + + The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. + VIMTerm + https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + VIMTerm + quantity value (term in VIM that corresponds to Quantity in EMMO) + The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. - + - - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - contact - contact - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - - + + + + A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. + The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. + conceptualisation + conceptualisation + The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. + A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. + An elucidation can provide references to external knowledge sources (i.e. ISO, Goldbook, RoMM). - + - - - URL to corresponding Wikipedia entry. - wikipediaReference - https://www.wikipedia.org/ - wikipediaReference - URL to corresponding Wikipedia entry. + + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + OWLDLRestrictedAxiom + OWLDLRestrictedAxiom + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. @@ -2111,36 +2153,87 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa - + - + + + + IRI to corresponding concept in the Ontology of units of Measure. + omReference + https://enterpriseintegrationlab.github.io/icity/OM/doc/index-en.html + https://github.com/HajoRijgersberg/OM + omReference + IRI to corresponding concept in the Ontology of units of Measure. + + + + + + + URL to corresponding dpbedia entry. + dbpediaReference + https://wiki.dbpedia.org/ + dbpediaReference + URL to corresponding dpbedia entry. + + + - A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. - A text that add some information about the entity. - comment - comment - A text that add some information about the entity. - A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. + contact + contact + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. - + - URL corresponding to entry in Wikidata. - wikidataReference - https://www.wikidata.org/ - wikidataReference - URL corresponding to entry in Wikidata. + URL for the entry in the International Electrotechnical Vocabulary (IEV). + IEVReference + https://www.electropedia.org/ + IEVReference + URL for the entry in the International Electrotechnical Vocabulary (IEV). - - + + + + + + + + ISO9000Reference + ISO9000Reference + + + + - metrologicalReference - metrologicalReference + Corresponding item number in ISO 80 000. + ISO80000Reference + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en + ISO80000Reference + Corresponding item number in ISO 80 000. + 3-1.1 (ISO80000 reference to length) + + + + + + + + The Unified Code for Units of Measure (UCUM) is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The purpose is to facilitate unambiguous electronic communication of quantities together with their units. + Unified Code for Units of Measure (UCUM). + ucumCode + https://ucum.org/ + ucumCode + Unified Code for Units of Measure (UCUM). + The Unified Code for Units of Measure (UCUM) is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The purpose is to facilitate unambiguous electronic communication of quantities together with their units. @@ -2155,46 +2248,44 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa The etymology annotation is usually applied to rdfs:label entities, to better understand the connection between a label and the concept it concisely represents. - - - + + + + URL corresponding to entry in Wikidata. + wikidataReference + https://www.wikidata.org/ + wikidataReference + URL corresponding to entry in Wikidata. - - - - IRI to corresponding concept in the Ontology of units of Measure. - omReference - https://enterpriseintegrationlab.github.io/icity/OM/doc/index-en.html - https://github.com/HajoRijgersberg/OM - omReference - IRI to corresponding concept in the Ontology of units of Measure. + + + + ISO14040Reference + ISO14040Reference - - - - - - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - uneceCommonCode - uneceCommonCode - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + + + + Illustrative example of how the entity is used. + example + example + Illustrative example of how the entity is used. - - - - Corresponding item number in ISO 80 000. - ISO80000Reference - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en - ISO80000Reference - Corresponding item number in ISO 80 000. - 3-1.1 (ISO80000 reference to length) + + - - + + + + + DOI to corresponding concept in IUPAC + iupacReference + https://goldbook.iupac.org/ + iupacReference @@ -2207,30 +2298,16 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa URL to corresponing entity in QUDT. - + - - - - - The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. - VIMTerm - https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf - VIMTerm - quantity value (term in VIM that corresponds to Quantity in EMMO) - The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. + + - + - - - A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. - figure - figure - A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. @@ -2238,4965 +2315,3007 @@ A proper part is then the disjoint union of: spatial part, temporal part and spa - - - - - - The Unified Code for Units of Measure (UCUM) is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The purpose is to facilitate unambiguous electronic communication of quantities together with their units. - Unified Code for Units of Measure (UCUM). - ucumCode - https://ucum.org/ - ucumCode - Unified Code for Units of Measure (UCUM). - The Unified Code for Units of Measure (UCUM) is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The purpose is to facilitate unambiguous electronic communication of quantities together with their units. + + - + - - - - - DOI to corresponding concept in IUPAC - iupacReference - https://goldbook.iupac.org/ - iupacReference + + - - - - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - OWLDLRestrictedAxiom - OWLDLRestrictedAxiom - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + + - + - A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. - Precise and univocal description of an ontological entity in the framework of an axiomatic system. - definition - definition - Precise and univocal description of an ontological entity in the framework of an axiomatic system. - A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. - - - - - - - - - - ISO14040Reference - ISO14040Reference - - - - - - URL to corresponding dpbedia entry. - dbpediaReference - https://wiki.dbpedia.org/ - dbpediaReference - URL to corresponding dpbedia entry. - - - - - - Illustrative example of how the entity is used. - example - example - Illustrative example of how the entity is used. - - - - - - - - - - ISO9000Reference - ISO9000Reference - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. + figure + figure + A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. - - - - Encoded data made of more than one datum. - DataSet - DataSet - Encoded data made of more than one datum. - - - - - - - - - - - - - - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - PhysicsOfInteraction - PhysicsOfInteraction - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - - - - - - - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. - GFactor - GFactor - https://www.wikidata.org/wiki/Q1951266 - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. - - - - - - Quantities categorised according to ISO 80000-10. - AtomicAndNuclearPhysicsQuantity - AtomicAndNuclearPhysicsQuantity - Quantities categorised according to ISO 80000-10. - - - - - - - - - - - - - - A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. - ISQDimensionlessQuantity - ISQDimensionlessQuantity - http://qudt.org/vocab/quantitykind/Dimensionless - A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. - https://en.wikipedia.org/wiki/Dimensionless_quantity - https://doi.org/10.1351/goldbook.D01742 - - - - - - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - -Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - -Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - - RamanSpectroscopy - RamanSpectroscopy - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - -Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - -Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - - - - - - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - - Spectroscopy - Spectroscopy - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GreenQuark - GreenQuark - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - The class of individuals that stand for quarks elementary particles. - Quark - Quark - The class of individuals that stand for quarks elementary particles. - https://en.wikipedia.org/wiki/Quark - - - - - - - Permittivity divided by electric constant. - RelativePermittivity - RelativePermittivity - https://qudt.org/vocab/unit/PERMITTIVITY_REL - https://www.wikidata.org/wiki/Q4027242 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 - 6-15 - Permittivity divided by electric constant. - - - - - - Quantities categorised according to ISO 80000-6. - ElectromagneticQuantity - ElectromagneticQuantity - Quantities categorised according to ISO 80000-6. - - - - - - Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). - -Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - RatioQuantity - https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 - RatioQuantity - http://qudt.org/vocab/quantitykind/DimensionlessRatio - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - refractive index, -volume fraction, -fine structure constant - - - - - - - - A scientific theory is a description, objective and observed, produced with scientific methodology. - ScientificTheory - ScientificTheory - A scientific theory is a description, objective and observed, produced with scientific methodology. - - - - - - Observed - Observed - The biography of a person met by the author. - - - - - - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - Objective - Objective - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - - - - - - A 'conventional' that stand for a 'physical'. - The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. - -It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. - -In Peirce semiotics: legisign-symbol-argument - Theory - Theory - A 'conventional' that stand for a 'physical'. - - - - - - - - + - - - - Plus - Plus - - - - - - ArithmeticOperator - ArithmeticOperator - - - - - - - Reciprocal of the decay constant λ. - MeanDurationOfLife - MeanLifeTime - MeanDurationOfLife - https://qudt.org/vocab/quantitykind/MeanLifetime - https://www.wikidata.org/wiki/Q1758559 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 - 10-25 - Reciprocal of the decay constant λ. - - - - - - Physical quantity for describing the temporal distance between events. - Duration - Duration - https://www.wikidata.org/wiki/Q2199864 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 - 3-9 - Physical quantity for describing the temporal distance between events. - - - - - - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - -It is advisory to create a uniquely defined subclass these units for concrete usage. - LogarithmicUnit - LogarithmicUnit - http://qudt.org/schema/qudt/LogarithmicUnit - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Decibel - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - -It is advisory to create a uniquely defined subclass these units for concrete usage. - https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units - - - - - - The subclass of measurement units with no physical dimension. - DimensionlessUnit - DimensionlessUnit - http://qudt.org/vocab/unit/UNITLESS - The subclass of measurement units with no physical dimension. - Refractive index -Plane angle -Number of apples - - - - - - HardeningByDrawing - HardeningByDrawing - - - - - - HardeningByForming - Verfestigen durch Umformen - HardeningByForming - - - - - - - StaticFrictionForce - StaticFriction - StaticFrictionForce - https://qudt.org/vocab/quantitykind/StaticFriction - https://www.wikidata.org/wiki/Q90862568 - 4-9.3 - - - - - - - - - - - - - - - Any interaction that, when unopposed, will change the motion of an object - Force - Force - http://qudt.org/vocab/quantitykind/Force - 4-9.1 - Any interaction that, when unopposed, will change the motion of an object - https://doi.org/10.1351/goldbook.F02480 - - - - - - Quantities categorised according to ISO 80000-4. - MechanicalQuantity - MechanicalQuantity - Quantities categorised according to ISO 80000-4. - - - - - - - - - - - - - - - - - - - - - - - BottomQuark - BottomQuark - https://en.wikipedia.org/wiki/Bottom_quark - - - - - - - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - PropagationCoefficient - PropagationCoefficient - https://qudt.org/vocab/quantitykind/PropagationCoefficient.html - https://www.wikidata.org/wiki/Q1434913 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 - 3-26.3 - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - - - - - - Quantities categorised according to ISO 80000-3. - SpaceAndTimeQuantity - SpaceAndTimeQuantity - Quantities categorised according to ISO 80000-3. - - - - - - - - - - - - - - The inverse of length. - ReciprocalLength - InverseLength - ReciprocalLength - http://qudt.org/vocab/quantitykind/InverseLength - The inverse of length. - https://en.wikipedia.org/wiki/Reciprocal_length - - - - - - - T-2 L+2 M+1 I0 Θ0 N-1 J0 - - - - - EnergyPerAmountUnit - EnergyPerAmountUnit - - - - - - - - EndTile - EndTile - - - - - - - - - - - - - - - - - - - - - - - - - https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a - SpatioTemporalTile - WellFormedTile - SpatioTemporalTile - - - - - - - - - - - - - - - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - ElectricFieldStrength - ElectricFieldStrength - https://qudt.org/vocab/quantitykind/ElectricFieldStrength - https://www.wikidata.org/wiki/Q20989 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 - 6-10 - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - - - - - - - Derived quantities defined in the International System of Quantities (ISQ). - ISQDerivedQuantity - ISQDerivedQuantity - Derived quantities defined in the International System of Quantities (ISQ). - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The class of all the OWL individuals declared by EMMO as standing for world entities. - The disjoint union of the Item and Collection classes. - EMMO - EMMO - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The disjoint union of the Item and Collection classes. - The class of all the OWL individuals declared by EMMO as standing for world entities. - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - - - - - - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - Declared - Declared - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - - - - - - - - - - - - - - - - - FundamentalMatterParticle - FundamentalMatterParticle - - - - - - - - - - - - - - - Measure of the relative volume change of a fluid or solid as a response to a pressure change. - Compressibility - Compressibility - https://qudt.org/vocab/quantitykind/Compressibility - https://www.wikidata.org/wiki/Q8067817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 - 4-20 - Measure of the relative volume change of a fluid or solid as a response to a pressure change. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - FundamentalFermion - FundamentalFermion - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion - - - - - - - Magnitude of the wave vector. - AngularWavenumber - AngularRepetency - AngularWavenumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q30338487 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 - 3-22 - Magnitude of the wave vector. - - - - - - - - - 1 - - - - - - - 2 - - - - A positive charged subatomic particle found in the atomic nucleus. - Proton - Proton - A positive charged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Proton - - - - - - - - - - - - - - Either a proton or a neutron. - Nucleon - Nucleon - Either a proton or a neutron. - https://en.wikipedia.org/wiki/Nucleon - - - - - - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - Conversion of materials and assembly of components for the manufacture of products - Technology is the application of knowledge for achieving practical goals in a reproducible way. - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - TechnologyProcess - ProductionEngineeringProcess - TechnologyProcess - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - - - - - - ReactionSintering - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - ReactionSintering - - - - - - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - DerivedQuantity - DerivedQuantity - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - derived quantity - - - - - - - - - - - - - - - - - - - - - - - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. -ISO 80000-1 - Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. - -Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. - Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. - -For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. - -However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. - -For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. - -As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). - — quantities of the same kind have the same quantity dimension, -— quantities of different quantity dimensions are always of different kinds, and -— quantities having the same quantity dimension are not necessarily of the same kind. -ISO 80000-1 - PhysicalQuantity - PhysicalQuantity - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - - - - - - A physics based simulation with multiple physics based models. - MultiSimulation - MultiSimulation - A physics based simulation with multiple physics based models. - - - - - - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedSimulation - PhysicsBasedSimulation - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - - - - - - - - - - - - - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - SymbolicConstruct - SymbolicConstruct - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - - - - - - Length of the repetition interval of a wave. - Wavelength - Wavelength - https://qudt.org/vocab/quantitykind/Wavelength - https://www.wikidata.org/wiki/Q41364 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 - https://dbpedia.org/page/Wavelength - 3-19 - Length of the repetition interval of a wave. - https://en.wikipedia.org/wiki/Wavelength - https://doi.org/10.1351/goldbook.W06659 - - - - - - - - - - - - - - - - Extend of a spatial dimension. - Length is a non-negative additive quantity attributed to a one-dimensional object in space. - Length - Length - http://qudt.org/vocab/quantitykind/Length - 3-1.1 - Extend of a spatial dimension. - https://doi.org/10.1351/goldbook.L03498 - - - - - - Process for joining two (base) materials by means of an adhesive polymer material - Gluing - Kleben - Gluing - - - - - - A manufacturing involving the creation of long-term connection of several workpieces. - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - JoinManufacturing - DIN 8580:2020 - Fügen - JoinManufacturing - A manufacturing involving the creation of long-term connection of several workpieces. - - - - - - - - - - - - - - - - Rate of transfer of energy per unit time. - Power - Power - http://qudt.org/vocab/quantitykind/Power - 4-27 - 6-45 - Rate of transfer of energy per unit time. - https://doi.org/10.1351/goldbook.P04792 - - - - - - - A quantity whose magnitude is additive for subsystems. - Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. - Extensive - Extensive - A quantity whose magnitude is additive for subsystems. - Mass -Volume -Entropy - - - - - - - CharacterisationComponent - CharacterisationComponent - - - - - - - - - - - - - - - - A constituent of a system. - Component - Component - A constituent of a system. - - - - - - A measuring instrument that can be used alone is a measuring system. - Device used for making measurements, alone or in conjunction with one or more supplementary devices. - --- VIM - MeasuringInstrument - MeasuringInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary devices. - --- VIM - measuring instrument - - - - - - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - LightScattering - LightScattering - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - - - - - - - OpticalTesting - OpticalTesting - - - - - - - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - MassFractionOfDryMatter - MassFractionOfDryMatter - https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter - https://www.wikidata.org/wiki/Q76379189 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 - 5-32 - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - - - - - - - Mass of a constituent divided by the total mass of all constituents in the mixture. - MassFraction - MassFraction - http://qudt.org/vocab/quantitykind/MassFraction - 9-11 - https://doi.org/10.1351/goldbook.M03722 - - - - - - Quantities categorised according to ISO 80000-5. - ThermodynamicalQuantity - ThermodynamicalQuantity - Quantities categorised according to ISO 80000-5. - - - - - - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - DifferentialPulseVoltammetry - DPV - DifferentialPulseVoltammetry - https://www.wikidata.org/wiki/Q5275361 - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - https://en.wikipedia.org/wiki/Differential_pulse_voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - The current vs. potential (I-E) curve is called a voltammogram. - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - - Voltammetry - Voltammetry - https://www.wikidata.org/wiki/Q904093 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - https://en.wikipedia.org/wiki/Voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - - - - - - - - - - - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The class of individuals standing for direct causally self-connected world entities. - The disjoint union of Elementary, Quantum and CausalSystem classes. - Item - Item - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The disjoint union of Elementary, Quantum and CausalSystem classes. - The class of individuals standing for direct causally self-connected world entities. - - - - - - - - - - - - - - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. - Product - Output - Product - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 - https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. - - - - - - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - TemporallyFundamental - TemporallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - - - A manufacturing in which material is removed from the workpiece in the form of chips. - Machining - RemovingChipsFromWorkpiece - Machining - A manufacturing in which material is removed from the workpiece in the form of chips. - - - - - - DefinedEdgeCutting - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - Spanen mit geometrisch bestimmten Schneiden - DefinedEdgeCutting - - - - - - Measure of the opposition that a circuit presents to a current when a voltage is applied. - ElectricImpedance - Impedance - ElectricImpedance - http://qudt.org/vocab/quantitykind/Impedance - https://www.wikidata.org/wiki/Q179043 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 - 6-51.1 - https://en.wikipedia.org/wiki/Electrical_impedance - - - - - - - - - - - - - - - Inverse of 'ElectricalConductance'. - Measure of the difficulty to pass an electric current through a material. - ElectricResistance - Resistance - ElectricResistance - http://qudt.org/vocab/quantitykind/Resistance - https://www.wikidata.org/wiki/Q25358 - 6-46 - Measure of the difficulty to pass an electric current through a material. - https://doi.org/10.1351/goldbook.E01936 - - - - - - A computer language that expresses the presentation of structured documents. - StyleSheetLanguage - StyleSheetLanguage - A computer language that expresses the presentation of structured documents. - CSS - https://en.wikipedia.org/wiki/Style_sheet_language - - - - - - A formal language used to communicate with a computer. - The categorisation of computer languages is based on - -Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. -https://www.computer.org/education/bodies-of-knowledge/software-engineering - ComputerLanguage - ComputerLanguage - A formal language used to communicate with a computer. - The categorisation of computer languages is based on - -Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. -https://www.computer.org/education/bodies-of-knowledge/software-engineering - https://en.wikipedia.org/wiki/Computer_language - - - - - - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - ElectricPolarization - ElectricPolarization - https://qudt.org/vocab/quantitykind/ElectricPolarization - https://www.wikidata.org/wiki/Q1050425 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 - 6-7 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - - - - - - - - - - - - - - - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - ElectricFluxDensity - ElectricDisplacement - ElectricFluxDensity - https://qudt.org/vocab/quantitykind/ElectricDisplacementField - https://www.wikidata.org/wiki/Q371907 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 - 6-12 - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - - - - - - - - - - - - - - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - Symbolic - Symbolic - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - fe780 -emmo -!5*a -cat -for(i=0;i<N;++i) - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - A symbolic object possesses a reductionistic oriented structure. -For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). - - - - - - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - Data whose variations are decoded according to a discrete schema. - DiscreteData - DiscreteData - Data whose variations are decoded according to a discrete schema. - A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - - - - - - - - ActivityFactor - ActivityFactor - https://www.wikidata.org/wiki/Q89335167 - 9-22 - - - - - - Quantities categorised according to ISO 80000-9. - PhysioChemicalQuantity - PhysioChemicalQuantity - Quantities categorised according to ISO 80000-9. - - - - - - - ActivityCoefficient - ActivityCoefficient - https://qudt.org/vocab/quantitykind/ActivityCoefficient - https://www.wikidata.org/wiki/Q745224 - 9-25 - https://doi.org/10.1351/goldbook.A00116 - - - - - - - BlueBottomAntiQuark - BlueBottomAntiQuark - - - - - - - A process which is an holistic spatial part of a process. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - SubProcess - SubProcess - A process which is an holistic spatial part of a process. - Breathing is a subprocess of living for a human being. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - - - - - - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). - -For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. - Process - Occurrent - Perdurant - Process - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - - - - - - An holistic spatial part of a whole. - NonTemporalRole - HolisticSpatialPart - NonTemporalRole - An holistic spatial part of a whole. - - - - - - Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). - In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). - -In general the dimension of any quantity Q is written in the form of a dimensional product, - - dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η - -where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. --- SI brouchure - -The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: - -^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ - -Examples of correspondance between dimensional units and their dimensional units are: - -- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" -- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" -- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - SIDimensionalUnit - SIDimensionalUnit - Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). - In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). - -In general the dimension of any quantity Q is written in the form of a dimensional product, - - dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η - -where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. --- SI brouchure - -The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: - -^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ - -Examples of correspondance between dimensional units and their dimensional units are: - -- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" -- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" -- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - - - - - - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. - -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. - -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - DimensionalUnit - DimensionalUnit - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. - -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. - -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - - - - - - - - - - - - - - The interest is on the 4D object as it extends in time (process) or as it persists in time (object): -- object (focus on spatial configuration) -- process (focus on temporal evolution) - -The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. - -For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. - -Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. - -This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). - -The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. - The union of the object or process classes. - Persistence - Persistence - The union of the object or process classes. - - - - - - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - Perspective - Perspective - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - - - - - - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - CurrentLinkage - CurrentLinkage - https://qudt.org/vocab/quantitykind/CurrentLinkage - https://www.wikidata.org/wiki/Q77995703 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 - 6-37.4 - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - - - - - - - - - - - - - - - - A flow of electric charge. - ElectricCurrent - ElectricCurrent - http://qudt.org/vocab/quantitykind/ElectricCurrent - 6-1 - A flow of electric charge. - https://doi.org/10.1351/goldbook.E01927 - - - - - - A procedure can be considered as an intentional process with a plan. - The process in which an agent works with some entities according to some existing formalised operative rules. - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - Procedure - Elaboration - Work - Procedure - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - The process in which an agent works with some entities according to some existing formalised operative rules. - The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). -The process in which a librarian order books alphabetically on a shelf. -The execution of an algorithm. - A procedure can be considered as an intentional process with a plan. - - - - - - - - - - - - - - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - IntentionalProcess - Project - IntentionalProcess - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - - - - - - GravityCasting - GravityCasting - - - - - - Casting - Casting - - - - - - - - - - - - - - - Product of mass and velocity. - Momentum - Momentum - http://qudt.org/vocab/quantitykind/Momentum - 4-8 - https://doi.org/10.1351/goldbook.M04007 - - - - - - - Quotient of relative mass excess and the nucleon number. - PackingFraction - PackingFraction - https://qudt.org/vocab/quantitykind/PackingFraction - https://www.wikidata.org/wiki/Q98058276 - 10-23.1 - Quotient of relative mass excess and the nucleon number. - - - - - - - A neutrino belonging to the second generation of leptons. - MuonNeutrino - MuonNeutrino - A neutrino belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon_neutrino - - - - - - - - - - - - - - - - - - - - SecondGenerationFermion - SecondGenerationFermion - - - - - - - - - - - - - - - - - - - - - - - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - NeutrinoType - NeutrinoType - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - https://en.wikipedia.org/wiki/Neutrino - - - - - - The dependent variable for which an equation has been written. - Unknown - Unknown - The dependent variable for which an equation has been written. - Velocity, for the Navier-Stokes equation. - - - - - - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - NumericalVariable - NumericalVariable - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - - - - - - - - - - - - - - - Number of particles per time and area crossing a surface. - ParticleCurrentDensity - ParticleCurrentDensity - https://qudt.org/vocab/quantitykind/ParticleCurrent - https://www.wikidata.org/wiki/Q2400689 - 10-48 - Number of particles per time and area crossing a surface. - - - - - - - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - ElectronAffinity - ElectronAffinity - https://qudt.org/vocab/quantitykind/ElectronAffinity - https://www.wikidata.org/wiki/Q105846486 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 - 12-25 - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - - - - - - - - - - - - - - - A property of objects which can be transferred to other objects or converted into different forms. - Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. - Energy - Energy - http://qudt.org/vocab/quantitykind/Energy - 5-20-1 - A property of objects which can be transferred to other objects or converted into different forms. - https://doi.org/10.1351/goldbook.E02101 - - - - - - Quantities categorised according to ISO 80000-12. - CondensedMatterPhysicsQuantity - CondensedMatterPhysicsQuantity - Quantities categorised according to ISO 80000-12. - - - - - - - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - InternalConversionFactor - InternalConversionCoefficient - InternalConversionFactor - https://qudt.org/vocab/quantitykind/InternalConversionFactor - https://www.wikidata.org/wiki/Q6047819 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 - 10-35 - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - - - - - - PlasmaCutting - PlasmaCutting - - - - - - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - ThermalCutting - Thermisches Abtragen - ThermalCutting - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - - - - - - - - - - - - - - - translation vector that maps the crystal lattice on itself - LatticeVector - LatticeVector - https://qudt.org/vocab/quantitykind/LatticeVector - https://www.wikidata.org/wiki/Q105435234 - 12-1.1 - translation vector that maps the crystal lattice on itself - - - - - - vector quantity between any two points in space - Displacement - Displacement - https://qudt.org/vocab/quantitykind/Displacement - https://www.wikidata.org/wiki/Q190291 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 - https://dbpedia.org/page/Displacement_(geometry) - 3-1.11 - vector quantity between any two points in space - https://en.wikipedia.org/wiki/Displacement_(geometry) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. -A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. -A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. - -For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. -An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) -Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). -This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. -This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. - Coded - Coded - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. - The name "red" that stands for the color of an object. - - - - - - - - - - - - - - - - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - AbsorbedDose - AbsorbedDose - http://qudt.org/vocab/quantitykind/AbsorbedDose - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - 10-81.1 - https://doi.org/10.1351/goldbook.A00031 - - - - - - - In nuclear physics, energy imparted per mass. - SpecificEnergyImparted - SpecificEnergyImparted - https://qudt.org/vocab/quantitykind/SpecificEnergyImparted - https://www.wikidata.org/wiki/Q99566195 - 10-81.2 - In nuclear physics, energy imparted per mass. - - - - - - - Time constant for recombination or trapping of minority charge carriers in semiconductors - CarrierLifetime - CarrierLifetime - https://qudt.org/vocab/quantitykind/CarrierLifetime - https://www.wikidata.org/wiki/Q5046374 - 12-32.2 - Time constant for recombination or trapping of minority charge carriers in semiconductors - - - - - - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - TimeConstant - TimeConstant - https://www.wikidata.org/wiki/Q1335249 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 - 3-15 - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - - - - - - Whatever hardware is used during the characterisation process. - CharacterisationHardware - CharacterisationHardware - Whatever hardware is used during the characterisation process. - - - - - - - - - - - - - - - - - 1 - - - - - - - - - - - - - - - A quantifiable property of a phenomenon, body, or substance. - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - Quantity - Measurand - Quantity - https://qudt.org/schema/qudt/Quantity - A quantifiable property of a phenomenon, body, or substance. - length -Rockwell C hardness -electric resistance - measurand - quantity - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - - - - - - - - - - - - - - - - Electric current divided by the cross-sectional area it is passing through. - ElectricCurrentDensity - AreicElectricCurrent - CurrentDensity - ElectricCurrentDensity - http://qudt.org/vocab/quantitykind/ElectricCurrentDensity - https://www.wikidata.org/wiki/Q234072 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 - 6-8 - https://en.wikipedia.org/wiki/Current_density - https://doi.org/10.1351/goldbook.E01928 - - - - - - A quantity whose magnitude is independent of the size of the system. - Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. - Intensive - Intensive - A quantity whose magnitude is independent of the size of the system. - Temperature -Density -Pressure -ChemicalPotential - - - - - - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - Assignment - Assignment - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. - - - - - - - - - - - - - - - - A determination of an object without any actual interaction. - Estimation - Estimation - A determination of an object without any actual interaction. - - - - - - - IntermediateSample - IntermediateSample - - - - - - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. - - Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - Sample - Specimen - Sample - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. - Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - - - - - - FormingFromLiquid - FormingFromLiquid - - - - - - From Powder, from liquid, from gas - da una forma non propria ad una forma propria - FromNotProperShapeToWorkPiece - FromNotProperShapeToWorkPiece - From Powder, from liquid, from gas - Powder: -particles that are usually less than 1 mm in size - + + + - - - - - - - - - - - - - - - - - - - - - - Deals with entities that have a defined shape. - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - Manufacturing - DIN 8580:2020 - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - Manufacturing - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - Deals with entities that have a defined shape. - https://de.wikipedia.org/wiki/Fertigungsverfahren - + + + - - - - - An object that has been designed and manufactured for a particular purpose. - ManufacturedProduct - Artifact - Engineered - TangibleProduct - ManufacturedProduct - An object that has been designed and manufactured for a particular purpose. - Car, tire, composite material. - + + + - - - - Length of a rectifiable curve between two of its points. - PathLength - ArcLength - PathLength - https://www.wikidata.org/wiki/Q7144654 - https://dbpedia.org/page/Arc_length - 3-1.7 - Length of a rectifiable curve between two of its points. - https://en.wikipedia.org/wiki/Arc_length - + + + - - - - - - - - - - - - - - - - - - - - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. - AntiMatter - AntiMatter - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. - + + + - - - - - - - - - - - - - - - - - - - - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - A physical object made of fermionic quantum parts. - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - Matter - PhysicalSubstance - Matter - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - A physical object made of fermionic quantum parts. - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. - + + + - - - - Parameter for diffusion and fluid flow in porous media. - Tortuosity - Tortuosity - https://www.wikidata.org/wiki/Q2301683 - Parameter for diffusion and fluid flow in porous media. + + + + + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + IterativeStep + IterativeStep + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. - - - + + + + + + + + - + - + - - A composite physical object made of fermions (i.e. having mass and occupying space). - Substance - Substance - A composite physical object made of fermions (i.e. having mass and occupying space). - - - - - - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - CompositePhysicalObject - CompositePhysicalObject - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + + A procedure that has at least two procedures (tasks) as proper parts. + Workflow + Workflow + A procedure that has at least two procedures (tasks) as proper parts. - - - - Temperature below which quantum effects dominate. - CriticalTemperature - CriticalTemperature - https://www.wikidata.org/wiki/Q1450516 - Temperature below which quantum effects dominate. + + + + + + + + + + + + + + A step is part of a specific granularity level for the workflow description, as composition of tasks. + A task that is a well formed tile of a workflow, according to a reductionistic description. + Step + Step + A task that is a well formed tile of a workflow, according to a reductionistic description. + A step is part of a specific granularity level for the workflow description, as composition of tasks. - - - - - + + - - - - - - - - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - ThermodynamicTemperature - ThermodynamicTemperature - http://qudt.org/vocab/quantitykind/ThermodynamicTemperature - 5-1 - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - https://doi.org/10.1351/goldbook.T06321 - - - - - - Atomic number (proton number) plus neutron number equals mass number. - Number of neutrons in an atomic nucleus. - NeutronNumber - NeutronNumber - https://www.wikidata.org/wiki/Q970319 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 - 10-1.2 - Number of neutrons in an atomic nucleus. - Atomic number (proton number) plus neutron number equals mass number. - https://en.wikipedia.org/wiki/Neutron_number - https://doi.org/10.1351/goldbook.N04119 + Mass of the contained water vapour per volume. + AbsoluteHumidity + MassConcentrationOfWaterVapour + AbsoluteHumidity + https://qudt.org/vocab/quantitykind/AbsoluteHumidity + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + 5-28 + Mass of the contained water vapour per volume. - - + + + - A pure number, typically the number of something. - According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. - -This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + Mass of a constituent divided by the volume of the mixture. + MassConcentration + MassConcentration + http://qudt.org/vocab/quantitykind/MassConcentration + https://doi.org/10.1351/goldbook.M03713 + -There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. - PureNumberQuantity - PureNumberQuantity - A pure number, typically the number of something. - 1, -i, -π, -the number of protons in the nucleus of an atom + + + + Quantities categorised according to ISO 80000-5. + ThermodynamicalQuantity + ThermodynamicalQuantity + Quantities categorised according to ISO 80000-5. - - + + - Describes the main input parameters that are needed to acquire the signal. - Describes the main input parameters that are needed to acquire the signal. - MeasurementParameter - MeasurementParameter - Describes the main input parameters that are needed to acquire the signal. + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + HardnessTesting + HardnessTesting + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - - - - - - - - - - - - Particles composed of two or more quarks. - Hadron - Hadron - Particles composed of two or more quarks. - https://en.wikipedia.org/wiki/Hadron + + + + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + MechanicalTesting + MechanicalTesting + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + https://en.wikipedia.org/wiki/Mechanical_testing - - - - - - - - - - - - - ParticulateMatter - ParticulateMatter + + + + + The speed of light in vacuum. Defines the base unit metre in the SI system. + SpeedOfLightInVacuum + SpeedOfLightInVacuum + http://qudt.org/vocab/constant/SpeedOfLight_Vacuum + 6-35.2 + The speed of light in vacuum. Defines the base unit metre in the SI system. + https://doi.org/10.1351/goldbook.S05854 - + - - + - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - ParticleFluence - ParticleFluence - https://qudt.org/vocab/quantitykind/ParticleFluence - https://www.wikidata.org/wiki/Q82965908 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 - 10-43 - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. + Length per unit time. + +Speed in the absolute value of the velocity. + Speed + Speed + http://qudt.org/vocab/quantitykind/Speed + 3-8.2 + https://doi.org/10.1351/goldbook.S05852 - - - - - T-2 L+1 M+1 I-1 Θ0 N0 J0 - - - + + - MagneticPotentialUnit - MagneticPotentialUnit + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + SIExactConstant + SIExactConstant + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - - - - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. - It has a shape, so we conclude that it is solid - Object that is processed with a machine - Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product - The raw material or partially finished piece that is shaped by performing various operations. - They are not powders or threads - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - fili e polveri non sono compresi - it seems to be an intermediate product, that has to reach the final shape. - it seems to be solid, so it has a proper shape - powder is not workpiece because it has the shape of the recipient containing them - WorkPiece - Werkstück - WorkPiece - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + + + + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + MassSpectrometry + MassSpectrometry + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - - - - - - - - - - - - - A material that is obtained through a manufacturing process. - ManufacturedMaterial - EngineeredMaterial - ProcessedMaterial - ManufacturedMaterial - A material that is obtained through a manufacturing process. + + + + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + + Spectrometry + Spectrometry + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - - + + - - SamplePreparationInstrument - SamplePreparationInstrument + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + NeutronSpinEchoSpectroscopy + NSE + NeutronSpinEchoSpectroscopy + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. -Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). -A data object may be used as the physical basis for a sign, under Semiotics perspective. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - EncodedData - EncodedVariation - EncodedData - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - A Radio Morse Code transmission can be addressed by combination of perspectives. + + + + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + + Spectroscopy + Spectroscopy + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + -Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). -Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. -Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. -Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). - A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - https://no.wikipedia.org/wiki/Data + + + + The radiant energy emitted, reflected, transmitted or received, per unit time. + RadiantFlux + RadiantFlux + http://qudt.org/vocab/quantitykind/RadiantFlux + https://doi.org/10.1351/goldbook.R05046 - - + + + + + + + - - T+3 L-2 M-1 I0 Θ+1 N0 J0 + + - - + - ThermalResistanceUnit - ThermalResistanceUnit + Rate of transfer of energy per unit time. + Power + Power + http://qudt.org/vocab/quantitykind/Power + 4-27 + 6-45 + Rate of transfer of energy per unit time. + https://doi.org/10.1351/goldbook.P04792 - - - - - Discrete quantity; number of entities of a given kind in a system. - NumberOfEntities - NumberOfEntities - https://www.wikidata.org/wiki/Q614112 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 - 9-1 - Discrete quantity; number of entities of a given kind in a system. - https://doi.org/10.1351/goldbook.N04266 + + + + HotDipGalvanizing + Hot-dipGalvanizing + HotDipGalvanizing - - + + + + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + CoatingManufacturing + DIN 8580:2020 + Beschichten + CoatingManufacturing + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + + + + + + + + - - T0 L0 M+1 I0 Θ0 N-1 J0 + + - - + - MassPerAmountUnit - MassPerAmountUnit + Magnetic tension divided by magnetic flux. + MagneticReluctance + Reluctance + MagneticReluctance + https://qudt.org/vocab/quantitykind/Reluctance + https://www.wikidata.org/wiki/Q863390 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 + 6-39 + Magnetic tension divided by magnetic flux. - - - + + + + + Derived quantities defined in the International System of Quantities (ISQ). + ISQDerivedQuantity + ISQDerivedQuantity + Derived quantities defined in the International System of Quantities (ISQ). + + + + + + + + + + + + + + + + + + + + - + - - - - - - - + + - - UpQuark - UpQuark - https://en.wikipedia.org/wiki/Up_quark + + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The class of all the OWL individuals declared by EMMO as standing for world entities. + The disjoint union of the Item and Collection classes. + EMMO + EMMO + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The disjoint union of the Item and Collection classes. + The class of all the OWL individuals declared by EMMO as standing for world entities. + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - - - - A software application to process characterisation data - CharacterisationSoftware - CharacterisationSoftware - A software application to process characterisation data - In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. + + + + Quantities categorised according to ISO 80000-6. + ElectromagneticQuantity + ElectromagneticQuantity + Quantities categorised according to ISO 80000-6. - - - - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - Symbol - AlphabeticEntity - Symbol - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). + + + + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + Declared + Declared + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + -Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. -(Wikipedia) - The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. + + + + + MicrocanonicalPartitionFunction + MicrocanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96106546 + 9-35.1 - - + + + + Quantities categorised according to ISO 80000-9. + PhysioChemicalQuantity + PhysioChemicalQuantity + Quantities categorised according to ISO 80000-9. + + + + + + + - - T-3 L-1 M+1 I0 Θ0 N0 J0 + + - - + - PressurePerTimeUnit - PressurePerTimeUnit + A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. + ISQDimensionlessQuantity + ISQDimensionlessQuantity + http://qudt.org/vocab/quantitykind/Dimensionless + A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one. + https://en.wikipedia.org/wiki/Dimensionless_quantity + https://doi.org/10.1351/goldbook.D01742 + + + + + + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + MercuryPorosimetry + MercuryPorosimetry + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - - + + - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - DynamicMechanicalSpectroscopy - DMA - DynamicMechanicalSpectroscopy - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + + Porosimetry + Porosimetry - - + + - + - Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - Torque - Torque - http://qudt.org/vocab/quantitykind/Torque - 4-12.2 - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - https://doi.org/10.1351/goldbook.T06400 + Mathematical description in crystallography. + StructureFactor + StructureFactor + https://qudt.org/vocab/quantitykind/StructureFactor + https://www.wikidata.org/wiki/Q900684 + 12-5.4 + Mathematical description in crystallography. - - - - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Detector - Detector - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM - Displacement and force sensors for mechanical testing + + + + Quantities categorised according to ISO 80000-12. + CondensedMatterPhysicsQuantity + CondensedMatterPhysicsQuantity + Quantities categorised according to ISO 80000-12. - - - - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - Variable - Variable - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - x -k + + + + + + + + + + + + + + + + + + + + + + + + + + + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + A metrological reference for a physical quantity. + MeasurementUnit + MeasurementUnit + A metrological reference for a physical quantity. + kg +m/s +km + measurement unit (VIM3 1.9) + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + "Unit symbols are mathematical entities and not abbreviations." + +"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." + +https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf + Measurement units and procedure units are disjoint. + Quantitative value are expressed as a multiple of the 'MeasurementUnit'. - - - - - - - - - - - - - - - + + - - + + T+4 L-3 M-1 I+2 Θ0 N0 J0 - - - Deduction - IndexSemiosis - Deduction + + + + PermittivityUnit + PermittivityUnit - - - - A causal object which is tessellated with only spatial direct parts. - The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. -This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. - The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. - Arrangement - MereologicalState - Arrangement - A causal object which is tessellated with only spatial direct parts. - e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. + + + + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + HydrodynamicVoltammetry + HydrodynamicVoltammetry + https://www.wikidata.org/wiki/Q17028237 + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry + https://doi.org/10.1515/pac-2018-0109 + -If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. + + + + The current vs. potential (I-E) curve is called a voltammogram. + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + + Voltammetry + Voltammetry + https://www.wikidata.org/wiki/Q904093 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + https://en.wikipedia.org/wiki/Voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - A well formed tessellation with tiles that all spatial. - SpatialTiling - SpatialTiling - A well formed tessellation with tiles that all spatial. + + + + + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + Muon + Muon + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon - - + + + + + + + + + + + + + + + + + + SecondGenerationFermion + SecondGenerationFermion + + + + - + - - + + + + + + + - - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - A self-connected composition of more than one quantum entities. - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - CausalStructure - CausalObject - CausalStructure - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - A self-connected composition of more than one quantum entities. - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + + ElectronType + ElectronType - - + + - FormingFromPowder - FormingFromPowder + DieCasting + DieCasting - - - - - Mass of a constituent divided by the volume of the mixture. - MassConcentration - MassConcentration - http://qudt.org/vocab/quantitykind/MassConcentration - https://doi.org/10.1351/goldbook.M03713 + + + + Casting + Casting - - - - - - - - - - - - - - - - - - - - - - - Quantity representing the spatial distribution of mass in a continuous material. - Density - MassConcentration - MassDensity - Density - http://qudt.org/vocab/quantitykind/Density - Mass per volume. - 4-2 - 9-10 - https://doi.org/10.1351/goldbook.D01590 + + + + A standalone simulation, where a single physics equation is solved. + StandaloneModelSimulation + StandaloneModelSimulation + A standalone simulation, where a single physics equation is solved. - - - - the abundance of a constituent divided by the total volume of a mixture. - Concentration - Concentration - https://qudt.org/vocab/quantitykind/Concentration - https://www.wikidata.org/wiki/Q3686031 - https://dbpedia.org/page/Concentration - the abundance of a constituent divided by the total volume of a mixture. - https://en.wikipedia.org/wiki/Concentration - https://goldbook.iupac.org/terms/view/C01222 + + + + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedSimulation + PhysicsBasedSimulation + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - - - + + - + - - + + + + + + + + + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + GaugeBoson + GaugeBoson + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + Gauge bosons can carry any of the four fundamental interactions of nature. + https://en.wikipedia.org/wiki/Gauge_boson + + + + - + - - + + + + + + + + + A boson that is a single elementary particle. + A particle with integer spin that follows Bose–Einstein statistics. + FundamentalBoson + FundamentalBoson + A particle with integer spin that follows Bose–Einstein statistics. + A boson that is a single elementary particle. + https://en.wikipedia.org/wiki/Boson#Elementary_bosons + + + + - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - A metrological reference for a physical quantity. - MeasurementUnit - MeasurementUnit - A metrological reference for a physical quantity. - kg -m/s -km - measurement unit (VIM3 1.9) - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - "Unit symbols are mathematical entities and not abbreviations." + A measurement unit for a derived quantity. +-- VIM + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + DerivedUnit + DerivedUnit + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + derived unit + A measurement unit for a derived quantity. +-- VIM + -"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." + + + + + T+2 L+2 M-1 I+2 Θ0 N0 J0 + + + + + EnergyPerSquareMagneticFluxDensityUnit + EnergyPerSquareMagneticFluxDensityUnit + -https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf - Measurement units and procedure units are disjoint. - Quantitative value are expressed as a multiple of the 'MeasurementUnit'. + + + + Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). + In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + +In general the dimension of any quantity Q is written in the form of a dimensional product, + + dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + +where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. +-- SI brouchure + +The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + +^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + +Examples of correspondance between dimensional units and their dimensional units are: + +- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" +- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" +- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" + SIDimensionalUnit + SIDimensionalUnit + Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). + In SI are the physical dimensions of the base quantities time (T), length (L), mass (M), electric current (I), thermodynamic temperature (Θ), amount of substance (N) and luminous intensity (J). + +In general the dimension of any quantity Q is written in the form of a dimensional product, + + dim Q = T^α L^β M^γ I^δ Θ^ε N^ζ J^η + +where the exponents α, β, γ, δ, ε, ζ and η, which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. +-- SI brouchure + +The SI dimensional units are equivalent to dimensional strings that uniquely defines their dimensionality by specifying the values of the coefficients α, β, γ, δ, ε, ζ and η. A dimensional string is a space-separated string of the physical dimension symbols followed by the value of the exponent (including it sign). They should always match the following regular expression: + +^T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) Θ([+-][1-9]|0) N([+-][1-9]|0) J([+-][1-9]|0)$ + +Examples of correspondance between dimensional units and their dimensional units are: + +- AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" +- TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" +- ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" + + + + + + + + + + + + + + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + Experiment + Experiment + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + + + + + + + + + + + + + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + A whole is categorized as fundamental (or maximal) or redundant (non-maximal). + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + Whole + Whole + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - - - - - - - - - - - + + + + + + + + + + + + - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - MetrologicalReference - MetrologicalReference - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + A characterisation of an object with an actual interaction. + Observation + Observation + A characterisation of an object with an actual interaction. - - - - A reference unit provided by a measurement procedure. - Procedure units and measurement units are disjoint. - ProcedureUnit - MeasurementProcedure - ProcedureUnit - A reference unit provided by a measurement procedure. - Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) - Procedure units and measurement units are disjoint. + + + + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). + +For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. + Process + Occurrent + Perdurant + Process + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - - - - A construction language used to make queries in databases and information systems. - QueryLanguage - QueryLanguage - A construction language used to make queries in databases and information systems. - SQL, SPARQL - https://en.wikipedia.org/wiki/Query_language + + + + + + + + + + + + GaugePressure + GaugePressure + https://www.wikidata.org/wiki/Q109594211 + 4-14.2 - - - - A computer language by which a human can specify an executable problem solution to a computer. - ConstructionLanguage - ConstructionLanguage - A computer language by which a human can specify an executable problem solution to a computer. - https://en.wikipedia.org/wiki/Software_construction#Construction_languages + + + + Quantities categorised according to ISO 80000-4. + MechanicalQuantity + MechanicalQuantity + Quantities categorised according to ISO 80000-4. - + + + + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + DifferentialPulseVoltammetry + DPV + DifferentialPulseVoltammetry + https://www.wikidata.org/wiki/Q5275361 + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + https://en.wikipedia.org/wiki/Differential_pulse_voltammetry + https://doi.org/10.1515/pac-2018-0109 + + + - - T0 L-2 M0 I+1 Θ0 N0 J0 + + - - - ElectricCurrentDensityUnit - ElectricCurrentDensityUnit - - - - - - - - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. - Liquid - Liquid - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + + + + + + + + + A boolean number. + Boolean + Boolean + A boolean number. - - - - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. - An icon that mimics the spatial or temporal shape of the object. - The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). - ResemblanceIcon - ResemblanceIcon - An icon that mimics the spatial or temporal shape of the object. - A geographical map that imitates the shape of the landscape and its properties at a specific historical time. - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + + + + + A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. + A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). + A numerical data value. + In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. +More than one numeral stands for the same number. +In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). +Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). +The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. +For these reasons, the EMMO will consider numerals and numbers as the same concept. + Number + Numeral + Number + A numerical data value. - - - - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). - Estimator - Estimator - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + + + + A language used to describe what a computer system should do. + SpecificationLanguage + SpecificationLanguage + A language used to describe what a computer system should do. + ACSL, VDM, LOTUS, MML, ... + https://en.wikipedia.org/wiki/Specification_language - - - - - GreenStrangeQuark - GreenStrangeQuark - + + + + A formal language used to communicate with a computer. + The categorisation of computer languages is based on - - - - KineticFrictionFactor - DynamicFrictionFactor - KineticFrictionFactor - https://www.wikidata.org/wiki/Q73695445 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 - 4-23.2 - +Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. +https://www.computer.org/education/bodies-of-knowledge/software-engineering + ComputerLanguage + ComputerLanguage + A formal language used to communicate with a computer. + The categorisation of computer languages is based on - - - - - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - CoefficientOfFriction - FrictionCoefficient - FrictionFactor - CoefficientOfFriction - https://www.wikidata.org/wiki/Q1932524 - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - https://doi.org/10.1351/goldbook.F02530 +Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. +https://www.computer.org/education/bodies-of-knowledge/software-engineering + https://en.wikipedia.org/wiki/Computer_language - - - + + + - Vector quantity expressing the internal angular momentum of a particle or a particle system. - Spin - Spin - https://qudt.org/vocab/quantitykind/Spin - https://www.wikidata.org/wiki/Q133673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 - 10-10 - Vector quantity expressing the internal angular momentum of a particle or a particle system. + The integral over a time interval of the instantaneous power. + ActiveEnergy + ActiveEnergy + https://qudt.org/vocab/quantitykind/ActiveEnergy + https://www.wikidata.org/wiki/Q79813678 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 + 6-62 + The integral over a time interval of the instantaneous power. - + + - - + - Measure of the extent and direction an object rotates about a reference point. - AngularMomentum - AngularMomentum - http://qudt.org/vocab/quantitykind/AngularMomentum - 4-11 - https://doi.org/10.1351/goldbook.A00353 + A property of objects which can be transferred to other objects or converted into different forms. + Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. + Energy + Energy + http://qudt.org/vocab/quantitykind/Energy + 5-20-1 + A property of objects which can be transferred to other objects or converted into different forms. + https://doi.org/10.1351/goldbook.E02101 - - - - - RelativeMassFractionOfVapour - RelativeMassFractionOfVapour - 5-35 + + + + + + + + + + + + + + + + + + + + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + A physical object made of fermionic quantum parts. + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + Matter + PhysicalSubstance + Matter + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + A physical object made of fermionic quantum parts. + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. - - - - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - - ThreePointBendingTesting - ThreePointFlexuralTest - ThreePointBendingTesting - https://www.wikidata.org/wiki/Q2300905 - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - https://en.wikipedia.org/wiki/Three-point_flexural_test + + + + + + + + + + + + + + + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + PhysicalObject + PhysicalObject + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - - - - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - MechanicalTesting - MechanicalTesting - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - https://en.wikipedia.org/wiki/Mechanical_testing + + + + + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + RelaxationTime + RelaxationTime + https://www.wikidata.org/wiki/Q106041085 + 12-32.1 + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - - - - - - - - - - - + + + + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + TimeConstant + TimeConstant + https://www.wikidata.org/wiki/Q1335249 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 + 3-15 + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + + + + - + - + - - - CharacterisationTask - CharacterisationTask + + Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. + The atomic mass is often expressed as an average of the commonly found isotopes. + The mass of an atom in the ground state. + AtomicMass + AtomicMass + The mass of an atom in the ground state. + 10-4.1 + https://en.wikipedia.org/wiki/Atomic_mass + https://doi.org/10.1351/goldbook.A00496 - - + + + + + + + + + + + + - + - + - - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - Task - Job - Task - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + Mass + Mass + http://qudt.org/vocab/quantitykind/Mass + 4-1 + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + https://doi.org/10.1351/goldbook.M03709 - - - - Characterisation procedure may refer to the full characterisation process or just a part of the full process. - The process of performing characterisation by following some existing formalised operative rules. - CharacterisationProcedure - CharacterisationProcedure - The process of performing characterisation by following some existing formalised operative rules. - Sample preparation -Sample inspection -Calibration -Microscopy -Viscometry -Data sampling - Characterisation procedure may refer to the full characterisation process or just a part of the full process. + + + + + Atomic number (proton number) plus neutron number equals mass number. + Number of neutrons in an atomic nucleus. + NeutronNumber + NeutronNumber + https://www.wikidata.org/wiki/Q970319 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 + 10-1.2 + Number of neutrons in an atomic nucleus. + Atomic number (proton number) plus neutron number equals mass number. + https://en.wikipedia.org/wiki/Neutron_number + https://doi.org/10.1351/goldbook.N04119 - - - - - - - - - - - - - - - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - The union of all classes categorising elementary particles according to the Standard Model. - StandardModelParticle - ElementaryParticle - StandardModelParticle - The union of all classes categorising elementary particles according to the Standard Model. - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. - This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). -In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). + + + + Quantities categorised according to ISO 80000-10. + AtomicAndNuclearPhysicsQuantity + AtomicAndNuclearPhysicsQuantity + Quantities categorised according to ISO 80000-10. - - - - - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - Quantum - Quantum - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. -However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + + + + A pure number, typically the number of something. + According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. + +This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + +There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. + PureNumberQuantity + PureNumberQuantity + A pure number, typically the number of something. + 1, +i, +π, +the number of protons in the nucleus of an atom - - + + - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - XrayDiffraction - XRD - XrayDiffraction - https://www.wikidata.org/wiki/Q12101244 - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - https://en.wikipedia.org/wiki/X-ray_crystallography + Signal + Signal + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - - + + - - ScatteringAndDiffraction - ScatteringAndDiffraction + Represents every type of data that is produced during a characterisation process + CharacterisationData + CharacterisationData + Represents every type of data that is produced during a characterisation process - - - + + + - Helmholtz energy per amount of substance. - MolarHelmholtzEnergy - MolarHelmholtzEnergy - https://www.wikidata.org/wiki/Q88862986 - 9-6.3 - Helmholtz energy per amount of substance. + Rotation + Rotation + https://www.wikidata.org/wiki/Q76435127 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 + 3-16 - - + + + + Quantities categorised according to ISO 80000-3. + SpaceAndTimeQuantity + SpaceAndTimeQuantity + Quantities categorised according to ISO 80000-3. + + + + + + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + DisplacementCurrent + DisplacementCurrent + https://qudt.org/vocab/quantitykind/DisplacementCurrent + https://www.wikidata.org/wiki/Q853178 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 + 6-19.1 + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + + + + + + - + - Energy per amount of substance. - MolarEnergy - MolarEnergy - https://qudt.org/vocab/quantitykind/MolarEnergy - https://www.wikidata.org/wiki/Q69427512 - Energy per amount of substance. + A flow of electric charge. + ElectricCurrent + ElectricCurrent + http://qudt.org/vocab/quantitykind/ElectricCurrent + 6-1 + A flow of electric charge. + https://doi.org/10.1351/goldbook.E01927 - - - - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - Metrological - Metrological - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + + + + + T-3 L+2 M+1 I-1 Θ-1 N0 J0 + + + + + ElectricPotentialPerTemperatureUnit + ElectricPotentialPerTemperatureUnit - - - - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - Language - Language - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + + + + + + + + + + + + + + + + + + + + + + Deals with entities that have a defined shape. + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + Manufacturing + DIN 8580:2020 + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + Manufacturing + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + Deals with entities that have a defined shape. + https://de.wikipedia.org/wiki/Fertigungsverfahren - - - - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - StandardizedPhysicalQuantity - StandardizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + + + + + An object that has been designed and manufactured for a particular purpose. + ManufacturedProduct + Artifact + Engineered + TangibleProduct + ManufacturedProduct + An object that has been designed and manufactured for a particular purpose. + Car, tire, composite material. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + Parameter used for the sample inspection process + + SampleInspectionParameter + SampleInspectionParameter + Parameter used for the sample inspection process + + + + + + A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. + Parameter + Parameter + Viscosity in the Navier-Stokes equation + + + + + + + + + + + + - Base quantities defined in the International System of Quantities (ISQ). - ISQBaseQuantity - ISQBaseQuantity - Base quantities defined in the International System of Quantities (ISQ). - https://en.wikipedia.org/wiki/International_System_of_Quantities + The total luminous flux incident on a surface, per unit area. + Illuminance + Illuminance + http://qudt.org/vocab/quantitykind/Illuminance + The total luminous flux incident on a surface, per unit area. + https://doi.org/10.1351/goldbook.I02941 - + - T-1 L+2 M+1 I0 Θ0 N-1 J0 + T+1 L-2 M0 I0 Θ0 N0 J+1 - EnergyTimePerAmountUnit - EnergyTimePerAmountUnit - - - - - - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - DynamicLightScattering - DLS - DynamicLightScattering - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - - - - - - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - SpatiallyFundamental - SpatiallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + IlluminanceTimeUnit + IlluminanceTimeUnit - - - - - - - - - - - - - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - Fundamental - Lifetime - Maximal - Fundamental - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - -On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. - -Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. + + + + TransientLiquidPhaseSintering + TransientLiquidPhaseSintering - - - - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - StandardUnit - ReferenceMaterial - StandardUnit - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + + Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. + Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. +Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. + Sintering + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + https://www.twi-global.com/technical-knowledge/faqs/what-is-sintering + Sintern + Sintering + Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. + Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. +Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - - + + + - - T0 L-3 M0 I0 Θ0 N0 J0 + + + + + + - - - - PerVolumeUnit - PerVolumeUnit + + + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + Property + Property + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + Hardness is a subclass of properties. +Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. + The name "red" which is atomic in the code made of the list of colors. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - - + + + + + - - + + + + Change of pressure per change of temperature at constant volume. + PressureCoefficient + PressureCoefficient + https://qudt.org/vocab/quantitykind/PressureCoefficient + https://www.wikidata.org/wiki/Q74762732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 + 5-4 + Change of pressure per change of temperature at constant volume. + + + + + + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + GammaSpectrometry + GammaSpectrometry + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + + + + + + + - - + + - - - - - - - - - - - - - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - Molecule - ChemicalSubstance - Molecule - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - H₂0, C₆H₁₂O₆, CH₄ - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. -Removing an atom from the state will result in another type of atom_based state. -e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). + + Examples of condition might be constant volume or constant pressure for a gas. + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + HeatCapacity + HeatCapacity + https://qudt.org/vocab/quantitykind/HeatCapacity + https://www.wikidata.org/wiki/Q179388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 + https://dbpedia.org/page/Heat_capacity + 5-15 + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + https://en.wikipedia.org/wiki/Heat_capacity + https://doi.org/10.1351/goldbook.H02753 - - - - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - https://goldbook.iupac.org/terms/view/M03986 - MolecularEntity - ChemicalEntity - MolecularEntity - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. - Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). + + + + + angular wavenumber of electrons in states on the Fermi sphere + FermiAnglularWaveNumber + FermiAnglularRepetency + FermiAnglularWaveNumber + https://qudt.org/vocab/quantitykind/FermiAngularWavenumber + https://www.wikidata.org/wiki/Q105554303 + 12-9.2 + angular wavenumber of electrons in states on the Fermi sphere + + + + + + + Magnitude of the wave vector. + AngularWavenumber + AngularRepetency + AngularWavenumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q30338487 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 + 3-22 + Magnitude of the wave vector. - - - - - - + + + + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Polishing + Polishing + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + + + + - - + + + + + + + + + + + + + + + + + + + + + + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + + SamplePreparation + SamplePreparation + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + + + + + + + An object which is an holistic temporal part of a process. + Status + State + Status + An object which is an holistic temporal part of a process. + A semi-naked man is a status in the process of a man's dressing. + + + + + + An holistic temporal part of a whole. + TemporalRole + HolisticTemporalPart + TemporalRole + An holistic temporal part of a whole. + + + + + + A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). +However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. +In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. +To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + Object + Continuant + Endurant + Object + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + + + + + - Measure for how the polarization of a material is affected by the application of an external electric field. - Permittivity - Permittivity - http://qudt.org/vocab/quantitykind/Permittivity - 6-14.1 - 6-14.2 - https://doi.org/10.1351/goldbook.P04507 + IsentropicCompressibility + IsentropicCompressibility + https://qudt.org/vocab/quantitykind/IsentropicCompressibility + https://www.wikidata.org/wiki/Q2990695 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 + 5-5.2 - + - + - + - Number of slowed-down particles per time and volume. - SlowingDownDensity - SlowingDownDensity - https://qudt.org/vocab/quantitykind/Slowing-DownDensity - https://www.wikidata.org/wiki/Q98915830 - 10-67 - Number of slowed-down particles per time and volume. + Measure of the relative volume change of a fluid or solid as a response to a pressure change. + Compressibility + Compressibility + https://qudt.org/vocab/quantitykind/Compressibility + https://www.wikidata.org/wiki/Q8067817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 + 4-20 + Measure of the relative volume change of a fluid or solid as a response to a pressure change. - - + + - Analysis of the sample in order to determine information that are relevant for the characterisation method. + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - SampleInspection - SampleInspection - Analysis of the sample in order to determine information that are relevant for the characterisation method. - In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. + TensileTesting + TensionTest + TensileTesting + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - - - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - URL - URL - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + + + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + AtomProbeTomography + 3D Atom Probe + APT + AtomProbeTomography + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - - - - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] - URI - URI - https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + + + + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + Tomography + Tomography + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - - - - - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - BohrRadius - BohrRadius - https://qudt.org/vocab/constant/BohrRadius - https://www.wikidata.org/wiki/Q652571 - 10-6 - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - https://doi.org/10.1351/goldbook.B00693 + + + + + + + + + + + + + + + + + + + + + + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + Role + HolisticPart + Part + Role + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + + + + + + + A process which is an holistic temporal part of a process. + Stage + Stage + A process which is an holistic temporal part of a process. + Moving a leg is a stage of the process of running. + + + + + + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. + AssemblyLine + AssemblyLine + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + + + + + + A system arranged to setup a specific manufacturing process. + ManufacturingSystem + ManufacturingSystem + A system arranged to setup a specific manufacturing process. + + + + + + + MuonAntiNeutrino + MuonAntiNeutrino - - - - Distance from the centre of a circle to the circumference. - Radius - Radius - https://qudt.org/vocab/quantitykind/Radius - https://www.wikidata.org/wiki/Q173817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 - https://dbpedia.org/page/Radius - 3-1.6 - Distance from the centre of a circle to the circumference. - https://en.wikipedia.org/wiki/Radius + + + + + + + + + + + + + + + + + + + + + AntiNeutrinoType + AntiNeutrinoType - + + + + + + + + + + + + + + + + + + + + + DownQuark + DownQuark + https://en.wikipedia.org/wiki/Down_quark + + + - - - + + + + + + + + - - + + + FirstGenerationFermion + FirstGenerationFermion + + + + + + + + + + + + + + + + + + + + + + DownQuarkType + DownQuarkType + + + + + + + T-2 L-1 M+1 I0 Θ-1 N0 J0 + + + + + PressurePerTemperatureUnit + PressurePerTemperatureUnit + + + + - A step is part of a specific granularity level for the workflow description, as composition of tasks. - A task that is a well formed tile of a workflow, according to a reductionistic description. - Step - Step - A task that is a well formed tile of a workflow, according to a reductionistic description. - A step is part of a specific granularity level for the workflow description, as composition of tasks. + A causal object which is tessellated with only spatial direct parts. + The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. +This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. + The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. + Arrangement + MereologicalState + Arrangement + A causal object which is tessellated with only spatial direct parts. + e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. + +If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. - - + + - - - - - - + + - - A causal object that is direct part of a tessellation. - Tile - Tile - A causal object that is direct part of a tessellation. + + + + + + + + + + + + + + A computation that provides a data output following the elaboration of some input data, using a data processing application. + DataProcessing + DataProcessing + A computation that provides a data output following the elaboration of some input data, using a data processing application. - - - - - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - RelativePermeability - RelativePermeability - https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio - https://www.wikidata.org/wiki/Q77785645 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 - 6-27 - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - https://doi.org/10.1351/goldbook.R05272 + + + + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + Computation + Computation + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + A matematician that calculates 2+2. +A computation machine that calculate the average value of a dataset. - - - - - - - - - - - + + + + CeramicMaterial + CeramicMaterial + + + + + + + - - + + - - A characterisation procedure that has at least two characterisation tasks as proper parts. - CharacterisationWorkflow - CharacterisationWorkflow - A characterisation procedure that has at least two characterisation tasks as proper parts. + + Number of molecules of a substance in a mixture per volume. + MolecularConcentration + MolecularConcentration + https://qudt.org/vocab/quantitykind/MolecularConcentration + https://www.wikidata.org/wiki/Q88865973 + 9-9.2 + Number of molecules of a substance in a mixture per volume. - - - - + + + + the abundance of a constituent divided by the total volume of a mixture. + Concentration + Concentration + https://qudt.org/vocab/quantitykind/Concentration + https://www.wikidata.org/wiki/Q3686031 + https://dbpedia.org/page/Concentration + the abundance of a constituent divided by the total volume of a mixture. + https://en.wikipedia.org/wiki/Concentration + https://goldbook.iupac.org/terms/view/C01222 + + + + + + + - - - - - - - - - + + + + Vector potential of the magnetic flux density. + MagneticVectorPotential + MagneticVectorPotential + https://qudt.org/vocab/quantitykind/MagneticVectorPotential + https://www.wikidata.org/wiki/Q2299100 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 + 6-32 + Vector potential of the magnetic flux density. + + + + + + ModulusOfImpedance + ModulusOfImpedance + https://qudt.org/vocab/quantitykind/ModulusOfImpedance + https://www.wikidata.org/wiki/Q25457909 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 + 6-51.4 + + + + + + + - - - - - - - - - + + - - - - - - - - - - - - - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - CausalPath - CausalChain - Elementary - CausalPath - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - An electron with at least one causal interaction with another particle. - hasTemporalPart min 2 (Elementary or Quantum) + + Inverse of 'ElectricalConductance'. + Measure of the difficulty to pass an electric current through a material. + ElectricResistance + Resistance + ElectricResistance + http://qudt.org/vocab/quantitykind/Resistance + https://www.wikidata.org/wiki/Q25358 + 6-46 + Measure of the difficulty to pass an electric current through a material. + https://doi.org/10.1351/goldbook.E01936 - - + + - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - HeatTreatment - wärmebehandeln - HeatTreatment - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + ProductionEngineering + ProductionEngineering - - - + + - Has shaped bodies as input and output. - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - esce workpiece - MaterialTreatment - DIN 8580:2020 - Stoffeigenschaft ändern - WorkPieceTreatment - MaterialTreatment - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - Has shaped bodies as input and output. - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - - - - - - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - NuclearMagneticResonance - Magnetic resonance spectroscopy (MRS) - NMR - NuclearMagneticResonance - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. - - - - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - DirectCoulometryAtControlledPotential - DirectCoulometryAtControlledPotential - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - https://doi.org/10.1515/pac-2018-0109 - +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + ProcessEngineeringProcess + ProcessEngineeringProcess + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. - - - - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Coulometry - Coulometry - https://www.wikidata.org/wiki/Q1136979 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - https://en.wikipedia.org/wiki/Coulometry - https://doi.org/10.1515/pac-2018-0109 +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + https://de.wikipedia.org/wiki/Verfahrenstechnik - - - - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - ContinuumSubstance - ContinuumSubstance - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). - -A single continuum individual can be the whole fluid in a pipe. - A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. + + + + + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. + EndStep + EndStep + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. - - - - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - - SampleExtraction - SampleExtraction - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + + + + + EndTile + EndTile - - - + + + - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - IonizationEnergy - IonizationEnergy - https://qudt.org/vocab/quantitykind/IonizationEnergy - https://www.wikidata.org/wiki/Q483769 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 - 12-24.2 - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - https://doi.org/10.1351/goldbook.I03199 + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + PropagationCoefficient + PropagationCoefficient + https://qudt.org/vocab/quantitykind/PropagationCoefficient.html + https://www.wikidata.org/wiki/Q1434913 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 + 3-26.3 + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - + - - + - Quotient of the activity A of a sample and the total area S of the surface of that sample. - SurfaceActivityDensity - SurfaceActivityDensity - https://qudt.org/vocab/quantitykind/SurfaceActivityDensity - https://www.wikidata.org/wiki/Q98103005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 - 10-30 - Quotient of the activity A of a sample and the total area S of the surface of that sample. + The inverse of length. + ReciprocalLength + InverseLength + ReciprocalLength + http://qudt.org/vocab/quantitykind/InverseLength + The inverse of length. + https://en.wikipedia.org/wiki/Reciprocal_length + + + + + + Vector quantity equal to the time derivative of the electric flux density. + DisplacementCurrentDensity + DisplacementCurrentDensity + https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity + https://www.wikidata.org/wiki/Q77614612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 + 6-18 + Vector quantity equal to the time derivative of the electric flux density. - - + + + + + + + - - T-2 L-1 M+1 I0 Θ-1 N0 J0 + + - - + - PressurePerTemperatureUnit - PressurePerTemperatureUnit + Electric current divided by the cross-sectional area it is passing through. + ElectricCurrentDensity + AreicElectricCurrent + CurrentDensity + ElectricCurrentDensity + http://qudt.org/vocab/quantitykind/ElectricCurrentDensity + https://www.wikidata.org/wiki/Q234072 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 + 6-8 + https://en.wikipedia.org/wiki/Current_density + https://doi.org/10.1351/goldbook.E01928 - + - T0 L0 M+1 I0 Θ0 N0 J0 + T+2 L+1 M-1 I0 Θ0 N0 J0 - MassUnit - MassUnit - - - - - - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - - Profilometry - Profilometry - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - - - - - - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - A characterisation technique is not only related to the measurement process which can be one of its steps. - CharacterisationTechnique - Characterisation procedure - Characterisation technique - CharacterisationTechnique - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - A characterisation technique is not only related to the measurement process which can be one of its steps. - - - - - - A direct part that is obtained by partitioning a whole purely in temporal parts. - TemporalTile - TemporalTile - A direct part that is obtained by partitioning a whole purely in temporal parts. + PerPressureUnit + PerPressureUnit - - - - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - CharacterisationProtocol - CharacterisationProtocol - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + + + + FormingFromIonised + FormingFromIonised - - + + - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - ShearForming - Schubumformen - ShearForming + From Powder, from liquid, from gas + da una forma non propria ad una forma propria + FromNotProperShapeToWorkPiece + FromNotProperShapeToWorkPiece + From Powder, from liquid, from gas + Powder: +particles that are usually less than 1 mm in size - - - - In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - MetrologicalUncertainty - A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. - MetrologicalUncertainty - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - - Standard deviation -- Half-width of an interval with a stated coverage probability - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + + + + Rate of change of the phase angle. + AngularFrequency + AngularFrequency + https://qudt.org/vocab/quantitykind/AngularFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 + https://dbpedia.org/page/Angular_frequency + 3-18 + Rate of change of the phase angle. + https://en.wikipedia.org/wiki/Angular_frequency + https://doi.org/10.1351/goldbook.A00352 - - - - - A quantity that is obtained from a well-defined procedure. - Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - ObjectiveProperty - PhysicalProperty - QuantitativeProperty - ObjectiveProperty - A quantity that is obtained from a well-defined procedure. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + + + + + + + + + + + + + Number of periods per time interval. + Frequency + Frequency + http://qudt.org/vocab/quantitykind/Frequency + https://www.wikidata.org/wiki/Q11652 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 + 3-15.1 + Number of periods per time interval. + https://doi.org/10.1351/goldbook.FT07383 + -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + + + + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + + ScanningKelvinProbe + SKB + ScanningKelvinProbe + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - - - - - T-3 L+2 M0 I0 Θ0 N0 J0 - - - - - AbsorbedDoseRateUnit - AbsorbedDoseRateUnit + + + + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy + Microscopy + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - - - - - T-2 L0 M0 I0 Θ+1 N0 J0 - - - - - TemperaturePerSquareTimeUnit - TemperaturePerSquareTimeUnit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + AntiQuark + AntiQuark - - - - - T-2 L+2 M+1 I0 Θ-1 N0 J0 - - - - - EntropyUnit - EntropyUnit + + + + + + + + + + + + + + + FundamentalAntiMatterParticle + FundamentalAntiMatterParticle - - + + - - + - Ngative quotient of Gibbs energy and temperature. - PlanckFunction - PlanckFunction - https://qudt.org/vocab/quantitykind/PlanckFunction - https://www.wikidata.org/wiki/Q76364998 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 - 5-23 - Ngative quotient of Gibbs energy and temperature. + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + DissociationConstant + DissociationConstant + https://www.wikidata.org/wiki/Q898254 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - - - - - - - - - - - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - CharacterisationSystem - CharacterisationSystem - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Measuring system + + + + + The physical dimension can change based on the stoichiometric numbers of the substances involved. + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + EquilibriumConstant + EquilibriumConstantConcentrationBasis + EquilibriumConstant + https://qudt.org/vocab/quantitykind/EquilibriumConstant + https://www.wikidata.org/wiki/Q857809 + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + https://en.wikipedia.org/wiki/Equilibrium_constant + https://doi.org/10.1351/goldbook.E02177 - - - - + + + + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + PhysicalLaw + PhysicalLaw + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + + + + + + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + NaturalLaw + NaturalLaw + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + + + + + + + + + + + + - - + + - - A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - HolisticSystem - HolisticSystem - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - - - - - - + + - - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - MeasuringSystem - MeasuringSystem - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - measuring system - - - - - - - Average number of fission neutrons, both prompt and delayed, emitted per fission event. - NeutronYieldPerFission - NeutronYieldPerFission - https://qudt.org/vocab/quantitykind/NeutronYieldPerFission - https://www.wikidata.org/wiki/Q99157909 - 10-74.1 - Average number of fission neutrons, both prompt and delayed, emitted per fission event. - - - - - - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - Nexafs - Nexafs - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - - - - - - - in the free electron model, the Fermi energy divided by the Boltzmann constant - FermiTemperature - FermiTemperature - https://qudt.org/vocab/quantitykind/FermiTemperature - https://www.wikidata.org/wiki/Q105942324 - 12-28 - in the free electron model, the Fermi energy divided by the Boltzmann constant + + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Determination + Characterisation + Determination + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. - - + + - MetallicPowderSintering - MetallicPowderSintering + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + ThermalCutting + Thermisches Abtragen + ThermalCutting + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - - + + - Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. - Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. -Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - Sintering - ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - https://www.twi-global.com/technical-knowledge/faqs/what-is-sintering - Sintern - Sintering - Sintering is the process of forming a solid mass of material through heat and pressure without melting to the point of liquefaction. This process involves the atoms in materials diffusing across the particle boundaries and fusing together into one piece. - Sintering occurs naturally in mineral deposits, and is used as a manufacturing process for materials including ceramics, metals and plastics. -Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - - - - - - - - - - - - - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - A whole is categorized as fundamental (or maximal) or redundant (non-maximal). - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - Whole - Whole - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - - - - - - - The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. - The value of the absolute dielectric permittivity of classical vacuum. - VacuumElectricPermittivity - PermittivityOfVacuum - VacuumElectricPermittivity - http://qudt.org/vocab/constant/PermittivityOfVacuum - 6-14.1 - https://doi.org/10.1351/goldbook.P04508 + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + Ablation + Abtragen + Ablation - - + + + - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. - MeasuredConstant - MeasuredConstant - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + One minus the square of the coupling factor + LeakageFactor + LeakageFactor + https://www.wikidata.org/wiki/Q78102042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 + 6-42.2 + One minus the square of the coupling factor - - + + + + + - - - - - - + + - - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - Cogniser - Cogniser - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - The scientist that connects an equation to a physical phenomenon. + + The relation between electric field strength and current density in an isotropic conductor. + HallCoefficient + HallCoefficient + https://qudt.org/vocab/quantitykind/HallCoefficient + https://www.wikidata.org/wiki/Q997439 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 + 12-19 + The relation between electric field strength and current density in an isotropic conductor. - + - - - + + - - + + + + A whole possessing some proper parts of its same type. + Redundant + NonMaximal + Redundant + A whole possessing some proper parts of its same type. + An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. + +If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. + + + + - - + + + 1 - - - - - - + + + 1 - - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. - -On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. - Interpreter - Interpreter - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). - -The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). + + A measurement unit that is made of a metric prefix and a unit symbol. + PrefixedUnit + PrefixedUnit + A measurement unit that is made of a metric prefix and a unit symbol. - - - - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - ElectrochemicalTesting - http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 - ElectrochemicalTesting - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + + + + + + Dimensionless multiplicative unit prefix. + MetricPrefix + https://en.wikipedia.org/wiki/Metric_prefix + MetricPrefix + Dimensionless multiplicative unit prefix. - - - - - - - - - - - - - - - - - - - - - DownAntiQuark - DownAntiQuark + + + + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + ExactConstant + ExactConstant + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - - - - - - - - - - - - - - - - - - FirstGenerationFermion - FirstGenerationFermion + + + + + + + + + + + + + + Extent of an object in space. + Volume + Volume + http://qudt.org/vocab/quantitykind/Volume + https://www.wikidata.org/wiki/Q39297 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 + https://dbpedia.org/page/Volume + 3-4 - - - - - - - - - - - - - - - - - - - - DownAntiQuarkType - DownAntiQuarkType + + + + + A quantity whose magnitude is additive for subsystems. + Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. + Extensive + Extensive + A quantity whose magnitude is additive for subsystems. + Mass +Volume +Entropy - + + - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. - WorkpieceManufacturing + Has shaped bodies as input and output. + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + esce workpiece + MaterialTreatment DIN 8580:2020 - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. - ISO 8887-1:2017 -manufacturing: production of components - DiscreteManufacturing - Werkstücke - WorkpieceManufacturing - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + Stoffeigenschaft ändern + WorkPieceTreatment + MaterialTreatment + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + Has shaped bodies as input and output. + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - - - - - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. - ThermalUtilizationFactor - ThermalUtilizationFactor - https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor - https://www.wikidata.org/wiki/Q99197650 - 10-76 - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + + + + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + A material process requires the output to be classified as an individual of a material subclass. + MaterialsProcessing + ContinuumManufacturing + MaterialsProcessing + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. + A material process requires the output to be classified as an individual of a material subclass. - - - - - - - - - - - - - - + + + + Vector quantity from the origin of a coordinate system to a point in space. + PositionVector + PositionVector + https://www.wikidata.org/wiki/Q192388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 + https://dbpedia.org/page/Position_(geometry) + 3-1.10 + Vector quantity from the origin of a coordinate system to a point in space. + https://en.wikipedia.org/wiki/Position_(geometry) + + + + + + + - - + + - - Cognition - IconSemiosis - Cognition - - - - - - Data that are decoded retaining its continuous variations characteristic. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - AnalogData - AnalogData - Data that are decoded retaining its continuous variations characteristic. - A vynil contain continuous information about the recorded sound. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - - - - - - Presses - Presses + + JouleThomsonCoefficient + JouleThomsonCoefficient + https://www.wikidata.org/wiki/Q93946998 + 5-24 - + - - + + + - - - - A whole possessing some proper parts of its same type. - Redundant - NonMaximal - Redundant - A whole possessing some proper parts of its same type. - An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. - -If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. + + + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + MetrologicalReference + MetrologicalReference + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - - - - - - - - - - - - Structural - Structural + + + + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + Metrological + Metrological + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - - - - Removal of material by means of rigid or flexible discs or belts containing abrasives. - Grinding - Schleifen - Grinding + + + + + BlueDownQuark + BlueDownQuark - - - - A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). -However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. -In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. -To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - Object - Continuant - Endurant - Object - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BlueQuark + BlueQuark - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. - --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - CharacterisationMeasurementProcess - CharacterisationMeasurementProcess - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. - --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - Measurement + + + + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + DataAnalysis + DataAnalysis + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - - - - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - ApplicationProgram - App - Application - ApplicationProgram - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - Word processors, graphic image processing programs, database management systems, numerical simulation software and games. + + + + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + HyperfineStructureQuantumNumber + HyperfineStructureQuantumNumber + https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber + https://www.wikidata.org/wiki/Q97577449 + 10-13.8 + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - - - - - A liquid solution made of two or more component substances. - LiquidSolution - LiquidSolution - A liquid solution made of two or more component substances. + + + + + Number describing a particular state of a quantum system. + QuantumNumber + QuantumNumber + https://qudt.org/vocab/quantitykind/QuantumNumber + https://www.wikidata.org/wiki/Q232431 + 10-13.1 + Number describing a particular state of a quantum system. - - - - - A solution is a homogeneous mixture composed of two or more substances. - Solutions are characterized by the occurrence of Rayleigh scattering on light, - Solution - Solution - A solution is a homogeneous mixture composed of two or more substances. + + + + ArithmeticOperator + ArithmeticOperator - - - - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - MercuryPorosimetry - MercuryPorosimetry - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + + + + AlgebricOperator + AlgebricOperator - - - - - Porosimetry - Porosimetry + + + + + + + + + + + + + Decays per unit time. + Radioactivity + RadioactiveActivity + Radioactivity + http://qudt.org/vocab/quantitykind/SpecificActivity + Decays per unit time. + https://doi.org/10.1351/goldbook.A00114 - + - T0 L+3 M0 I0 Θ0 N-1 J0 + T-3 L+1 M+1 I-1 Θ0 N0 J0 - VolumePerAmountUnit - VolumePerAmountUnit + ElectricFieldStrengthUnit + ElectricFieldStrengthUnit - - + + + + + + + + + + + + + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + RichardsonConstant + RichardsonConstant + https://qudt.org/vocab/quantitykind/RichardsonConstant + https://www.wikidata.org/wiki/Q105883079 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 + 12-26 + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + + + + + + + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + MultiplicationFactor + MultiplicationFactor + https://qudt.org/vocab/quantitykind/MultiplicationFactor + https://www.wikidata.org/wiki/Q99440471 + 10-78.1 + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + + + + + + Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). + +Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + RatioQuantity + https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 + RatioQuantity + http://qudt.org/vocab/quantitykind/DimensionlessRatio + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + refractive index, +volume fraction, +fine structure constant + + + + - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - FatigueTesting - FatigueTesting - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + DCPolarography + DCPolarography + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + https://doi.org/10.1515/pac-2018-0109 - - - + + + + Specific heat capacity at saturated vaport pressure. + SpecificHeatCapacityAtSaturatedVaporPressure + SpecificHeatCapacityAtSaturatedVaporPressure + https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation + https://www.wikidata.org/wiki/Q75775005 + 5-16.4 + Specific heat capacity at saturated vaport pressure. + + + + + + + + - - + + - - An equation with variables can always be represented as: - -f(v0, v1, ..., vn) = g(v0, v1, ..., vn) - -where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - Equation - Equation - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - 2+3 = 5 -x^2 +3x = 5x -dv/dt = a -sin(x) = y + + Heat capacity divided by mass. + SpecificHeatCapacity + SpecificHeatCapacity + https://qudt.org/vocab/quantitykind/SpecificHeatCapacity + https://www.wikidata.org/wiki/Q487756 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 + https://dbpedia.org/page/Specific_heat_capacity + 5-16.1 + Heat capacity divided by mass. + https://en.wikipedia.org/wiki/Specific_heat_capacity + https://doi.org/10.1351/goldbook.S05800 - - - - A mathematical string that express a relation between the elements in one set X to elements in another set Y. - The set X is called domain and the set Y range or codomain. - MathematicalFormula - MathematicalFormula - A mathematical string that express a relation between the elements in one set X to elements in another set Y. + + + + + + + + + + + + + One-dimensional subspace of space-time, which is locally orthogonal to space. + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + Time can be seen as the duration of an event or, more operationally, as "what clocks read". + Time + Time + http://qudt.org/vocab/quantitykind/Time + One-dimensional subspace of space-time, which is locally orthogonal to space. + 3-7 + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + https://doi.org/10.1351/goldbook.T06375 - - - + + + - + - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Base quantities defined in the International System of Quantities (ISQ). + ISQBaseQuantity + ISQBaseQuantity + Base quantities defined in the International System of Quantities (ISQ). + https://en.wikipedia.org/wiki/International_System_of_Quantities + + + + + - + - - + + + + + + + - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - CausalSystem - CausalSystem - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - A electron binded by a nucleus. + BottomAntiQuark + BottomAntiQuark - + - - - T0 L0 M0 I0 Θ0 N-1 J0 - + + + + + + + + + + + + - - - PerAmountUnit - PerAmountUnit - - - - - - - Quotient of Larmor angular frequency and 2π. - LarmonFrequency - LarmonFrequency - 10-15.2 - Quotient of Larmor angular frequency and 2π. + + + ThirdGenerationFermion + ThirdGenerationFermion - - - - - - - - - - - - - Number of periods per time interval. - Frequency - Frequency - http://qudt.org/vocab/quantitykind/Frequency - https://www.wikidata.org/wiki/Q11652 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 - 3-15.1 - Number of periods per time interval. - https://doi.org/10.1351/goldbook.FT07383 + + + + + + + + + + + + + + + + + + + + DownAntiQuarkType + DownAntiQuarkType - - - - - - - - - - - + + + - Ratio of shear stress to the shear strain. - ModulusOfRigidity - ShearModulus - ModulusOfRigidity - https://qudt.org/vocab/quantitykind/ShearModulus - https://www.wikidata.org/wiki/Q461466 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 - 4-19.2 - Ratio of shear stress to the shear strain. - https://doi.org/10.1351/goldbook.S05635 - - - - - - Procedure to validate the characterisation data. - CharacterisationDataValidation - CharacterisationDataValidation - Procedure to validate the characterisation data. + StandardChemicalPotential + StandardChemicalPotential + https://qudt.org/vocab/quantitykind/StandardChemicalPotential + https://www.wikidata.org/wiki/Q89333468 + 9-21 + https://doi.org/10.1351/goldbook.S05908 - + - - + - Quotient of the activity A of a sample and the mass m of that sample. - SpecificActivity - MassicActivity - SpecificActivity - https://qudt.org/vocab/quantitykind/SpecificActivity - https://www.wikidata.org/wiki/Q2823748 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 - 10-28 - Quotient of the activity A of a sample and the mass m of that sample. - https://doi.org/10.1351/goldbook.S05790 + Energy per amount of substance. + MolarEnergy + MolarEnergy + https://qudt.org/vocab/quantitykind/MolarEnergy + https://www.wikidata.org/wiki/Q69427512 + Energy per amount of substance. @@ -7212,106 +5331,97 @@ sin(x) = y MassAmountOfSubstanceUnit - - - - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - NuclearSpinQuantumNumber - NuclearSpinQuantumNumber - https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber - https://www.wikidata.org/wiki/Q97577403 - 10-13.7 - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - - - - - - - Number describing a particular state of a quantum system. - QuantumNumber - QuantumNumber - https://qudt.org/vocab/quantitykind/QuantumNumber - https://www.wikidata.org/wiki/Q232431 - 10-13.1 - Number describing a particular state of a quantum system. - - - - - - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - BrunauerEmmettTellerMethod - BET - BrunauerEmmettTellerMethod - https://www.wikidata.org/wiki/Q795838 - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - https://en.wikipedia.org/wiki/BET_theory - - - - - - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - GasAdsorptionPorosimetry - GasAdsorptionPorosimetry - GasAdsorptionPorosimetry - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - - - + - + - + - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - BohrMagneton - BohrMagneton - https://www.wikidata.org/wiki/Q737120 - 10-9.2 - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + Measure of voltage induced by change of temperature. + SeebeckCoefficient + SeebeckCoefficient + https://qudt.org/vocab/quantitykind/SeebeckCoefficient + https://www.wikidata.org/wiki/Q1091448 + 12-21 + Measure of voltage induced by change of temperature. - - - - GluonType8 - GluonType8 + + + + MetallicMaterial + MetallicMaterial - - + + + + + + + + + + + + + + + + + + + + + + ClassicallyDefinedMaterial + ClassicallyDefinedMaterial + + + + + + + A coarse dispersion of solids in a liquid continuum phase. + LiquidSolidSuspension + LiquidSolidSuspension + A coarse dispersion of solids in a liquid continuum phase. + Mud + + + + + - + - + - + - + - + - + - + - + @@ -7329,507 +5439,777 @@ sin(x) = y - - The class of individuals that stand for gluons elementary particles. - Gluon - Gluon - The class of individuals that stand for gluons elementary particles. - https://en.wikipedia.org/wiki/Gluon + + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + Suspensions show no significant effect on light. + Suspension + Suspension + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + + + + + + + + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + Liquid + Liquid + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + + + + + + An icon that focus on HOW the object works. + An icon that represents the internal logical structure of the object. + AnalogicalIcon + AnalogicalIcon + An icon that represents the internal logical structure of the object. + A physics equation is replicating the mechanisms internal to the object. + Electrical diagram is diagrammatic and resemblance + MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. + An icon that focus on HOW the object works. + The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). + + + + + + + + + + + + + + + + + + + + + + + + + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. +For example, when a Boeing 747 is used as a sign for another Boeing 747. + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] + Icon + Model + Simulacrum + Icon + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + A picture that reproduces the aspect of a person. + An equation that reproduces the logical connection of the properties of a physical entity. + + + + + + + ActivityCoefficient + ActivityCoefficient + https://qudt.org/vocab/quantitykind/ActivityCoefficient + https://www.wikidata.org/wiki/Q745224 + 9-25 + https://doi.org/10.1351/goldbook.A00116 + + + + + + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + Conversion of materials and assembly of components for the manufacture of products + Technology is the application of knowledge for achieving practical goals in a reproducible way. + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + TechnologyProcess + ProductionEngineeringProcess + TechnologyProcess + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + + + + + + + + + + + + + + + quotient of number of acceptor levels and volume. + AcceptorDensity + AcceptorDensity + https://qudt.org/vocab/quantitykind/AcceptorDensity + https://www.wikidata.org/wiki/Q105979968 + 12-29.5 + quotient of number of acceptor levels and volume. + + + + + + + T-6 L+4 M+2 I-2 Θ-2 N0 J0 + + + + + SquareElectricPotentialPerSquareTemperatureUnit + SquareElectricPotentialPerSquareTemperatureUnit + + + + + + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + Peening + ShotPeening + Verfestigungsstrahlen + Peening + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + + + + + HardeningByForming + Verfestigen durch Umformen + HardeningByForming + + + + + + + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. + BeginStep + BeginStep + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. + + + + + + + + BeginTile + BeginTile - + + - + - + - GaugePressure - GaugePressure - https://www.wikidata.org/wiki/Q109594211 - 4-14.2 - - - - - - - - - - - - - - - - - PhysicallyInteractingConvex - PhysicallyInteractingConvex + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + LorenzCoefficient + LorenzNumber + LorenzCoefficient + https://qudt.org/vocab/quantitykind/LorenzCoefficient + https://www.wikidata.org/wiki/Q105728754 + 12-18 + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - - - - - - - - - - - - - - - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - PhysicallyInteracting - PhysicallyInteracting - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + + + + ModulusOfAdmittance + ModulusOfAdmittance + https://qudt.org/vocab/quantitykind/ModulusOfAdmittance + https://www.wikidata.org/wiki/Q79466359 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 + 6-52.4 - - - - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - Pressing - Anpressen - Pressing + + + + + + + + + + + + + + Inverse of 'ElectricalResistance'. + Measure of the ease for electric current to pass through a material. + ElectricConductance + Conductance + ElectricConductance + http://qudt.org/vocab/quantitykind/Conductance + https://www.wikidata.org/wiki/Q309017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 + 6-47 + Measure of the ease for electric current to pass through a material. + https://doi.org/10.1351/goldbook.E01925 - - + + - Calendering - Calendering + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + HeatTreatment + wärmebehandeln + HeatTreatment + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - - - - FormingFromPlastic - FormingFromPlastic + + + + + + + + + + + + + Inverse of the reluctance. + Permeance + Permeance + https://qudt.org/vocab/quantitykind/Permeance + https://www.wikidata.org/wiki/Q77997985 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 + 6-40 + Inverse of the reluctance. - - - - - CanonicalPartitionFunction - CanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96142389 - 9-35.2 + + + + + + + + + + + + + + + + + + + + + + + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + + ProbeSampleInteraction + ProbeSampleInteraction + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - - + + + - - - + + - - + + + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + PhysicsOfInteraction + PhysicsOfInteraction + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + + + + + + + - - + + - - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - SpatioTemporalTessellation - WellFormedTessellation - SpatioTemporalTessellation - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - - - - - - A coded that is not atomic with respect to a code of description. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. - Description - Description - A coded that is not atomic with respect to a code of description. - A biography. - A sentence about some object, depticting its properties. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + + Measure of how resistant to compressibility a substance is. + ModulusOfCompression + BulkModulus + ModulusOfCompression + https://qudt.org/vocab/quantitykind/BulkModulus + https://www.wikidata.org/wiki/Q900371 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 + 4-19.3 + Measure of how resistant to compressibility a substance is. - - - + + + + + + + + + + + - CouplingFactor - InductiveCouplingFactor - CouplingFactor - https://www.wikidata.org/wiki/Q78101715 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 - 6-42.1 + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + SurfaceMassDensity + AreicMass + SurfaceDensity + SurfaceMassDensity + https://www.wikidata.org/wiki/Q1907514 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 + 4-5 + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + https://doi.org/10.1351/goldbook.S06167 - - - - - T0 L0 M0 I0 Θ0 N+1 J0 - - - + + + - AmountUnit - AmountUnit + Permittivity divided by electric constant. + RelativePermittivity + RelativePermittivity + https://qudt.org/vocab/unit/PERMITTIVITY_REL + https://www.wikidata.org/wiki/Q4027242 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 + 6-15 + Permittivity divided by electric constant. - - - - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - QuantumDecay - QuantumDecay - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + + + + + Partition function of a molecule. + MolecularPartitionFunction + MolecularPartitionFunction + https://www.wikidata.org/wiki/Q96192064 + 9-35.4 + Partition function of a molecule. - - - - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - CausalExpansion - CausalExpansion - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + + + + + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + CoherenceLength + CoherenceLength + https://www.wikidata.org/wiki/Q1778793 + 12-38.2 + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature - - + + + + + + - - - 1 + + + + Extend of a spatial dimension. + Length is a non-negative additive quantity attributed to a one-dimensional object in space. + Length + Length + http://qudt.org/vocab/quantitykind/Length + 3-1.1 + Extend of a spatial dimension. + https://doi.org/10.1351/goldbook.L03498 + + + + - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - IRI - IRI - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - https://en.wiktionary.org/wiki/Ῥόδος - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier + A language object that follows syntactic rules of a programming language. + A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. + ProgrammingLanguage + Code + SoftwareCode + ProgrammingLanguage + A language object that follows syntactic rules of a programming language. + A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. + Entities are not necessarily digital data, but can be code fragments printed on paper. - - - - - - - - - - - - + + - A formal computer-interpretable identifier of a system resource. - ResourceIdentifier - ResourceIdentifier - A formal computer-interpretable identifier of a system resource. + A computer language by which a human can specify an executable problem solution to a computer. + ConstructionLanguage + ConstructionLanguage + A computer language by which a human can specify an executable problem solution to a computer. + https://en.wikipedia.org/wiki/Software_construction#Construction_languages - + - T-1 L+2 M0 I0 Θ0 N-1 J0 + T0 L-2 M+1 I0 Θ0 N0 J0 - - DiffusivityUnit - DiffusivityUnit + + AreaDensityUnit + AreaDensityUnit - + + + - - + + - - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - CharacterisationEnvironment - CharacterisationEnvironment - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + + Mass per length. + LinearMassDensity + LinearDensity + LineicMass + LinearMassDensity + https://qudt.org/vocab/quantitykind/LinearDensity + https://www.wikidata.org/wiki/Q56298294 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 + 4-6 + Mass per length. - + + + + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + IntentionalAgent + IntentionalAgent + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + + + + + + A participant that is the driver of the process. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. + Agent + Agent + A participant that is the driver of the process. + A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. + + + + + + Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. + The difference in electric potential between two points. + Voltage + ElectricPotentialDifference + ElectricTension + Voltage + http://qudt.org/vocab/quantitykind/Voltage + 6-11.3 + The difference in electric potential between two points. + https://doi.org/10.1351/goldbook.V06635 + https://doi.org/10.1351/goldbook.A00424 + + + + - + - + - quotient of number of acceptor levels and volume. - AcceptorDensity - AcceptorDensity - https://qudt.org/vocab/quantitykind/AcceptorDensity - https://www.wikidata.org/wiki/Q105979968 - 12-29.5 - quotient of number of acceptor levels and volume. + Energy required to move a unit charge through an electric field from a reference point. + The electric potential is not unique, since any constant scalar +field quantity can be added to it without changing its gradient. + ElectricPotential + ElectroStaticPotential + ElectricPotential + http://qudt.org/vocab/quantitykind/ElectricPotential + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 + https://dbpedia.org/page/Electric_potential + 6-11.1 + Energy required to move a unit charge through an electric field from a reference point. + https://en.wikipedia.org/wiki/Electric_potential + https://doi.org/10.1351/goldbook.E01935 + + + + + + + An object which is an holistic temporal part of another object. + Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. + SubObject + SubObject + An object which is an holistic temporal part of another object. + If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. + + + + + + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + Language + Language + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + + + + + + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + FourierTransformInfraredSpectroscopy + FTIR + FourierTransformInfraredSpectroscopy + https://www.wikidata.org/wiki/Q901559 + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy - - - - GluonType5 - GluonType5 + + + + An holistic spatial part of a whole. + NonTemporalRole + HolisticSpatialPart + NonTemporalRole + An holistic spatial part of a whole. - - - - - - - - - - - - - - Inverse of 'ElectricalResistance'. - Measure of the ease for electric current to pass through a material. - ElectricConductance - Conductance - ElectricConductance - http://qudt.org/vocab/quantitykind/Conductance - https://www.wikidata.org/wiki/Q309017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 - 6-47 - Measure of the ease for electric current to pass through a material. - https://doi.org/10.1351/goldbook.E01925 + + + + Presses + Presses - - - - An icon that focus on HOW the object works. - An icon that represents the internal logical structure of the object. - AnalogicalIcon - AnalogicalIcon - An icon that represents the internal logical structure of the object. - A physics equation is replicating the mechanisms internal to the object. - Electrical diagram is diagrammatic and resemblance - MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. - An icon that focus on HOW the object works. - The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). + + + + FormingFromPowder + FormingFromPowder - + - - - - - - - - - - - - - - - - + + T-1 L-1 M+1 I0 Θ0 N0 J0 - - - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. -For example, when a Boeing 747 is used as a sign for another Boeing 747. - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] - Icon - Model - Simulacrum - Icon - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - A picture that reproduces the aspect of a person. - An equation that reproduces the logical connection of the properties of a physical entity. + + + + MassPerLengthTimeUnit + MassPerLengthTimeUnit - - - - - - = - - - - The equals symbol. - Equals - Equals - The equals symbol. + + + + Analysis of the sample in order to determine information that are relevant for the characterisation method. + + SampleInspection + SampleInspection + Analysis of the sample in order to determine information that are relevant for the characterisation method. + In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. - - - - - - - - - - - - - - - - - - - - - - - MathematicalSymbol - MathematicalSymbol + + + + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Chronocoulometry + Chronocoulometry + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + https://doi.org/10.1515/pac-2018-0109 - - - + + + + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + Coulometry + Coulometry + https://www.wikidata.org/wiki/Q1136979 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + https://en.wikipedia.org/wiki/Coulometry + https://doi.org/10.1515/pac-2018-0109 + + + + - RedStrangeAntiQuark - RedStrangeAntiQuark + CausallHairedSystem + CausallHairedSystem - - + + + - + - - - - - - - - - - - - - - - - - - - - - - + + - - RedAntiQuark - RedAntiQuark - - - - - - + - - - - - - - + + - StrangeAntiQuark - StrangeAntiQuark + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + CausalSystem + CausalSystem + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + A electron binded by a nucleus. + + + + + + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + PhysicallyNonInteracting + PhysicallyNonInteracting + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + + + + + + + Critical thermodynamic temperature of a ferromagnet. + CurieTemperature + CurieTemperature + https://qudt.org/vocab/quantitykind/CurieTemperature + https://www.wikidata.org/wiki/Q191073 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 + 12-35.1 + Critical thermodynamic temperature of a ferromagnet. - + + + + Temperature below which quantum effects dominate. + CriticalTemperature + CriticalTemperature + https://www.wikidata.org/wiki/Q1450516 + Temperature below which quantum effects dominate. + + + - - - T-1 L+1 M0 I0 Θ+1 N0 J0 - + + + + + + - - - TemperatureLengthPerTimeUnit - TemperatureLengthPerTimeUnit + + + + SolidMixture + SolidMixture - - - - - - - - - - - - - - Used to break-down a CharacterisationMeasurementProcess into his specific tasks. - CharacterisationMeasurementTask - CharacterisationMeasurementTask - Used to break-down a CharacterisationMeasurementProcess into his specific tasks. + + + + + + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + Solid + Solid + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - - + + + + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + Mixture + Mixture + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + + + @@ -7837,162 +6217,232 @@ For example, when a Boeing 747 is used as a sign for another Boeing 747. - + - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - ElectricCharge - Charge - ElectricCharge - http://qudt.org/vocab/quantitykind/ElectricCharge - https://www.wikidata.org/wiki/Q1111 - 6-2 - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - https://doi.org/10.1351/goldbook.E01923 + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + ElectricFieldStrength + ElectricFieldStrength + https://qudt.org/vocab/quantitykind/ElectricFieldStrength + https://www.wikidata.org/wiki/Q20989 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 + 6-10 + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - - + + + + + + - - - 1 + + + + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + In an anisotropic medium, thermal conductivity is a tensor quantity. + ThermalConductivity + ThermalConductivity + https://qudt.org/vocab/quantitykind/ThermalConductivity + https://www.wikidata.org/wiki/Q487005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 + https://dbpedia.org/page/Thermal_conductivity + 5-9 + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + + + + + + A quantity whose magnitude is independent of the size of the system. + Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. + Intensive + Intensive + A quantity whose magnitude is independent of the size of the system. + Temperature +Density +Pressure +ChemicalPotential + + + + + + + - - - 1 + + - - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). + + Electric charge per volume. + ElectricChargeDensity + VolumeElectricCharge + ElectricChargeDensity + https://qudt.org/vocab/quantitykind/ElectricChargeDensity + https://www.wikidata.org/wiki/Q69425629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 + 6-3 + Electric charge per volume. + https://doi.org/10.1351/goldbook.C00988 + -So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. + + + + + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + Tau + Tau + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_(particle) + -While the string "1 kg" is a 'QuantityValue'. - QuantityValue - QuantityValue - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - 6.8 m -0.9 km -8 K -6 MeV -43.5 HRC(150 kg) - quantity value - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + + + + + Radius of the circular movement of an electrically charged particle in a magnetic field. + Gyroradius + LarmorRadius + Gyroradius + https://www.wikidata.org/wiki/Q1194458 + 10-17 + Radius of the circular movement of an electrically charged particle in a magnetic field. - - - - - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - PureParallelWorkflow - EmbarassinglyParallelWorkflow - PureParallelWorkflow - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + + + + Distance from the centre of a circle to the circumference. + Radius + Radius + https://qudt.org/vocab/quantitykind/Radius + https://www.wikidata.org/wiki/Q173817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 + https://dbpedia.org/page/Radius + 3-1.6 + Distance from the centre of a circle to the circumference. + https://en.wikipedia.org/wiki/Radius - - - - ParallelWorkflow - ParallelWorkflow + + + + A simulation in which more than one model are solved together with a coupled method. + TightlyCoupledModelsSimulation + TightlyCoupledModelsSimulation + A simulation in which more than one model are solved together with a coupled method. + Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. - - - - - - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - The relative humidity is often expressed in per cent. - RelativeHumidity - RelativeHumidity - https://qudt.org/vocab/quantitykind/RelativeHumidity - https://www.wikidata.org/wiki/Q2499617 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 - 5-33 - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - https://en.wikipedia.org/wiki/Humidity#Relative_humidity + + + + + + + + + + + + Coupled + Coupled - - - + + + + + T+3 L0 M-1 I0 Θ+1 N0 J0 + + + - For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - RelativeMassConcentrationOfWaterVapour - RelativeMassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour - https://www.wikidata.org/wiki/Q76379357 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - - - - - - - - - - - - - - - - - - - - - - - TopAntiQuark - TopAntiQuark + PerThermalTransmittanceUnit + PerThermalTransmittanceUnit - + - - - - - - - - + + - - - ThirdGenerationFermion - ThirdGenerationFermion + + + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + A perspective in which entities are represented according to the variation of their properties. + Data + Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 + Contrast + Dedomena + Pattern + Data + A perspective in which entities are represented according to the variation of their properties. + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. - - + + + + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + Perspective + Perspective + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + + + + + + + + + + + + + + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + IntentionalProcess + Project + IntentionalProcess + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + + + + - + - + - + @@ -8000,199 +6450,361 @@ While the string "1 kg" is a 'QuantityValue'. - - UpAntiQuarkType - UpAntiQuarkType + + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. + +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The class of individuals standing for direct causally self-connected world entities. + The disjoint union of Elementary, Quantum and CausalSystem classes. + Item + Item + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. + +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The disjoint union of Elementary, Quantum and CausalSystem classes. + The class of individuals standing for direct causally self-connected world entities. - - - - + + + + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + DifferentialThermalAnalysis + DTA + DifferentialThermalAnalysis + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + + + + + + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + + ThermochemicalTesting + TMA + ThermochemicalTesting + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + + + + - - - - - - + + T-1 L+2 M0 I0 Θ0 N0 J0 - + + - Number of protons in an atomic nucleus. - AtomicNumber - AtomicNumber - http://qudt.org/vocab/quantitykind/AtomicNumber - Number of protons in an atomic nucleus. - 10-1.1 - https://doi.org/10.1351/goldbook.A00499 + AreicSpeedUnit + AreicSpeedUnit - + + + + + + + + + + - - + + - - + - - + + - - - 1 + + - - An integer number. - Integer - Integer - An integer number. + + Declaration + ConventionalSemiosis + Declaration - - - - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - AtomProbeTomography - 3D Atom Probe - APT - AtomProbeTomography - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + + + + + T0 L0 M-1 I0 Θ0 N+1 J0 + + + + + AmountPerMassUnit + AmountPerMassUnit + + + + + + + LatentHeat + LatentHeat + https://www.wikidata.org/wiki/Q207721 + 5-6.2 - - - - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - Tomography - Tomography - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + + + + Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. + Heat + AmountOfHeat + Heat + http://qudt.org/vocab/quantitykind/Heat + 5-6.1 + https://doi.org/10.1351/goldbook.H02752 - + + + + RMS value voltage multiplied by rms value of electric current. + ApparentPower + ApparentPower + https://qudt.org/vocab/quantitykind/ApparentPower + https://www.wikidata.org/wiki/Q1930258 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 + 6-57 + RMS value voltage multiplied by rms value of electric current. + + + - T-1 L-3 M+1 I0 Θ0 N0 J0 + T0 L+4 M0 I0 Θ0 N0 J0 - MassPerVolumeTimeUnit - MassPerVolumeTimeUnit + QuarticLengthUnit + QuarticLengthUnit - - - - - The speed of light in vacuum. Defines the base unit metre in the SI system. - SpeedOfLightInVacuum - SpeedOfLightInVacuum - http://qudt.org/vocab/constant/SpeedOfLight_Vacuum - 6-35.2 - The speed of light in vacuum. Defines the base unit metre in the SI system. - https://doi.org/10.1351/goldbook.S05854 + + + + PowderCoating + PowderCoating - + + + + A meson with spin two. + TensorMeson + TensorMeson + A meson with spin two. + + + + + - + - Length per unit time. + Extent of a surface. + Area + Area + http://qudt.org/vocab/quantitykind/Area + 3-3 + https://doi.org/10.1351/goldbook.A00429 + -Speed in the absolute value of the velocity. - Speed - Speed - http://qudt.org/vocab/quantitykind/Speed - 3-8.2 - https://doi.org/10.1351/goldbook.S05852 + + + + + BlueDownAntiQuark + BlueDownAntiQuark - - - - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - SIExactConstant - SIExactConstant - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + + + + + A colloid composed of fine solid particles or liquid droplets in air or another gas. + Aerosol + Aerosol + A colloid composed of fine solid particles or liquid droplets in air or another gas. - + + + + + + + + + + + + + GasMixture + GasMixture + + + + + + + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. + Colloid + Colloid + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. + + + + + + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + AbrasiveStrippingVoltammetry + AbrasiveStrippingVoltammetry + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + - + - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - BetaDisintegrationEnergy - BetaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98148340 - 10-34 - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + HelmholtzEnergy + HelmholtzFreeEnergy + HelmholtzEnergy + https://www.wikidata.org/wiki/Q865821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 + 5-20.4 + https://doi.org/10.1351/goldbook.H02772 - - - - Person - Person + + + + + + + + + + A well formed tessellation with tiles that all spatial. + SpatialTiling + SpatialTiling + A well formed tessellation with tiles that all spatial. - + + - + - + - The relation between electric field strength and current density in an isotropic conductor. - HallCoefficient - HallCoefficient - https://qudt.org/vocab/quantitykind/HallCoefficient - https://www.wikidata.org/wiki/Q997439 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 - 12-19 - The relation between electric field strength and current density in an isotropic conductor. + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + ElectricCharge + Charge + ElectricCharge + http://qudt.org/vocab/quantitykind/ElectricCharge + https://www.wikidata.org/wiki/Q1111 + 6-2 + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + https://doi.org/10.1351/goldbook.E01923 + + + + + + + + + + + + + + + + + + + + + + + + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. + Conventional + Conventional + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - - - - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - ArchetypeManufacturing - DIN 8580:2020 - PrimitiveForming - Urformen - ArchetypeManufacturing - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - + + + + + + + + + + + + + A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. + +A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). + +Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. + According to Peirce, 'Sign' includes three subcategories: +- symbols: that stand for an object through convention +- indeces: that stand for an object due to causal continguity +- icons: that stand for an object due to similitudes e.g. in shape or composition + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + Sign + Sign + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). + +Each of them are 'sign'-s. - - - - A meson with total spin 1 and odd parit. - VectorMeson - VectorMeson - A meson with total spin 1 and odd parit. - https://en.wikipedia.org/wiki/Vector_meson +A character can be the a-tomistic 'sign' for the class of texts. + +The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. + +For plain text we can propose the ASCII symbols, for math the fundamental math symbols. @@ -8226,306 +6838,658 @@ Speed in the absolute value of the velocity. https://en.wikipedia.org/wiki/Meson - - - + + + + Matter composed of both matter and antimatter fundamental particles. + HybridMatter + HybridMatter + Matter composed of both matter and antimatter fundamental particles. + + + + + + + + + + + + + + + CompositeBoson + CompositeBoson + Examples of composite particles with integer spin: +spin 0: H1 and He4 in ground state, pion +spin 1: H1 and He4 in first excited state, meson +spin 2: O15 in ground state. + + + + + + + + + + + + + + Particles composed of two or more quarks. + Hadron + Hadron + Particles composed of two or more quarks. + https://en.wikipedia.org/wiki/Hadron + + + + - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + AdsorptiveStrippingVoltammetry + AdSV + AdsorptiveStrippingVoltammetry + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + https://doi.org/10.1515/pac-2018-0109 + + + + + + Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. + Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. + Often the product of the electrochemical stripping is identical to the analyte before the accumulation. + Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. + Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - RawData - RawData - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. - In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. - In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + StrippingVoltammetry + StrippingVoltammetry + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis + https://doi.org/10.1515/pac-2018-0109 - - - + + + + + At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + DensityOfHeatFlowRate + AreicHeatFlowRate + DensityOfHeatFlowRate + https://www.wikidata.org/wiki/Q1478382 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 + 5-8 + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + https://doi.org/10.1351/goldbook.H02755 + + + + + + - - + + - - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - Result of a measurement. + + Power transferred per unit area. + Intensity + Intensity + Power transferred per unit area. + https://en.wikipedia.org/wiki/Intensity_(physics) + -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + + + + + + + + + + + + + Ratio of magnetic dipole moment to total angular momentum. + GyromagneticRatio + GyromagneticCoefficient + MagnetogyricRatio + GyromagneticRatio + https://qudt.org/vocab/quantitykind/GyromagneticRatio + https://www.wikidata.org/wiki/Q634552 + 10-12.1 + Ratio of magnetic dipole moment to total angular momentum. + https://doi.org/10.1351/goldbook.M03693 + --- VIM - MeasurementResult - MeasurementResult - Result of a measurement. + + + + + + + + + + + + + + Any physical or virtual component of limited availability within a computer system. + SystemResource + Resource + SystemResource + Any physical or virtual component of limited availability within a computer system. + -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + + + + + + + + + + + + + + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Deducer + Deducer + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Someone who deduces an emotional status of a persona according to facial expression. + Someone who deduces the occurring of a physical phenomenon through other phenomena. + --- VIM - measurement result - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. + + + + + T-3 L+1 M+1 I0 Θ0 N0 J0 + + + + + MassLengthPerCubicTimeUnit + MassLengthPerCubicTimeUnit + + + + + + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + An icon that mimics the spatial or temporal shape of the object. + The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). + ResemblanceIcon + ResemblanceIcon + An icon that mimics the spatial or temporal shape of the object. + A geographical map that imitates the shape of the landscape and its properties at a specific historical time. + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + + + + + + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + + SecondaryIonMassSpectrometry + SIMS + SecondaryIonMassSpectrometry + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - - + + + + + + + + + + + - Represents every type of data that is produced during a characterisation process - CharacterisationData - CharacterisationData - Represents every type of data that is produced during a characterisation process + The human operator who takes care of the whole characterisation method or sub-processes/stages. + Operator + Operator + The human operator who takes care of the whole characterisation method or sub-processes/stages. - + + + + + + + + + + + + + + + + + + + + + CharmQuark + CharmQuark + https://en.wikipedia.org/wiki/Charm_quark + + + + + + + + + + + + + + + + + + + + + + UpQuarkType + UpQuarkType + + + + - - + - Magnetic tension divided by magnetic flux. - MagneticReluctance - Reluctance - MagneticReluctance - https://qudt.org/vocab/quantitykind/Reluctance - https://www.wikidata.org/wiki/Q863390 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 - 6-39 - Magnetic tension divided by magnetic flux. + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + Mobility + Mobility + https://qudt.org/vocab/quantitykind/Mobility + https://www.wikidata.org/wiki/Q900648 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 + 10-61 + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + https://doi.org/10.1351/goldbook.M03955 - + - + - + - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - Molality - AmountPerMass - Molality - https://www.wikidata.org/wiki/Q172623 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 - 9-15 - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - https://doi.org/10.1351/goldbook.M03970 + Derivative of velocity with respect to time. + Acceleration + Acceleration + http://qudt.org/vocab/quantitykind/Acceleration + 3-9.1 + https://doi.org/10.1351/goldbook.A00051 + + + + + + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + HardeningByRolling + VerfestigendurchWalzen + HardeningByRolling + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + + + + + A neutrino belonging to the first generation of leptons. + ElectronNeutrino + ElectronNeutrino + A neutrino belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron_neutrino + + + + + + + + + + + + + + + + + + + + + + + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + NeutrinoType + NeutrinoType + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + https://en.wikipedia.org/wiki/Neutrino + + + + + + + + + + + + + + The interest is on the 4D object as it extends in time (process) or as it persists in time (object): +- object (focus on spatial configuration) +- process (focus on temporal evolution) + +The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. + +For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. + +Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. + +This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). + +The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. + The union of the object or process classes. + Persistence + Persistence + The union of the object or process classes. + + + + + + Heat capacity at constant volume. + IsochoricHeatCapacity + HeatCapacityAtConstantVolume + IsochoricHeatCapacity + https://www.wikidata.org/wiki/Q112187521 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 + 5-16.3 + Heat capacity at constant volume. + + + + + + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + ElectrochemicalTesting + http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 + ElectrochemicalTesting + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedAntiQuark + RedAntiQuark - - - - - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - RadiantEnergy - RadiantEnergy - https://www.wikidata.org/wiki/Q1259526 - 10-45 - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + + + + PlasmaCutting + PlasmaCutting - - - - The interpreter's internal representation of the object in a semiosis process. - Interpretant - Interpretant - The interpreter's internal representation of the object in a semiosis process. + + + + Characterisation procedure may refer to the full characterisation process or just a part of the full process. + The process of performing characterisation by following some existing formalised operative rules. + CharacterisationProcedure + CharacterisationProcedure + The process of performing characterisation by following some existing formalised operative rules. + Sample preparation +Sample inspection +Calibration +Microscopy +Viscometry +Data sampling + Characterisation procedure may refer to the full characterisation process or just a part of the full process. - + - T-2 L0 M+1 I0 Θ0 N0 J0 + T-1 L0 M0 I0 Θ0 N0 J0 - ForcePerLengthUnit - ForcePerLengthUnit - - - - - - - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - RotationalDisplacement - AngularDisplacement - RotationalDisplacement - https://www.wikidata.org/wiki/Q3305038 - 3-6 - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - https://en.wikipedia.org/wiki/Angular_displacement - - - - - - Ratio of circular arc length to radius. - Angle - PlaneAngle - Angle - http://qudt.org/vocab/quantitykind/PlaneAngle - Ratio of circular arc length to radius. - 3-5 - https://doi.org/10.1351/goldbook.A00346 - - - - - - GluonType2 - GluonType2 - - - - - - - - - - - - - - - - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. - JunctionTile - JunctionTile - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + FrequencyUnit + FrequencyUnit - - + + - PermanentLiquidPhaseSintering - PermanentLiquidPhaseSintering + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + Tool + Tool + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - - - - - - - - - - - - - - - - ParticleConcentration - ParticleConcentration - https://www.wikidata.org/wiki/Q39078574 - 9-9.1 + + + + + An object which is an holistic spatial part of a process. + Participant + Participant + An object which is an holistic spatial part of a process. + A student during an examination. - - - - - + + + + - - + + + + + + + + + - - Number of molecules of a substance in a mixture per volume. - MolecularConcentration - MolecularConcentration - https://qudt.org/vocab/quantitykind/MolecularConcentration - https://www.wikidata.org/wiki/Q88865973 - 9-9.2 - Number of molecules of a substance in a mixture per volume. - - - - - - Count per volume. - VolumetricNumberDensity - VolumetricNumberDensity - Count per volume. - - - - - - - - - + + + + + + + + + - - Mean number of particles per volume. - ParticleNumberDensity - ParticleNumberDensity - https://qudt.org/vocab/quantitykind/ParticleNumberDensity - https://www.wikidata.org/wiki/Q98601569 - 10-62.1 - Mean number of particles per volume. - https://doi.org/10.1351/goldbook.N04262 + + + + + + + + + + + + + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + CausalPath + CausalChain + Elementary + CausalPath + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + An electron with at least one causal interaction with another particle. + hasTemporalPart min 2 (Elementary or Quantum) - - - - - - - - - - - - - Inverse of the reluctance. - Permeance - Permeance - https://qudt.org/vocab/quantitykind/Permeance - https://www.wikidata.org/wiki/Q77997985 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 - 6-40 - Inverse of the reluctance. + + + + + + + + + + + + + + + The class of entities that have no spatial structure. + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + CausalParticle + CausalParticle + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + The class of entities that have no spatial structure. - - - + + - + - + + + + + + + + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + A self-connected composition of more than one quantum entities. + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + CausalStructure + CausalObject + CausalStructure + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + A self-connected composition of more than one quantum entities. + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + + + + + + + + + + + + + + + + + + + + + - + @@ -8533,248 +7497,142 @@ A set of quantites being attributed to a measurand (measured quantitative proper + + + + + + + + + + + - DownQuark - DownQuark - https://en.wikipedia.org/wiki/Down_quark - - - - - - - T-3 L+2 M+1 I0 Θ0 N0 J0 - - - - - PowerUnit - PowerUnit - - - - - - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - SeparateManufacturing - DIN 8580:2020 - CuttingManufacturing - Trennen - SeparateManufacturing - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - - - - - - - T-2 L+1 M+1 I0 Θ0 N0 J0 - - - - - ForceUnit - ForceUnit + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + FundamentalFermion + FundamentalFermion + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - - + + - + - + - One-dimensional subspace of space-time, which is locally orthogonal to space. - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - Time can be seen as the duration of an event or, more operationally, as "what clocks read". - Time - Time - http://qudt.org/vocab/quantitykind/Time - One-dimensional subspace of space-time, which is locally orthogonal to space. - 3-7 - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - https://doi.org/10.1351/goldbook.T06375 - - - - - - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - RadialDistance - RadialDistance - https://qudt.org/vocab/quantitykind/RadialDistance - https://www.wikidata.org/wiki/Q1578234 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 - 3-1.9 - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - - - - - - GrowingCrystal - GrowingCrystal - - - - - - - T-2 L0 M0 I0 Θ0 N0 J0 - - - - - AngularFrequencyUnit - AngularFrequencyUnit + inverse of the mass density ρ, thus v = 1/ρ. + SpecificVolume + MassicVolume + SpecificVolume + https://qudt.org/vocab/quantitykind/SpecificVolume + https://www.wikidata.org/wiki/Q683556 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 + 4-3 + inverse of the mass density ρ, thus v = 1/ρ. + https://doi.org/10.1351/goldbook.S05807 - + - + - - - - - - - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - Pressure - Pressure - http://qudt.org/vocab/quantitykind/Pressure - 4-14.1 - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - https://doi.org/10.1351/goldbook.P04819 - - - - - - - The sample after a preparation process. - PreparedSample - PreparedSample - The sample after a preparation process. - - - - - - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - - ReferenceSample - Certified Reference Material - Reference material - ReferenceSpecimen - ReferenceSample - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - Reference material + + + + + + + Measure of the extent and direction an object rotates about a reference point. + AngularMomentum + AngularMomentum + http://qudt.org/vocab/quantitykind/AngularMomentum + 4-11 + https://doi.org/10.1351/goldbook.A00353 - + + - + + + + + + + + - Quotient of mass defect and the unified atomic mass constant. - RelativeMassDefect - RelativeMassDefect - https://qudt.org/vocab/quantitykind/RelativeMassDefect - https://www.wikidata.org/wiki/Q98038718 - 10-22.2 - Quotient of mass defect and the unified atomic mass constant. + Quotient of the activity A of a sample and the total area S of the surface of that sample. + SurfaceActivityDensity + SurfaceActivityDensity + https://qudt.org/vocab/quantitykind/SurfaceActivityDensity + https://www.wikidata.org/wiki/Q98103005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 + 10-30 + Quotient of the activity A of a sample and the total area S of the surface of that sample. - + - - - - - - - - - - - - - - - + + T+2 L+1 M-1 I0 Θ+1 N0 J0 - - - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. - Conventional - Conventional - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + + + + TemperaturePerPressureUnit + TemperaturePerPressureUnit - - - + + - RedCharmQuark - RedCharmQuark + WPositiveBoson + WPositiveBoson - - - + + + + The number of waves per unit length along the direction of propagation. + Wavenumber + Wavenumber + http://qudt.org/vocab/quantitykind/Wavenumber + 3-18 + https://doi.org/10.1351/goldbook.W06664 + + + + + + + GreenTopAntiQuark + GreenTopAntiQuark + + + + + - + - + - + @@ -8783,31 +7641,30 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - CharmQuark - CharmQuark - https://en.wikipedia.org/wiki/Charm_quark + TopAntiQuark + TopAntiQuark - - + + - + - + - + - + - + - + @@ -8822,683 +7679,839 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure - RedQuark - RedQuark + GreenAntiQuark + GreenAntiQuark - - - + + + + + + + + + + + + + + + A charged vector boson that mediate the weak interaction. + WBoson + ChargedWeakBoson + IntermediateVectorBoson + WBoson + A charged vector boson that mediate the weak interaction. + https://en.wikipedia.org/wiki/W_and_Z_bosons + + + + + + + + + + + + + + + + + WeakBoson + WeakBoson + + + + + + + T+2 L0 M-1 I0 Θ0 N0 J0 + + + + + SquareTimePerMassUnit + SquareTimePerMassUnit + + + + + + + T-2 L0 M+1 I0 Θ0 N0 J0 + + + + + ForcePerLengthUnit + ForcePerLengthUnit + + + + - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - IterativeStep - IterativeStep - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. + A direct part that is obtained by partitioning a whole purely in temporal parts. + TemporalTile + TemporalTile + A direct part that is obtained by partitioning a whole purely in temporal parts. - - - + + - - + + T+4 L-4 M-2 I0 Θ0 N0 J0 - + + + + ReciprocalSquareEnergyUnit + ReciprocalSquareEnergyUnit + + + + + + A construction language used to write configuration files. + ConfigurationLanguage + ConfigurationLanguage + A construction language used to write configuration files. + .ini files + Files in the standard .config directory on Unix systems. + https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages + + + + + - + - - + + + + + + + - - A procedure that has at least two procedures (tasks) as proper parts. - Workflow - Workflow - A procedure that has at least two procedures (tasks) as proper parts. + + UpQuark + UpQuark + https://en.wikipedia.org/wiki/Up_quark - - - - - + + + + + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + PhysicsEquation + PhysicsEquation + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + The Newton's equation of motion. +The Schrödinger equation. +The Navier-Stokes equation. + + + + + - - + + - - Differential quotient of the cross section for a process and the energy of the scattered particle. - EnergyDistributionOfCrossSection - EnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralCrossSection - https://www.wikidata.org/wiki/Q98267245 - 10-40 - Differential quotient of the cross section for a process and the energy of the scattered particle. - - - - - - A molecule composed of more than one element type. - Heteronuclear - Heteronuclear - A molecule composed of more than one element type. - Nitric oxide (NO) or carbon dioxide (CO₂). + + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedModel + PhysicsBasedModel + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - - - - - + + + - - + + - - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - RichardsonConstant - RichardsonConstant - https://qudt.org/vocab/quantitykind/RichardsonConstant - https://www.wikidata.org/wiki/Q105883079 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 - 12-26 - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - + + An equation with variables can always be represented as: - - - - Unit for quantities of dimension one that are the fraction of two amount of substance. - AmountFractionUnit - AmountFractionUnit - Unit for quantities of dimension one that are the fraction of two amount of substance. - Unit for amount fraction. +f(v0, v1, ..., vn) = g(v0, v1, ..., vn) + +where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + Equation + Equation + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + 2+3 = 5 +x^2 +3x = 5x +dv/dt = a +sin(x) = y - - - - Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this -is desirable (μm/m, nmol/mol). --- SI Brochure - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - FractionUnit - RatioUnit - FractionUnit - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + + + + Parameter used for the sample preparation process + + SamplePreparationParameter + SamplePreparationParameter + Parameter used for the sample preparation process - - - - - - - - - - - - - - Energy required to move a unit charge through an electric field from a reference point. - The electric potential is not unique, since any constant scalar -field quantity can be added to it without changing its gradient. - ElectricPotential - ElectroStaticPotential - ElectricPotential - http://qudt.org/vocab/quantitykind/ElectricPotential - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 - https://dbpedia.org/page/Electric_potential - 6-11.1 - Energy required to move a unit charge through an electric field from a reference point. - https://en.wikipedia.org/wiki/Electric_potential - https://doi.org/10.1351/goldbook.E01935 + + + + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + A characterisation technique is not only related to the measurement process which can be one of its steps. + CharacterisationTechnique + Characterisation procedure + Characterisation technique + CharacterisationTechnique + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + A characterisation technique is not only related to the measurement process which can be one of its steps. - - - - A material that takes active part in a chemical reaction. - ReactiveMaterial - ReactiveMaterial - A material that takes active part in a chemical reaction. + + + + An icon that focusing WHAT the object does. + An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. + This subclass of icon inspired by Peirceian category (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else. + FunctionalIcon + FunctionalIcon + An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. + A data based model is only a functional icon, since it provide the same relations between the properties of the object (e.g., it can predict some properties as function of others) but is not considering the internal mechanisms (i.e., it can ignore the physics). + A guinea pig. + An icon that focusing WHAT the object does. - - - - ChemicallyDefinedMaterial - ChemicallyDefinedMaterial + + + + + Deals with undefined shapes both input and output. + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + MaterialSynthesis + MaterialSynthesis + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + Deals with undefined shapes both input and output. - - - - - - + + - - + + T-2 L+2 M+1 I0 Θ-1 N-1 J0 - + + - In nuclear physics, incident radiant energy per cross-sectional area. - EnergyFluence - EnergyFluence - https://qudt.org/vocab/quantitykind/EnergyFluence - https://www.wikidata.org/wiki/Q98538612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 - 10-46 - In nuclear physics, incident radiant energy per cross-sectional area. + EntropyPerAmountUnit + EntropyPerAmountUnit - - - - - - - - - - - - - A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. + + + + + A workflow whose tasks are tiles of a sequence. + SerialWorkflow + SerialWorkflow + A workflow whose tasks are tiles of a sequence. + -A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). + + + + A tessellation of temporal slices. + Sequence + Sequence + A tessellation of temporal slices. + + + + + + + The rest mass of an electron. + ElectronMass + ElectronMass + http://qudt.org/vocab/constant/ElectronMass + https://doi.org/10.1351/goldbook.E02008 + -Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. - According to Peirce, 'Sign' includes three subcategories: -- symbols: that stand for an object through convention -- indeces: that stand for an object due to causal continguity -- icons: that stand for an object due to similitudes e.g. in shape or composition - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - Sign - Sign - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). + + + + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + MeasuredConstant + MeasuredConstant + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + -Each of them are 'sign'-s. + + + + Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this +is desirable (μm/m, nmol/mol). +-- SI Brochure + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + FractionUnit + RatioUnit + FractionUnit + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + -A character can be the a-tomistic 'sign' for the class of texts. + + + + The subclass of measurement units with no physical dimension. + DimensionlessUnit + DimensionlessUnit + http://qudt.org/vocab/unit/UNITLESS + The subclass of measurement units with no physical dimension. + Refractive index +Plane angle +Number of apples + -The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. + + + + + + + + + + + + + + + + + + + + + CharmAntiQuark + CharmAntiQuark + -For plain text we can propose the ASCII symbols, for math the fundamental math symbols. + + + + + + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + Hypothesis + Hypothesis + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - - - - The laboratory where the whole characterisation process or some of its stages take place. - Laboratory - Laboratory - The laboratory where the whole characterisation process or some of its stages take place. + + + + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + Objective + Objective + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - - - - - - - - - - - - - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - DensityOfVibrationalStates - DensityOfVibrationalStates - https://qudt.org/vocab/quantitykind/DensityOfStates - https://www.wikidata.org/wiki/Q105637294 - 12-12 - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume + + + + A 'conventional' that stand for a 'physical'. + The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. + +It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. + +In Peirce semiotics: legisign-symbol-argument + Theory + Theory + A 'conventional' that stand for a 'physical'. - - - - - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - MaximumBetaParticleEnergy - MaximumBetaParticleEnergy - https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy - https://www.wikidata.org/wiki/Q98148038 - 10-33 - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + + + + Estimated + Estimated + The biography of a person that the author have not met. - - + + - Data resulting from the application of post-processing or model generation to other data. + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - SecondaryData - Elaborated data - SecondaryData - Data resulting from the application of post-processing or model generation to other data. - Deconvoluted curves - Intensity maps + XrayDiffraction + XRD + XrayDiffraction + https://www.wikidata.org/wiki/Q12101244 + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + https://en.wikipedia.org/wiki/X-ray_crystallography - - - - - T+2 L-2 M-1 I0 Θ0 N0 J0 - - - - - PerEnergyUnit - PerEnergyUnit + + + + + ScatteringAndDiffraction + ScatteringAndDiffraction - - - - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - A well-formed formula that follows the syntactic rules of computer science. - ComputerScience - ComputerScience - A well-formed formula that follows the syntactic rules of computer science. - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + + + + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + Drilling + Bohren + Drilling - - - - FunctionallyDefinedMaterial - FunctionallyDefinedMaterial + + + + A manufacturing in which material is removed from the workpiece in the form of chips. + Machining + RemovingChipsFromWorkpiece + Machining + A manufacturing in which material is removed from the workpiece in the form of chips. - - - - - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - Material - Material - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. + + + + + A estimation of a property using a functional icon. + Simulation + Modelling + Simulation + A estimation of a property using a functional icon. + I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. - - - - - + + - - - - - - Time derivative of kerma. - KermaRate - KermaRate - https://qudt.org/vocab/quantitykind/KermaRate - https://www.wikidata.org/wiki/Q99713105 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 - 10-86.2 - Time derivative of kerma. + + + + + + + + + + A determination of an object without any actual interaction. + Estimation + Estimation + A determination of an object without any actual interaction. - + - T+2 L-1 M-1 I+1 Θ0 N0 J0 + T-3 L+2 M0 I0 Θ0 N0 J0 + + AbsorbedDoseRateUnit + AbsorbedDoseRateUnit + + + + + - MagneticReluctivityUnit - MagneticReluctivityUnit + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + PartialPressure + PartialPressure + https://qudt.org/vocab/quantitykind/PartialPressure + https://www.wikidata.org/wiki/Q27165 + 9-19 + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + https://doi.org/10.1351/goldbook.P04420 - - - - - - - - - - + + + + + - - - - - - + + - - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - Declarer - Declarer - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). - Someone who assigns a name to an object. + + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + Pressure + Pressure + http://qudt.org/vocab/quantitykind/Pressure + 4-14.1 + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + https://doi.org/10.1351/goldbook.P04819 - + - + - + - SectionModulus - SectionModulus - https://qudt.org/vocab/quantitykind/SectionModulus - https://www.wikidata.org/wiki/Q1930808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 - 4-22 - - - - - - - - - - - - - - - - - - - - - - A material in which distributed particles of one phase are dispersed in a different continuous phase. - Dispersion - Dispersion - A material in which distributed particles of one phase are dispersed in a different continuous phase. + Reciprocal of the thermal resistance. + ThermalConductance + ThermalConductance + https://qudt.org/vocab/quantitykind/ThermalConductance + https://www.wikidata.org/wiki/Q17176562 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 + 5-13 + Reciprocal of the thermal resistance. + https://doi.org/10.1351/goldbook.T06298 - - - - A single phase mixture. - PhaseHomogeneousMixture - PhaseHomogeneousMixture - A single phase mixture. + + + + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + PrimaryData + PrimaryData + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + Baseline subtraction, noise reduction , X and Y axes correction. - - - - - GreenDownQuark - GreenDownQuark + + + + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + the accumulation is similar to that used in stripping voltammetry + the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + PotentiometricStrippingAnalysis + PSA + PotentiometricStrippingAnalysis + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - - + + + + + + + - - T0 L+1 M0 I0 Θ0 N0 J0 + + - - + - LengthUnit - LengthUnit - - - - - - - - - - - - - - - - - - - - - - ElectronType - ElectronType - - - - - - - - - - - - - - - - - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - Lepton - Lepton - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - https://en.wikipedia.org/wiki/Lepton - - - - - - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - - PulsedElectroacousticMethod - PulsedElectroacousticMethod - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - https://doi.org/10.1007/s10832-023-00332-y + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + ThermodynamicTemperature + ThermodynamicTemperature + http://qudt.org/vocab/quantitykind/ThermodynamicTemperature + 5-1 + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + https://doi.org/10.1351/goldbook.T06321 - - - - - ChargeDistribution - ChargeDistribution + + + + + + + + + + + + + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + ElectricInductance + Inductance + ElectricInductance + http://qudt.org/vocab/quantitykind/Inductance + https://www.wikidata.org/wiki/Q177897 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 + 6-41.1 + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + https://doi.org/10.1351/goldbook.M04076 - - - - The number of waves per unit length along the direction of propagation. - Wavenumber - Wavenumber - http://qudt.org/vocab/quantitykind/Wavenumber - 3-18 - https://doi.org/10.1351/goldbook.W06664 + + + + Describes the level of automation of the test. + LevelOfAutomation + LevelOfAutomation + Describes the level of automation of the test. - - - - - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - NonLeakageProbability - NonLeakageProbability - https://qudt.org/vocab/quantitykind/Non-LeakageProbability - https://www.wikidata.org/wiki/Q99415566 - 10-77 - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - + + + + "Property of a phenomenon, body, or substance, where the property has no magnitude." - - - - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. - Probability - Probability - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - https://doi.org/10.1351/goldbook.P04855 +"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." + +International vocabulary of metrology (VIM) + An 'ObjectiveProperty' that cannot be quantified. + NominalProperty + NominalProperty + An 'ObjectiveProperty' that cannot be quantified. + CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered + +A color is a nominal property. + +Sex of a human being. + nominal property - - - - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - InternalEnergy - ThermodynamicEnergy - InternalEnergy - http://qudt.org/vocab/quantitykind/InternalEnergy - 5.20-2 - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - https://doi.org/10.1351/goldbook.I03103 + + + + + + + + + + + + + + + + + + + + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. + AntiMatter + AntiMatter + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. - + - T+1 L0 M0 I+1 Θ0 N-1 J0 + T-1 L+1 M0 I0 Θ+1 N0 J0 - ElectricChargePerAmountUnit - ElectricChargePerAmountUnit + TemperatureLengthPerTimeUnit + TemperatureLengthPerTimeUnit - - - - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - QuantumAnnihilation - QuantumAnnihilation - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + + + + + + + + + + + + + Differential quotient of the absorbed dose with respect to time. + AbsorbedDoseRate + AbsorbedDoseRate + https://qudt.org/vocab/quantitykind/AbsorbedDoseRate + https://www.wikidata.org/wiki/Q69428958 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 + 10-84 + Differential quotient of the absorbed dose with respect to time. - - - - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. - CausalCollapse - CausalCollapse - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + + + + + + + + + + + + + + quotient of Thomson heat power developed, and the electric current and temperature difference + ThomsonCoefficient + ThomsonCoefficient + https://qudt.org/vocab/quantitykind/ThomsonCoefficient + https://www.wikidata.org/wiki/Q105801233 + 12-23 + quotient of Thomson heat power developed, and the electric current and temperature difference - - - - - Extrusion - Extrusion + + + + + + + + + + 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). + +'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. + +This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. + +e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. + A 'Physical' which is a tessellation of 'State' temporal direct parts. + An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. + +By definition, the tiles are represented by 'State'-s individual. + +Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. + Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. + +Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. + Existent + true + Existent + A 'Physical' which is a tessellation of 'State' temporal direct parts. - - - - - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. - ReshapeManufacturing - DIN 8580:2020 - Forming - Umformen - ReshapeManufacturing - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. + + + + + OpticalTesting + OpticalTesting - - + + + - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - The diameter of a circle or a sphere is twice its radius. - Diameter - Diameter - https://qudt.org/vocab/quantitykind/Diameter - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 - https://dbpedia.org/page/Diameter - 3-1.5 - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - https://en.wikipedia.org/wiki/Diameter + Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + MagneticSusceptibility + MagneticSusceptibility + https://qudt.org/vocab/unit/SUSCEPTIBILITY_MAG.html + https://www.wikidata.org/wiki/Q691463 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37 + 6-28 + Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. - - + + + + + Chosen value of amount concentration, usually equal to 1 mol dm−3. + StandardAmountConcentration + StandardConcentration + StandardMolarConcentration + StandardAmountConcentration + https://www.wikidata.org/wiki/Q88871689 + Chosen value of amount concentration, usually equal to 1 mol dm−3. + 9-12.2 + https://doi.org/10.1351/goldbook.S05909 + + + + + + + + - - T-2 L+2 M0 I0 Θ0 N0 J0 + + - - + - AbsorbedDoseUnit - AbsorbedDoseUnit + The amount of a constituent divided by the volume of the mixture. + AmountConcentration + Concentration + MolarConcentration + Molarity + AmountConcentration + http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB + https://doi.org/10.1351/goldbook.A00295 - - - - - Resistance quantum. - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. - VonKlitzingConstant - VonKlitzingConstant - http://qudt.org/vocab/constant/VonKlitzingConstant - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + + + + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + Variable + Variable + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + x +k - - + + + - - T-3 L+3 M+1 I-2 Θ0 N0 J0 + + + + + + - - - - ElectricResistivityUnit - ElectricResistivityUnit + + + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + Task + Job + Task + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - + @@ -9506,648 +8519,691 @@ For plain text we can propose the ASCII symbols, for math the fundamental math s - + - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - VolumicTotalCrossSection - MacroscopicTotalCrossSection - VolumicTotalCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection - https://www.wikidata.org/wiki/Q98280548 - 10-42.2 - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - - - - - - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - ExactConstant - ExactConstant - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - - - - - - - - - - - - - - - - - Physical constants are categorised into "exact" and measured constants. - -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - PhysicalConstant - PhysicalConstant - Physical constants are categorised into "exact" and measured constants. - -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - https://en.wikipedia.org/wiki/List_of_physical_constants + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + BohrMagneton + BohrMagneton + https://www.wikidata.org/wiki/Q737120 + 10-9.2 + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - - + + - FormingFromChip - FormingFromChip + A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. + WorkpieceForming + ArchetypeForming + PrimitiveForming + WorkpieceForming - - - - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - Drilling - Bohren - Drilling + + + + + T+1 L+2 M0 I0 Θ+1 N0 J0 + + + + + AreaTimeTemperatureUnit + AreaTimeTemperatureUnit - - - - CompiledLanguage - CompiledLanguage + + + + Unit for quantities of dimension one that are the fraction of two amount of substance. + AmountFractionUnit + AmountFractionUnit + Unit for quantities of dimension one that are the fraction of two amount of substance. + Unit for amount fraction. - - - - A language object that follows syntactic rules of a programming language. - A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. - ProgrammingLanguage - Code - SoftwareCode - ProgrammingLanguage - A language object that follows syntactic rules of a programming language. - A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. - Entities are not necessarily digital data, but can be code fragments printed on paper. + + + + + Written as pOH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) + POH + POH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) - - - - - - - - - - - - - Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. - -The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. - -In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). - The object, in Peirce semiotics, as participant to a semiotic process. - SemioticObject - Object - SemioticObject - The object, in Peirce semiotics, as participant to a semiotic process. + + + + Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. + The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + IonActivity + IonActivity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. - - - - - - - - - - - - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - A perspective in which entities are represented according to the variation of their properties. - Data - Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 - Contrast - Dedomena - Pattern - Data - A perspective in which entities are represented according to the variation of their properties. - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. + + + + At about 25 °C aqueous solutions with: +pH < 7 are acidic; +pH = 7 are neutral; +pH > 7 are alkaline. +At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + Written as pH + PH + PH + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 + For more details, see ISO 80000-9:2009, Annex C + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + https://doi.org/10.1351/goldbook.P04524 - - + + + + + T+2 L0 M0 I0 Θ0 N0 J0 + + + - Minimum length of a straight line segment between a point and a reference line or reference surface. - Height - Height - https://qudt.org/vocab/quantitykind/Height - https://www.wikidata.org/wiki/Q208826 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 - https://dbpedia.org/page/Height - 3-1.3 - Minimum length of a straight line segment between a point and a reference line or reference surface. - https://en.wikipedia.org/wiki/Height + SquareTimeUnit + SquareTimeUnit - - - - - - - - - - - A causal object that is tessellated in direct parts. - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - Tessellation - Tiling - Tessellation - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - A causal object that is tessellated in direct parts. + + + + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + Dilatometry + https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. + Dilatometry + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - + - - - - - - + + + T-2 L+1 M0 I0 Θ0 N0 J0 + - - - A class devoted to categorize causal objects by specifying their granularity levels. - A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: - - are proper parts of y - - covers the entire whole (y = x1 +x2 + ... + xn) - - do not overlap - - are part of one, and one only, whole (inverse functional) - Reductionistic - Reductionistic - A class devoted to categorize causal objects by specifying their granularity levels. - A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: - - are proper parts of y - - covers the entire whole (y = x1 +x2 + ... + xn) - - do not overlap - - are part of one, and one only, whole (inverse functional) - Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. - - - - - - A physics-based model based on a physics equation describing the behaviour of continuum volume. - ContinuumModel - ContinuumModel - A physics-based model based on a physics equation describing the behaviour of continuum volume. + + + AccelerationUnit + AccelerationUnit - - + + + + + - - + + + + For an atom or nucleus, this energy is quantized and can be written as: + + W = g μ M B + +where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. + +-- ISO 80000 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + MagneticDipoleMoment + MagneticDipoleMoment + http://qudt.org/vocab/quantitykind/MagneticDipoleMoment + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 + 10-9.1 + 6-30 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + http://goldbook.iupac.org/terms/view/M03688 + + + + - + - + - - - - - - - + + - - A solvable set of one Physics Equation and one or more Materials Relations. - MaterialsModel - https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 - MaterialsModel - A solvable set of one Physics Equation and one or more Materials Relations. - - - - - - - Quotient of mechanical output and input power. - MechanicalEfficiency - MechanicalEfficiency - https://www.wikidata.org/wiki/Q2628085 - 4-29 - Quotient of mechanical output and input power. - - - - - - - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - PhaseAngle - PhaseAngle - https://www.wikidata.org/wiki/Q415829 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 - 3-7 - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - - - - - - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - CharacterisationProcedureValidation - CharacterisationProcedureValidation - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - - - - - - "Property of a phenomenon, body, or substance, where the property has no magnitude." - -"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." - -International vocabulary of metrology (VIM) - An 'ObjectiveProperty' that cannot be quantified. - NominalProperty - NominalProperty - An 'ObjectiveProperty' that cannot be quantified. - CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered - -A color is a nominal property. - -Sex of a human being. - nominal property + + UpAntiQuarkType + UpAntiQuarkType - - + + + + - - T-1 L-2 M0 I0 Θ0 N0 J0 + + - - - - PerAreaTimeUnit - PerAreaTimeUnit - - - - - - - BlueDownAntiQuark - BlueDownAntiQuark + + + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + SymbolicConstruct + SymbolicConstruct + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - - - - - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - AngularReciprocalLatticeVector - AngularReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475278 - 12-2.1 - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + + + + + + + + + + + + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + Symbolic + Symbolic + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + fe780 +emmo +!5*a +cat +for(i=0;i<N;++i) + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + A symbolic object possesses a reductionistic oriented structure. +For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). - - + + - GravitySintering - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder - Loose-powderSintering - PressurelessSintering - GravitySintering + ThermomechanicalTreatment + ThermomechanicalTreatment - - - - - - + + - - + + T-2 L-1 M+1 I0 Θ0 N0 J0 - + + - In nuclear physics, product of the number density of atoms of a given type and the cross section. - VolumicCrossSection - MacroscopicCrossSection - VolumicCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicCrossSection - https://www.wikidata.org/wiki/Q98280520 - 10-42.1 - In nuclear physics, product of the number density of atoms of a given type and the cross section. - https://doi.org/10.1351/goldbook.M03674 - - - - - - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury - the accumulation is similar to that used in stripping voltammetry - the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution - the time between changes in potential in step 2 is related to the concentration of analyte in the solution - PotentiometricStrippingAnalysis - PSA - PotentiometricStrippingAnalysis - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + PressureUnit + PressureUnit - - + + + - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - BaseQuantity - BaseQuantity - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - base quantity - - - - - - - CharacterisationEnvironmentProperty - CharacterisationEnvironmentProperty + Ratio of the mass of water to the mass of dry matter in a given volume of matter. + The mass concentration of water at saturation is denoted usat. + MassRatioOfWaterToDryMatter + MassRatioOfWaterToDryMatter + https://www.wikidata.org/wiki/Q76378860 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 + 5-29 + Ratio of the mass of water to the mass of dry matter in a given volume of matter. - - + + - ISO80000Categorised - ISO80000Categorised + Rest mass of a nuclide X in the ground state. + NuclidicMass + NuclidicMass + https://www.wikidata.org/wiki/Q97010809 + 10-4.2 + Rest mass of a nuclide X in the ground state. + https://doi.org/10.1351/goldbook.N04258 - - - + + + - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature - CoherenceLength - CoherenceLength - https://www.wikidata.org/wiki/Q1778793 - 12-38.2 - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + For particle X, mass of that particle at rest in an inertial frame. + RestMass + InvariantMass + ProperMass + RestMass + https://qudt.org/vocab/quantitykind/RestMass + https://www.wikidata.org/wiki/Q96941619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 + https://dbpedia.org/page/Mass_in_special_relativity + 10-2 + For particle X, mass of that particle at rest in an inertial frame. + https://en.wikipedia.org/wiki/Invariant_mass - - - - - A coarse dispersion of solid in a solid continuum phase. - SolidSolidSuspension - SolidSolidSuspension - A coarse dispersion of solid in a solid continuum phase. - Granite, sand, dried concrete. - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - Suspensions show no significant effect on light. - Suspension - Suspension - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + CharacterisationMeasurementProcess + CharacterisationMeasurementProcess + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. - - - - - - - - - - - - - SolidMixture - SolidMixture +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + Measurement - - - - - The charge of an electron. - The negative of ElementaryCharge. - ElectronCharge - ElectronCharge - The charge of an electron. - https://doi.org/10.1351/goldbook.E01982 + + + + Describes how raw data are corrected and/or modified through calibrations. + DataProcessingThroughCalibration + DataProcessingThroughCalibration + Describes how raw data are corrected and/or modified through calibrations. - - - - A direct part that is obtained by partitioning a whole purely in spatial parts. - SpatialTile - SpatialTile - A direct part that is obtained by partitioning a whole purely in spatial parts. + + + + + ResourceIdentifier + ResourceIdentifier - - - - - + + - - + + T-1 L-3 M0 I0 Θ0 N0 J0 - - - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - Theorisation - Theorization - Theorisation - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + + + + FrequencyPerVolumeUnit + FrequencyPerVolumeUnit - + - - + + - + - - + + + 1 + + + + + + + + + + + + + A quantifiable property of a phenomenon, body, or substance. + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". + +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + Quantity + Measurand + Quantity + https://qudt.org/schema/qudt/Quantity + A quantifiable property of a phenomenon, body, or substance. + length +Rockwell C hardness +electric resistance + measurand + quantity + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". + +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + + + + + + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + Sawing + Sägen + Sawing + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + + + + + + Cementing + Cementing + + + + + + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + ArchetypeJoin + ArchetypeJoin + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + + + + + + + Quotient of relative mass excess and the nucleon number. + PackingFraction + PackingFraction + https://qudt.org/vocab/quantitykind/PackingFraction + https://www.wikidata.org/wiki/Q98058276 + 10-23.1 + Quotient of relative mass excess and the nucleon number. + + + + + + + - - + + - - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Determination - Characterisation - Determination - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. + + ThermalDiffusivity + ThermalDiffusionCoefficient + ThermalDiffusivity + https://qudt.org/vocab/quantitykind/ThermalDiffusivity + https://www.wikidata.org/wiki/Q3381809 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 + 5-14 - + + + + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. + + Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. + Sample + Specimen + Sample + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. + Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. + + + + + + + IsothermalCompressibility + IsothermalCompressibility + https://qudt.org/vocab/quantitykind/IsothermalCompressibility + https://www.wikidata.org/wiki/Q2990696 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 + 5-5.1 + + + + - - - + + + + + + + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + AbsorbedDose + AbsorbedDose + http://qudt.org/vocab/quantitykind/AbsorbedDose + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + 10-81.1 + https://doi.org/10.1351/goldbook.A00031 + + + + + + + In nuclear physics, energy imparted per mass. + SpecificEnergyImparted + SpecificEnergyImparted + https://qudt.org/vocab/quantitykind/SpecificEnergyImparted + https://www.wikidata.org/wiki/Q99566195 + 10-81.2 + In nuclear physics, energy imparted per mass. + + + + + + + Product of damping coefficient and period duration. + LogarithmicDecrement + LogarithmicDecrement + https://www.wikidata.org/wiki/Q1399446 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 + 3-25 + Product of damping coefficient and period duration. + + + + + + + + + - - Measure of how resistant to compressibility a substance is. - ModulusOfCompression - BulkModulus - ModulusOfCompression - https://qudt.org/vocab/quantitykind/BulkModulus - https://www.wikidata.org/wiki/Q900371 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 - 4-19.3 - Measure of how resistant to compressibility a substance is. - - - - - - - - - + + + + + + + + + + A measurement always implies a causal interaction between the object and the observer. + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + Measurement + Measurement + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + measurement + + + + + + A procedure can be considered as an intentional process with a plan. + The process in which an agent works with some entities according to some existing formalised operative rules. + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + Procedure + Elaboration + Work + Procedure + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + The process in which an agent works with some entities according to some existing formalised operative rules. + The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). +The process in which a librarian order books alphabetically on a shelf. +The execution of an algorithm. + A procedure can be considered as an intentional process with a plan. + + + + - Often denoted B. - Strength of the magnetic field. - MagneticFluxDensity - MagneticInduction - MagneticFluxDensity - http://qudt.org/vocab/quantitykind/MagneticFluxDensity - https://www.wikidata.org/wiki/Q30204 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 - 6-21 - Strength of the magnetic field. - https://doi.org/10.1351/goldbook.M03686 + The class of general mathematical symbolic objects respecting mathematical syntactic rules. + A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. + Mathematical + Mathematical + The class of general mathematical symbolic objects respecting mathematical syntactic rules. - - + + + + An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) + AlgebricExpression + AlgebricExpression + 2x+3 + + + + + + GluonType4 + GluonType4 + + + + - + - + - + - + - + - - + + + + + + + + + + + + @@ -10161,923 +9217,1072 @@ ISO 80000-1 - BlueAntiQuark - BlueAntiQuark - - - - - - GluonType4 - GluonType4 + The class of individuals that stand for gluons elementary particles. + Gluon + Gluon + The class of individuals that stand for gluons elementary particles. + https://en.wikipedia.org/wiki/Gluon - - - - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - CreepTesting - CreepTesting - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + + + + Voltage between the two terminals of a voltage source when there is no electric current through the source. + SourceVoltage + SourceTension + SourceVoltage + https://qudt.org/vocab/quantitykind/SourceVoltage + https://www.wikidata.org/wiki/Q185329 + 6-36 + Voltage between the two terminals of a voltage source when there is no electric current through the source. - - - - - - - + + - - + + T-2 L0 M+2 I0 Θ0 N0 J0 - - - Energy per unit mass - SpecificEnergy - SpecificEnergy - https://qudt.org/vocab/quantitykind/SpecificEnergy - https://www.wikidata.org/wiki/Q3023293 - https://dbpedia.org/page/Specific_energy - 5-21.1 - Energy per unit mass - https://en.wikipedia.org/wiki/Specific_energy - - - - - - FormingFromGas - FormingFromGas - - - - + + - Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. - The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. - IonActivity - IonActivity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + SquareMassPerSquareTimeUnit + SquareMassPerSquareTimeUnit - - - - - ActivityOfSolute - RelativeActivityOfSolute - ActivityOfSolute - https://www.wikidata.org/wiki/Q89408862 - 9-24 + + + + + A coarse dispersion of gas in a solid continuum phase. + SolidGasSuspension + SolidGasSuspension + A coarse dispersion of gas in a solid continuum phase. - - + + + - + - Logarithmic measure of the number of available states of a system. - May also be referred to as a measure of order of a system. - Entropy - Entropy - http://qudt.org/vocab/quantitykind/Entropy - 5-18 - https://doi.org/10.1351/goldbook.E02149 - - - - - - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - FreezingPointDepressionOsmometry - FreezingPointDepressionOsmometry - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - - - - - - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - Osmometry - Osmometry - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Measure for how the polarization of a material is affected by the application of an external electric field. + Permittivity + Permittivity + http://qudt.org/vocab/quantitykind/Permittivity + 6-14.1 + 6-14.2 + https://doi.org/10.1351/goldbook.P04507 - + + + - - + - Mathematical description in crystallography. - StructureFactor - StructureFactor - https://qudt.org/vocab/quantitykind/StructureFactor - https://www.wikidata.org/wiki/Q900684 - 12-5.4 - Mathematical description in crystallography. + Differential quotient of the cross section for a process and the energy of the scattered particle. + EnergyDistributionOfCrossSection + EnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralCrossSection + https://www.wikidata.org/wiki/Q98267245 + 10-40 + Differential quotient of the cross section for a process and the energy of the scattered particle. - - + + + + + GreenBottomAntiQuark + GreenBottomAntiQuark + + + + + + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + AnodicStrippingVoltammetry + AnodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q939328 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + https://doi.org/10.1515/pac-2018-0109 + + + + + - The energy possessed by a body by virtue of its position or orientation in a potential field. - PotentialEnergy - PotentialEnergy - http://qudt.org/vocab/quantitykind/PotentialEnergy - 4-28.1 - The energy possessed by a body by virtue of its position or orientation in a potential field. - https://doi.org/10.1351/goldbook.P04778 + The charge of an electron. + The negative of ElementaryCharge. + ElectronCharge + ElectronCharge + The charge of an electron. + https://doi.org/10.1351/goldbook.E01982 - - - - - - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - Path - Path - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - /etc/fstab (UNIX-like path) -C:\\Users\\John\\Desktop (DOS-like path) + + + + + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + Electron + Electron + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron - + + + + + + + + + + + + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + CondensedMatter + CondensedMatter + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + + + + + + + + + + + + + + + + + + + + + + A continuum that has no fixed shape and yields easily to external pressure. + Fluid + Fluid + A continuum that has no fixed shape and yields easily to external pressure. + Gas, liquid, plasma, + + + + + + + + + + + + + + + + + + + + + + + + + + + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + StateOfMatter + StateOfMatter + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + https://en.wikipedia.org/wiki/State_of_matter + + + - + - + - The derivative of the electric charge of a system with respect to the electric potential. - Capacitance - ElectricCapacitance - Capacitance - http://qudt.org/vocab/quantitykind/Capacitance - 6-13 - The derivative of the electric charge of a system with respect to the electric potential. - https://doi.org/10.1351/goldbook.C00791 + At a point in a fluid, the product of mass density and velocity. + MassFlow + MassFlow + https://www.wikidata.org/wiki/Q3265048 + 4-30.1 + At a point in a fluid, the product of mass density and velocity. - - + + - The overall time needed to acquire the measurement data. - The overall time needed to acquire the measurement data. - MeasurementTime - MeasurementTime - The overall time needed to acquire the measurement data. + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + CalibrationData + CalibrationData + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - - - - - + + - - + + + + + + - - SpecificEntropy - SpecificEntropy - https://qudt.org/vocab/quantitykind/SpecificEntropy - https://www.wikidata.org/wiki/Q69423705 - 5-19 + + A formal computer-interpretable identifier of a system resource. + ResourceIdentifier + ResourceIdentifier + A formal computer-interpretable identifier of a system resource. - - - - - - - - - - - Subatomic particle which contains an odd number of valence quarks, at least 3. - Baryon - Baryon - Subatomic particle which contains an odd number of valence quarks, at least 3. - https://en.wikipedia.org/wiki/Baryon + + + + The class of individuals that stand for photons elementary particles. + Photon + Photon + The class of individuals that stand for photons elementary particles. + https://en.wikipedia.org/wiki/Photon + + + + + + + + + + + + + + + + + + + + + + + TopQuark + TopQuark + https://en.wikipedia.org/wiki/Top_quark - - - + + - Expectation value of the energy imparted. - MeanEnergyImparted - MeanEnergyImparted - https://qudt.org/vocab/quantitykind/MeanEnergyImparted - https://www.wikidata.org/wiki/Q99526969 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 - 10-80.2 - Expectation value of the energy imparted. + Length of the repetition interval of a wave. + Wavelength + Wavelength + https://qudt.org/vocab/quantitykind/Wavelength + https://www.wikidata.org/wiki/Q41364 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 + https://dbpedia.org/page/Wavelength + 3-19 + Length of the repetition interval of a wave. + https://en.wikipedia.org/wiki/Wavelength + https://doi.org/10.1351/goldbook.W06659 - - - - MergingManufacturing - AddingManufacturing - MergingManufacturing + + + + + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + RelativeMassDensity + RelativeDensity + RelativeMassDensity + https://www.wikidata.org/wiki/Q11027905 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 + 4-4 + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + https://doi.org/10.1351/goldbook.R05262 - + + + + + + + ThermodynamicCriticalMagneticFluxDensity + ThermodynamicCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106103200 + 12-36.1 + + + + - + - + - The measure of the resistance of a fluid to flow when an external force is applied. - DynamicViscosity - Viscosity - DynamicViscosity - https://qudt.org/vocab/quantitykind/DynamicViscosity - https://www.wikidata.org/wiki/Q15152757 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 - 4-24 - The measure of the resistance of a fluid to flow when an external force is applied. - https://doi.org/10.1351/goldbook.D01877 + Often denoted B. + Strength of the magnetic field. + MagneticFluxDensity + MagneticInduction + MagneticFluxDensity + http://qudt.org/vocab/quantitykind/MagneticFluxDensity + https://www.wikidata.org/wiki/Q30204 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 + 6-21 + Strength of the magnetic field. + https://doi.org/10.1351/goldbook.M03686 - + + - - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - DebyeAngularFrequency - DebyeAngularFrequency - https://qudt.org/vocab/quantitykind/DebyeAngularFrequency - https://www.wikidata.org/wiki/Q105580986 - 12-10 - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + UpperCriticalMagneticFluxDensity + UpperCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127634 + 12-36.3 + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - - + + + - Rate of change of the phase angle. - AngularFrequency - AngularFrequency - https://qudt.org/vocab/quantitykind/AngularFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 - https://dbpedia.org/page/Angular_frequency - 3-18 - Rate of change of the phase angle. - https://en.wikipedia.org/wiki/Angular_frequency - https://doi.org/10.1351/goldbook.A00352 + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + LowerCriticalMagneticFluxDensity + LowerCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127355 + 12-36.2 + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - - + + - + - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - AngularVelocity - AngularVelocity - https://qudt.org/vocab/quantitykind/AngularVelocity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 - https://dbpedia.org/page/Angular_velocity - 3-12 - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - https://en.wikipedia.org/wiki/Angular_velocity - - - - - - - - - - - - - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - - ProbeSampleInteraction - ProbeSampleInteraction - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + SolubilityProduct + SolubilityProductConstant + SolubilityProduct + https://www.wikidata.org/wiki/Q11229788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + https://doi.org/10.1351/goldbook.S05742 - - - - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - InteractionVolume - InteractionVolume - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + + + + The interpreter's internal representation of the object in a semiosis process. + Interpretant + Interpretant + The interpreter's internal representation of the object in a semiosis process. - - - - - + + - - + + + 1 - - Mechanical property of linear elastic solid materials. - ModulusOfElasticity - YoungsModulus - ModulusOfElasticity - https://www.wikidata.org/wiki/Q2091584 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 - 4-19.1 - Mechanical property of linear elastic solid materials. - https://doi.org/10.1351/goldbook.M03966 + + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + IRI + IRI + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + https://en.wiktionary.org/wiki/Ῥόδος + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + The class of individuals that stand for quarks elementary particles. + Quark + Quark + The class of individuals that stand for quarks elementary particles. + https://en.wikipedia.org/wiki/Quark - - - - - InjectionMolding - InjectionMolding + + + + Mathematical model used to process data. + Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. + PostProcessingModel + PostProcessingModel + Mathematical model used to process data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. - - - - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - ArchetypeJoin - ArchetypeJoin - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + + + + + + + + + + + + + A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. + +Abramowitz and Stegun, 1968 + An analogical icon expressed in mathematical language. + MathematicalModel + MathematicalModel + An analogical icon expressed in mathematical language. - - - + + - Faction of electrical current carried by given ionic species. - IonTransportNumber - CurrentFraction - TransferrenceNumber - IonTransportNumber - https://qudt.org/vocab/quantitykind/IonTransportNumber - https://www.wikidata.org/wiki/Q331854 - 9-46 - Faction of electrical current carried by given ionic species. - https://doi.org/10.1351/goldbook.I03181 - https://doi.org/10.1351/goldbook.T06489 + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + Symbol + AlphabeticEntity + Symbol + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). + +Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. +(Wikipedia) + The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. - - - - - - + + - - + + T0 L-1 M+1 I0 Θ0 N0 J0 - + + - Quotient of linear attenuation coefficient µ and the amount c of the medium. - MolarAttenuationCoefficient - MolarAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592828 - 10-51 - Quotient of linear attenuation coefficient µ and the amount c of the medium. + MassPerLengthUnit + MassPerLengthUnit - - - - - - - - - - - - - - A 'Sign' that stands for an 'Object' due to causal continguity. - Index - Signal - Index - A 'Sign' that stands for an 'Object' due to causal continguity. - Smoke stands for a combustion process (a fire). -My facial expression stands for my emotional status. + + + + + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. + NeutronYieldPerAbsorption + NeutronYieldPerAbsorption + https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption + https://www.wikidata.org/wiki/Q99159075 + 10-74.2 + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - - - - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - FormingBlasting - Umformstrahlen - FormingBlasting + + + + + RedUpQuark + RedUpQuark - - - - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - Widening - Weiten - Widening + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedQuark + RedQuark - + - + - + - In condensed matter physics, position vector of an atom or ion in equilibrium. - EquilibriumPositionVector - EquilibriumPositionVector - https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon - https://www.wikidata.org/wiki/Q105533477 - 12-7.2 - In condensed matter physics, position vector of an atom or ion in equilibrium. + Mechanical property of linear elastic solid materials. + ModulusOfElasticity + YoungsModulus + ModulusOfElasticity + https://www.wikidata.org/wiki/Q2091584 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 + 4-19.1 + Mechanical property of linear elastic solid materials. + https://doi.org/10.1351/goldbook.M03966 - - - - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - Tempering - QuenchingAndTempering - Vergüten - Tempering - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + + + + + Unit for dimensionless quantities that have the nature of count. + CountingUnit + CountingUnit + http://qudt.org/vocab/unit/NUM + 1 + Unit for dimensionless quantities that have the nature of count. + Unit of atomic number +Unit of number of cellular +Unit of degeneracy in quantum mechanics - - - - - - - - - - - - - - - - - - - - - - - Semiotic subclasse are defined using Peirce's semiotic theory. + + + + + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + LarmonAngularFrequency + LarmonAngularFrequency + 10-15.1 + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + -"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). + + + + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. -The triadic elements: -- 'sign': the sign A (e.g. a name) -- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) -- 'object': the object C (e.g. the entity to which the sign A and B refer to) +This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. -This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - SemioticEntity - SemioticEntity - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. +A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. + +e.g. you cannot evaluate the beauty of a person on objective basis. + Subjective + Subjective + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The beauty of that girl. +The style of your clothing. - + - - - - + + + + - - - - - - - - - - - - - - - A symbol that stands for a single unit. - UnitSymbol - UnitSymbol - A symbol that stands for a single unit. - Some examples are "Pa", "m" and "J". - - - - - - - + + + + - - - - - - - - - - - - - - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - MetrologicalSymbol - MetrologicalSymbol - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - - - - - + + - - - A measurement unit symbol that do not have a metric prefix as a direct spatial part. - NonPrefixedUnit - NonPrefixedUnit - A measurement unit symbol that do not have a metric prefix as a direct spatial part. - - - - - - - + - - + + + + + + - - Quotient of the total linear stopping power S and the mass density ρ of the material. - TotalMassStoppingPower - MassStoppingPower - TotalMassStoppingPower - https://qudt.org/vocab/quantitykind/TotalMassStoppingPower - https://www.wikidata.org/wiki/Q98642795 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 - 10-55 - Quotient of the total linear stopping power S and the mass density ρ of the material. + + A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. +A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. +A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. + +For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. +An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) +Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). +This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. +This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. + Coded + Coded + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. + The name "red" that stands for the color of an object. - - - - - T-3 L0 M+1 I0 Θ-1 N0 J0 - - - + + + - ThermalTransmittanceUnit - ThermalTransmittanceUnit + Quotient of mechanical output and input power. + MechanicalEfficiency + MechanicalEfficiency + https://www.wikidata.org/wiki/Q2628085 + 4-29 + Quotient of mechanical output and input power. - - - - - T0 L-3 M0 I0 Θ0 N+1 J0 - - - - - AmountConcentrationUnit - AmountConcentrationUnit + + + + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + ApplicationSpecificScript + ApplicationSpecificScript + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. - + + + + A programming language that is executed through runtime interpretation. + ScriptingLanguage + ScriptingLanguage + A programming language that is executed through runtime interpretation. + + + - Gibbs energy per amount of substance. - MolarGibbsEnergy - MolarGibbsEnergy - https://www.wikidata.org/wiki/Q88863324 - 9-6.4 - Gibbs energy per amount of substance. - - - - - - - - - - - - The sample is mounted on a holder. - The sample is mounted on a holder. - Mounting - Mounting - The sample is mounted on a holder. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - - SamplePreparation - SamplePreparation - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + MolarEnthalpy + MolarEnthalpy + Enthalpy per amount of substance. + https://www.wikidata.org/wiki/Q88769977 + 9-6.2 - - + + + - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - OxidationNumber - OxidationState - OxidationNumber - https://www.wikidata.org/wiki/Q484152 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 - https://dbpedia.org/page/Oxidation_state - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - https://en.wikipedia.org/wiki/Oxidation_state - https://doi.org/10.1351/goldbook.O04363 + Angular frequency divided by angular wavenumber. + PhaseSpeedOfElectromagneticWaves + PhaseSpeedOfElectromagneticWaves + https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed + https://www.wikidata.org/wiki/Q77990619 + 6-35.1 + Angular frequency divided by angular wavenumber. - - - - - For a particle, electric charge q divided by elementary charge e. - The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. - The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. - ChargeNumber - IonizationNumber - ChargeNumber - https://qudt.org/vocab/quantitykind/ChargeNumber - https://www.wikidata.org/wiki/Q1800063 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 - https://dbpedia.org/page/Charge_number - 10-5.2 - For a particle, electric charge q divided by elementary charge e. - https://en.wikipedia.org/wiki/Charge_number - https://doi.org/10.1351/goldbook.C00993 + + + + + BlueCharmQuark + BlueCharmQuark - - - + + - StoichiometricNumberOfSubstance - StoichiometricNumberOfSubstance - https://qudt.org/vocab/quantitykind/StoichiometricNumber - https://www.wikidata.org/wiki/Q95443720 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 - 9-29 - https://doi.org/10.1351/goldbook.S06025 + duration of one cycle of a periodic event + PeriodDuration + Period + PeriodDuration + https://qudt.org/vocab/quantitykind/Period + https://www.wikidata.org/wiki/Q2642727 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 + 3-14 + duration of one cycle of a periodic event + https://doi.org/10.1351/goldbook.P04493 - - - + + - for metals, the resistivity extrapolated to zero thermodynamic temperature - ResidualResistivity - ResidualResistivity - https://qudt.org/vocab/quantitykind/ResidualResistivity - https://www.wikidata.org/wiki/Q25098876 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 - 12-17 - for metals, the resistivity extrapolated to zero thermodynamic temperature + Physical quantity for describing the temporal distance between events. + Duration + Duration + https://www.wikidata.org/wiki/Q2199864 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 + 3-9 + Physical quantity for describing the temporal distance between events. - - + + + + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + URI + URI + https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + + + + - - + - Electric field strength divided by the current density. - ElectricResistivity - Resistivity - ElectricResistivity - http://qudt.org/vocab/quantitykind/Resistivity - https://www.wikidata.org/wiki/Q108193 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 - 6-44 - https://doi.org/10.1351/goldbook.R05316 + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + TotalLinearStoppingPower + LinearStoppingPower + TotalLinearStoppingPower + https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower + https://www.wikidata.org/wiki/Q908474 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 + 10-54 + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + https://doi.org/10.1351/goldbook.S06035 - - + + + + A measuring instrument that can be used alone is a measuring system. + Device used for making measurements, alone or in conjunction with one or more supplementary devices. + +-- VIM + MeasuringInstrument + MeasuringInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary devices. + +-- VIM + measuring instrument + + + + + + An observer that makes use of a measurement tool and provides a quantitative property. + Measurer + Measurer + An observer that makes use of a measurement tool and provides a quantitative property. + + + + + + ArithmeticEquation + ArithmeticEquation + 1 + 1 = 2 + + + + + + + + + + + + + + + + + + + + + - Average power over a period. - ActivePower - ActivePower - https://qudt.org/vocab/quantitykind/ActivePower - https://www.wikidata.org/wiki/Q20820042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 - 6-56 - Average power over a period. + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. +ISO 80000-1 + Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. + +Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. + Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. + +For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. + +However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. + +For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. + +As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). + — quantities of the same kind have the same quantity dimension, +— quantities of different quantity dimensions are always of different kinds, and +— quantities having the same quantity dimension are not necessarily of the same kind. +ISO 80000-1 + PhysicalQuantity + PhysicalQuantity + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - - - + + + + + XrdGrazingIncidence + XrdGrazingIncidence + + + + + + LeftHandedParticle + LeftHandedParticle + + + + - + - - - - - - - + + - UpAntiQuark - UpAntiQuark + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + Lepton + Lepton + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + https://en.wikipedia.org/wiki/Lepton + + + + + + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + Software + Software + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - - - + + + + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + DigitalData + BinaryData + DigitalData + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + + + + + - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - SolidAngularMeasure - SolidAngle - SolidAngularMeasure - https://qudt.org/vocab/quantitykind/SolidAngle - https://www.wikidata.org/wiki/Q208476 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 - https://dbpedia.org/page/Solid_angle - 3-8 - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - https://en.wikipedia.org/wiki/Solid_angle + The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. + The value of the absolute dielectric permittivity of classical vacuum. + VacuumElectricPermittivity + PermittivityOfVacuum + VacuumElectricPermittivity + http://qudt.org/vocab/constant/PermittivityOfVacuum + 6-14.1 + https://doi.org/10.1351/goldbook.P04508 - - - - A liquid solution in which the solvent is water. - AqueousSolution - AqueousSolution - A liquid solution in which the solvent is water. + + + + + T-3 L+1 M+1 I0 Θ-1 N0 J0 + + + + + ThermalConductivityUnit + ThermalConductivityUnit - - - - A group of machineries used to process a group of similar parts. - Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. - MachineCell - MachineCell - A group of machineries used to process a group of similar parts. + + + + + T-2 L+4 M0 I0 Θ0 N0 J0 + + + + + MassStoppingPowerUnit + MassStoppingPowerUnit - - + + - A system arranged to setup a specific manufacturing process. - ManufacturingSystem - ManufacturingSystem - A system arranged to setup a specific manufacturing process. + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + DeepFreezing + Cryogenic treatment, Deep-freeze + Tieftemperaturbehandeln + DeepFreezing + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - - - + + + - Factor taking into account health effects in the determination of the dose equivalent. - QualityFactor - QualityFactor - https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor - https://www.wikidata.org/wiki/Q2122099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 - 10-82 - Factor taking into account health effects in the determination of the dose equivalent. + Reciprocal of the wavelength. + Wavenumber + Repetency + Wavenumber + https://qudt.org/vocab/quantitykind/Wavenumber + https://www.wikidata.org/wiki/Q192510 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 + https://dbpedia.org/page/Wavenumber + 3-20 + Reciprocal of the wavelength. + https://en.wikipedia.org/wiki/Wavenumber + https://doi.org/10.1351/goldbook.W06664 - - - - - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - Plasma - Plasma - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + + + + + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + MolarGasConstant + MolarGasConstant + http://qudt.org/vocab/constant/MolarGasConstant + 9-37.1 + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + https://doi.org/10.1351/goldbook.G02579 - + @@ -11085,410 +10290,552 @@ This class includes also the 'interpeter' i.e. the entity that connects the 'sig - + - JouleThomsonCoefficient - JouleThomsonCoefficient - https://www.wikidata.org/wiki/Q93946998 - 5-24 + SpecificGasConstant + SpecificGasConstant + https://www.wikidata.org/wiki/Q94372268 + 5-26 - - - - + + + + + - - + + + + Ratio of shear stress to the shear strain. + ModulusOfRigidity + ShearModulus + ModulusOfRigidity + https://qudt.org/vocab/quantitykind/ShearModulus + https://www.wikidata.org/wiki/Q461466 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 + 4-19.2 + Ratio of shear stress to the shear strain. + https://doi.org/10.1351/goldbook.S05635 + + + + + + + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + ComptonWavelength + ComptonWavelength + https://qudt.org/vocab/constant/ComptonWavelength + https://www.wikidata.org/wiki/Q1145377 + 10-20 + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + https://en.wikipedia.org/wiki/Compton_wavelength + + + + + + + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + RatioOfSpecificHeatCapacities + RatioOfSpecificHeatCapacities + https://qudt.org/vocab/quantitykind/HeatCapacityRatio + https://www.wikidata.org/wiki/Q503869 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 + 5-17.1 + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + + + + + - - + + - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - CharacterisationMeasurementInstrument - CharacterisationMeasurementInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - In nanoindentation is the nanoindenter - Measuring instrument - - - - - - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - CalibrationData - CalibrationData - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + CharacterisationSystem + CharacterisationSystem + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Measuring system - - - - A tile that has next and is next of other tiles within the same tessellation. - ThroughTile - ThroughTile - A tile that has next and is next of other tiles within the same tessellation. + + + + + + + + + + + + A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. + HolisticSystem + HolisticSystem + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - - - - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - - Thermogravimetry - TGA - Thermogravimetry - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - + + + + + + + + + + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - - - - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - - ThermochemicalTesting - TMA - ThermochemicalTesting - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. +-- VIM + MeasuringSystem + MeasuringSystem + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + +-- VIM + measuring system - + - + - Force per unit oriented surface area . - Measure of the internal forces that neighboring particles of a continuous material exert on each other. - Stress - Stress - http://qudt.org/vocab/quantitykind/Stress - 4-15 - - - - - - - GreenCharmQuark - GreenCharmQuark + Energy per unit change in amount of substance. + ChemicalPotential + ChemicalPotential + http://qudt.org/vocab/quantitykind/ChemicalPotential + 9-17 + https://doi.org/10.1351/goldbook.C01032 - - - - - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - ActivityOfSolvent - ActivityOfSolvent - https://www.wikidata.org/wiki/Q89486193 - 9-27.1 - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + + + + A mapping that acts on elements of one space and produces elements of another space. + MathematicalOperator + MathematicalOperator + A mapping that acts on elements of one space and produces elements of another space. + The algebraic operator '+' that acts on two real numbers and produces one real number. + The differential operator that acts on a C1 real function and produces another real function. - - - - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Represents the number 1, used as an explicit unit to say something has no units. - UnitOne - Unitless - UnitOne - http://qudt.org/vocab/unit/UNITLESS - Represents the number 1, used as an explicit unit to say something has no units. - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Refractive index or volume fraction. - Typically used for ratios of two units whos dimensions cancels out. + + + + + + + + + + + + + + + + + + + + + + + MathematicalSymbol + MathematicalSymbol - - - - - Written as pOH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) - POH - POH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) + + + + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + Fractography + Fractography + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - - + + + - At about 25 °C aqueous solutions with: -pH < 7 are acidic; -pH = 7 are neutral; -pH > 7 are alkaline. -At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - Written as pH - PH - PH - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 - For more details, see ISO 80000-9:2009, Annex C - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - https://doi.org/10.1351/goldbook.P04524 + Relative change of length with respect the original length. + RelativeLinearStrain + RelativeLinearStrain + https://qudt.org/vocab/quantitykind/LinearStrain + https://www.wikidata.org/wiki/Q1990546 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 + 4-17.2 + Relative change of length with respect the original length. + https://doi.org/10.1351/goldbook.L03560 - - - - Factor by which the phase velocity of light is reduced in a medium. - RefractiveIndex - RefractiveIndex - http://qudt.org/vocab/quantitykind/RefractiveIndex - https://doi.org/10.1351/goldbook.R05240 + + + + + + + + + + + + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. + Product + Output + Product + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 + https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. - - + + + + + - - T0 L-1 M0 I+1 Θ0 N0 J0 + + - - - - MagneticFieldStrengthUnit - MagneticFieldStrengthUnit + + + The measure of the resistance of a fluid to flow when an external force is applied. + DynamicViscosity + Viscosity + DynamicViscosity + https://qudt.org/vocab/quantitykind/DynamicViscosity + https://www.wikidata.org/wiki/Q15152757 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 + 4-24 + The measure of the resistance of a fluid to flow when an external force is applied. + https://doi.org/10.1351/goldbook.D01877 - - - + + + - IsothermalCompressibility - IsothermalCompressibility - https://qudt.org/vocab/quantitykind/IsothermalCompressibility - https://www.wikidata.org/wiki/Q2990696 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 - 5-5.1 + Time constant for recombination or trapping of minority charge carriers in semiconductors + CarrierLifetime + CarrierLifetime + https://qudt.org/vocab/quantitykind/CarrierLifetime + https://www.wikidata.org/wiki/Q5046374 + 12-32.2 + Time constant for recombination or trapping of minority charge carriers in semiconductors - + - + - - + - Heat capacity divided by mass. - SpecificHeatCapacity - SpecificHeatCapacity - https://qudt.org/vocab/quantitykind/SpecificHeatCapacity - https://www.wikidata.org/wiki/Q487756 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 - https://dbpedia.org/page/Specific_heat_capacity - 5-16.1 - Heat capacity divided by mass. - https://en.wikipedia.org/wiki/Specific_heat_capacity - https://doi.org/10.1351/goldbook.S05800 + Activity per unit volume of the sample. + ActivityDensity + ActivityConcentration + VolumetricActivity + VolumicActivity + ActivityDensity + https://qudt.org/vocab/quantitykind/ActivityConcentration + https://www.wikidata.org/wiki/Q423263 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 + 10-29 + Activity per unit volume of the sample. - - - - CeramicSintering - CeramicSintering + + + + Gathering + Gathering - - - - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - - SecondaryIonMassSpectrometry - SIMS - SecondaryIonMassSpectrometry - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + + + + + + + + + + A well formed tessellation with at least a junction tile. + MixedTiling + MixedTiling + A well formed tessellation with at least a junction tile. - - - - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - - Spectrometry - Spectrometry - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + + + + + BlueStrangeQuark + BlueStrangeQuark - - - + + + + + A coarse dispersion of liquid in a liquid continuum phase. + LiquidLiquidSuspension + LiquidLiquidSuspension + A coarse dispersion of liquid in a liquid continuum phase. + + + + + + + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + BetaDisintegrationEnergy + BetaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98148340 + 10-34 + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + + + + + + LowPressureCasting + LowPressureCasting + + + + + - + - - - - - - - + + + + + + + + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + CompositePhysicalParticle + CompositePhysicalParticle + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + + + + + + + + + + + + + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + The union of hadron and lepton, or fermion and bosons. + PhysicalParticle + Particle + PhysicalParticle + The union of hadron and lepton, or fermion and bosons. + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + + + + - CharmAntiQuark - CharmAntiQuark + WNegativeBoson + WNegativeBoson - - - - - - - - + + + + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + Hazard + Hazard + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + + + + + + + - - + + - - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + + Entropy per amount of substance. + MolarEntropy + MolarEntropy + https://qudt.org/vocab/quantitykind/MolarEntropy + https://www.wikidata.org/wiki/Q68972876 + 9-8 + Entropy per amount of substance. + -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - Atom - ChemicalElement - Atom - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. + + + + Process for removing unwanted residual or waste material from a given product or material + Cleaning + Cleaning + -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + + + + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. + MeasurementDataPostProcessing + MeasurementDataPostProcessing + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. + Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. + -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + + + + Analysis, that allows one to calculate the final material property from the calibrated primary data. + DataPostProcessing + DataPostProcessing + Analysis, that allows one to calculate the final material property from the calibrated primary data. + -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + + + + Quantities declared under the ISO 80000. + InternationalSystemOfQuantity + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 + InternationalSystemOfQuantity + Quantities declared under the ISO 80000. + https://en.wikipedia.org/wiki/International_System_of_Quantities - - - - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - GammaSpectrometry - GammaSpectrometry - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + + + + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + StandardizedPhysicalQuantity + StandardizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - - - - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - ClassicalData - ClassicalData - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - + + + + Array subclasses with a specific shape can be constructed with cardinality restrictions. - - - - The class of general mathematical symbolic objects respecting mathematical syntactic rules. - A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. - Mathematical - Mathematical - The class of general mathematical symbolic objects respecting mathematical syntactic rules. +See Shape4x3Matrix as an example. + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + Arrays are ordered objects, since they are a subclasses of Arrangement. + Array + Array + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + A Vector is a 1-dimensional Array with Number as spatial direct parts, +a Matrix is a 2-dimensional Array with Vector as spatial direct parts, +an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, +and so forth... - - - - Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. - The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped - The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - - SquareWaveVoltammetry - OSWV - OsteryoungSquareWaveVoltammetry - SWV - SquareWaveVoltammetry - https://www.wikidata.org/wiki/Q4016323 - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - https://en.wikipedia.org/wiki/Squarewave_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. + PrincipalQuantumNumber + PrincipalQuantumNumber + https://qudt.org/vocab/quantitykind/PrincipalQuantumNumber + https://www.wikidata.org/wiki/Q867448 + 10-13.2 + Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - - - - - - - - - - - - - - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - Property - Property - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - Hardness is a subclass of properties. -Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. - The name "red" which is atomic in the code made of the list of colors. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + + + + An object which supports the specimen in the correct position for the characterisation process. + Holder + Holder + An object which supports the specimen in the correct position for the characterisation process. - + - - + + - + @@ -11496,154 +10843,79 @@ Vickers hardness is a subclass of hardness that involves the procedures and inst - + - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - Determiner - Determiner - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - - - - - - - A coarse dispersion of liquid in a gas continuum phase. - GasLiquidSuspension - GasLiquidSuspension - A coarse dispersion of liquid in a gas continuum phase. - Rain, spray. - - - - - - - - - - - - - - - GasMixture - GasMixture - - - - - - - T0 L-3 M0 I+1 Θ0 N-1 J0 - - - - - ElectricCurrentPerAmountVolumeUnit - ElectricCurrentPerAmountVolumeUnit + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + Declarer + Declarer + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). + Someone who assigns a name to an object. - - - - - T+3 L0 M-1 I0 Θ+1 N0 J0 - - - - - PerThermalTransmittanceUnit - PerThermalTransmittanceUnit + + + + + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + CharacterisationProperty + CharacterisationProperty + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - - + + + + + + + - - T0 L0 M-2 I0 Θ0 N0 J0 + + - - - - InverseSquareMassUnit - InverseSquareMassUnit - - - - + - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - MagneticQuantumNumber - MagneticQuantumNumber - https://qudt.org/vocab/quantitykind/MagneticQuantumNumber - https://www.wikidata.org/wiki/Q2009727 - 10-13.4 - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - - - - - - - T0 L+2 M0 I0 Θ0 N0 J0 - - - - - AreaUnit - AreaUnit - - - - - - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - DataQuality - DataQuality - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) + Measure for how the magnetization of material is affected by the application of an external magnetic field . + Permeability + ElectromagneticPermeability + Permeability + http://qudt.org/vocab/quantitykind/ElectromagneticPermeability + 6-26.2 + https://doi.org/10.1351/goldbook.P04503 - - - - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - ComputerSystem - Computer - ComputerSystem - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - https://en.wikipedia.org/wiki/Computer + + + + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + DirectCoulometryAtControlledCurrent + DirectCoulometryAtControlledCurrent + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - + - T0 L+2 M-1 I0 Θ0 N0 J0 + T+2 L0 M-1 I+1 Θ0 N0 J0 - AreaPerMassUnit - AreaPerMassUnit + ElectricMobilityUnit + ElectricMobilityUnit - - - - - Quantity characterizing the deviation of a solvent from ideal behavior. - OsmoticCoefficientOfSolvent - OsmoticFactorOfSolvent - OsmoticCoefficientOfSolvent - https://qudt.org/vocab/quantitykind/OsmoticCoefficient - https://www.wikidata.org/wiki/Q5776102 - 9-27.2 - Quantity characterizing the deviation of a solvent from ideal behavior. - https://doi.org/10.1351/goldbook.O04342 + + + + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + DynamicMechanicalAnalysis + DynamicMechanicalAnalysis + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. @@ -11659,238 +10931,304 @@ Vickers hardness is a subclass of hardness that involves the procedures and inst Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. - - - + + + + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + + Probe + Probe + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. + In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. + In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) + In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). + In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry + + + + + + + T0 L-2 M+1 I0 Θ+1 N0 J0 + + + - Mass of the contained water vapour per volume. - AbsoluteHumidity - MassConcentrationOfWaterVapour - AbsoluteHumidity - https://qudt.org/vocab/quantitykind/AbsoluteHumidity - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - 5-28 - Mass of the contained water vapour per volume. + TemperatureMassPerAreaUnit + TemperatureMassPerAreaUnit - - - + + + + A meson with total spin 1 and even parit. + PseudovectorMeson + PseudovectorMeson + A meson with total spin 1 and even parit. + https://en.wikipedia.org/wiki/Pseudovector_meson + + + + + + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + SampleExtraction + SampleExtraction + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + + + - In condensed matter physics, quotient of momentum and the reduced Planck constant. - AngularWaveNumber - AngularRepetency - AngularWaveNumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q105542089 - 12-9.1 - In condensed matter physics, quotient of momentum and the reduced Planck constant. + The imaginary part of the impedance. + The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. + ElectricReactance + Reactance + ElectricReactance + http://qudt.org/vocab/quantitykind/Reactance + https://www.wikidata.org/wiki/Q193972 + 6-51.3 + The imaginary part of the impedance. + https://en.wikipedia.org/wiki/Electrical_reactance + https://doi.org/10.1351/goldbook.R05162 - + + + + + Ratio of transverse strain to axial strain. + PoissonNumber + PoissonsRatio + PoissonNumber + https://www.wikidata.org/wiki/Q190453 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 + 4-18 + Ratio of transverse strain to axial strain. + + + + - + + + + + + + + - In nuclear physics, fraction of interacting particles per distance traversed in a given material. - LinearAttenuationCoefficient - LinearAttenuationCoefficient - https://www.wikidata.org/wiki/Q98583077 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 - 10-49 - In nuclear physics, fraction of interacting particles per distance traversed in a given material. + Time derivative of kerma. + KermaRate + KermaRate + https://qudt.org/vocab/quantitykind/KermaRate + https://www.wikidata.org/wiki/Q99713105 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 + 10-86.2 + Time derivative of kerma. - - - - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - ZBoson - NeutralWeakBoson - ZBoson - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - https://en.wikipedia.org/wiki/W_and_Z_bosons + + + + StandardEquilibriumConstant + ThermodynamicEquilibriumConstant + StandardEquilibriumConstant + https://www.wikidata.org/wiki/Q95993378 + 9-32 + https://doi.org/10.1351/goldbook.S05915 - - - - - - - - - - - - - - - WeakBoson - WeakBoson + + + + DippingForms + DippingForms + + + + + + FormingFromLiquid + FormingFromLiquid + + + + + + + For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + RelativeMassConcentrationOfWaterVapour + RelativeMassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour + https://www.wikidata.org/wiki/Q76379357 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + + + + + + KineticFrictionFactor + DynamicFrictionFactor + KineticFrictionFactor + https://www.wikidata.org/wiki/Q73695445 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 + 4-23.2 + + + + + + + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + CoefficientOfFriction + FrictionCoefficient + FrictionFactor + CoefficientOfFriction + https://www.wikidata.org/wiki/Q1932524 + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + https://doi.org/10.1351/goldbook.F02530 + + + + + + Sum of electric current density and displacement current density. + TotalCurrentDensity + TotalCurrentDensity + https://qudt.org/vocab/quantitykind/TotalCurrentDensity + https://www.wikidata.org/wiki/Q77680811 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 + 6-20 + Sum of electric current density and displacement current density. - - - - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - ElectrochemicalPiezoelectricMicrogravimetry - ElectrochemicalPiezoelectricMicrogravimetry - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - https://doi.org/10.1515/pac-2018-0109 + + + + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + Widening + Weiten + Widening - - - - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - Electrogravimetry - Electrogravimetry - https://www.wikidata.org/wiki/Q902953 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - https://en.wikipedia.org/wiki/Electrogravimetry + + + + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + TensileForming + Zugdruckumformen + TensileForming - - - - - + + + + A physical made of more than one symbol sequentially arranged. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + String + String + A physical made of more than one symbol sequentially arranged. + The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. + +In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). + +If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + A string is not requested to respect any syntactic rule: it's simply directly made of symbols. + + + + + - - + + - Time derivative of exposure. - ExposureRate - ExposureRate - https://qudt.org/vocab/quantitykind/ExposureRate - https://www.wikidata.org/wiki/Q99720212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 - 10-89 - Time derivative of exposure. - - - - - - - Rotation - Rotation - https://www.wikidata.org/wiki/Q76435127 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 - 3-16 + 1-dimensional array who's spatial direct parts are numbers. + Vector + 1DArray + LinearArray + Vector + 1-dimensional array who's spatial direct parts are numbers. - + - - - + + + - - - - - - - - - - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Semiosis - Semiosis - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Me looking a cat and saying loud: "Cat!" -> the semiosis process - -me -> interpreter -cat -> object (in Peirce semiotics) -the cat perceived by my mind -> interpretant -"Cat!" -> sign, the produced sign - - - - - - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - Mixture - Mixture - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + + + + + + + + + + + + + https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a + SpatioTemporalTile + WellFormedTile + SpatioTemporalTile - - - - - + + - - + + + + + + - - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - MassExcess - MassExcess - https://qudt.org/vocab/quantitykind/MassExcess - https://www.wikidata.org/wiki/Q1571163 - 10-21.1 - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - https://doi.org/10.1351/goldbook.M03719 + + A causal object that is direct part of a tessellation. + Tile + Tile + A causal object that is direct part of a tessellation. - - - - - - - - - - - - - - - - - - + + + - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - GaugeBoson - GaugeBoson - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - Gauge bosons can carry any of the four fundamental interactions of nature. - https://en.wikipedia.org/wiki/Gauge_boson + AntiMuon + AntiMuon - - + + - + - + - + @@ -11899,292 +11237,305 @@ the cat perceived by my mind -> interpretant - A boson that is a single elementary particle. - A particle with integer spin that follows Bose–Einstein statistics. - FundamentalBoson - FundamentalBoson - A particle with integer spin that follows Bose–Einstein statistics. - A boson that is a single elementary particle. - https://en.wikipedia.org/wiki/Boson#Elementary_bosons + AntiElectronType + AntiElectronType + + + + + + Person + Person + + + + + + + T-1 L-2 M+1 I0 Θ0 N0 J0 + + + + + MassFluxUnit + MassFluxUnit + + + + + + Describes the main input parameters that are needed to acquire the signal. + Describes the main input parameters that are needed to acquire the signal. + MeasurementParameter + MeasurementParameter + Describes the main input parameters that are needed to acquire the signal. + + + + + + GluonType6 + GluonType6 - - - - Vector quantity from the origin of a coordinate system to a point in space. - PositionVector - PositionVector - https://www.wikidata.org/wiki/Q192388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 - https://dbpedia.org/page/Position_(geometry) - 3-1.10 - Vector quantity from the origin of a coordinate system to a point in space. - https://en.wikipedia.org/wiki/Position_(geometry) + + + + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + Viscometry + Viscosity + Viscometry + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - - - - Describes the level of expertise required to carry out a process (the entire test or the data processing). - LevelOfExpertise - LevelOfExpertise - Describes the level of expertise required to carry out a process (the entire test or the data processing). + + + + + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + BohrRadius + BohrRadius + https://qudt.org/vocab/constant/BohrRadius + https://www.wikidata.org/wiki/Q652571 + 10-6 + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + https://doi.org/10.1351/goldbook.B00693 - - + + + + + + + + + + + + - - + + - - - 1 + + + + + + - - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. - --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - CalibrationProcess - CalibrationProcess - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. + + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - +On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. + Interpreter + Interpreter + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). - - - - A simulation in which more than one model are solved together with a coupled method. - TightlyCoupledModelsSimulation - TightlyCoupledModelsSimulation - A simulation in which more than one model are solved together with a coupled method. - Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. +The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). - + - - + + + - - - Coupled - Coupled - + + + Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. - - - - A colloid formed by trapping pockets of gas in a liquid or solid. - Foam - Foam - A colloid formed by trapping pockets of gas in a liquid or solid. - +The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. - - - - - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. - Colloid - Colloid - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. +In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). + The object, in Peirce semiotics, as participant to a semiotic process. + SemioticObject + Object + SemioticObject + The object, in Peirce semiotics, as participant to a semiotic process. - - - - A standalone atom with an unbalanced number of electrons with respect to its atomic number. - The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, - IonAtom - IonAtom - A standalone atom with an unbalanced number of electrons with respect to its atomic number. + + + + Heat treatment process that generally produces martensite in the matrix. + Hardening + Hardening + Heat treatment process that generally produces martensite in the matrix. - - - - - - - - - - - - - - - A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. - An atom that does not share electrons with other atoms. - StandaloneAtom - StandaloneAtom - An atom that does not share electrons with other atoms. + + + + + Kinetic energy released per mass. + Kerma + Kerma + https://qudt.org/vocab/quantitykind/Kerma + https://www.wikidata.org/wiki/Q1739288 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 + 10-86.1 + Kinetic energy released per mass. - - + + + + + + + - - T-1 L+2 M+1 I0 Θ0 N0 J0 + + - - - - AngularMomentumUnit - AngularMomentumUnit - - - - - - - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - Cutting - Schneiden - Cutting + + + Energy per unit mass + SpecificEnergy + SpecificEnergy + https://qudt.org/vocab/quantitykind/SpecificEnergy + https://www.wikidata.org/wiki/Q3023293 + https://dbpedia.org/page/Specific_energy + 5-21.1 + Energy per unit mass + https://en.wikipedia.org/wiki/Specific_energy - - - - An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) - AlgebricExpression - AlgebricExpression - 2x+3 + + + + A physics-based model based on a physics equation describing the behaviour of atoms. + AtomisticModel + AtomisticModel + A physics-based model based on a physics equation describing the behaviour of atoms. - - - - A well-formed finite combination of mathematical symbols according to some specific rules. - Expression - Expression - A well-formed finite combination of mathematical symbols according to some specific rules. + + + + + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + HalfValueThickness + HalfValueThickness + https://qudt.org/vocab/quantitykind/Half-ValueThickness + https://www.wikidata.org/wiki/Q127526 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 + 10-53 + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - - - - - BlueUpAntiQuark - BlueUpAntiQuark + + + + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + Thickness + Thickness + https://www.wikidata.org/wiki/Q3589038 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 + 3-1.4 + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - - - - Determined - Determined + + + + + A solution is a homogeneous mixture composed of two or more substances. + Solutions are characterized by the occurrence of Rayleigh scattering on light, + Solution + Solution + A solution is a homogeneous mixture composed of two or more substances. - - - - - An object which is an holistic spatial part of a object. - Constituent - ObjectPart - Constituent - An object which is an holistic spatial part of a object. - A tire is a constituent of a car. + + + + + + + + + + + + + + + + + + + + A material in which distributed particles of one phase are dispersed in a different continuous phase. + Dispersion + Dispersion + A material in which distributed particles of one phase are dispersed in a different continuous phase. - - - + + - A coarse dispersion of solids in a liquid continuum phase. - LiquidSolidSuspension - LiquidSolidSuspension - A coarse dispersion of solids in a liquid continuum phase. - Mud + A single phase mixture. + PhaseHomogeneousMixture + PhaseHomogeneousMixture + A single phase mixture. - - - - Describes what is needed to repeat the experiment - AccessConditions - AccessConditions - Describes what is needed to repeat the experiment - In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? + + + + + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + VolumeFraction + VolumeFraction + http://qudt.org/vocab/quantitykind/VolumeFraction + 9-14 + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + https://doi.org/10.1351/goldbook.V06643 - + + + + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + RadialDistance + RadialDistance + https://qudt.org/vocab/quantitykind/RadialDistance + https://www.wikidata.org/wiki/Q1578234 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 + 3-1.9 + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + + + - - - - - - - - - - - - - - - - - - - - - - - + + T-2 L+4 M+1 I0 Θ0 N0 J0 - - - Declaration - ConventionalSemiosis - Declaration + + + + EnergyAreaUnit + EnergyAreaUnit - + + @@ -12192,1636 +11543,1915 @@ standards. - + - For an atom or nucleus, this energy is quantized and can be written as: - - W = g μ M B - -where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. - --- ISO 80000 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - MagneticDipoleMoment - MagneticDipoleMoment - http://qudt.org/vocab/quantitykind/MagneticDipoleMoment - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 - 10-9.1 - 6-30 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - http://goldbook.iupac.org/terms/view/M03688 - - - - - - - - - - - - - 2-dimensional array who's spatial direct parts are vectors. - Matrix - 2DArray - Matrix - 2-dimensional array who's spatial direct parts are vectors. + Electric field strength divided by the current density. + ElectricResistivity + Resistivity + ElectricResistivity + http://qudt.org/vocab/quantitykind/Resistivity + https://www.wikidata.org/wiki/Q108193 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 + 6-44 + https://doi.org/10.1351/goldbook.R05316 - - - - Array subclasses with a specific shape can be constructed with cardinality restrictions. - -See Shape4x3Matrix as an example. - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - Arrays are ordered objects, since they are a subclasses of Arrangement. - Array - Array - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - A Vector is a 1-dimensional Array with Number as spatial direct parts, -a Matrix is a 2-dimensional Array with Vector as spatial direct parts, -an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, -and so forth... + + + + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + FreezingPointDepressionOsmometry + FreezingPointDepressionOsmometry + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - - - - - Square root of the product of electron and hole density in a semiconductor. - IntrinsicCarrierDensity - IntrinsicCarrierDensity - https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity - https://www.wikidata.org/wiki/Q1303188 - 12-29.3 - Square root of the product of electron and hole density in a semiconductor. + + + + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Osmometry + Osmometry + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - + + - + - ReciprocalVolume - ReciprocalVolume - - - - - - - - - - - - - - - - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Deducer - Deducer - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Someone who deduces an emotional status of a persona according to facial expression. - Someone who deduces the occurring of a physical phenomenon through other phenomena. + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume + DensityOfVibrationalStates + DensityOfVibrationalStates + https://qudt.org/vocab/quantitykind/DensityOfStates + https://www.wikidata.org/wiki/Q105637294 + 12-12 + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - + - T+1 L-3 M0 I0 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ0 N-1 J0 - - TimePerVolumeUnit - TimePerVolumeUnit - - - - - - RightHandedParticle - RightHandedParticle - - - - - - - For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. - IsentropicExponent - IsentropicExponent - https://qudt.org/vocab/quantitykind/IsentropicExponent - https://www.wikidata.org/wiki/Q75775739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 - 5-17.2 - - - - - - Product of force and displacement. - Work - Work - http://qudt.org/vocab/quantitykind/Work - Product of force and displacement. - 4-28.4 - https://doi.org/10.1351/goldbook.W06684 - - - - - - Data that are non-quantitatively interpreted (e.g., qualitative data, types). - NonNumericalData - NonNumericalData - Data that are non-quantitatively interpreted (e.g., qualitative data, types). + + EnergyPerAmountUnit + EnergyPerAmountUnit - - - + + - + - + - "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + ElectricDipoleMoment + ElectricDipoleMoment + http://qudt.org/vocab/quantitykind/ElectricDipoleMoment + https://www.wikidata.org/wiki/Q735135 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 + 6-6 + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + https://doi.org/10.1351/goldbook.E01929 + --- SI Brochure - The number of elementary entities present. - AmountOfSubstance - AmountOfSubstance - http://qudt.org/vocab/quantitykind/AmountOfSubstance - 9-2 - The number of elementary entities present. - https://doi.org/10.1351/goldbook.A00297 + + + + + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Emulsion + Emulsion + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Mayonnaise, milk. - - + + + + + + + + + + + + A class devoted to categorize causal objects by specifying their granularity levels. + A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: + - are proper parts of y + - covers the entire whole (y = x1 +x2 + ... + xn) + - do not overlap + - are part of one, and one only, whole (inverse functional) + Reductionistic + Reductionistic + A class devoted to categorize causal objects by specifying their granularity levels. + A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: + - are proper parts of y + - covers the entire whole (y = x1 +x2 + ... + xn) + - do not overlap + - are part of one, and one only, whole (inverse functional) + Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. + + + + - Inverse of the impendance. - Admittance - ComplexAdmittance - Admittance - https://qudt.org/vocab/quantitykind/Admittance - https://www.wikidata.org/wiki/Q214518 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 - https://dbpedia.org/page/Admittance - 6-52.1 - Inverse of the impendance. + ISO80000Categorised + ISO80000Categorised - - - - A physical made of more than one symbol sequentially arranged. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - String - String - A physical made of more than one symbol sequentially arranged. - The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. + + + + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + CategorizedPhysicalQuantity + https://physics.nist.gov/cuu/Constants + CategorizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + -In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). + + + + + The quantum of action. It defines the kg base unit in the SI system. + PlanckConstant + PlanckConstant + http://qudt.org/vocab/constant/PlanckConstant + The quantum of action. It defines the kg base unit in the SI system. + https://doi.org/10.1351/goldbook.P04685 + -If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - A string is not requested to respect any syntactic rule: it's simply directly made of symbols. + + + + + + + + + + + + + A material that is obtained through a manufacturing process. + ManufacturedMaterial + EngineeredMaterial + ProcessedMaterial + ManufacturedMaterial + A material that is obtained through a manufacturing process. - - - - A set of reasons or a logical basis for a decision or belief - Rationale - Rationale - A set of reasons or a logical basis for a decision or belief + + + + + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + Material + Material + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. + + + + + + + + + + + + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + PhaseHeterogeneousMixture + PhaseHeterogeneousMixture + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - + - T+1 L+2 M0 I+1 Θ0 N0 J0 + T-1 L0 M0 I0 Θ0 N+1 J0 - ElectricChargeAreaUnit - ElectricChargeAreaUnit + CatalyticActivityUnit + CatalyticActivityUnit - - - - A construction language used to write configuration files. - ConfigurationLanguage - ConfigurationLanguage - A construction language used to write configuration files. - .ini files - Files in the standard .config directory on Unix systems. - https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages - + + + + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - - - - An observer that makes use of a measurement tool and provides a quantitative property. - Measurer - Measurer - An observer that makes use of a measurement tool and provides a quantitative property. +It is advisory to create a uniquely defined subclass these units for concrete usage. + LogarithmicUnit + LogarithmicUnit + http://qudt.org/schema/qudt/LogarithmicUnit + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Decibel + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + +It is advisory to create a uniquely defined subclass these units for concrete usage. + https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units - - - - A characteriser that declares a property for an object through the specific interaction required by the property definition. - Observer - Observer - A characteriser that declares a property for an object through the specific interaction required by the property definition. + + + + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + Deduced + Deduced + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. - - - - A quantity obtained from a well-defined modelling procedure. - ModelledProperty - ModelledProperty - A quantity obtained from a well-defined modelling procedure. + + + + + The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + MeanFreePath + MeanFreePath + https://qudt.org/vocab/quantitykind/MeanFreePath + https://www.wikidata.org/wiki/Q756307 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 + 9-38 + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + https://doi.org/10.1351/goldbook.M03778 - - + + - ModulusOfAdmittance - ModulusOfAdmittance - https://qudt.org/vocab/quantitykind/ModulusOfAdmittance - https://www.wikidata.org/wiki/Q79466359 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 - 6-52.4 + Length of a rectifiable curve between two of its points. + PathLength + ArcLength + PathLength + https://www.wikidata.org/wiki/Q7144654 + https://dbpedia.org/page/Arc_length + 3-1.7 + Length of a rectifiable curve between two of its points. + https://en.wikipedia.org/wiki/Arc_length - + - T-1 L-3 M0 I0 Θ0 N0 J0 + T-3 L-3 M+1 I0 Θ0 N0 J0 - FrequencyPerVolumeUnit - FrequencyPerVolumeUnit + PowerPerAreaVolumeUnit + PowerPerAreaVolumeUnit - + - + - + - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - CatalyticActivity - CatalyticActivity - http://qudt.org/vocab/quantitykind/CatalyticActivity - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - https://doi.org/10.1351/goldbook.C00881 + Scalar potential of an irrotational magnetic field strength. + ScalarMagneticPotential + ScalarMagneticPotential + https://www.wikidata.org/wiki/Q17162107 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 + 6-37.1 + Scalar potential of an irrotational magnetic field strength. - - - - - T-3 L0 M+1 I0 Θ0 N0 J0 - - - + + - PowerDensityUnit - PowerDensityUnit + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + DerivedQuantity + DerivedQuantity + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + derived quantity - - - - An equation that define a new variable in terms of other mathematical entities. - DefiningEquation - DefiningEquation - An equation that define a new variable in terms of other mathematical entities. - The definition of velocity as v = dx/dt. - -The definition of density as mass/volume. - -y = f(x) + + + + A computer language that expresses the presentation of structured documents. + StyleSheetLanguage + StyleSheetLanguage + A computer language that expresses the presentation of structured documents. + CSS + https://en.wikipedia.org/wiki/Style_sheet_language - - + - Ratio of transverse strain to axial strain. - PoissonNumber - PoissonsRatio - PoissonNumber - https://www.wikidata.org/wiki/Q190453 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 - 4-18 - Ratio of transverse strain to axial strain. + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. + Probability + Probability + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + https://doi.org/10.1351/goldbook.P04855 - - - - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - Numerical - Numerical - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + + + + Gibbs energy per unit mass. + SpecificGibbsEnergy + SpecificGibbsEnergy + https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy + https://www.wikidata.org/wiki/Q76360636 + 5-21.5 + Gibbs energy per unit mass. + + + + + + + + + + + + + + Structural + Structural + + + + + + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + UltrasonicTesting + UltrasonicTesting + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + + + + + + ChemicallyDefinedMaterial + ChemicallyDefinedMaterial + + + + + + + + + + + + + + + + + + + + + + + + Cognition + IconSemiosis + Cognition - - - - FormingFromIonised - FormingFromIonised + + + + + + + + + + + + + + + + + + + + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Semiosis + Semiosis + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Me looking a cat and saying loud: "Cat!" -> the semiosis process + +me -> interpreter +cat -> object (in Peirce semiotics) +the cat perceived by my mind -> interpretant +"Cat!" -> sign, the produced sign - - - + + + + + T-1 L-3 M0 I0 Θ0 N+1 J0 + + + - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - ExchangeIntegral - ExchangeIntegral - https://qudt.org/vocab/quantitykind/ExchangeIntegral - https://www.wikidata.org/wiki/Q10882959 - 12-34 - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + AmountPerVolumeTimeUnit + AmountPerVolumeTimeUnit - - - - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - - Viscometry - Viscosity - Viscometry - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + + + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + The diameter of a circle or a sphere is twice its radius. + Diameter + Diameter + https://qudt.org/vocab/quantitykind/Diameter + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 + https://dbpedia.org/page/Diameter + 3-1.5 + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + https://en.wikipedia.org/wiki/Diameter - - - + + + - Arctan of the loss factor - LossAngle - LossAngle - https://www.qudt.org/vocab/quantitykind/LossAngle - https://www.wikidata.org/wiki/Q20820438 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 - 6-55 - Arctan of the loss factor + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + RollingResistanceFactor + RollingResistanceFactor + https://www.wikidata.org/wiki/Q91738044 + 4-23.3 + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - + + - - + - Examples of condition might be constant volume or constant pressure for a gas. - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - HeatCapacity - HeatCapacity - https://qudt.org/vocab/quantitykind/HeatCapacity - https://www.wikidata.org/wiki/Q179388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 - https://dbpedia.org/page/Heat_capacity - 5-15 - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - https://en.wikipedia.org/wiki/Heat_capacity - https://doi.org/10.1351/goldbook.H02753 - - - - - - Application of additive manufacturing intended for reducing the time needed for producing prototypes. - RapidPrototyping - RapidPrototyping - Application of additive manufacturing intended for reducing the time needed for producing prototypes. + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + ElectromagneticEnergyDensity + VolumicElectromagneticEnergy + ElectromagneticEnergyDensity + https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity + https://www.wikidata.org/wiki/Q77989624 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 + 6-33 + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - - - - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - AdditiveManufacturing - GenerativeManufacturing - AdditiveManufacturing - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + + + + Whatever hardware is used during the characterisation process. + CharacterisationHardware + CharacterisationHardware + Whatever hardware is used during the characterisation process. - - - - - Decrease in magnitude of any kind of flux through a medium. - Attenuation - Extinction - Attenuation - 3-26.1 - Decrease in magnitude of any kind of flux through a medium. - https://en.wikipedia.org/wiki/Attenuation - https://doi.org/10.1351/goldbook.A00515 + + + + + CharacterisationHardwareSpecification + CharacterisationHardwareSpecification - - - - An artificial computer language used to express information or knowledge, often for use in computer system design. - ModellingLanguage - ModellingLanguage - An artificial computer language used to express information or knowledge, often for use in computer system design. - Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. - Hardware description language – used to model integrated circuits. - -Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. - -Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. - https://en.wikipedia.org/wiki/Modeling_language + + + + A characteriser that declares a property for an object through the specific interaction required by the property definition. + Observer + Observer + A characteriser that declares a property for an object through the specific interaction required by the property definition. - - - - Complex representation of an oscillating voltage. - VoltagePhasor - VoltagePhasor - https://qudt.org/vocab/quantitykind/VoltagePhasor - https://www.wikidata.org/wiki/Q78514605 - 6-50 - Complex representation of an oscillating voltage. + + + + + + + + + + + + + + + + + + + + + + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. + Determiner + Determiner + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - - - - DieCasting - DieCasting + + + + + + + + + + An 'equation' that has parts two 'polynomial'-s + AlgebricEquation + AlgebricEquation + 2 * a - b = c - - - - - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - HalfValueThickness - HalfValueThickness - https://qudt.org/vocab/quantitykind/Half-ValueThickness - https://www.wikidata.org/wiki/Q127526 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 - 10-53 - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + + + + + T0 L+1 M0 I0 Θ-1 N0 J0 + + + + + LengthPerTemperatureUnit + LengthPerTemperatureUnit - - - - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - Thickness - Thickness - https://www.wikidata.org/wiki/Q3589038 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 - 3-1.4 - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + + + + + GreenCharmAntiQuark + GreenCharmAntiQuark - - - - - Chosen value of amount concentration, usually equal to 1 mol dm−3. - StandardAmountConcentration - StandardConcentration - StandardMolarConcentration - StandardAmountConcentration - https://www.wikidata.org/wiki/Q88871689 - Chosen value of amount concentration, usually equal to 1 mol dm−3. - 9-12.2 - https://doi.org/10.1351/goldbook.S05909 + + + + + BlueUpQuark + BlueUpQuark - - - - - + + - - + + + + + + - - The amount of a constituent divided by the volume of the mixture. - AmountConcentration - Concentration - MolarConcentration - Molarity - AmountConcentration - http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB - https://doi.org/10.1351/goldbook.A00295 + + A constituent of a system. + Component + Component + A constituent of a system. - - - - - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - Activity - Activity - https://qudt.org/vocab/quantitykind/Activity - https://www.wikidata.org/wiki/Q317949 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 - 10-27 - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - https://goldbook.iupac.org/terms/view/A00114 + + + + A system which is mainly characterised by the spatial configuration of its elements. + HolisticArrangement + HolisticArrangement + A system which is mainly characterised by the spatial configuration of its elements. - - - + + - Position vector of a particle. - ParticlePositionVector - ParticlePositionVector - https://qudt.org/vocab/quantitykind/ParticlePositionVector - https://www.wikidata.org/wiki/Q105533324 - 12-7.1 - Position vector of a particle. + Distance is the norm of Displacement. + Shortest path length between two points in a metric space. + Distance + Distance + https://qudt.org/vocab/quantitykind/Distance + https://www.wikidata.org/wiki/Q126017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 + https://dbpedia.org/page/Distance + 3-1.8 + Shortest path length between two points in a metric space. + https://en.wikipedia.org/wiki/Distance - - - - + + - - + + + 2 - - In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. + + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + Collection + Collection + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. + --- IEC - Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. + + + + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + QuantumAnnihilation + QuantumAnnihilation + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + --- ISO 80000-3 - Vector r characterizing a point P in a point space with a given origin point O. - PositionVector - Position - PositionVector - http://qudt.org/vocab/quantitykind/PositionVector - Vector r characterizing a point P in a point space with a given origin point O. + + + + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + CausalCollapse + CausalCollapse + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. - - + + - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - Milling - Fräsen - Milling + FromWorkPIecetoWorkPiece + FromWorkPIecetoWorkPiece - + - + - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - FastFissionFactor - FastFissionFactor - https://qudt.org/vocab/quantitykind/FastFissionFactor - https://www.wikidata.org/wiki/Q99197493 - 10-75 - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + GFactor + GFactor + https://www.wikidata.org/wiki/Q1951266 + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. - - - - MultiParticlePath - MultiParticlePath + + + + Irradiate + Irradiate - - - - - - - - - - - - - - - The class of entities that have no spatial structure. - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - CausalParticle - CausalParticle - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - The class of entities that have no spatial structure. + + + + + T+1 L+1 M0 I+1 Θ0 N0 J0 + + + + + ElectricDipoleMomentUnit + ElectricDipoleMomentUnit - - - - An aerosol composed of liquid droplets in air or another gas. - LiquidAerosol - LiquidAerosol - An aerosol composed of liquid droplets in air or another gas. + + + + + + + + + + + + + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + DoseEquivalent + DoseEquivalent + http://qudt.org/vocab/quantitykind/DoseEquivalent + 10-83.1 + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + https://doi.org/10.1351/goldbook.E02101 - - - - - A colloid composed of fine solid particles or liquid droplets in air or another gas. - Aerosol - Aerosol - A colloid composed of fine solid particles or liquid droplets in air or another gas. + + + + A building or group of buildings where goods are manufactured or assembled. + Factory + IndustrialPlant + Factory + A building or group of buildings where goods are manufactured or assembled. - + + + + + + + + + + + + + + + + + + + + + + Deduction + IndexSemiosis + Deduction + + + + - - + - Reciprocal of the coefficient of heat transfer. - ThermalInsulance - CoefficientOfThermalInsulance - ThermalInsulance - https://qudt.org/vocab/quantitykind/ThermalInsulance - https://www.wikidata.org/wiki/Q2596212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 - 5-11 - Reciprocal of the coefficient of heat transfer. + Strength of a magnetic field. Commonly denoted H. + MagneticFieldStrength + MagnetizingFieldStrength + MagneticFieldStrength + http://qudt.org/vocab/quantitykind/MagneticFieldStrength + https://www.wikidata.org/wiki/Q28123 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 + 6-25 + https://doi.org/10.1351/goldbook.M03683 - + + + + - - - 2 + + - - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - Collection - Collection - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. + + SecondAxialMomentOfArea + SecondAxialMomentOfArea + https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea + https://www.wikidata.org/wiki/Q91405496 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 + 4-21.1 - - - - A mapping that acts on elements of one space and produces elements of another space. - MathematicalOperator - MathematicalOperator - A mapping that acts on elements of one space and produces elements of another space. - The algebraic operator '+' that acts on two real numbers and produces one real number. - The differential operator that acts on a C1 real function and produces another real function. - + + + + + + + + + + + + + + + + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - - - - A system which is mainly characterised by the spatial configuration of its elements. - HolisticArrangement - HolisticArrangement - A system which is mainly characterised by the spatial configuration of its elements. - +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - - - - - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - TotalIonization - TotalIonization - https://qudt.org/vocab/quantitykind/TotalIonization - https://www.wikidata.org/wiki/Q98690787 - 10-59 - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. - - - - Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. - Heat - AmountOfHeat - Heat - http://qudt.org/vocab/quantitykind/Heat - 5-6.1 - https://doi.org/10.1351/goldbook.H02752 +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + Atom + ChemicalElement + Atom + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. + +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - - - - - T0 L-2 M0 I0 Θ0 N0 J0 - - - - - PerAreaUnit - PerAreaUnit + + + + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + https://goldbook.iupac.org/terms/view/M03986 + MolecularEntity + ChemicalEntity + MolecularEntity + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. + Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). - + - - - T-2 L-1 M+1 I0 Θ0 N0 J0 - + + + + + + - - - PressureUnit - PressureUnit - - - - - - A command language designed to be run by a command-line interpreter, like a Unix shell. - ShellScript - ShellScript - A command language designed to be run by a command-line interpreter, like a Unix shell. - https://en.wikipedia.org/wiki/Shell_script - + + + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - - - - An interpreted computer language for job control in computing. - CommandLanguage - CommandLanguage - An interpreted computer language for job control in computing. - Unix shell. -Batch programming languages. - https://en.wikipedia.org/wiki/Command_language - +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. - - - - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Conductometry - Conductometry - https://www.wikidata.org/wiki/Q901180 - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Monitoring of the purity of deionized water. - https://en.wikipedia.org/wiki/Conductometry - https://doi.org/10.1515/pac-2018-0109 - +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + Holistic + Wholistic + Holistic + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - - - - - - - - - - - - - - Quantity in condensed matter physics. - EnergyDensityOfStates - EnergyDensityOfStates - https://qudt.org/vocab/quantitykind/EnergyDensityOfStates - https://www.wikidata.org/wiki/Q105687031 - 12-16 - Quantity in condensed matter physics. - +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. - - - - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - Cognised - Cognised - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - A physical phenomenon that is connected to an equation by a scientist. +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. + A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. - - - - - - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. - ThermalDiffusionFactor - ThermalDiffusionFactor - https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor - https://www.wikidata.org/wiki/Q96249629 - 9-40.2 - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + + + + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + Tempering + QuenchingAndTempering + Vergüten + Tempering + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - - - - - ThermalDiffusionRatio - ThermalDiffusionRatio - https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio - https://www.wikidata.org/wiki/Q96249433 - 9-40.1 + + + + In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + MetrologicalUncertainty + A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. + MetrologicalUncertainty + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + - Standard deviation +- Half-width of an interval with a stated coverage probability + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - - - - - - - - - - - - - Differential quotient of the absorbed dose with respect to time. - AbsorbedDoseRate - AbsorbedDoseRate - https://qudt.org/vocab/quantitykind/AbsorbedDoseRate - https://www.wikidata.org/wiki/Q69428958 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 - 10-84 - Differential quotient of the absorbed dose with respect to time. - + + + + + A quantity that is obtained from a well-defined procedure. + Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - - - - - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - DiffusionLength - DiffusionLength - https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength - https://www.wikidata.org/wiki/Q106097176 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 - 12-33 - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + ObjectiveProperty + PhysicalProperty + QuantitativeProperty + ObjectiveProperty + A quantity that is obtained from a well-defined procedure. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - - - - - Radius of a sphere such that the relativistic electron energy is distributed uniformly. - ElectronRadius - ElectronRadius - https://www.wikidata.org/wiki/Q2152581 - 10-19.2 - Radius of a sphere such that the relativistic electron energy is distributed uniformly. +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - - + + - - + + - - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. - -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - PhaseHeterogeneousMixture - PhaseHeterogeneousMixture - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. - -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - - - - - - - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - AlphaDisintegrationEnergy - AlphaDisintegrationEnergy - http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98146025 - 10-32 - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - - - - - - + - - + + + + + + + + + + + + - - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - CompositePhysicalParticle - CompositePhysicalParticle - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + + A solvable set of one Physics Equation and one or more Materials Relations. + MaterialsModel + https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 + MaterialsModel + A solvable set of one Physics Equation and one or more Materials Relations. + + + + + + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + Calorimetry + Calorimetry + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + + + + + + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + LinearScanVoltammetry + LSV + LinearPolarization + LinearSweepVoltammetry + LinearScanVoltammetry + https://www.wikidata.org/wiki/Q620700 + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + https://en.wikipedia.org/wiki/Linear_sweep_voltammetry + https://doi.org/10.1515/pac-2018-0109 + + + + + + TransportationDevice + TransportationDevice + + + + + + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + Device + Equipment + Machine + Device + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + + + + + + A real bond between atoms is always something hybrid between covalent, metallic and ionic. + +In general, metallic and ionic bonds have atoms sharing electrons. + An bonded atom that shares at least one electron to the atom-based entity of which is part of. + The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. + This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. + BondedAtom + BondedAtom + An bonded atom that shares at least one electron to the atom-based entity of which is part of. - - - - Electroplating - Electroplating + + + + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + Inequality + Inequality + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + f(x) > 0 - - - - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. - CoatingManufacturing - DIN 8580:2020 - Beschichten - CoatingManufacturing - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + + + + A mathematical string that express a relation between the elements in one set X to elements in another set Y. + The set X is called domain and the set Y range or codomain. + MathematicalFormula + MathematicalFormula + A mathematical string that express a relation between the elements in one set X to elements in another set Y. - - - - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - Sawing - Sägen - Sawing - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + + + + + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + EffectiveMass + EffectiveMass + https://qudt.org/vocab/quantitykind/EffectiveMass + https://www.wikidata.org/wiki/Q1064434 + 12-30 + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - + - + - + - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - DoseEquivalent - DoseEquivalent - http://qudt.org/vocab/quantitykind/DoseEquivalent - 10-83.1 - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - https://doi.org/10.1351/goldbook.E02101 + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + VolumeFlowRate + VolumetricFlowRate + VolumeFlowRate + https://qudt.org/vocab/quantitykind/VolumeFlowRate + https://www.wikidata.org/wiki/Q1134348 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 + 4-31 + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + https://en.wikipedia.org/wiki/Volumetric_flow_rate - - - - - A process which is an holistic temporal part of a process. - Stage - Stage - A process which is an holistic temporal part of a process. - Moving a leg is a stage of the process of running. + + + + + T0 L+2 M0 I0 Θ0 N0 J0 + + + + + AreaUnit + AreaUnit - - - - An holistic temporal part of a whole. - TemporalRole - HolisticTemporalPart - TemporalRole - An holistic temporal part of a whole. + + + + + Dimensionless quantity in electromagnetism. + QualityFactor + QualityFactor + https://qudt.org/vocab/quantitykind/QualityFactor + https://www.wikidata.org/wiki/Q79467569 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 + 6-53 + Dimensionless quantity in electromagnetism. - - - + + + + + IntermediateSample + IntermediateSample + + + + + + A coded that is not atomic with respect to a code of description. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + Description + Description + A coded that is not atomic with respect to a code of description. + A biography. + A sentence about some object, depticting its properties. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + + + + - Square root of the migration area, M^2. - MigrationLength - MigrationLength - https://qudt.org/vocab/quantitykind/MigrationLength - https://www.wikidata.org/wiki/Q98998318 - 10-73.3 - Square root of the migration area, M^2. + Property of a solute in a solution. + StandardAbsoluteActivity + StandardAbsoluteActivityInASolution + StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89485936 + 9-26 + Property of a solute in a solution. - - + + + - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - GyromagneticRatioOfTheElectron - GyromagneticCoefficientOfTheElectron - MagnetogyricRatioOfTheElectron - GyromagneticRatioOfTheElectron - https://www.wikidata.org/wiki/Q97543076 - 10-12.2 - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + AbsoluteActivity + AbsoluteActivity + https://qudt.org/vocab/quantitykind/AbsoluteActivity + https://www.wikidata.org/wiki/Q56638155 + 9-18 + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + https://goldbook.iupac.org/terms/view/A00019 - + - + - + - Ratio of magnetic dipole moment to total angular momentum. - GyromagneticRatio - GyromagneticCoefficient - MagnetogyricRatio - GyromagneticRatio - https://qudt.org/vocab/quantitykind/GyromagneticRatio - https://www.wikidata.org/wiki/Q634552 - 10-12.1 - Ratio of magnetic dipole moment to total angular momentum. - https://doi.org/10.1351/goldbook.M03693 + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + PeltierCoefficient + PeltierCoefficient + https://qudt.org/vocab/quantitykind/PeltierCoefficient + https://www.wikidata.org/wiki/Q105801003 + 12-22 + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - - + + + + + T-2 L+1 M+1 I0 Θ0 N0 J0 + + + + + ForceUnit + ForceUnit + + + + + + CompositeMaterial + CompositeMaterial + + + + + + + RedBottomAntiQuark + RedBottomAntiQuark + + + + + + + + + + + + + Subatomic particle which contains an odd number of valence quarks, at least 3. + Baryon + Baryon + Subatomic particle which contains an odd number of valence quarks, at least 3. + https://en.wikipedia.org/wiki/Baryon + + + + + + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + CharacterisationProcedureValidation + CharacterisationProcedureValidation + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + + + + - ProductionEngineering - ProductionEngineering + Flanging + Flanging - - + + - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. + FormingJoin + FormingJoin + -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - ProcessEngineeringProcess - ProcessEngineeringProcess - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. + + + + An interpreted computer language for job control in computing. + CommandLanguage + CommandLanguage + An interpreted computer language for job control in computing. + Unix shell. +Batch programming languages. + https://en.wikipedia.org/wiki/Command_language + -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - https://de.wikipedia.org/wiki/Verfahrenstechnik + + + + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Detector + Detector + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM + Displacement and force sensors for mechanical testing - - - - - A neutrino belonging to the third generation of leptons. - TauNeutrino - TauNeutrino - A neutrino belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_neutrino + + + + + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + NonLeakageProbability + NonLeakageProbability + https://qudt.org/vocab/quantitykind/Non-LeakageProbability + https://www.wikidata.org/wiki/Q99415566 + 10-77 + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - + - - - - - - + + + T+2 L-2 M-1 I0 Θ0 N0 J0 + - - - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - CondensedMatter - CondensedMatter - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + + + PerEnergyUnit + PerEnergyUnit - - - - - - - - - - - - - - - - - - - - A continuum that has no fixed shape and yields easily to external pressure. - Fluid - Fluid - A continuum that has no fixed shape and yields easily to external pressure. - Gas, liquid, plasma, + + + + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + DifferentialStaircasePulseVoltammetry + DifferentialStaircasePulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - - - - - - - - - - - - - - - - - - - - - - - - - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - StateOfMatter - StateOfMatter - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - https://en.wikipedia.org/wiki/State_of_matter + + + + Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. + LinkedFlux + LinkedFlux + https://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q4374882 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-77 + 6-22.2 + Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - + - + - + - Entropy per amount of substance. - MolarEntropy - MolarEntropy - https://qudt.org/vocab/quantitykind/MolarEntropy - https://www.wikidata.org/wiki/Q68972876 - 9-8 - Entropy per amount of substance. + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + MagneticFlux + MagneticFlux + http://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q177831 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 + https://dbpedia.org/page/Magnetic_flux + 6-22.1 + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + https://en.wikipedia.org/wiki/Magnetic_flux + https://doi.org/10.1351/goldbook.M03684 - - - - - distance between successive lattice planes - LatticePlaneSpacing - LatticePlaneSpacing - https://qudt.org/vocab/quantitykind/LatticePlaneSpacing - https://www.wikidata.org/wiki/Q105488046 - 12-3 - distance between successive lattice planes - + + + + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. - - - - Distance is the norm of Displacement. - Shortest path length between two points in a metric space. - Distance - Distance - https://qudt.org/vocab/quantitykind/Distance - https://www.wikidata.org/wiki/Q126017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 - https://dbpedia.org/page/Distance - 3-1.8 - Shortest path length between two points in a metric space. - https://en.wikipedia.org/wiki/Distance +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + DimensionalUnit + DimensionalUnit + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - - - - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - Sol - Sol - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + + + + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Impedimetry + Impedimetry + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + https://doi.org/10.1515/pac-2018-0109 - - + + + - MesoscopicSubstance - MesoscopicSubstance + A foam of trapped gas in a liquid. + LiquidFoam + LiquidFoam + A foam of trapped gas in a liquid. - - - - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - Exafs - Exafs - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + + + + A colloid formed by trapping pockets of gas in a liquid or solid. + Foam + Foam + A colloid formed by trapping pockets of gas in a liquid or solid. - + - T0 L0 M0 I0 Θ+1 N0 J0 + T-3 L0 M+1 I0 Θ-1 N0 J0 - TemperatureUnit - TemperatureUnit + ThermalTransmittanceUnit + ThermalTransmittanceUnit - - - + + + - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - UpperCriticalMagneticFluxDensity - UpperCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127634 - 12-36.3 - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + RelativePermeability + RelativePermeability + https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio + https://www.wikidata.org/wiki/Q77785645 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 + 6-27 + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + https://doi.org/10.1351/goldbook.R05272 - - - + + + - Quotient of change of volume and original volume. - RelativeVolumeStrain - BulkStrain - VolumeStrain - RelativeVolumeStrain - https://qudt.org/vocab/quantitykind/VolumeStrain - https://www.wikidata.org/wiki/Q73432507 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 - 4-17.4 - Quotient of change of volume and original volume. - https://doi.org/10.1351/goldbook.V06648 + Quotient of the mass of water vapour in moist gas by the total gas volume. + The mass concentration of water at saturation is denoted vsat. + MassConcentrationOfWaterVapour + MassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + Quotient of the mass of water vapour in moist gas by the total gas volume. - + - - - T0 L+2 M+1 I0 Θ0 N0 J0 - + + + + + + - - - MassAreaUnit - MassAreaUnit + + + + CompositeFermion + CompositeFermion + Examples of composite particles with half-integer spin: +spin 1/2: He3 in ground state, proton, neutron +spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) - - + + + + + + + + + + + + + + - A meson with spin zero and odd parity. - PseudoscalarMeson - PseudoscalarMeson - A meson with spin zero and odd parity. - https://en.wikipedia.org/wiki/Pseudoscalar_meson + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + Fermion + Fermion + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - - - - - + + + + A tessellation in wich a tile is next for two or more non spatially connected tiles. + Join + Join + A tessellation in wich a tile is next for two or more non spatially connected tiles. + + + + - - + + + + A well formed tessellation with tiles that are all temporal. + TemporalTiling + TemporalTiling + A well formed tessellation with tiles that are all temporal. + + + + + + + T+1 L0 M0 I+1 Θ0 N0 J0 + + + - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - DecayConstant - DisintegrationConstant - DecayConstant - https://qudt.org/vocab/quantitykind/DecayConstant - https://www.wikidata.org/wiki/Q11477200 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 - 10-24 - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - https://doi.org/10.1351/goldbook.D01538 + ElectricChargeUnit + ElectricChargeUnit - - - - An icon that focusing WHAT the object does. - An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. - This subclass of icon inspired by Peirceian category (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else. - FunctionalIcon - FunctionalIcon - An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. - A data based model is only a functional icon, since it provide the same relations between the properties of the object (e.g., it can predict some properties as function of others) but is not considering the internal mechanisms (i.e., it can ignore the physics). - A guinea pig. - An icon that focusing WHAT the object does. + + + + + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + LevelWidth + LevelWidth + https://qudt.org/vocab/quantitykind/LevelWidth + https://www.wikidata.org/wiki/Q98082340 + 10-26 + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + https://doi.org/10.1351/goldbook.L03507 - - + + + + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + EnvironmentalScanningElectronMicroscopy + EnvironmentalScanningElectronMicroscopy + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + + + + + - LiquidPhaseSintering - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - LiquidPhaseSintering + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). + Cutting + Schneiden + Cutting + + + + + + A construction language used to make queries in databases and information systems. + QueryLanguage + QueryLanguage + A construction language used to make queries in databases and information systems. + SQL, SPARQL + https://en.wikipedia.org/wiki/Query_language + + + + + + + ChargeDistribution + ChargeDistribution + + + + + + + Degenerency + Multiplicity + Degenerency + https://www.wikidata.org/wiki/Q902301 + 9-36.2 + https://doi.org/10.1351/goldbook.D01556 + + + + + + Atomic quantum number related to the orbital angular momentum l of a one-electron state. + OrbitalAngularMomentumQuantumNumber + OrbitalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1916324 + 10-13.3 + Atomic quantum number related to the orbital angular momentum l of a one-electron state. + + + + + + + T-1 L+2 M0 I0 Θ0 N-1 J0 + + + + + DiffusivityUnit + DiffusivityUnit - - - - - Quotient of mass excess and the unified atomic mass constant. - RelativeMassExcess - RelativeMassExcess - https://qudt.org/vocab/quantitykind/RelativeMassExcess - https://www.wikidata.org/wiki/Q98038610 - 10-22.1 - Quotient of mass excess and the unified atomic mass constant. + + + + + RedDownAntiQuark + RedDownAntiQuark - - + + - Quantities declared under the ISO 80000. - InternationalSystemOfQuantity - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 - InternationalSystemOfQuantity - Quantities declared under the ISO 80000. - https://en.wikipedia.org/wiki/International_System_of_Quantities + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + GyromagneticRatioOfTheElectron + GyromagneticCoefficientOfTheElectron + MagnetogyricRatioOfTheElectron + GyromagneticRatioOfTheElectron + https://www.wikidata.org/wiki/Q97543076 + 10-12.2 + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - - + + - + - Decays per unit time. - Radioactivity - RadioactiveActivity - Radioactivity - http://qudt.org/vocab/quantitykind/SpecificActivity - Decays per unit time. - https://doi.org/10.1351/goldbook.A00114 + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + DirectionAndEnergyDistributionOfCrossSection + DirectionAndEnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection + https://www.wikidata.org/wiki/Q98269571 + 10-41 + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - + + + + A tile that has next and is next of other tiles within the same tessellation. + ThroughTile + ThroughTile + A tile that has next and is next of other tiles within the same tessellation. + + + + + + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + ContinuumSubstance + ContinuumSubstance + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). + +A single continuum individual can be the whole fluid in a pipe. + A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. + + + + + + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + + PseudoOpenCircuitVoltageMethod + PseudoOCV + PseudoOpenCircuitVoltageMethod + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + + + + + + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Chronopotentiometry + Chronopotentiometry + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + https://doi.org/10.1515/pac-2018-0109 + + + + + + + The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. + RybergConstant + RybergConstant + http://qudt.org/vocab/constant/RydbergConstant + https://doi.org/10.1351/goldbook.R05430 + + + + + + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + Data whose variations are decoded according to a discrete schema. + DiscreteData + DiscreteData + Data whose variations are decoded according to a discrete schema. + A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + + + - - - - + + + + - - - - A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. - -Abramowitz and Stegun, 1968 - An analogical icon expressed in mathematical language. - MathematicalModel - MathematicalModel - An analogical icon expressed in mathematical language. - - - - - + + - - - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + + + + + + + + + + + + + + + + + + + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. +Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). +A data object may be used as the physical basis for a sign, under Semiotics perspective. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + EncodedData + EncodedVariation + EncodedData + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + A Radio Morse Code transmission can be addressed by combination of perspectives. -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. +Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). +Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. +Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. +Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). + A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + https://no.wikipedia.org/wiki/Data + -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - Holistic - Wholistic - Holistic - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + + + + A direct part that is obtained by partitioning a whole purely in spatial parts. + SpatialTile + SpatialTile + A direct part that is obtained by partitioning a whole purely in spatial parts. + -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + + + + + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + Plasma + Plasma + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. - A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. + + + + The overall time needed to acquire the measurement data. + The overall time needed to acquire the measurement data. + MeasurementTime + MeasurementTime + The overall time needed to acquire the measurement data. + + + + + + + + + + + + + + + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + LinearEnergyTransfer + LinearEnergyTransfer + https://qudt.org/vocab/quantitykind/LinearEnergyTransfer + https://www.wikidata.org/wiki/Q1699996 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 + 10-85 + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + https://doi.org/10.1351/goldbook.L03550 - + + - - + - Negative quotient of Helmholtz energy and temperature. - MassieuFunction - MassieuFunction - https://qudt.org/vocab/quantitykind/MassieuFunction - https://www.wikidata.org/wiki/Q3077625 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 - 5-22 - Negative quotient of Helmholtz energy and temperature. - - - - - - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - Dismantling - Demontage - Dismantling - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - - - - - - - Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. - MagneticSusceptibility - MagneticSusceptibility - https://qudt.org/vocab/unit/SUSCEPTIBILITY_MAG.html - https://www.wikidata.org/wiki/Q691463 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37 - 6-28 - Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + Charge number is a quantity of dimension one defined in ChargeNumber. + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + IonicStrength + IonicStrength + https://qudt.org/vocab/quantitykind/IonicStrength + https://www.wikidata.org/wiki/Q898396 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 + 9-42 + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + https://doi.org/10.1351/goldbook.I03180 - - - + + - - - - - - + + + + + + + + - - The human operator who takes care of the whole characterisation method or sub-processes/stages. - Operator - Operator - The human operator who takes care of the whole characterisation method or sub-processes/stages. - - - - - - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - AlphaSpectrometry - AlphaSpectrometry - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - - - - - - JavaScript - JavaScript - - - - - - A programming language that is executed through runtime interpretation. - ScriptingLanguage - ScriptingLanguage - A programming language that is executed through runtime interpretation. + + A 'Sign' that stands for an 'Object' due to causal continguity. + Index + Signal + Index + A 'Sign' that stands for an 'Object' due to causal continguity. + Smoke stands for a combustion process (a fire). +My facial expression stands for my emotional status. - - + + - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. - Deduced - Deduced - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + Observed + Observed + The biography of a person met by the author. - + @@ -13829,2050 +13459,1910 @@ The holistic perspective is not excluding the reductionistic perspective, on the - + - Quotient of the mean rate of production of particles in a volume, and that volume. - ParticleSourceDensity - ParticleSourceDensity - https://qudt.org/vocab/quantitykind/ParticleSourceDensity - https://www.wikidata.org/wiki/Q98915762 - 10-66 - Quotient of the mean rate of production of particles in a volume, and that volume. + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. + ParticleFluence + ParticleFluence + https://qudt.org/vocab/quantitykind/ParticleFluence + https://www.wikidata.org/wiki/Q82965908 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 + 10-43 + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - - - - - T+4 L-1 M-1 I+2 Θ0 N0 J0 - - - + + + + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + DataQuality + DataQuality + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) + + + + - CapacitancePerLengthUnit - CapacitancePerLengthUnit + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + LandeFactor + GFactorOfAtom + LandeFactor + https://qudt.org/vocab/quantitykind/LandeGFactor + https://www.wikidata.org/wiki/Q1191684 + 10-14.1 + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. - - - - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - - ScanningAugerElectronMicroscopy - AES - ScanningAugerElectronMicroscopy - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + + + + MultiParticlePath + MultiParticlePath - - - - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy - Microscopy - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + + + + A liquid aerosol composed of water droplets in air or another gas. + Vapor + Vapor + A liquid aerosol composed of water droplets in air or another gas. - - - - - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - MultiplicationFactor - MultiplicationFactor - https://qudt.org/vocab/quantitykind/MultiplicationFactor - https://www.wikidata.org/wiki/Q99440471 - 10-78.1 - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + + + + An aerosol composed of liquid droplets in air or another gas. + LiquidAerosol + LiquidAerosol + An aerosol composed of liquid droplets in air or another gas. + + + + + + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + The act of connecting together the parts of something + Assemblying + Assemblying + The act of connecting together the parts of something + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + + + + + + A manufacturing involving the creation of long-term connection of several workpieces. + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + JoinManufacturing + DIN 8580:2020 + Fügen + JoinManufacturing + A manufacturing involving the creation of long-term connection of several workpieces. + + + + + + + An object which is an holistic spatial part of a object. + Constituent + ObjectPart + Constituent + An object which is an holistic spatial part of a object. + A tire is a constituent of a car. - - - - - T-2 L+2 M0 I0 Θ-1 N0 J0 - - - + + + - EntropyPerMassUnit - EntropyPerMassUnit + Quotient of mass excess and the unified atomic mass constant. + RelativeMassExcess + RelativeMassExcess + https://qudt.org/vocab/quantitykind/RelativeMassExcess + https://www.wikidata.org/wiki/Q98038610 + 10-22.1 + Quotient of mass excess and the unified atomic mass constant. - - - - - - - - - - - - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - MagneticMoment - MagneticAreaMoment - MagneticMoment - https://qudt.org/vocab/quantitykind/MagneticMoment - https://www.wikidata.org/wiki/Q242657 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 - 6-23 - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - https://doi.org/10.1351/goldbook.M03688 + + + + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + ZBoson + NeutralWeakBoson + ZBoson + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + https://en.wikipedia.org/wiki/W_and_Z_bosons - - + + + - Speed with which the envelope of a wave propagates in space. - GroupVelocity - GroupSpeed - GroupVelocity - https://www.wikidata.org/wiki/Q217361 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 - https://dbpedia.org/page/Group_velocity - 3-23.2 - Speed with which the envelope of a wave propagates in space. - https://en.wikipedia.org/wiki/Group_velocity + Discrete quantity; number of entities of a given kind in a system. + NumberOfEntities + NumberOfEntities + https://www.wikidata.org/wiki/Q614112 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 + 9-1 + Discrete quantity; number of entities of a given kind in a system. + https://doi.org/10.1351/goldbook.N04266 - - + - + + - + - - - The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. - --- IEC, note 2 - The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. - --- IEC, note 1 - Vector quantity giving the rate of change of a position vector. - --- ISO 80000-3 - Velocity - Velocity - http://qudt.org/vocab/quantitykind/Velocity - https://www.wikidata.org/wiki/Q11465 - Vector quantity giving the rate of change of a position vector. - --- ISO 80000-3 - 3-8.1 - 3‑10.1 - - - - - - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - - VaporPressureDepressionOsmometry - VPO - VaporPressureDepressionOsmometry - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - - - - - - FromWorkPIecetoWorkPiece - FromWorkPIecetoWorkPiece - - - - - - A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. - WorkpieceForming - ArchetypeForming - PrimitiveForming - WorkpieceForming - - - - - - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - NeutronYieldPerAbsorption - NeutronYieldPerAbsorption - https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption - https://www.wikidata.org/wiki/Q99159075 - 10-74.2 - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - + Measure of a material's ability to conduct an electric current. - - - - - - Dimensionless multiplicative unit prefix. - MetricPrefix - https://en.wikipedia.org/wiki/Metric_prefix - MetricPrefix - Dimensionless multiplicative unit prefix. +Conductivity is equeal to the resiprocal of resistivity. + ElectricConductivity + Conductivity + ElectricConductivity + http://qudt.org/vocab/quantitykind/ElectricConductivity + https://www.wikidata.org/wiki/Q4593291 + 6-43 + https://doi.org/10.1351/goldbook.C01245 - - - - A variable that stand for a numerical constant, even if it is unknown. - Constant - Constant - A variable that stand for a numerical constant, even if it is unknown. + + + + + T-1 L+1 M+1 I0 Θ0 N0 J0 + + + + + MomentumUnit + MomentumUnit - - - - - StandardChemicalPotential - StandardChemicalPotential - https://qudt.org/vocab/quantitykind/StandardChemicalPotential - https://www.wikidata.org/wiki/Q89333468 - 9-21 - https://doi.org/10.1351/goldbook.S05908 + + + + + + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + Path + Path + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + /etc/fstab (UNIX-like path) +C:\\Users\\John\\Desktop (DOS-like path) - - - - - For particle X, mass of that particle at rest in an inertial frame. - RestMass - InvariantMass - ProperMass - RestMass - https://qudt.org/vocab/quantitykind/RestMass - https://www.wikidata.org/wiki/Q96941619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 - https://dbpedia.org/page/Mass_in_special_relativity - 10-2 - For particle X, mass of that particle at rest in an inertial frame. - https://en.wikipedia.org/wiki/Invariant_mass + + + + + T0 L-2 M0 I+1 Θ0 N0 J0 + + + + + ElectricCurrentDensityUnit + ElectricCurrentDensityUnit - - - - - - + + + + + + + + + + + - - + + + + A characterisation procedure that has at least two characterisation tasks as proper parts. + CharacterisationWorkflow + CharacterisationWorkflow + A characterisation procedure that has at least two characterisation tasks as proper parts. + + + + + + + + + + + + + - + - + - - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - Mass - Mass - http://qudt.org/vocab/quantitykind/Mass - 4-1 - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - https://doi.org/10.1351/goldbook.M03709 + + + CharacterisationTask + CharacterisationTask - - + + + - Heat capacity at constant pressure. - IsobaricHeatCapacity - HeatCapacityAtConstantPressure - IsobaricHeatCapacity - https://www.wikidata.org/wiki/Q112187490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 - 5-16.2 - Heat capacity at constant pressure. - - - - - - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - Hazard - Hazard - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + The rest mass of a proton. + ProtonMass + ProtonMass + http://qudt.org/vocab/constant/ProtonMass + https://doi.org/10.1351/goldbook.P04914 - + - + - + - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - DirectionAndEnergyDistributionOfCrossSection - DirectionAndEnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection - https://www.wikidata.org/wiki/Q98269571 - 10-41 - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + Conductivity per molar concentration of electrolyte. + MolarConductivity + MolarConductivity + https://qudt.org/vocab/quantitykind/MolarConductivity + https://www.wikidata.org/wiki/Q1943278 + 9-45 + Conductivity per molar concentration of electrolyte. + https://doi.org/10.1351/goldbook.M03976 - - - - - angular wavenumber of electrons in states on the Fermi sphere - FermiAnglularWaveNumber - FermiAnglularRepetency - FermiAnglularWaveNumber - https://qudt.org/vocab/quantitykind/FermiAngularWavenumber - https://www.wikidata.org/wiki/Q105554303 - 12-9.2 - angular wavenumber of electrons in states on the Fermi sphere + + + + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. + + SampledDCPolarography + TASTPolarography + SampledDCPolarography + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + https://doi.org/10.1515/pac-2018-0109 - - + + - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - LinearScanVoltammetry - LSV - LinearPolarization - LinearSweepVoltammetry - LinearScanVoltammetry - https://www.wikidata.org/wiki/Q620700 - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - https://en.wikipedia.org/wiki/Linear_sweep_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + ShearOrTorsionTesting + ShearOrTorsionTesting - - - - - + + + + + Average value of the increment of the lethargy per collision. + AverageLogarithmicEnergyDecrement + AverageLogarithmicEnergyDecrement + https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html + https://www.wikidata.org/wiki/Q1940739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 + 10-70 + Average value of the increment of the lethargy per collision. + + + + - - + + + 1 - - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - Magnetization - Magnetization - https://qudt.org/vocab/quantitykind/Magnetization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 - 6-24 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - - - - - - - GreenTopQuark - GreenTopQuark - - - - - - - - - - - - - - - - - - - - - - - TopQuark - TopQuark - https://en.wikipedia.org/wiki/Top_quark - - - - - - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). - Nailing - Nageln - Nailing + + + + + 2 + + + + A positive charged subatomic particle found in the atomic nucleus. + Proton + Proton + A positive charged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Proton - - - - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - Device - Equipment - Machine - Device - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + + + + + + + + + + + + Either a proton or a neutron. + Nucleon + Nucleon + Either a proton or a neutron. + https://en.wikipedia.org/wiki/Nucleon - - - - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - AtomicForceMicroscopy - AtomicForceMicroscopy - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + + + + + T+10 L-2 M-3 I+4 Θ0 N0 J0 + + + + + QuarticElectricDipoleMomentPerCubicEnergyUnit + QuarticElectricDipoleMomentPerCubicEnergyUnit - - - - - TransientLiquidPhaseSintering - TransientLiquidPhaseSintering + + + + + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + GalvanostaticIntermittentTitrationTechnique + GITT + GalvanostaticIntermittentTitrationTechnique + https://www.wikidata.org/wiki/Q120906986 + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - + + + - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - CategorizedPhysicalQuantity - https://physics.nist.gov/cuu/Constants - CategorizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + Number of holes in valence band per volume. + HoleDensity + HoleDensity + https://qudt.org/vocab/quantitykind/HoleDensity + https://www.wikidata.org/wiki/Q105971101 + 12-29.2 + Number of holes in valence band per volume. - - + + - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - TotalCrossSection - TotalCrossSection - https://qudt.org/vocab/quantitykind/TotalCrossSection - https://www.wikidata.org/wiki/Q98206553 - 10-38.2 - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + Count per volume. + VolumetricNumberDensity + VolumetricNumberDensity + Count per volume. - + + - + - Measure of probability that a specific process will take place in a collision of two particles. - AtomicPhysicsCrossSection - AtomicPhysicsCrossSection - https://qudt.org/vocab/quantitykind/Cross-Section.html - https://www.wikidata.org/wiki/Q17128025 - 10-38.1 - Measure of probability that a specific process will take place in a collision of two particles. + Mean number of particles per volume. + ParticleNumberDensity + ParticleNumberDensity + https://qudt.org/vocab/quantitykind/ParticleNumberDensity + https://www.wikidata.org/wiki/Q98601569 + 10-62.1 + Mean number of particles per volume. + https://doi.org/10.1351/goldbook.N04262 - - + + + + + + + + + + + + + 1 + + - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - CyclicChronopotentiometry - CyclicChronopotentiometry - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - chronopotentiometry where the change in applied current undergoes a cyclic current reversal + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. + CalibrationProcess + CalibrationProcess + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - - + + + + + + + + + + + + + + + + - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Chronopotentiometry - Chronopotentiometry - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - https://doi.org/10.1515/pac-2018-0109 + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + CharacterisationMeasurementInstrument + CharacterisationMeasurementInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + In nanoindentation is the nanoindenter + Measuring instrument - + - - + + - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - LorenzCoefficient - LorenzNumber - LorenzCoefficient - https://qudt.org/vocab/quantitykind/LorenzCoefficient - https://www.wikidata.org/wiki/Q105728754 - 12-18 - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + Proportionality constant in some physical laws. + DiffusionCoefficient + DiffusionCoefficient + Proportionality constant in some physical laws. - - - - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - MesoscopicModel - MesoscopicModel - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. + + + + + ThermalDiffusionRatio + ThermalDiffusionRatio + https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio + https://www.wikidata.org/wiki/Q96249433 + 9-40.1 - - - - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. + + + + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + AlphaSpectrometry + AlphaSpectrometry + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + -This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. + + + + + T0 L0 M0 I0 Θ-1 N0 J0 + + + + + PerTemperatureUnit + PerTemperatureUnit + -A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. + + + + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + Rolling + Walzen + Rolling + -e.g. you cannot evaluate the beauty of a person on objective basis. - Subjective - Subjective - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The beauty of that girl. -The style of your clothing. + + + + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. + lasciano tensioni residue di compressione + CompressiveForming + Druckumformen + CompressiveForming - - - - - The rest mass of an electron. - ElectronMass - ElectronMass - http://qudt.org/vocab/constant/ElectronMass - https://doi.org/10.1351/goldbook.E02008 + + + + TransferMolding + TransferMolding + + + + + + FormingFromPlastic + FormingFromPlastic - - - - - - - - - - - - - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - ExtentOfReaction - ExtentOfReaction - https://qudt.org/vocab/quantitykind/ExtentOfReaction - https://www.wikidata.org/wiki/Q899046 - 9-31 - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - https://doi.org/10.1351/goldbook.E02283 + + + + + AntiTau + AntiTau - - + + - + - - - - - - - + + - - UpQuarkType - UpQuarkType - - - - - - - - - - - - A workflow whose steps (iterative steps) are the repetition of the same workflow type. - IterativeWorkflow - IterativeWorkflow - A workflow whose steps (iterative steps) are the repetition of the same workflow type. + + A physical particle with integer spin that follows Bose–Einstein statistics. + Boson + Boson + A physical particle with integer spin that follows Bose–Einstein statistics. + https://en.wikipedia.org/wiki/Boson - - - - - A workflow whose tasks are tiles of a sequence. - SerialWorkflow - SerialWorkflow - A workflow whose tasks are tiles of a sequence. + + + + + Inverse of the radius of curvature. + Curvature + Curvature + https://qudt.org/vocab/quantitykind/CurvatureFromRadius + https://www.wikidata.org/wiki/Q214881 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 + https://dbpedia.org/page/Curvature + 3-2 + Inverse of the radius of curvature. - - - - - GreenBottomQuark - GreenBottomQuark + + + + A liquid solution in which the solvent is water. + AqueousSolution + AqueousSolution + A liquid solution in which the solvent is water. - - - - - Synchrotron - Synchrotron + + + + + A liquid solution made of two or more component substances. + LiquidSolution + LiquidSolution + A liquid solution made of two or more component substances. - - - - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - Fractography - Fractography - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + + + + + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + MigrationArea + MigrationArea + https://qudt.org/vocab/quantitykind/MigrationArea + https://www.wikidata.org/wiki/Q98966325 + 10-72.3 + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - - - - - - - - - - An 'equation' that has parts two 'polynomial'-s - AlgebricEquation - AlgebricEquation - 2 * a - b = c + + + + The derivative of the electric charge of a system with respect to the area. + SurfaceDensityOfElectricCharge + AreicElectricCharge + SurfaceChargeDensity + SurfaceDensityOfElectricCharge + https://www.wikidata.org/wiki/Q12799324 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 + 6-4 + The derivative of the electric charge of a system with respect to the area. + https://doi.org/10.1351/goldbook.S06159 - + - + - + - Number of ions per volume. - IonNumberDensity - IonDensity - IonNumberDensity - https://www.wikidata.org/wiki/Q98831218 - 10-62.2 - Number of ions per volume. + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. + ElectricFluxDensity + ElectricDisplacement + ElectricFluxDensity + https://qudt.org/vocab/quantitykind/ElectricDisplacementField + https://www.wikidata.org/wiki/Q371907 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 + 6-12 + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - + + + + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + MutualInductance + MutualInductance + https://www.wikidata.org/wiki/Q78101401 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 + 6-41.2 + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + https://doi.org/10.1351/goldbook.M04076 + + + - + - + - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - TotalLinearStoppingPower - LinearStoppingPower - TotalLinearStoppingPower - https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower - https://www.wikidata.org/wiki/Q908474 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 - 10-54 - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - https://doi.org/10.1351/goldbook.S06035 + In condensed matter physics, position vector of an atom or ion in equilibrium. + EquilibriumPositionVector + EquilibriumPositionVector + https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon + https://www.wikidata.org/wiki/Q105533477 + 12-7.2 + In condensed matter physics, position vector of an atom or ion in equilibrium. + + + + + + + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + FastFissionFactor + FastFissionFactor + https://qudt.org/vocab/quantitykind/FastFissionFactor + https://www.wikidata.org/wiki/Q99197493 + 10-75 + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + + + + + + + ElectronAntiNeutrino + ElectronAntiNeutrino + + + + + + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + Numerical + Numerical + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + + + + + + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + Milling + Fräsen + Milling - - - - - - - - - - - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedModel - PhysicsBasedModel - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + + + + + + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. + RollingResistance + RollingDrag + RollingFrictionForce + RollingResistance + https://www.wikidata.org/wiki/Q914921 + 4-9.5 + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - + + + - - + - Fundamental translation vectors for the reciprocal lattice. - FundamentalReciprocalLatticeVector - FundamentalReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475399 - 12-2.2 - Fundamental translation vectors for the reciprocal lattice. - - - - - - - GreenBottomAntiQuark - GreenBottomAntiQuark - - - - - - - - - - - - - - - - - - - - - - - BottomAntiQuark - BottomAntiQuark + Any interaction that, when unopposed, will change the motion of an object + Force + Force + http://qudt.org/vocab/quantitykind/Force + 4-9.1 + Any interaction that, when unopposed, will change the motion of an object + https://doi.org/10.1351/goldbook.F02480 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GreenAntiQuark - GreenAntiQuark + + + + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + BrunauerEmmettTellerMethod + BET + BrunauerEmmettTellerMethod + https://www.wikidata.org/wiki/Q795838 + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + https://en.wikipedia.org/wiki/BET_theory - - + + - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - MembraneOsmometry - MembraneOsmometry - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + GasAdsorptionPorosimetry + GasAdsorptionPorosimetry + GasAdsorptionPorosimetry + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - - - + + - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - VolumeFraction - VolumeFraction - http://qudt.org/vocab/quantitykind/VolumeFraction - 9-14 - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - https://doi.org/10.1351/goldbook.V06643 + Measure of the opposition that a circuit presents to a current when a voltage is applied. + ElectricImpedance + Impedance + ElectricImpedance + http://qudt.org/vocab/quantitykind/Impedance + https://www.wikidata.org/wiki/Q179043 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 + 6-51.1 + https://en.wikipedia.org/wiki/Electrical_impedance - - - - - T-1 L+1 M+1 I0 Θ0 N0 J0 - - - - - MomentumUnit - MomentumUnit + + + + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + DrawForming + DrawForming - - + + - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - DataAnalysis - DataAnalysis - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + Describes what is needed to repeat the experiment + AccessConditions + AccessConditions + Describes what is needed to repeat the experiment + In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? - - - - - - - - - - - - - - - - - - - - - - A computation that provides a data output following the elaboration of some input data, using a data processing application. - DataProcessing - DataProcessing - A computation that provides a data output following the elaboration of some input data, using a data processing application. - + + + + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - - - - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - CausalInteraction - CausalInteraction - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. +Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. + +Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + + RamanSpectroscopy + RamanSpectroscopy + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. + +Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. + +Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - - + + + + + + + + + + + - + - - - - - - - + + - - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - FundamentalInteraction - FundamentalInteraction - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - - - - - - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - HyperfineStructureQuantumNumber - HyperfineStructureQuantumNumber - https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber - https://www.wikidata.org/wiki/Q97577449 - 10-13.8 - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + + A symbol that stands for a single unit. + UnitSymbol + UnitSymbol + A symbol that stands for a single unit. + Some examples are "Pa", "m" and "J". - + - T-3 L0 M+1 I0 Θ-4 N0 J0 + T0 L+1 M0 I0 Θ0 N-1 J0 - MassPerCubicTimeQuarticTemperatureUnit - MassPerCubicTimeQuarticTemperatureUnit + LengthPerAmountUnit + LengthPerAmountUnit - - - - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - ElectrochemicalImpedanceSpectroscopy - EIS - ElectrochemicalImpedanceSpectroscopy - https://www.wikidata.org/wiki/Q3492904 - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - https://doi.org/10.1515/pac-2018-0109 + + + + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + BaseQuantity + BaseQuantity + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + base quantity - - + + - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Impedimetry - Impedimetry - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - https://doi.org/10.1515/pac-2018-0109 + A set of reasons or a logical basis for a decision or belief + Rationale + Rationale + A set of reasons or a logical basis for a decision or belief - - + + + + + + - - T+2 L-2 M-1 I+1 Θ0 N0 J0 + + - - + - ElectricCurrentPerEnergyUnit - ElectricCurrentPerEnergyUnit + Time derivative of exposure. + ExposureRate + ExposureRate + https://qudt.org/vocab/quantitykind/ExposureRate + https://www.wikidata.org/wiki/Q99720212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 + 10-89 + Time derivative of exposure. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AntiQuark - AntiQuark + + + + chronopotentiometry where the applied current is changed in steps + + StepChronopotentiometry + StepChronopotentiometry + chronopotentiometry where the applied current is changed in steps - - - - - - + + + + Diffusion coefficient through the pore space of a porous media. + EffectiveDiffusionCoefficient + EffectiveDiffusionCoefficient + https://www.wikidata.org/wiki/Q258852 + Diffusion coefficient through the pore space of a porous media. + + + + + + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + A well-formed formula that follows the syntactic rules of computer science. + ComputerScience + ComputerScience + A well-formed formula that follows the syntactic rules of computer science. + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + + + + + + + Mean duration required for the decay of one half of the atoms or nuclei. + HalfLife + HalfLife + https://qudt.org/vocab/quantitykind/Half-Life + https://www.wikidata.org/wiki/Q98118544 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 + 10-31 + Mean duration required for the decay of one half of the atoms or nuclei. + + + + + + + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + Activity + Activity + https://qudt.org/vocab/quantitykind/Activity + https://www.wikidata.org/wiki/Q317949 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 + 10-27 + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + https://goldbook.iupac.org/terms/view/A00114 + + + + + + + - - + - - - - - FundamentalAntiMatterParticle - FundamentalAntiMatterParticle + + + + + + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + Cogniser + Cogniser + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + The scientist that connects an equation to a physical phenomenon. + + + + + + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + Cognised + Cognised + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + A physical phenomenon that is connected to an equation by a scientist. + + + + + + A Material occurring in nature, without the need of human intervention. + NaturalMaterial + NaturalMaterial + A Material occurring in nature, without the need of human intervention. + + + + + + + + + + + + + + + Reciprocal of the coefficient of heat transfer. + ThermalInsulance + CoefficientOfThermalInsulance + ThermalInsulance + https://qudt.org/vocab/quantitykind/ThermalInsulance + https://www.wikidata.org/wiki/Q2596212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 + 5-11 + Reciprocal of the coefficient of heat transfer. - - - - Letter - Letter + + + + Heat capacity at constant pressure. + IsobaricHeatCapacity + HeatCapacityAtConstantPressure + IsobaricHeatCapacity + https://www.wikidata.org/wiki/Q112187490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 + 5-16.2 + Heat capacity at constant pressure. - + - T0 L-1 M0 I0 Θ0 N0 J0 + T0 L+1 M0 I0 Θ+1 N0 J0 - - ReciprocalLengthUnit - ReciprocalLengthUnit - - - - - - - - - - - - - - - - - - - - - - - - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - Role - HolisticPart - Part - Role - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - - - - - Diffusion coefficient through the pore space of a porous media. - EffectiveDiffusionCoefficient - EffectiveDiffusionCoefficient - https://www.wikidata.org/wiki/Q258852 - Diffusion coefficient through the pore space of a porous media. + LengthTemperatureUnit + LengthTemperatureUnit - + + - + - - Proportionality constant in some physical laws. - DiffusionCoefficient - DiffusionCoefficient - Proportionality constant in some physical laws. + Scalar line integral of the magnetic field strength along a closed path. + MagnetomotiveForce + MagnetomotiveForce + https://qudt.org/vocab/quantitykind/MagnetomotiveForce + https://www.wikidata.org/wiki/Q1266982 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 + 6-37.3 + Scalar line integral of the magnetic field strength along a closed path. - - - - - - - 1 - - - + + - - - 1 + + T+3 L-2 M-1 I0 Θ+1 N0 J0 - - - A measurement unit that is made of a metric prefix and a unit symbol. - PrefixedUnit - PrefixedUnit - A measurement unit that is made of a metric prefix and a unit symbol. + + + + ThermalResistanceUnit + ThermalResistanceUnit - - - - - BlueStrangeQuark - BlueStrangeQuark + + + + + Decrease in magnitude of any kind of flux through a medium. + Attenuation + Extinction + Attenuation + 3-26.1 + Decrease in magnitude of any kind of flux through a medium. + https://en.wikipedia.org/wiki/Attenuation + https://doi.org/10.1351/goldbook.A00515 - - - - + + - - + + T-1 L+2 M+1 I0 Θ0 N0 J0 - - - 1-dimensional array who's spatial direct parts are numbers. - Vector - 1DArray - LinearArray - Vector - 1-dimensional array who's spatial direct parts are numbers. - - - - - - - - - - - - - - - - - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. - The union of hadron and lepton, or fermion and bosons. - PhysicalParticle - Particle - PhysicalParticle - The union of hadron and lepton, or fermion and bosons. - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + + + + AngularMomentumUnit + AngularMomentumUnit - - - - - - + + - - + + T+1 L0 M0 I+1 Θ0 N-1 J0 - + + - Mass per amount of substance. - MolarMass - MolarMass - https://qudt.org/vocab/quantitykind/MolarMass - https://www.wikidata.org/wiki/Q145623 - 9-4 - Mass per amount of substance. + ElectricChargePerAmountUnit + ElectricChargePerAmountUnit + + + + + + + Electric polarization divided by electric constant and electric field strength. + ElectricSusceptibility + ElectricSusceptibility + https://qudt.org/vocab/quantitykind/ElectricSusceptibility + https://www.wikidata.org/wiki/Q598305 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 + 6-16 + Electric polarization divided by electric constant and electric field strength. + https://en.wikipedia.org/wiki/Electric_susceptibility + + + + + + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + SparkErosion + elektrochemisches Abtragen + SparkErosion + + + + + + Sum of electric current and displacement current + TotalCurrent + TotalCurrent + https://qudt.org/vocab/quantitykind/TotalCurrent + https://www.wikidata.org/wiki/Q77679732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 + 6-19.2 + Sum of electric current and displacement current - + - - - - - - - - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - A set of instructions that tell a computer what to do. - Program - Executable - Program - A set of instructions that tell a computer what to do. - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - - - - - - + - - - - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - StrictFundamental - StrictFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - + + + + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + Fundamental + Lifetime + Maximal + Fundamental + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - - - - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - The act of connecting together the parts of something - Assemblying - Assemblying - The act of connecting together the parts of something - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - +On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. - - - - - - - - - - - - - - A characterisation of an object with an actual interaction. - Observation - Observation - A characterisation of an object with an actual interaction. +Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. - + - Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. - Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. - MeasurementDataPostProcessing - MeasurementDataPostProcessing - Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. - Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. - - - - - - Analysis, that allows one to calculate the final material property from the calibrated primary data. - DataPostProcessing - DataPostProcessing - Analysis, that allows one to calculate the final material property from the calibrated primary data. + Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. + CalibrationDataPostProcessing + CalibrationDataPostProcessing + Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. - - - + + - - - - - - + + T-2 L+3 M0 I0 Θ0 N0 J0 - + + - Number of nucleons in an atomic nucleus. - MassNumber - AtomicMassNumber - NucleonNumber - MassNumber - http://qudt.org/vocab/quantitykind/MassNumber - Number of nucleons in an atomic nucleus. + VolumePerSquareTimeUnit + VolumePerSquareTimeUnit - - - - - A neutrino belonging to the first generation of leptons. - ElectronNeutrino - ElectronNeutrino - A neutrino belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron_neutrino + + + + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + TemporallyFundamental + TemporallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - - + + + + + Gibbs energy per amount of substance. + MolarGibbsEnergy + MolarGibbsEnergy + https://www.wikidata.org/wiki/Q88863324 + 9-6.4 + Gibbs energy per amount of substance. + + + + - Reciprocal of the wavelength. - Wavenumber - Repetency - Wavenumber - https://qudt.org/vocab/quantitykind/Wavenumber - https://www.wikidata.org/wiki/Q192510 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 - https://dbpedia.org/page/Wavenumber - 3-20 - Reciprocal of the wavelength. - https://en.wikipedia.org/wiki/Wavenumber - https://doi.org/10.1351/goldbook.W06664 + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + AngularReciprocalLatticeVector + AngularReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475278 + 12-2.1 + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - - + + + + + + - - T-3 L+2 M+1 I-1 Θ-1 N0 J0 + + - - + - ElectricPotentialPerTemperatureUnit - ElectricPotentialPerTemperatureUnit + The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. + Thermodynamic temperature difference divided by heat flow rate. + ThermalResistance + ThermalResistance + https://qudt.org/vocab/quantitykind/ThermalResistance + https://www.wikidata.org/wiki/Q899628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 + 5-12 + Thermodynamic temperature difference divided by heat flow rate. - - - - Specific heat capacity at saturated vaport pressure. - SpecificHeatCapacityAtSaturatedVaporPressure - SpecificHeatCapacityAtSaturatedVaporPressure - https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation - https://www.wikidata.org/wiki/Q75775005 - 5-16.4 - Specific heat capacity at saturated vaport pressure. + + + + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + AnalyticalElectronMicroscopy + AnalyticalElectronMicroscopy + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - - + + + - A CausalSystem that includes quantum parts that are not bonded with the rest. - PhysicalPhenomena - PhysicalPhenomena - A CausalSystem that includes quantum parts that are not bonded with the rest. - - - - - - - - - - - - - - - - - - - - - - - - - A measurement always implies a causal interaction between the object and the observer. - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - Measurement - Measurement - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - measurement + RedTopQuark + RedTopQuark - - + + + - - T-2 L+3 M0 I0 Θ0 N0 J0 + + + + + + - - + + + Used to break-down a CharacterisationMeasurementProcess into his specific tasks. + CharacterisationMeasurementTask + CharacterisationMeasurementTask + Used to break-down a CharacterisationMeasurementProcess into his specific tasks. + + + + + + + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + Gas + Gas + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + + + + - VolumePerSquareTimeUnit - VolumePerSquareTimeUnit + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + CurrentLinkage + CurrentLinkage + https://qudt.org/vocab/quantitykind/CurrentLinkage + https://www.wikidata.org/wiki/Q77995703 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 + 6-37.4 + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - + + + - - + - Electric field strength multiplied by magnetic field strength. - PoyntingVector - PoyntingVector - https://qudt.org/vocab/quantitykind/PoyntingVector - https://www.wikidata.org/wiki/Q504186 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 - 6-34 - Electric field strength multiplied by magnetic field strength. - - - - - - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - SupplyChain - SupplyChain - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - - - - - - A system whose is mainly characterised by the way in which elements are interconnected. - Network - Network - A system whose is mainly characterised by the way in which elements are interconnected. - - - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - TensileForming - Zugdruckumformen - TensileForming + Quotient of the mean rate of production of particles in a volume, and that volume. + ParticleSourceDensity + ParticleSourceDensity + https://qudt.org/vocab/quantitykind/ParticleSourceDensity + https://www.wikidata.org/wiki/Q98915762 + 10-66 + Quotient of the mean rate of production of particles in a volume, and that volume. - - - + + + + + + + + + + + + + - GreenDownAntiQuark - GreenDownAntiQuark - - - - - - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - NonActivePower - NonActivePower - https://qudt.org/vocab/quantitykind/NonActivePower - https://www.wikidata.org/wiki/Q79813060 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 - 6-61 - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - - - - - - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - Modeller - Modeller - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - - - - - - The energy of an object due to its motion. - KineticEnergy - KineticEnergy - http://qudt.org/vocab/quantitykind/KineticEnergy - 4-28.2 - The energy of an object due to its motion. - https://doi.org/10.1351/goldbook.K03402 + PhysicallyInteractingConvex + PhysicallyInteractingConvex - - - + + + - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - ResonanceEscapeProbability - ResonanceEscapeProbability - https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability - https://www.wikidata.org/wiki/Q4108072 - 10-68 - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - - - - - Critical thermodynamic temperature of an antiferromagnet. - NeelTemperature - NeelTemperature - https://www.wikidata.org/wiki/Q830311 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 - 12-35.2 - Critical thermodynamic temperature of an antiferromagnet. - +It defines the Kelvin unit in the SI system. + The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. + BoltzmannConstant + BoltzmannConstant + http://qudt.org/vocab/constant/BoltzmannConstant + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - - - - A language object respecting the syntactic rules of C++. - CPlusPlus - C++ - CPlusPlus - A language object respecting the syntactic rules of C++. +It defines the Kelvin unit in the SI system. + https://doi.org/10.1351/goldbook.B00695 - + + - - + - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - Exposure - Exposure - https://qudt.org/vocab/quantitykind/Exposure - https://www.wikidata.org/wiki/Q336938 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 - 10-88 - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - - - - - - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - - Probe - Probe - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. - In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. - In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) - In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). - In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry + Logarithmic measure of the number of available states of a system. + May also be referred to as a measure of order of a system. + Entropy + Entropy + http://qudt.org/vocab/quantitykind/Entropy + 5-18 + https://doi.org/10.1351/goldbook.E02149 - - - - An interpreter who assigns a name to an object without any motivations related to the object characters. - Namer - Namer - An interpreter who assigns a name to an object without any motivations related to the object characters. + + + + Real part of the impedance. + ResistanceToAlternativeCurrent + ResistanceToAlternativeCurrent + https://www.wikidata.org/wiki/Q1048490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 + 6-51.2 + Real part of the impedance. - - - - - Square root of the slowing down area. - SlowingDownLength - SlowingDownLength - https://qudt.org/vocab/quantitykind/Slowing-DownLength - https://www.wikidata.org/wiki/Q98996963 - 10-73.1 - Square root of the slowing down area. + + + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + Bending + Bending - - - - DifferentialOperator - DifferentialOperator + + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + FlexuralForming + Biegeumformen + FlexuralForming - + + - - + - The derivative of the electric charge of a system with respect to the length. - LinearDensityOfElectricCharge - LinearDensityOfElectricCharge - https://www.wikidata.org/wiki/Q77267838 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 - 6-5 - The derivative of the electric charge of a system with respect to the length. + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. + DiffusionArea + DiffusionArea + https://qudt.org/vocab/quantitykind/DiffusionArea + https://www.wikidata.org/wiki/Q98966292 + 10-72.2 + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - + + + + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + CathodicStrippingVoltammetry + CSV + CathodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q4016325 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + https://doi.org/10.1515/pac-2018-0109 + + + + - + - - - - - - - + + - DownQuarkType - DownQuarkType - - - - - - - HelmholtzEnergy - HelmholtzFreeEnergy - HelmholtzEnergy - https://www.wikidata.org/wiki/Q865821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 - 5-20.4 - https://doi.org/10.1351/goldbook.H02772 - - - - - - - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - ShortRangeOrderParameter - ShortRangeOrderParameter - https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter - https://www.wikidata.org/wiki/Q105495979 - 12-5.1 - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + The union of all classes categorising elementary particles according to the Standard Model. + StandardModelParticle + ElementaryParticle + StandardModelParticle + The union of all classes categorising elementary particles according to the Standard Model. + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. + This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). +In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). - - - - imaginary part of the admittance - Susceptance - Susceptance - https://qudt.org/vocab/quantitykind/Susceptance - https://www.wikidata.org/wiki/Q509598 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 - 6-52.3 - imaginary part of the admittance + + + + PolymericMaterial + PolymericMaterial - - - - - - - - - - - - - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - MassEnergyTransferCoefficient - MassEnergyTransferCoefficient - https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient - https://www.wikidata.org/wiki/Q99714619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 - 10-87 - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + + + + + BlueTopAntiQuark + BlueTopAntiQuark - + - T+2 L+1 M-1 I0 Θ0 N0 J0 + T-2 L+3 M-1 I0 Θ0 N0 J0 - - PerPressureUnit - PerPressureUnit + + NewtonianConstantOfGravityUnit + NewtonianConstantOfGravityUnit - - - - - T0 L0 M0 I0 Θ-1 N0 J0 - - - + + + - PerTemperatureUnit - PerTemperatureUnit + Force opposing the motion of a body sliding on a surface. + KineticFrictionForce + DynamicFrictionForce + KineticFrictionForce + https://www.wikidata.org/wiki/Q91005629 + 4-9.4 + Force opposing the motion of a body sliding on a surface. - - + + - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - XpsVariableKinetic - Electron spectroscopy for chemical analysis (ESCA) - X-ray photoelectron spectroscopy (XPS) - XpsVariableKinetic - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - - - - - - - T0 L-3 M+1 I0 Θ0 N0 J0 - - - - - DensityUnit - DensityUnit - - - - - - - Angle between the scattered ray and the lattice plane. - BraggAngle - BraggAngle - https://qudt.org/vocab/quantitykind/BraggAngle - https://www.wikidata.org/wiki/Q105488118 - 12-4 - Angle between the scattered ray and the lattice plane. - - - - - - - - - - - - - - - Reciprocal of the thermal resistance. - ThermalConductance - ThermalConductance - https://qudt.org/vocab/quantitykind/ThermalConductance - https://www.wikidata.org/wiki/Q17176562 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 - 5-13 - Reciprocal of the thermal resistance. - https://doi.org/10.1351/goldbook.T06298 + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Chronoamperometry + AmperiometricDetection + AmperometricCurrentTimeCurve + Chronoamperometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + https://doi.org/10.1515/pac-2018-0109 - - - - - Mean duration required for the decay of one half of the atoms or nuclei. - HalfLife - HalfLife - https://qudt.org/vocab/quantitykind/Half-Life - https://www.wikidata.org/wiki/Q98118544 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 - 10-31 - Mean duration required for the decay of one half of the atoms or nuclei. + + + + Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + Amperometry + Amperometry + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + https://doi.org/10.1515/pac-2018-0109 - - - - - T+2 L+1 M-1 I0 Θ+1 N0 J0 - - - + + + - TemperaturePerPressureUnit - TemperaturePerPressureUnit + Inverse of the quality factor. + LossFactor + LossFactor + https://qudt.org/vocab/quantitykind/LossFactor + https://www.wikidata.org/wiki/Q79468728 + 6-54 + Inverse of the quality factor. - - - + + + + The laboratory where the whole characterisation process or some of its stages take place. + Laboratory + Laboratory + The laboratory where the whole characterisation process or some of its stages take place. + + + + + - StatisticalWeightOfSubsystem - StatisticalWeightOfSubsystem - https://www.wikidata.org/wiki/Q96207431 - 9-36.1 + number of nucleons in an atomic nucleus + NucleonNumber + MassNumber + NucleonNumber + https://qudt.org/vocab/quantitykind/NucleonNumber + https://www.wikidata.org/wiki/Q101395 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 + https://dbpedia.org/page/Mass_number + 10-1.3 + number of nucleons in an atomic nucleus + https://en.wikipedia.org/wiki/Mass_number + https://doi.org/10.1351/goldbook.M03726 - - + + - Quantifies the raw data acquisition rate, if applicable. - DataAcquisitionRate - DataAcquisitionRate - Quantifies the raw data acquisition rate, if applicable. + The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + + ACVoltammetry + ACV + ACVoltammetry + https://www.wikidata.org/wiki/Q120895154 + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + https://doi.org/10.1515/pac-2018-0109 - - - - A declaration that provides a sign for an object that is independent from any assignment rule. - Naming - Naming - A declaration that provides a sign for an object that is independent from any assignment rule. - A unique id attached to an entity. + + + + Calendering + Calendering - - - - - T+7 L-3 M-2 I+3 Θ0 N0 J0 - - - - - CubicElectricChargeLengthPerSquareEnergyUnit - CubicElectricChargeLengthPerSquareEnergyUnit + + + + A software application to process characterisation data + CharacterisationSoftware + CharacterisationSoftware + A software application to process characterisation data + In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. - - - - - A constitutive process is a process that is holistically relevant for the definition of the whole. - A process which is an holistic spatial part of an object. - ConstitutiveProcess - ConstitutiveProcess - A process which is an holistic spatial part of an object. - Blood circulation in a human body. - A constitutive process is a process that is holistically relevant for the definition of the whole. + + + + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + ApplicationProgram + App + Application + ApplicationProgram + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + Word processors, graphic image processing programs, database management systems, numerical simulation software and games. - - + + - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - ConfocalMicroscopy - ConfocalMicroscopy - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Nanoindentation + Nanoindentation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - + - T0 L0 M-1 I+1 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ0 N0 J0 - ElectricCurrentPerMassUnit - ElectricCurrentPerMassUnit - - - - - - A quantity that is the result of a well-defined measurement procedure. - The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. - --- VIM - MeasuredProperty - MeasuredProperty - A quantity that is the result of a well-defined measurement procedure. + EnergyUnit + EnergyUnit - - - - - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - ReactionEnergy - ReactionEnergy - https://qudt.org/vocab/quantitykind/ReactionEnergy - https://www.wikidata.org/wiki/Q98164745 - 10-37.1 - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + + + + + + + + + + + + + + + A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. + An atom that does not share electrons with other atoms. + StandaloneAtom + StandaloneAtom + An atom that does not share electrons with other atoms. - - - + + - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - AverageEnergyLossPerElementaryChargeProduced - AverageEnergyLossPerElementaryChargeProduced - https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced - https://www.wikidata.org/wiki/Q98793042 - 10-60 - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + Average power over a period. + ActivePower + ActivePower + https://qudt.org/vocab/quantitykind/ActivePower + https://www.wikidata.org/wiki/Q20820042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 + 6-56 + Average power over a period. - - - - Flanging - Flanging + + + + + BlueCharmAntiQuark + BlueCharmAntiQuark - - - - FormingJoin - FormingJoin + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BlueAntiQuark + BlueAntiQuark - - - - ArithmeticEquation - ArithmeticEquation - 1 + 1 = 2 + + + + + Average number of fission neutrons, both prompt and delayed, emitted per fission event. + NeutronYieldPerFission + NeutronYieldPerFission + https://qudt.org/vocab/quantitykind/NeutronYieldPerFission + https://www.wikidata.org/wiki/Q99157909 + 10-74.1 + Average number of fission neutrons, both prompt and delayed, emitted per fission event. - - - - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. - - SampledDCPolarography - TASTPolarography - SampledDCPolarography - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + PhysicallyInteracting + PhysicallyInteracting + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - - + + - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - DCPolarography - DCPolarography - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - https://doi.org/10.1515/pac-2018-0109 + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + IsothermalMicrocalorimetry + IMC + IsothermalMicrocalorimetry + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - + - T0 L-1 M0 I0 Θ-1 N0 J0 + T-1 L-4 M+1 I0 Θ0 N0 J0 - PerLengthTemperatureUnit - PerLengthTemperatureUnit + MassPerQuarticLengthTimeUnit + MassPerQuarticLengthTimeUnit - - - - The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - - ACVoltammetry - ACV - ACVoltammetry - https://www.wikidata.org/wiki/Q120895154 - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + + A composite physical object made of fermions (i.e. having mass and occupying space). + Substance + Substance + A composite physical object made of fermions (i.e. having mass and occupying space). - - - - The radiant energy emitted, reflected, transmitted or received, per unit time. - RadiantFlux - RadiantFlux - http://qudt.org/vocab/quantitykind/RadiantFlux - https://doi.org/10.1351/goldbook.R05046 + + + + GluonType3 + GluonType3 @@ -15887,89 +15377,199 @@ This class is expected to host the definition of world objects as they appear in Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. - - - + + + + Describes the level of expertise required to carry out a process (the entire test or the data processing). + LevelOfExpertise + LevelOfExpertise + Describes the level of expertise required to carry out a process (the entire test or the data processing). + + + + + + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Represents the number 1, used as an explicit unit to say something has no units. + UnitOne + Unitless + UnitOne + http://qudt.org/vocab/unit/UNITLESS + Represents the number 1, used as an explicit unit to say something has no units. + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Refractive index or volume fraction. + Typically used for ratios of two units whos dimensions cancels out. + + + + + + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + PhotoluminescenceMicroscopy + PhotoluminescenceMicroscopy + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + + + + + + + A coarse dispersion of solid in a gas continuum phase. + GasSolidSuspension + GasSolidSuspension + A coarse dispersion of solid in a gas continuum phase. + Dust, sand storm. + + + + + + + + + + + + + - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - ReactorTimeConstant - ReactorTimeConstant - https://qudt.org/vocab/quantitykind/ReactorTimeConstant - https://www.wikidata.org/wiki/Q99518950 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 - 10-79 - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + Physical quantity of dimension energy × time. + Action + Action + https://qudt.org/vocab/quantitykind/Action + https://www.wikidata.org/wiki/Q846785 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 + 4-32 + Physical quantity of dimension energy × time. - + - T-2 L+2 M+1 I-2 Θ0 N0 J0 + T0 L0 M0 I0 Θ0 N+1 J0 - InductanceUnit - InductanceUnit + AmountUnit + AmountUnit - - - - - CharacterisationHardwareSpecification - CharacterisationHardwareSpecification + + + + + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + LongRangeOrderParameter + LongRangeOrderParameter + https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter + https://www.wikidata.org/wiki/Q105496124 + 12-5.2 + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - - - - ThermomechanicalTreatment - ThermomechanicalTreatment + + + + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + NanoMaterial + NanoMaterial + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + + + + + + SizeDefinedMaterial + SizeDefinedMaterial + + + + + + + T0 L+5 M0 I0 Θ0 N0 J0 + + + + + SectionAreaIntegralUnit + SectionAreaIntegralUnit + + + + + + + T0 L-2 M0 I+1 Θ-1 N0 J0 + + + + + ElectricCurrentDensityPerTemperatureUnit + ElectricCurrentDensityPerTemperatureUnit - - - + + + + + + + + + + - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - LondonPenetrationDepth - LondonPenetrationDepth - https://qudt.org/vocab/quantitykind/LondonPenetrationDepth - https://www.wikidata.org/wiki/Q3277853 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 - 12-38.1 - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + SurfaceTension + 4-26 + SurfaceTension + https://qudt.org/vocab/quantitykind/SurfaceTension + https://www.wikidata.org/wiki/Q170749 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-42 + https://doi.org/10.1351/goldbook.S06192 - - - - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - Planing - Hobeln - Planing + + + + + RedStrangeQuark + RedStrangeQuark - - - - - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - SlowingDownArea - SlowingDownArea - https://qudt.org/vocab/quantitykind/Slowing-DownArea - https://www.wikidata.org/wiki/Q98950918 - 10-72.1 - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + + + + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. + It has a shape, so we conclude that it is solid + Object that is processed with a machine + Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product + The raw material or partially finished piece that is shaped by performing various operations. + They are not powders or threads + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + fili e polveri non sono compresi + it seems to be an intermediate product, that has to reach the final shape. + it seems to be solid, so it has a proper shape + powder is not workpiece because it has the shape of the recipient containing them + WorkPiece + Werkstück + WorkPiece + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - - + + - @@ -15978,672 +15578,609 @@ This class is expected to host the definition of world objects as they appear in - Extent of a surface. - Area - Area - http://qudt.org/vocab/quantitykind/Area - 3-3 - https://doi.org/10.1351/goldbook.A00429 + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). + NuclearQuadrupoleMoment + NuclearQuadrupoleMoment + https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment + https://www.wikidata.org/wiki/Q97921226 + 10-18 + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - - + + + - - T0 L+2 M0 I+1 Θ0 N0 J0 + + + + + + - - - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit + + + A computer language used to describe simulations. + SimulationLanguage + SimulationLanguage + A computer language used to describe simulations. + https://en.wikipedia.org/wiki/Simulation_language - - - + + + + An artificial computer language used to express information or knowledge, often for use in computer system design. + ModellingLanguage + ModellingLanguage + An artificial computer language used to express information or knowledge, often for use in computer system design. + Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + Hardware description language – used to model integrated circuits. + +Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + +Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. + https://en.wikipedia.org/wiki/Modeling_language + + + + - + - + - - A variable that stand for a well known numerical constant (a known number). - KnownConstant - KnownConstant - A variable that stand for a well known numerical constant (a known number). - π refers to the constant number ~3.14 - - - - - - - Angular frequency divided by angular wavenumber. - PhaseSpeedOfElectromagneticWaves - PhaseSpeedOfElectromagneticWaves - https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed - https://www.wikidata.org/wiki/Q77990619 - 6-35.1 - Angular frequency divided by angular wavenumber. + + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + Manufacturer + Manufacturer + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - - - - - Displacement of one surface with respect to another divided by the distance between them. - ShearStrain - ShearStrain - https://qudt.org/vocab/quantitykind/ShearStrain - https://www.wikidata.org/wiki/Q7561704 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 - 4-17.3 - Displacement of one surface with respect to another divided by the distance between them. - https://doi.org/10.1351/goldbook.S05637 + + + + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + WorkpieceManufacturing + DIN 8580:2020 + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. + ISO 8887-1:2017 +manufacturing: production of components + DiscreteManufacturing + Werkstücke + WorkpieceManufacturing + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. - + - + - + + + + + + + + + + + - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - Mobility - Mobility - https://qudt.org/vocab/quantitykind/Mobility - https://www.wikidata.org/wiki/Q900648 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 - 10-61 - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - https://doi.org/10.1351/goldbook.M03955 - - - - - - A physics-based model based on a physics equation describing the behaviour of electrons. - ElectronicModel - ElectronicModel - A physics-based model based on a physics equation describing the behaviour of electrons. - Density functional theory. -Hartree-Fock. - - - - - - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - SparkErosion - elektrochemisches Abtragen - SparkErosion + Quantity representing the spatial distribution of mass in a continuous material. + Density + MassConcentration + MassDensity + Density + http://qudt.org/vocab/quantitykind/Density + Mass per volume. + 4-2 + 9-10 + https://doi.org/10.1351/goldbook.D01590 - - - - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - Ablation - Abtragen - Ablation + + + + + + + + + + + + + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. + AtomicAttenuationCoefficient + AtomicAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592911 + 10-52 + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - + - T0 L-2 M0 I+1 Θ-2 N0 J0 + T0 L0 M0 I0 Θ0 N0 J+1 - RichardsonConstantUnit - RichardsonConstantUnit + LuminousIntensityUnit + LuminousIntensityUnit - - + + + - Radius of the osculating circle of a planar curve at a particular point of the curve. - RadiusOfCurvature - RadiusOfCurvature - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 - https://dbpedia.org/page/Radius_of_curvature - 3-1.12 - Radius of the osculating circle of a planar curve at a particular point of the curve. - https://en.wikipedia.org/wiki/Radius_of_curvature + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + alpha_V = (1/V) * (dV/dT) + CubicExpansionCoefficient + CubicExpansionCoefficient + https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient + https://www.wikidata.org/wiki/Q74761076 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 + 5-3.2 + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - - + + + + + - - T0 L0 M0 I0 Θ+1 N+1 J0 + + - - + - AmountTemperatureUnit - AmountTemperatureUnit + Material property which describes how the size of an object changes with a change in temperature. + CoefficientOfThermalExpansion + ThermalExpansionCoefficient + CoefficientOfThermalExpansion + https://www.wikidata.org/wiki/Q45760 + Material property which describes how the size of an object changes with a change in temperature. - - - + + - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - MassDefect - MassDefect - https://qudt.org/vocab/quantitykind/MassDefect - https://www.wikidata.org/wiki/Q26897126 - 10-21.2 - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + Relative change of length per change of temperature. + LinearExpansionCoefficient + LinearExpansionCoefficient + https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient + https://www.wikidata.org/wiki/Q74760821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 + 5-3.1 + Relative change of length per change of temperature. - - - - - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - EffectiveMass - EffectiveMass - https://qudt.org/vocab/quantitykind/EffectiveMass - https://www.wikidata.org/wiki/Q1064434 - 12-30 - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + + + + A standalone atom that has no net charge. + NeutralAtom + NeutralAtom + A standalone atom that has no net charge. - - - - - Number of donor levels per volume. - DonorDensity - DonorDensity - https://qudt.org/vocab/quantitykind/DonorDensity - https://www.wikidata.org/wiki/Q105979886 - 12-29.4 - Number of donor levels per volume. + + + + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + UserCase + UserCase + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - + + - + - + - SurfaceTension - 4-26 - SurfaceTension - https://qudt.org/vocab/quantitykind/SurfaceTension - https://www.wikidata.org/wiki/Q170749 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-42 - https://doi.org/10.1351/goldbook.S06192 + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. + Coercivity + Coercivity + https://qudt.org/vocab/quantitykind/Coercivity + https://www.wikidata.org/wiki/Q432635 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 + 6-31 + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - - - + + + - Energy of the electron in a hydrogen atom in its ground state - HartreeEnergy - HartreeEnergy - https://qudt.org/vocab/unit/E_h.html - https://www.wikidata.org/wiki/Q476572 - https://dbpedia.org/page/Hartree - 10-8 - Energy of the electron in a hydrogen atom in its ground state - https://en.wikipedia.org/wiki/Hartree - https://doi.org/10.1351/goldbook.H02748 + GrandCanonicalPartionFunction + GrandPartionFunction + GrandCanonicalPartionFunction + https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96176022 + 9-35.3 - - - + + - - + + + 1 - - 3-dimensional array who's spatial direct parts are matrices. - Array3D - 3DArray - Array3D - 3-dimensional array who's spatial direct parts are matrices. - - - - - - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - - ScanningKelvinProbe - SKB - ScanningKelvinProbe - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - - - - - - - - - + + + 2 - - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - File - File - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + + An uncharged subatomic particle found in the atomic nucleus. + Neutron + Neutron + An uncharged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Neutron - - - - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. - DigitalData - BinaryData - DigitalData - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + + + + + T-1 L-1 M0 I0 Θ0 N0 J0 + + + + + PerLengthTimeUnit + PerLengthTimeUnit + + + + + + + Mass of a constituent divided by the total mass of all constituents in the mixture. + MassFraction + MassFraction + http://qudt.org/vocab/quantitykind/MassFraction + 9-11 + https://doi.org/10.1351/goldbook.M03722 - - - - - - - - - - - - - - Any physical or virtual component of limited availability within a computer system. - SystemResource - Resource - SystemResource - Any physical or virtual component of limited availability within a computer system. + + + + + Matter composed of only matter particles, excluding anti-matter particles. + OrdinaryMatter + OrdinaryMatter + Matter composed of only matter particles, excluding anti-matter particles. - - - + + + - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - Product of the rest mass and the square of the speed of light in vacuum. - RestEnergy - RestEnergy - https://www.wikidata.org/wiki/Q11663629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 - 10-3 - Product of the rest mass and the square of the speed of light in vacuum. - E_0 = m_0 * c_0^2 + ThermodynamicEfficiency + ThermalEfficiency + ThermodynamicEfficiency + https://qudt.org/vocab/quantitykind/ThermalEfficiency + https://www.wikidata.org/wiki/Q1452104 + 5-25.1 + -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy + + + + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. + MesoscopicModel + MesoscopicModel + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - - - - Real part of the impedance. - ResistanceToAlternativeCurrent - ResistanceToAlternativeCurrent - https://www.wikidata.org/wiki/Q1048490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 - 6-51.2 - Real part of the impedance. + + + + An aerosol composed of fine solid particles in air or another gas. + SolidAerosol + SolidAerosol + An aerosol composed of fine solid particles in air or another gas. - - - - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - IntentionalAgent - IntentionalAgent - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + + + + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + DeepDrawing + Tiefziehen + DeepDrawing - - - - A chain of linked physics based model simulations, where equations are solved sequentially. - LinkedModelsSimulation - LinkedModelsSimulation - A chain of linked physics based model simulations, where equations are solved sequentially. + + + + imaginary part of the admittance + Susceptance + Susceptance + https://qudt.org/vocab/quantitykind/Susceptance + https://www.wikidata.org/wiki/Q509598 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 + 6-52.3 + imaginary part of the admittance - - - - - - - - - - - + + + - Volume per amount of substance. - MolarVolume - MolarVolume - https://qudt.org/vocab/quantitykind/MolarVolume - https://www.wikidata.org/wiki/Q487112 - 9-5 - Volume per amount of substance. + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + AtomicScatteringFactor + AtomicScatteringFactor + https://qudt.org/vocab/quantitykind/AtomScatteringFactor + https://www.wikidata.org/wiki/Q837866 + 12-5.3 + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + https://en.wikipedia.org/wiki/Atomic_form_factor - + - - - - - - + + + T-2 L+2 M+1 I0 Θ-1 N0 J0 + - - - Semiotics - Semiotics + + + EntropyUnit + EntropyUnit - - + + + + + = + + - A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. - A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). - A numerical data value. - In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. -More than one numeral stands for the same number. -In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). -Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). -The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. -For these reasons, the EMMO will consider numerals and numbers as the same concept. - Number - Numeral - Number - A numerical data value. + The equals symbol. + Equals + Equals + The equals symbol. - - + + - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - - TransmissionElectronMicroscopy - TEM - TransmissionElectronMicroscopy - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Potentiometry + Potentiometry + https://www.wikidata.org/wiki/Q900632 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + https://doi.org/10.1515/pac-2018-0109 - + + + + Data that are decoded retaining its continuous variations characteristic. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + AnalogData + AnalogData + Data that are decoded retaining its continuous variations characteristic. + A vynil contain continuous information about the recorded sound. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + + + + + + + Internal energy per amount of substance. + MolarInternalEnergy + MolarInternalEnergy + https://www.wikidata.org/wiki/Q88523106 + 9-6.1 + Internal energy per amount of substance. + + + + - - The ratio of the binding energy of a nucleus to the atomic mass number. - BindingFraction - BindingFraction - https://qudt.org/vocab/quantitykind/BindingFraction - https://www.wikidata.org/wiki/Q98058362 - 10-23.2 - The ratio of the binding energy of a nucleus to the atomic mass number. + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + AlphaDisintegrationEnergy + AlphaDisintegrationEnergy + http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98146025 + 10-32 + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + + + + + + Inverse of the magnetic flux quantum. + The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. + JosephsonConstant + JosephsonConstant + http://qudt.org/vocab/constant/JosephsonConstant + Inverse of the magnetic flux quantum. - - - - Irradiate - Irradiate + + + + + DebyeTemperature + DebyeTemperature + https://qudt.org/vocab/quantitykind/DebyeTemperature + https://www.wikidata.org/wiki/Q3517821 + 12-11 - - - - - GreenTopAntiQuark - GreenTopAntiQuark + + + + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + DifferentialLinearPulseVoltammetry + DifferentialLinearPulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - - - - - T0 L+6 M0 I0 Θ0 N0 J0 - - - + + - SexticLengthUnit - SexticLengthUnit + Speed with which the envelope of a wave propagates in space. + GroupVelocity + GroupSpeed + GroupVelocity + https://www.wikidata.org/wiki/Q217361 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 + https://dbpedia.org/page/Group_velocity + 3-23.2 + Speed with which the envelope of a wave propagates in space. + https://en.wikipedia.org/wiki/Group_velocity - + + - - + + - + + - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - ElectricFlux - ElectricFlux - https://qudt.org/vocab/quantitykind/ElectricFlux - https://www.wikidata.org/wiki/Q501267 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 - 6-17 - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - + The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. - - - - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - lasciano tensioni residue di compressione - CompressiveForming - Druckumformen - CompressiveForming - +-- IEC, note 2 + The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. - - - - - T0 L+3 M-1 I0 Θ0 N0 J0 - - - - - VolumePerMassUnit - VolumePerMassUnit - +-- IEC, note 1 + Vector quantity giving the rate of change of a position vector. - - - - - The physical dimension can change based on the stoichiometric numbers of the substances involved. - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - EquilibriumConstant - EquilibriumConstantConcentrationBasis - EquilibriumConstant - https://qudt.org/vocab/quantitykind/EquilibriumConstant - https://www.wikidata.org/wiki/Q857809 - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - https://en.wikipedia.org/wiki/Equilibrium_constant - https://doi.org/10.1351/goldbook.E02177 - +-- ISO 80000-3 + Velocity + Velocity + http://qudt.org/vocab/quantitykind/Velocity + https://www.wikidata.org/wiki/Q11465 + Vector quantity giving the rate of change of a position vector. - - - - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - WearTesting - WearTesting - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. +-- ISO 80000-3 + 3-8.1 + 3‑10.1 - - + + + + + + - - T-3 L+1 M+1 I-1 Θ0 N0 J0 + + - - + - ElectricFieldStrengthUnit - ElectricFieldStrengthUnit - - - - - - A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - AdsorptiveStrippingVoltammetry - AdSV - AdsorptiveStrippingVoltammetry - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - https://doi.org/10.1515/pac-2018-0109 - - - - - - Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. - Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. - Often the product of the electrochemical stripping is identical to the analyte before the accumulation. - Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. - Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - - StrippingVoltammetry - StrippingVoltammetry - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis - https://doi.org/10.1515/pac-2018-0109 - - - - - - GluonType3 - GluonType3 + translation vector that maps the crystal lattice on itself + LatticeVector + LatticeVector + https://qudt.org/vocab/quantitykind/LatticeVector + https://www.wikidata.org/wiki/Q105435234 + 12-1.1 + translation vector that maps the crystal lattice on itself - - + + - In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - CentreOfMass - CentreOfMass - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - https://en.wikipedia.org/wiki/Center_of_mass - - - - - - - - - - - - - - - - - - - - - - - - ClassicallyDefinedMaterial - ClassicallyDefinedMaterial - - - - - - - Matter composed of only matter particles, excluding anti-matter particles. - OrdinaryMatter - OrdinaryMatter - Matter composed of only matter particles, excluding anti-matter particles. - - - - - - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - CharacterisationExperiment - CharacterisationExperiment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + vector quantity between any two points in space + Displacement + Displacement + https://qudt.org/vocab/quantitykind/Displacement + https://www.wikidata.org/wiki/Q190291 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 + https://dbpedia.org/page/Displacement_(geometry) + 3-1.11 + vector quantity between any two points in space + https://en.wikipedia.org/wiki/Displacement_(geometry) - - - - + + + + + + + + + + + - - + + + + + + - - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - Experiment - Experiment - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + + Semiotic subclasse are defined using Peirce's semiotic theory. + +"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). + +The triadic elements: +- 'sign': the sign A (e.g. a name) +- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) +- 'object': the object C (e.g. the entity to which the sign A and B refer to) + +This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + SemioticEntity + SemioticEntity + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - + @@ -16651,1159 +16188,1455 @@ For these reasons, the EMMO will consider numerals and numbers as the same conce - + - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - LinearEnergyTransfer - LinearEnergyTransfer - https://qudt.org/vocab/quantitykind/LinearEnergyTransfer - https://www.wikidata.org/wiki/Q1699996 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 - 10-85 - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - https://doi.org/10.1351/goldbook.L03550 + Number of ions per volume. + IonNumberDensity + IonDensity + IonNumberDensity + https://www.wikidata.org/wiki/Q98831218 + 10-62.2 + Number of ions per volume. - + + + + + A process which is an holistic spatial part of a process. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + SubProcess + SubProcess + A process which is an holistic spatial part of a process. + Breathing is a subprocess of living for a human being. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + + + + + + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + Annealing + Annealing + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + + + + + + Characteristic quantum number s of a particle, related to its spin. + SpinQuantumNumber + SpinQuantumNumber + https://qudt.org/vocab/quantitykind/SpinQuantumNumber + https://www.wikidata.org/wiki/Q3879445 + 10-13.5 + Characteristic quantum number s of a particle, related to its spin. + + + - T-1 L+4 M0 I0 Θ0 N0 J0 + T-2 L-2 M+1 I0 Θ0 N0 J0 - QuarticLengthPerTimeUnit - QuarticLengthPerTimeUnit + MassPerSquareLengthSquareTimeUnit + MassPerSquareLengthSquareTimeUnit - + + + + A network of objects that implements a production process through a series of interconnected elements. + ProductionSystem + ProductionSystem + A network of objects that implements a production process through a series of interconnected elements. + + + + + + A system whose is mainly characterised by the way in which elements are interconnected. + Network + Network + A system whose is mainly characterised by the way in which elements are interconnected. + + + + + + ParallelWorkflow + ParallelWorkflow + + + + + + CompiledLanguage + CompiledLanguage + + + + + + PorcelainOrCeramicCasting + PorcelainOrCeramicCasting + + + + + + FormingFromPulp + FormingFromPulp + + + + + + A 'process' that is recognized by physical sciences and is categorized accordingly. + While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist + PhysicalPhenomenon + PhysicalPhenomenon + A 'process' that is recognized by physical sciences and is categorized accordingly. + + + - + - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - LinearIonization - LinearIonization - https://qudt.org/vocab/quantitykind/LinearIonization - https://www.wikidata.org/wiki/Q98690755 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 - 10-58 - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + CyclotronAngularFrequency + CyclotronAngularFrequency + https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency + https://www.wikidata.org/wiki/Q97708211 + 10-16 + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - - + + + + A standalone atom with an unbalanced number of electrons with respect to its atomic number. + The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, + IonAtom + IonAtom + A standalone atom with an unbalanced number of electrons with respect to its atomic number. + + + + + + + + + + + + + + + A gaseous solution made of more than one component type. + GasSolution + GasMixture + GasSolution + A gaseous solution made of more than one component type. + + + + - Process for removing unwanted residual or waste material from a given product or material - Cleaning - Cleaning + A device that is designed to participate to a manufacturing process. + ManufacturingDevice + ManufacturingDevice + A device that is designed to participate to a manufacturing process. - - - - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. - QuantumData - QuantumData - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + + + + + + + + + + + + + + + + + + + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + SpatioTemporalTessellation + WellFormedTessellation + SpatioTemporalTessellation + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - - + + - ElectroSinterForging - ElectroSinterForging + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + Pressing + Anpressen + Pressing - - - - GluonType7 - GluonType7 + + + + + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + + RawData + RawData + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. + In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. + In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - - - - - - - - + + + - - - - - - - - - - + + - - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - Hyperon - Hyperon - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - https://en.wikipedia.org/wiki/Hyperon + + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + Result of a measurement. + +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + +-- VIM + MeasurementResult + MeasurementResult + Result of a measurement. + +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + +-- VIM + measurement result + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. - - - - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - Dilatometry - https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. - Dilatometry - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + + + + Exponent + Exponent - - - - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - DataExchangeLanguage - DataExchangeLanguage - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - JSON, YAML, XML - https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages + + + + + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. + ReshapeManufacturing + DIN 8580:2020 + Forming + Umformen + ReshapeManufacturing + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. - - - - - - + + + + Complex representation of an oscillating voltage. + VoltagePhasor + VoltagePhasor + https://qudt.org/vocab/quantitykind/VoltagePhasor + https://www.wikidata.org/wiki/Q78514605 + 6-50 + Complex representation of an oscillating voltage. + + + + - - + + T+1 L-3 M0 I+1 Θ0 N0 J0 - + + - inverse of the mass density ρ, thus v = 1/ρ. - SpecificVolume - MassicVolume - SpecificVolume - https://qudt.org/vocab/quantitykind/SpecificVolume - https://www.wikidata.org/wiki/Q683556 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 - 4-3 - inverse of the mass density ρ, thus v = 1/ρ. - https://doi.org/10.1351/goldbook.S05807 + ElectricChargeDensityUnit + ElectricChargeDensityUnit - - + + + + + T-1 L-2 M0 I0 Θ0 N0 J0 + + + - Heat capacity at constant volume. - IsochoricHeatCapacity - HeatCapacityAtConstantVolume - IsochoricHeatCapacity - https://www.wikidata.org/wiki/Q112187521 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 - 5-16.3 - Heat capacity at constant volume. + PerAreaTimeUnit + PerAreaTimeUnit - - + + + - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - DebyeAngularWaveNumber - DebyeAngluarRepetency - DebyeAngularWaveNumber - https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber - https://www.wikidata.org/wiki/Q105554370 - 12-9.3 - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + RotationalDisplacement + AngularDisplacement + RotationalDisplacement + https://www.wikidata.org/wiki/Q3305038 + 3-6 + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + https://en.wikipedia.org/wiki/Angular_displacement - - - - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - CausalConvexSystem - CausalConvexSystem - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - A CausalSystem whose quantum parts are all bonded to the rest of the system. + + + + Ratio of circular arc length to radius. + Angle + PlaneAngle + Angle + http://qudt.org/vocab/quantitykind/PlaneAngle + Ratio of circular arc length to radius. + 3-5 + https://doi.org/10.1351/goldbook.A00346 - - - - C - C + + + + Radius of the osculating circle of a planar curve at a particular point of the curve. + RadiusOfCurvature + RadiusOfCurvature + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 + https://dbpedia.org/page/Radius_of_curvature + 3-1.12 + Radius of the osculating circle of a planar curve at a particular point of the curve. + https://en.wikipedia.org/wiki/Radius_of_curvature - - - - - - + + - - + + T-1 L+3 M0 I0 Θ0 N-1 J0 + + + + + VolumePerAmountTimeUnit + VolumePerAmountTimeUnit + + + + + + MergingManufacturing + AddingManufacturing + MergingManufacturing + + + + + + + T-2 L+2 M+1 I-2 Θ0 N0 J0 - + + - Mass per unit area. - AreaDensity - AreaDensity - http://qudt.org/vocab/quantitykind/SurfaceDensity - https://doi.org/10.1351/goldbook.S06167 + InductanceUnit + InductanceUnit - - + + + - Enthalpy per unit mass. - SpecificEnthalpy - SpecificEnthalpy - https://qudt.org/vocab/quantitykind/SpecificEnthalpy - https://www.wikidata.org/wiki/Q21572993 - 5-21.3 - Enthalpy per unit mass. - https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + GapEnergy + BandgapEnergy + GapEnergy + https://www.wikidata.org/wiki/Q103982939 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 + 12-27.2 + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + https://doi.org/10.1351/goldbook.B00593 - - - + + - - + + T+1 L-3 M0 I0 Θ0 N0 J0 - - - A well formed tessellation with tiles that are all temporal. - TemporalTiling - TemporalTiling - A well formed tessellation with tiles that are all temporal. + + + + TimePerVolumeUnit + TimePerVolumeUnit - - - - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - HardeningByRolling - VerfestigendurchWalzen - HardeningByRolling - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + + + GreenUpQuark + GreenUpQuark - - - - A function defined using functional notation. - A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). - MathematicalFunction - FunctionDefinition - MathematicalFunction - A function defined using functional notation. - y = f(x) + + + + Galvanizing + Galvanizing - + - T-1 L+2 M-1 I0 Θ+1 N0 J0 + T+1 L+2 M0 I+1 Θ0 N0 J0 - TemperatureAreaPerMassTimeUnit - TemperatureAreaPerMassTimeUnit + ElectricChargeAreaUnit + ElectricChargeAreaUnit - - - + + + - The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - ElementaryCharge - ElementaryCharge - http://qudt.org/vocab/quantitykind/ElementaryCharge - 10-5.1 - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - https://doi.org/10.1351/goldbook.E02032 + The ratio of the binding energy of a nucleus to the atomic mass number. + BindingFraction + BindingFraction + https://qudt.org/vocab/quantitykind/BindingFraction + https://www.wikidata.org/wiki/Q98058362 + 10-23.2 + The ratio of the binding energy of a nucleus to the atomic mass number. - + + + + An product that is ready for commercialisation. + CommercialProduct + Product + CommercialProduct + An product that is ready for commercialisation. + + + + + - - + - Fundamental translation vector for the crystal lattice. - FundamentalLatticeVector - FundamentalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalLatticeVector - https://www.wikidata.org/wiki/Q105451063 - 12-1.2 - Fundamental translation vector for the crystal lattice. + Quotient of the total linear stopping power S and the mass density ρ of the material. + TotalMassStoppingPower + MassStoppingPower + TotalMassStoppingPower + https://qudt.org/vocab/quantitykind/TotalMassStoppingPower + https://www.wikidata.org/wiki/Q98642795 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 + 10-55 + Quotient of the total linear stopping power S and the mass density ρ of the material. - - - - - - - - - - - - - - - A physical particle with integer spin that follows Bose–Einstein statistics. - Boson - Boson - A physical particle with integer spin that follows Bose–Einstein statistics. - https://en.wikipedia.org/wiki/Boson + + + + A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + MaterialRelation + MaterialRelation + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + The Lennard-Jones potential. +A force field. +An Hamiltonian. - + + + + + Radius of a sphere such that the relativistic electron energy is distributed uniformly. + ElectronRadius + ElectronRadius + https://www.wikidata.org/wiki/Q2152581 + 10-19.2 + Radius of a sphere such that the relativistic electron energy is distributed uniformly. + + + - A property that is associated to an object by convention, or assumption. - A quantitative property attributed by agreement to a quantity for a given purpose. - ConventionalProperty - ConventionalProperty - A quantitative property attributed by agreement to a quantity for a given purpose. - The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. + A quantity that is the result of a well-defined measurement procedure. + The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. -If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. +-- VIM + MeasuredProperty + MeasuredProperty + A quantity that is the result of a well-defined measurement procedure. + -Then I have two different physical quantities that are properties thanks to two different semiotic processes. + + + + Data resulting from the application of post-processing or model generation to other data. + + SecondaryData + Elaborated data + SecondaryData + Data resulting from the application of post-processing or model generation to other data. + Deconvoluted curves + Intensity maps - - - - A participant that is the driver of the process. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. - Agent - Agent - A participant that is the driver of the process. - A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. + + + + + T-1 L+4 M0 I0 Θ0 N0 J0 + + + + + QuarticLengthPerTimeUnit + QuarticLengthPerTimeUnit + + + + + + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + MarkupLanguage + MarkupLanguage + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + HTML + https://en.wikipedia.org/wiki/Markup_language + + + + + + + A constitutive process is a process that is holistically relevant for the definition of the whole. + A process which is an holistic spatial part of an object. + ConstitutiveProcess + ConstitutiveProcess + A process which is an holistic spatial part of an object. + Blood circulation in a human body. + A constitutive process is a process that is holistically relevant for the definition of the whole. - - + + - - + - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - CoefficientOfHeatTransfer - ThermalTransmittance - CoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q634340 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 - 5-10.1 - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - - - - - - - Measure of the tendency of a solution to take in pure solvent by osmosis. - OsmoticPressure - OsmoticPressure - https://qudt.org/vocab/quantitykind/OsmoticPressure - https://www.wikidata.org/wiki/Q193135 - 9-28 - Measure of the tendency of a solution to take in pure solvent by osmosis. - https://doi.org/10.1351/goldbook.O04344 - - - - - - GluonType1 - GluonType1 - - - - - - Data that occurs naturally without an encoding agent producing it. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - NonEncodedData - EnvironmentalData - NonEncodedData - Data that occurs naturally without an encoding agent producing it. - A cloud in the sky. The radiative spectrum of a star. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + MagneticMoment + MagneticAreaMoment + MagneticMoment + https://qudt.org/vocab/quantitykind/MagneticMoment + https://www.wikidata.org/wiki/Q242657 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 + 6-23 + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + https://doi.org/10.1351/goldbook.M03688 - - - - - A coarse dispersion of gas in a liquid continuum phase. - LiquidGasSuspension - LiquidGasSuspension - A coarse dispersion of gas in a liquid continuum phase. - Sparkling water + + + + PaperManufacturing + PaperManufacturing - - + + - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - Rolling - Walzen - Rolling + FormingFromChip + FormingFromChip - - - - Unit for quantities of dimension one that are the fraction of two lengths. - LengthFractionUnit - LengthFractionUnit - Unit for quantities of dimension one that are the fraction of two lengths. - Unit for plane angle. + + + + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + DataPreparation + DataPreparation + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - - + + + + + + + + + + + - Quantities categorised according to ISO 80000-7. - LightAndRadiationQuantity - LightAndRadiationQuantity - Quantities categorised according to ISO 80000-7. + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms + VolumicTotalCrossSection + MacroscopicTotalCrossSection + VolumicTotalCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection + https://www.wikidata.org/wiki/Q98280548 + 10-42.2 + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - - - - - One minus the square of the coupling factor - LeakageFactor - LeakageFactor - https://www.wikidata.org/wiki/Q78102042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 - 6-42.2 - One minus the square of the coupling factor + + + + + Service + IntangibleProduct + Service + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 - - - - A meson with spin zero and even parity. - ScalarMeson - ScalarMeson - A meson with spin zero and even parity. - https://en.wikipedia.org/wiki/Scalar_meson + + + + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + + Thermogravimetry + TGA + Thermogravimetry + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - + + - + - Energy per unit change in amount of substance. - ChemicalPotential - ChemicalPotential - http://qudt.org/vocab/quantitykind/ChemicalPotential - 9-17 - https://doi.org/10.1351/goldbook.C01032 + SpecificEntropy + SpecificEntropy + https://qudt.org/vocab/quantitykind/SpecificEntropy + https://www.wikidata.org/wiki/Q69423705 + 5-19 - - - - Voltage between the two terminals of a voltage source when there is no electric current through the source. - SourceVoltage - SourceTension - SourceVoltage - https://qudt.org/vocab/quantitykind/SourceVoltage - https://www.wikidata.org/wiki/Q185329 - 6-36 - Voltage between the two terminals of a voltage source when there is no electric current through the source. + + + + + T0 L-1 M0 I0 Θ0 N0 J0 + + + + + ReciprocalLengthUnit + ReciprocalLengthUnit - - - - Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. - The difference in electric potential between two points. - Voltage - ElectricPotentialDifference - ElectricTension - Voltage - http://qudt.org/vocab/quantitykind/Voltage - 6-11.3 - The difference in electric potential between two points. - https://doi.org/10.1351/goldbook.V06635 - https://doi.org/10.1351/goldbook.A00424 + + + + + HardwareModel + HardwareModel - - - - - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - Muon - Muon - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon + + + + Quantities categorised according to ISO 80000-8. + AcousticQuantity + AcousticQuantity + Quantities categorised according to ISO 80000-8. - - - - - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - alpha_V = (1/V) * (dV/dT) - CubicExpansionCoefficient - CubicExpansionCoefficient - https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient - https://www.wikidata.org/wiki/Q74761076 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 - 5-3.2 - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + + + + + Faction of electrical current carried by given ionic species. + IonTransportNumber + CurrentFraction + TransferrenceNumber + IonTransportNumber + https://qudt.org/vocab/quantitykind/IonTransportNumber + https://www.wikidata.org/wiki/Q331854 + 9-46 + Faction of electrical current carried by given ionic species. + https://doi.org/10.1351/goldbook.I03181 + https://doi.org/10.1351/goldbook.T06489 - + + + - - + + - Material property which describes how the size of an object changes with a change in temperature. - CoefficientOfThermalExpansion - ThermalExpansionCoefficient - CoefficientOfThermalExpansion - https://www.wikidata.org/wiki/Q45760 - Material property which describes how the size of an object changes with a change in temperature. + SecondPolarMomentOfArea + SecondPolarMomentOfArea + https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea + https://www.wikidata.org/wiki/Q1049636 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 + 4-21.2 - - - - Relative change of length per change of temperature. - LinearExpansionCoefficient - LinearExpansionCoefficient - https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient - https://www.wikidata.org/wiki/Q74760821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 - 5-3.1 - Relative change of length per change of temperature. + + + + + SerialStep + SerialStep - - + + - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - DifferentialLinearPulseVoltammetry - DifferentialLinearPulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + FatigueTesting + FatigueTesting + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - - - - - - - - - - - + + + + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + SeparateManufacturing + DIN 8580:2020 + CuttingManufacturing + Trennen + SeparateManufacturing + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + + + + + - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - DirectionDistributionOfCrossSection - DirectionDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/AngularCrossSection - https://www.wikidata.org/wiki/Q98266630 - 10-39 - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + WaveVector + WaveVector + https://www.wikidata.org/wiki/Q657009 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 + 3-21 + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + https://en.wikipedia.org/wiki/Wave_vector - + + + + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + Planing + Hobeln + Planing + + + - T0 L+1 M0 I0 Θ+1 N0 J0 + T+1 L0 M-1 I+1 Θ0 N0 J0 - LengthTemperatureUnit - LengthTemperatureUnit + ElectricChargePerMassUnit + ElectricChargePerMassUnit - - - - - - - - - - - - - CompositeFermion - CompositeFermion - Examples of composite particles with half-integer spin: -spin 1/2: He3 in ground state, proton, neutron -spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) + + + + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + Ellipsometry + Ellipsometry + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - - - - - - - - - - - - - - - - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - Fermion - Fermion - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion + + + + + ActivityOfSolute + RelativeActivityOfSolute + ActivityOfSolute + https://www.wikidata.org/wiki/Q89408862 + 9-24 - - - - - - Amount of heat through a surface during a time interval divided by the duration of this interval. - HeatFlowRate - HeatFlowRate - https://qudt.org/vocab/quantitykind/HeatFlowRate - https://www.wikidata.org/wiki/Q12160631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 - 5-7 - Amount of heat through a surface during a time interval divided by the duration of this interval. + + + + + T-1 L+1 M0 I0 Θ0 N0 J0 + + + + + SpeedUnit + SpeedUnit - - - + + + + + + + + + + - At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - DensityOfHeatFlowRate - AreicHeatFlowRate - DensityOfHeatFlowRate - https://www.wikidata.org/wiki/Q1478382 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 - 5-8 - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - https://doi.org/10.1351/goldbook.H02755 + Measure of probability that a specific process will take place in a collision of two particles. + AtomicPhysicsCrossSection + AtomicPhysicsCrossSection + https://qudt.org/vocab/quantitykind/Cross-Section.html + https://www.wikidata.org/wiki/Q17128025 + 10-38.1 + Measure of probability that a specific process will take place in a collision of two particles. - - - - - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - PhysicsEquation - PhysicsEquation - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - The Newton's equation of motion. -The Schrödinger equation. -The Navier-Stokes equation. + + + + + + + + + + + + + Mass increment per time. + MassChangeRate + MassChangeRate + https://www.wikidata.org/wiki/Q92020547 + 4-30.3 + Mass increment per time. - - - - - T-3 L-2 M+2 I0 Θ0 N0 J0 - - - + + + - SquarePressureTimeUnit - SquarePressureTimeUnit + Displacement of one surface with respect to another divided by the distance between them. + ShearStrain + ShearStrain + https://qudt.org/vocab/quantitykind/ShearStrain + https://www.wikidata.org/wiki/Q7561704 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 + 4-17.3 + Displacement of one surface with respect to another divided by the distance between them. + https://doi.org/10.1351/goldbook.S05637 - - - - HotDipGalvanizing - Hot-dipGalvanizing - HotDipGalvanizing + + + + + + + + + + + + + + + + + + + + + StrangeAntiQuark + StrangeAntiQuark - - + + - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - Non la metterei - Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). - FreeForming - FreeForming + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + ShearCutting + Scherschneiden + ShearCutting - - + + - - The abstract notion of angle. - AngularMeasure - AngularMeasure - https://qudt.org/vocab/quantitykind/Angle - https://www.wikidata.org/wiki/Q1357788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 - 3-5 - The abstract notion of angle. - https://doi.org/10.1351/goldbook.A00346 + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. + TotalIonization + TotalIonization + https://qudt.org/vocab/quantitykind/TotalIonization + https://www.wikidata.org/wiki/Q98690787 + 10-59 + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - - + + + + + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + PureParallelWorkflow + EmbarassinglyParallelWorkflow + PureParallelWorkflow + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + + + + - - - + + - Surface density of electric charge multiplied by velocity - LinearElectricCurrentDensity - LinearElectricCurrentDensity - https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity - https://www.wikidata.org/wiki/Q2356741 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 - 6-9 - Surface density of electric charge multiplied by velocity - - - - - - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - Computation - Computation - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - A matematician that calculates 2+2. -A computation machine that calculate the average value of a dataset. + A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. + FineStructureConstant + FineStructureConstant + http://qudt.org/vocab/constant/FineStructureConstant + https://doi.org/10.1351/goldbook.F02389 - + + - - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - AtomicScatteringFactor - AtomicScatteringFactor - https://qudt.org/vocab/quantitykind/AtomScatteringFactor - https://www.wikidata.org/wiki/Q837866 - 12-5.3 - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - https://en.wikipedia.org/wiki/Atomic_form_factor - - - - - - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - A material process requires the output to be classified as an individual of a material subclass. - MaterialsProcessing - ContinuumManufacturing - MaterialsProcessing - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. - A material process requires the output to be classified as an individual of a material subclass. - - - - - - CausallHairedSystem - CausallHairedSystem + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + ShortRangeOrderParameter + ShortRangeOrderParameter + https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter + https://www.wikidata.org/wiki/Q105495979 + 12-5.1 + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - - - + + + + + T0 L-3 M+1 I0 Θ0 N0 J0 + + + - The quantum of action. It defines the kg base unit in the SI system. - PlanckConstant - PlanckConstant - http://qudt.org/vocab/constant/PlanckConstant - The quantum of action. It defines the kg base unit in the SI system. - https://doi.org/10.1351/goldbook.P04685 - - - - - - - An object which is an holistic spatial part of a process. - Participant - Participant - An object which is an holistic spatial part of a process. - A student during an examination. + DensityUnit + DensityUnit - + + - + - ReciprocalDuration - InverseDuration - InverseTime - ReciprocalTime - ReciprocalDuration - https://qudt.org/vocab/quantitykind/InverseTime - https://www.wikidata.org/wiki/Q98690850 + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + CoefficientOfHeatTransfer + ThermalTransmittance + CoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q634340 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 + 5-10.1 + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - - - + + + + + T-2 L+3 M+1 I-1 Θ+1 N0 J0 + + + + + NewtonSquareMetrePerAmpereUnit + NewtonSquareMetrePerAmpereUnit + + + + + - GrandCanonicalPartionFunction - GrandPartionFunction - GrandCanonicalPartionFunction - https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96176022 - 9-35.3 + for metals, the resistivity extrapolated to zero thermodynamic temperature + ResidualResistivity + ResidualResistivity + https://qudt.org/vocab/quantitykind/ResidualResistivity + https://www.wikidata.org/wiki/Q25098876 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 + 12-17 + for metals, the resistivity extrapolated to zero thermodynamic temperature + + + + + + + SamplePreparationInstrument + SamplePreparationInstrument - - - - Property of a solute in a solution. - StandardAbsoluteActivity - StandardAbsoluteActivityInASolution - StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89485936 - 9-26 - Property of a solute in a solution. + + + + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + + XrayPowderDiffraction + XRPD + XrayPowderDiffraction + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + https://en.wikipedia.org/wiki/Powder_diffraction - - - - - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - AbsoluteActivity - AbsoluteActivity - https://qudt.org/vocab/quantitykind/AbsoluteActivity - https://www.wikidata.org/wiki/Q56638155 - 9-18 - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - https://goldbook.iupac.org/terms/view/A00019 + + + + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + Grinding + Grinding + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - - - - - + + - - + + + 1 - - Vector potential of the magnetic flux density. - MagneticVectorPotential - MagneticVectorPotential - https://qudt.org/vocab/quantitykind/MagneticVectorPotential - https://www.wikidata.org/wiki/Q2299100 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 - 6-32 - Vector potential of the magnetic flux density. + + + + + 1 + + + + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). + +So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. + +While the string "1 kg" is a 'QuantityValue'. + QuantityValue + QuantityValue + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + 6.8 m +0.9 km +8 K +6 MeV +43.5 HRC(150 kg) + quantity value + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - + - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - Nanoindentation - Nanoindentation - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + CompressionTesting + CompressionTesting + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - - - - - + + + + + + + + + + + - - + + + + + + - - Product of the mean linear range R and the mass density ρ of the material. - MeanMassRange - MeanMassRange - https://qudt.org/vocab/quantitykind/MeanMassRange - https://www.wikidata.org/wiki/Q98681670 - 10-57 - Product of the mean linear range R and the mass density ρ of the material. - https://doi.org/10.1351/goldbook.M03783 + + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + MetrologicalSymbol + MetrologicalSymbol + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - - - - Ruby - Ruby + + + + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + GFactorOfNucleusOrNuclearParticle + NuclearGFactor + GFactorOfNucleusOrNuclearParticle + https://qudt.org/vocab/quantitykind/GFactorOfNucleus + https://www.wikidata.org/wiki/Q97591250 + 10-14.2 + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - - - - - - - - - - - - + + + - SecondPolarMomentOfArea - SecondPolarMomentOfArea - https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea - https://www.wikidata.org/wiki/Q1049636 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 - 4-21.2 + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + Lethargy + Lethargy + https://qudt.org/vocab/quantitykind/Lethargy + https://www.wikidata.org/wiki/Q25508781 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 + 10-69 + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - - + + + + Unit for quantities of dimension one that are the fraction of two masses. + MassFractionUnit + MassFractionUnit + Unit for quantities of dimension one that are the fraction of two masses. + Unit for mass fraction. + + + + + + Suggestion of Rickard Armiento + CrystallineMaterial + CrystallineMaterial + + + + + + PermanentLiquidPhaseSintering + PermanentLiquidPhaseSintering + + + - - - + + - - SecondAxialMomentOfArea - SecondAxialMomentOfArea - https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea - https://www.wikidata.org/wiki/Q91405496 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 - 4-21.1 + + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + CharacterisationEnvironment + CharacterisationEnvironment + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - - - + + + + + + + + + + + + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + A set of instructions that tell a computer what to do. + Program + Executable + Program + A set of instructions that tell a computer what to do. + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + + + + + - NumberOfTurnsInAWinding - NumberOfTurnsInAWinding - https://www.wikidata.org/wiki/Q77995997 - 6-38 + StaticFrictionForce + StaticFriction + StaticFrictionForce + https://qudt.org/vocab/quantitykind/StaticFriction + https://www.wikidata.org/wiki/Q90862568 + 4-9.3 - + - UndefinedEdgeCutting - Spanen mit geometrisch unbestimmten Schneiden - UndefinedEdgeCutting + DefinedEdgeCutting + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + Spanen mit geometrisch bestimmten Schneiden + DefinedEdgeCutting - - - - - - - - - - - - - - - - - - - - - StrangeQuark - StrangeQuark - https://en.wikipedia.org/wiki/Strange_quark + + + + A meson with spin zero and odd parity. + PseudoscalarMeson + PseudoscalarMeson + A meson with spin zero and odd parity. + https://en.wikipedia.org/wiki/Pseudoscalar_meson - - - - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - HiggsBoson - HiggsBoson - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - https://en.wikipedia.org/wiki/Higgs_boson + + + + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + URL + URL + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - - + + - ThermochemicalTreatment - ThermochemicalTreatment + PlasticSintering + PlasticSintering - - - - - T-2 L+2 M+1 I0 Θ-1 N-1 J0 - - - + + + - EntropyPerAmountUnit - EntropyPerAmountUnit + Sum of energies deposited by ionizing radiation in a given volume. + EnergyImparted + EnergyImparted + https://qudt.org/vocab/quantitykind/EnergyImparted + https://www.wikidata.org/wiki/Q99526944 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 + 10-80.1 + Sum of energies deposited by ionizing radiation in a given volume. - - - - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. - Welding - Schweißen - Welding + + + + + GreenStrangeQuark + GreenStrangeQuark - - - + + + + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Nexafs + Nexafs + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + + + + + - RedBottomAntiQuark - RedBottomAntiQuark + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + Quantum + Quantum + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. +However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. - - - + + - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - MeanLinearRange - MeanLinearRange - https://qudt.org/vocab/quantitykind/MeanLinearRange - https://www.wikidata.org/wiki/Q98681589 - 10-56 - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - https://doi.org/10.1351/goldbook.M03782 + In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + CentreOfMass + CentreOfMass + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + https://en.wikipedia.org/wiki/Center_of_mass - - + + + + + + + + + + - Imaginary part of the complex power. - ReactivePower - ReactivePower - https://qudt.org/vocab/quantitykind/ReactivePower - https://www.wikidata.org/wiki/Q2144613 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 - 6-60 - Imaginary part of the complex power. + In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. + +-- IEC + Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. + +-- ISO 80000-3 + Vector r characterizing a point P in a point space with a given origin point O. + PositionVector + Position + PositionVector + http://qudt.org/vocab/quantitykind/PositionVector + Vector r characterizing a point P in a point space with a given origin point O. - - - - - AntiMuon - AntiMuon + + + + + + + + + + + + + + A set of units that correspond to the base quantities in a system of units. + BaseUnit + BaseUnit + A set of units that correspond to the base quantities in a system of units. + base unit - - + + + + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + ElectricPolarization + ElectricPolarization + https://qudt.org/vocab/quantitykind/ElectricPolarization + https://www.wikidata.org/wiki/Q1050425 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 + 6-7 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + + + + + + + + + + + + + + + + + + + + + MathematicalConstruct + MathematicalConstruct + + + + + - + - + - + @@ -17812,523 +17645,632 @@ A computation machine that calculate the average value of a dataset. - AntiElectronType - AntiElectronType + StrangeQuark + StrangeQuark + https://en.wikipedia.org/wiki/Strange_quark - - - - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - Potentiometry - Potentiometry - https://www.wikidata.org/wiki/Q900632 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - https://doi.org/10.1515/pac-2018-0109 + + + + + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + Gel + Gel + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - - + + - Mathematical model used to process data. - Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. - PostProcessingModel - PostProcessingModel - Mathematical model used to process data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. + Chronopotentiometry where the applied current is changed linearly. + LinearChronopotentiometry + LinearChronopotentiometry + Chronopotentiometry where the applied current is changed linearly. + chronopotentiometry where the applied current is changed linearly - + + + + + + + + + + + A causal object that is tessellated in direct parts. + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + Tessellation + Tiling + Tessellation + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + A causal object that is tessellated in direct parts. + + + + + + Polynomial + Polynomial + 2 * x^2 + x + 3 + + + + - - + - Derivative of velocity with respect to time. - Acceleration - Acceleration - http://qudt.org/vocab/quantitykind/Acceleration - 3-9.1 - https://doi.org/10.1351/goldbook.A00051 + Number of slowed-down particles per time and volume. + SlowingDownDensity + SlowingDownDensity + https://qudt.org/vocab/quantitykind/Slowing-DownDensity + https://www.wikidata.org/wiki/Q98915830 + 10-67 + Number of slowed-down particles per time and volume. - - - + + + + Punctuation + Punctuation + + + + + + Unit for quantities of dimension one that are the fraction of two volumes. + VolumeFractionUnit + VolumeFractionUnit + Unit for quantities of dimension one that are the fraction of two volumes. + Unit for volume fraction. + + + + + + ThermochemicalTreatment + ThermochemicalTreatment + + + + + + A system of independent elements that are assembled together to perform a function. + Assembled + Assembled + A system of independent elements that are assembled together to perform a function. + + + + + + + + + + + + + - Quotient of the mass of water vapour in moist gas by the total gas volume. - The mass concentration of water at saturation is denoted vsat. - MassConcentrationOfWaterVapour - MassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - Quotient of the mass of water vapour in moist gas by the total gas volume. + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + MassAttenuationCoefficient + MassAttenuationCoefficient + https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient + https://www.wikidata.org/wiki/Q98591983 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 + 10-50 + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - + + + + Internal energy per unit mass. + SpecificInternalEnergy + SpecificInternalEnergy + https://qudt.org/vocab/quantitykind/SpecificInternalEnergy + https://www.wikidata.org/wiki/Q76357367 + 5-21.2 + Internal energy per unit mass. + + + + + + + + + + + + + + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + StrictFundamental + StrictFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + + + + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + ScanningProbeMicroscopy + ScanningProbeMicroscopy + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + + + + + + + - - T+1 L-2 M0 I+1 Θ0 N0 J0 + + - - + - ElectricDisplacementFieldUnit - ElectricDisplacementFieldUnit + In nuclear physics, incident radiant energy per cross-sectional area. + EnergyFluence + EnergyFluence + https://qudt.org/vocab/quantitykind/EnergyFluence + https://www.wikidata.org/wiki/Q98538612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 + 10-46 + In nuclear physics, incident radiant energy per cross-sectional area. - - + + + - duration of one cycle of a periodic event - PeriodDuration - Period - PeriodDuration - https://qudt.org/vocab/quantitykind/Period - https://www.wikidata.org/wiki/Q2642727 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 - 3-14 - duration of one cycle of a periodic event - https://doi.org/10.1351/goldbook.P04493 + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + MassFractionOfDryMatter + MassFractionOfDryMatter + https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter + https://www.wikidata.org/wiki/Q76379189 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 + 5-32 + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - - - - - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - LongRangeOrderParameter - LongRangeOrderParameter - https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter - https://www.wikidata.org/wiki/Q105496124 - 12-5.2 - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + + + + Ruby + Ruby - + - T-1 L+3 M0 I-1 Θ0 N0 J0 + T-1 L0 M+1 I-1 Θ0 N0 J0 - - ReciprocalElectricChargeDensityUnit - ReciprocalElectricChargeDensityUnit + + MassPerElectricChargeUnit + MassPerElectricChargeUnit - - - - - GreenCharmAntiQuark - GreenCharmAntiQuark + + + + + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + GibbsEnergy + GibbsFreeEnergy + GibbsEnergy + https://www.wikidata.org/wiki/Q334631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 + 5-20.5 + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + https://doi.org/10.1351/goldbook.G02629 - + - T-1 L0 M0 I0 Θ0 N0 J0 + T0 L-3 M0 I+1 Θ0 N-1 J0 - FrequencyUnit - FrequencyUnit + ElectricCurrentPerAmountVolumeUnit + ElectricCurrentPerAmountVolumeUnit - - + + + + + + - - T0 L+2 M0 I0 Θ0 N-1 J0 + + - - + - AreaPerAmountUnit - AreaPerAmountUnit - - - - - - A network of objects that implements a production process through a series of interconnected elements. - ProductionSystem - ProductionSystem - A network of objects that implements a production process through a series of interconnected elements. - - - - - - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - DifferentialThermalAnalysis - DTA - DifferentialThermalAnalysis - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + In nuclear physics, time derivative of the energy fluence. + EnergyFluenceRate + EnergyFluenceRate + https://qudt.org/vocab/quantitykind/EnergyFluenceRate + https://www.wikidata.org/wiki/Q98538655 + 10-47 + In nuclear physics, time derivative of the energy fluence. - + - - + - Strength of a magnetic field. Commonly denoted H. - MagneticFieldStrength - MagnetizingFieldStrength - MagneticFieldStrength - http://qudt.org/vocab/quantitykind/MagneticFieldStrength - https://www.wikidata.org/wiki/Q28123 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 - 6-25 - https://doi.org/10.1351/goldbook.M03683 - - - - - - - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - WaveVector - WaveVector - https://www.wikidata.org/wiki/Q657009 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 - 3-21 - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - https://en.wikipedia.org/wiki/Wave_vector + vector quantity giving the rate of change of angular velocity + AngularAcceleration + AngularAcceleration + https://qudt.org/vocab/quantitykind/AngularAcceleration + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 + https://dbpedia.org/page/Angular_acceleration + 3-13 + vector quantity giving the rate of change of angular velocity + https://en.wikipedia.org/wiki/Angular_acceleration - - + + - An analytical technique used for the elemental analysis or chemical characterization of a sample. - EnergyDispersiveXraySpectroscopy - EDS - EDX - EnergyDispersiveXraySpectroscopy - https://www.wikidata.org/wiki/Q386334 - An analytical technique used for the elemental analysis or chemical characterization of a sample. - https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + FieldEmissionScanningElectronMicroscopy + FE-SEM + FieldEmissionScanningElectronMicroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - - - - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - Grinding - Grinding - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + + + + + + ActivityFactor + ActivityFactor + https://www.wikidata.org/wiki/Q89335167 + 9-22 - - - - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - Screwing - Schrauben - Screwing + + + + + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + RadiantEnergy + RadiantEnergy + https://www.wikidata.org/wiki/Q1259526 + 10-45 + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - + - T-1 L0 M0 I0 Θ-1 N0 J0 + T+1 L+2 M0 I0 Θ0 N0 J0 - PerTemperatureTimeUnit - PerTemperatureTimeUnit - - - - - - A standalone atom that has no net charge. - NeutralAtom - NeutralAtom - A standalone atom that has no net charge. - - - - - - - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - Moulding - Gesenkformen - Moulding + AreaTimeUnit + AreaTimeUnit - - - - - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. - PhysicsMathematicalComputation - PhysicsMathematicalComputation - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + + + + + + + + + + + + Fundamental translation vector for the crystal lattice. + FundamentalLatticeVector + FundamentalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalLatticeVector + https://www.wikidata.org/wiki/Q105451063 + 12-1.2 + Fundamental translation vector for the crystal lattice. - - + + + + + + - - T+1 L-2 M0 I0 Θ0 N0 J+1 + + - - + - IlluminanceTimeUnit - IlluminanceTimeUnit + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + Molality + AmountPerMass + Molality + https://www.wikidata.org/wiki/Q172623 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 + 9-15 + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + https://doi.org/10.1351/goldbook.M03970 + + + + + + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + HiggsBoson + HiggsBoson + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + https://en.wikipedia.org/wiki/Higgs_boson - - - - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - Strain - Strain - http://qudt.org/vocab/quantitykind/Strain - 4-17.1 - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + + + + Determined + Determined - - - + + - + - + - A chausal chain whose quantum parts are of the same standard model fundamental type. - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - ElementaryParticle - SingleParticleChain - ElementaryParticle - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - A chausal chain whose quantum parts are of the same standard model fundamental type. + FundamentalMatterParticle + FundamentalMatterParticle - - - - - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - FermiEnergy - FermiEnergy - https://qudt.org/vocab/quantitykind/FermiEnergy - https://www.wikidata.org/wiki/Q431335 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 - 12-27.1 - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - https://doi.org/10.1351/goldbook.F02340 + + + + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + StandardUnit + ReferenceMaterial + StandardUnit + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l - - - - The class of individuals that stand for gravitons elementary particles. - While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + + + + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + Non la metterei + Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). + FreeForming + FreeForming + -For this reason graviton is an useful concept to homogenize the approach between different fields. - Graviton - Graviton - The class of individuals that stand for gravitons elementary particles. - While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + + + + + T0 L+1 M0 I0 Θ0 N0 J0 + + + + + LengthUnit + LengthUnit + -For this reason graviton is an useful concept to homogenize the approach between different fields. - https://en.wikipedia.org/wiki/Graviton + + + + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + CreepTesting + CreepTesting + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - - - - - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - DisplacementVector - DisplacementVector - https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon - https://www.wikidata.org/wiki/Q105533558 - 12-7.3 - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + + + + A quantity obtained from a well-defined modelling procedure. + ModelledProperty + ModelledProperty + A quantity obtained from a well-defined modelling procedure. - - - - - Average value of the increment of the lethargy per collision. - AverageLogarithmicEnergyDecrement - AverageLogarithmicEnergyDecrement - https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html - https://www.wikidata.org/wiki/Q1940739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 - 10-70 - Average value of the increment of the lethargy per collision. + + + + + + + + + + + + + ParticulateMatter + ParticulateMatter - - + + + Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. + The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped + The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - ResourceIdentifier - ResourceIdentifier + SquareWaveVoltammetry + OSWV + OsteryoungSquareWaveVoltammetry + SWV + SquareWaveVoltammetry + https://www.wikidata.org/wiki/Q4016323 + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + https://en.wikipedia.org/wiki/Squarewave_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - Unit for quantities of dimension one that are the fraction of two pressures. - PressureFractionUnit - PressureFractionUnit - Unit for quantities of dimension one that are the fraction of two pressures. + + + + + T0 L+2 M-1 I0 Θ0 N0 J0 + + + + + AreaPerMassUnit + AreaPerMassUnit - - - - CeramicMaterial - CeramicMaterial + + + + + T+1 L+1 M0 I0 Θ+1 N0 J0 + + + + + LengthTimeTemperatureUnit + LengthTimeTemperatureUnit - - - - The derivative of the electric charge of a system with respect to the area. - SurfaceDensityOfElectricCharge - AreicElectricCharge - SurfaceChargeDensity - SurfaceDensityOfElectricCharge - https://www.wikidata.org/wiki/Q12799324 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 - 6-4 - The derivative of the electric charge of a system with respect to the area. - https://doi.org/10.1351/goldbook.S06159 + + + + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + DielectricAndImpedanceSpectroscopy + DielectricAndImpedanceSpectroscopy + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - - - - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - TransformationLanguage - TransformationLanguage - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - https://en.wikipedia.org/wiki/Transformation_language - Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML + + + + + An application aimed to functionally reproduce an object. + SimulationApplication + SimulationApplication + An application aimed to functionally reproduce an object. + An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. - - - - - Deals with undefined shapes both input and output. - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - MaterialSynthesis - MaterialSynthesis - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - Deals with undefined shapes both input and output. + + + + + Measure of the tendency of a solution to take in pure solvent by osmosis. + OsmoticPressure + OsmoticPressure + https://qudt.org/vocab/quantitykind/OsmoticPressure + https://www.wikidata.org/wiki/Q193135 + 9-28 + Measure of the tendency of a solution to take in pure solvent by osmosis. + https://doi.org/10.1351/goldbook.O04344 - - - - - Voltage between substances a and b caused by the thermoelectric effect. - ThermoelectricVoltage - ThermoelectricVoltage - https://www.wikidata.org/wiki/Q105761637 - 12-20 - Voltage between substances a and b caused by the thermoelectric effect. + + + + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + Soldering + Löten + Soldering - - - - Atomic quantum number related to the orbital angular momentum l of a one-electron state. - OrbitalAngularMomentumQuantumNumber - OrbitalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1916324 - 10-13.3 - Atomic quantum number related to the orbital angular momentum l of a one-electron state. + + + + + GreenUpAntiQuark + GreenUpAntiQuark - - - - - - + + - - + + T-2 L+1 M+1 I-1 Θ0 N0 J0 - - + + - RelativePressureCoefficient - RelativePressureCoefficient - https://qudt.org/vocab/quantitykind/RelativePressureCoefficient - https://www.wikidata.org/wiki/Q74761852 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 - 5-3.3 + MagneticPotentialUnit + MagneticPotentialUnit - - - - - - - - - - - + + + - Change of pressure per change of temperature at constant volume. - PressureCoefficient - PressureCoefficient - https://qudt.org/vocab/quantitykind/PressureCoefficient - https://www.wikidata.org/wiki/Q74762732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 - 5-4 - Change of pressure per change of temperature at constant volume. + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + ExchangeIntegral + ExchangeIntegral + https://qudt.org/vocab/quantitykind/ExchangeIntegral + https://www.wikidata.org/wiki/Q10882959 + 12-34 + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - + + + + + Vector quantity expressing the internal angular momentum of a particle or a particle system. + Spin + Spin + https://qudt.org/vocab/quantitykind/Spin + https://www.wikidata.org/wiki/Q133673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 + 10-10 + Vector quantity expressing the internal angular momentum of a particle or a particle system. + + + @@ -18336,1283 +18278,1150 @@ For this reason graviton is an useful concept to homogenize the approach between - + - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - AtomicAttenuationCoefficient - AtomicAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592911 - 10-52 - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - - - - - - PlasticSintering - PlasticSintering + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + DecayConstant + DisintegrationConstant + DecayConstant + https://qudt.org/vocab/quantitykind/DecayConstant + https://www.wikidata.org/wiki/Q11477200 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 + 10-24 + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + https://doi.org/10.1351/goldbook.D01538 - - - - Suggestion of Rickard Armiento - CrystallineMaterial - CrystallineMaterial + + + + + RedStrangeAntiQuark + RedStrangeAntiQuark - + - T0 L0 M+1 I0 Θ+1 N0 J0 + T0 L-1 M0 I0 Θ-1 N0 J0 - MassTemperatureUnit - MassTemperatureUnit + PerLengthTemperatureUnit + PerLengthTemperatureUnit - - - - - - - - - - - - - - Extent of an object in space. - Volume - Volume - http://qudt.org/vocab/quantitykind/Volume - https://www.wikidata.org/wiki/Q39297 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 - https://dbpedia.org/page/Volume - 3-4 + + + + A tessellation in wich a tile has next two or more non spatially connected tiles. + Fork + Fork + A tessellation in wich a tile has next two or more non spatially connected tiles. - - - - - - - - - - - - + + - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - Manufacturer - Manufacturer - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + UndefinedEdgeCutting + Spanen mit geometrisch unbestimmten Schneiden + UndefinedEdgeCutting - - - - - - - + + - - + + T-3 L+3 M+1 I-2 Θ0 N0 J0 - + + - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - In an anisotropic medium, thermal conductivity is a tensor quantity. - ThermalConductivity - ThermalConductivity - https://qudt.org/vocab/quantitykind/ThermalConductivity - https://www.wikidata.org/wiki/Q487005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 - https://dbpedia.org/page/Thermal_conductivity - 5-9 - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - - - - - - A meson with total spin 1 and even parit. - PseudovectorMeson - PseudovectorMeson - A meson with total spin 1 and even parit. - https://en.wikipedia.org/wiki/Pseudovector_meson + ElectricResistivityUnit + ElectricResistivityUnit - - - + + - - + + T0 L0 M0 I0 Θ+2 N0 J0 - - - 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). - -'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. - -This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. + + + + SquareTemperatureUnit + SquareTemperatureUnit + -e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. - A 'Physical' which is a tessellation of 'State' temporal direct parts. - An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. + + + + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + DynamicLightScattering + DLS + DynamicLightScattering + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + -By definition, the tiles are represented by 'State'-s individual. + + + + + T0 L+2 M+1 I0 Θ0 N0 J0 + + + + + MassAreaUnit + MassAreaUnit + -Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. - Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. + + + + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + SpatiallyFundamental + SpatiallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + -Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. - Existent - true - Existent - A 'Physical' which is a tessellation of 'State' temporal direct parts. + + + + + + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + The relative humidity is often expressed in per cent. + RelativeHumidity + RelativeHumidity + https://qudt.org/vocab/quantitykind/RelativeHumidity + https://www.wikidata.org/wiki/Q2499617 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 + 5-33 + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + https://en.wikipedia.org/wiki/Humidity#Relative_humidity - - - - A tessellation of temporal slices. - Sequence - Sequence - A tessellation of temporal slices. + + + + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + CyclicVoltammetry + CV + CyclicVoltammetry + https://www.wikidata.org/wiki/Q1147647 + https://dbpedia.org/page/Cyclic_voltammetry + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + https://en.wikipedia.org/wiki/Cyclic_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. - NewtonianConstantOfGravity - NewtonianConstantOfGravity - http://qudt.org/vocab/constant/NewtonianConstantOfGravitation - https://doi.org/10.1351/goldbook.G02695 + + + + Encoded data made of more than one datum. + DataSet + DataSet + Encoded data made of more than one datum. - - - - - A foam of trapped gas in a liquid. - LiquidFoam - LiquidFoam - A foam of trapped gas in a liquid. + + + + + Expectation value of the energy imparted. + MeanEnergyImparted + MeanEnergyImparted + https://qudt.org/vocab/quantitykind/MeanEnergyImparted + https://www.wikidata.org/wiki/Q99526969 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 + 10-80.2 + Expectation value of the energy imparted. - + + + - - + - The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - -It defines the base unit mole in the SI system. - AvogadroConstant - AvogadroConstant - http://qudt.org/vocab/constant/AvogadroConstant - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. - -It defines the base unit mole in the SI system. - https://doi.org/10.1351/goldbook.A00543 + Absolute value of the magnetic moment of a nucleus. + NuclearMagneton + NuclearMagneton + https://www.wikidata.org/wiki/Q1166093 + 10-9.3 + Absolute value of the magnetic moment of a nucleus. + https://doi.org/10.1351/goldbook.N04236 - - - - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - - ScanningProbeMicroscopy - ScanningProbeMicroscopy - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + + + Data that occurs naturally without an encoding agent producing it. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + NonEncodedData + EnvironmentalData + NonEncodedData + Data that occurs naturally without an encoding agent producing it. + A cloud in the sky. The radiative spectrum of a star. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - - - - - - - - - - + + + - A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. - FineStructureConstant - FineStructureConstant - http://qudt.org/vocab/constant/FineStructureConstant - https://doi.org/10.1351/goldbook.F02389 + Conventional radius of sphere in which the nuclear matter is included, + NuclearRadius + NuclearRadius + https://qudt.org/vocab/quantitykind/NuclearRadius + https://www.wikidata.org/wiki/Q3535676 + 10-19.1 + Conventional radius of sphere in which the nuclear matter is included, - - + + - + - + - - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - PhysicalObject - PhysicalObject - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + + AntiLepton + AntiLepton - + - T+1 L+1 M0 I+1 Θ0 N0 J0 + T-1 L+2 M-1 I0 Θ+1 N0 J0 - - ElectricDipoleMomentUnit - ElectricDipoleMomentUnit - - - - - - - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - Gel - Gel - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - - - - - - - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - SourceCode - SourceCode - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + + TemperatureAreaPerMassTimeUnit + TemperatureAreaPerMassTimeUnit - - - - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - Software - Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + + + + + + + + + + + + + The derivative of the electric charge of a system with respect to the electric potential. + Capacitance + ElectricCapacitance + Capacitance + http://qudt.org/vocab/quantitykind/Capacitance + 6-13 + The derivative of the electric charge of a system with respect to the electric potential. + https://doi.org/10.1351/goldbook.C00791 - + + - + - Power transferred per unit area. - Intensity - Intensity - Power transferred per unit area. - https://en.wikipedia.org/wiki/Intensity_(physics) + Measure of the tendency of a substance to leave a phase. + Fugacity + Fugacity + https://qudt.org/vocab/quantitykind/Fugacity + https://www.wikidata.org/wiki/Q898412 + 9-20 + Measure of the tendency of a substance to leave a phase. + https://doi.org/10.1351/goldbook.F02543 - - - - PorcelainOrCeramicCasting - PorcelainOrCeramicCasting + + + + A molecule composed of only one element type. + Homonuclear + ElementalMolecule + Homonuclear + A molecule composed of only one element type. + Hydrogen molecule (H₂). - - - - FormingFromPulp - FormingFromPulp + + + + + + + + + + + + + + + + + + + + + + + + + + + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + Molecule + ChemicalSubstance + Molecule + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + H₂0, C₆H₁₂O₆, CH₄ + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. +Removing an atom from the state will result in another type of atom_based state. +e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). - - - - A measurement unit for a derived quantity. --- VIM - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - DerivedUnit - DerivedUnit - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - derived unit - A measurement unit for a derived quantity. --- VIM + + + + + A type of sol in the form of one solid dispersed in liquid. + LiquidSol + LiquidSol + A type of sol in the form of one solid dispersed in liquid. - - - - - HardwareModel - HardwareModel + + + + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + Sol + Sol + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - - - - - T-1 L+3 M0 I0 Θ0 N0 J0 - - - + + + - VolumePerTimeUnit - VolumePerTimeUnit + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + MassDefect + MassDefect + https://qudt.org/vocab/quantitykind/MassDefect + https://www.wikidata.org/wiki/Q26897126 + 10-21.2 + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - - - - SystemUnit - SystemUnit + + + + ContinuousCasting + ContinuousCasting - - - - - The integral over a time interval of the instantaneous power. - ActiveEnergy - ActiveEnergy - https://qudt.org/vocab/quantitykind/ActiveEnergy - https://www.wikidata.org/wiki/Q79813678 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 - 6-62 - The integral over a time interval of the instantaneous power. + + + + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + QuantumData + QuantumData + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. - + - T-6 L+4 M+2 I-2 Θ-2 N0 J0 + T+1 L0 M0 I0 Θ+1 N0 J0 - SquareElectricPotentialPerSquareTemperatureUnit - SquareElectricPotentialPerSquareTemperatureUnit - - - - - - Ratio of area on a sphere to its radius squared. - SolidAngle - SolidAngle - http://qudt.org/vocab/quantitykind/SolidAngle - 3-6 - Ratio of area on a sphere to its radius squared. - https://doi.org/10.1351/goldbook.S05732 - - - - - - - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - ElectronBackscatterDiffraction - EBSD - ElectronBackscatterDiffraction - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - - - - - - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - - ScanningElectronMicroscopy - SEM - ScanningElectronMicroscopy - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - - - - - - "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." -International vocabulary of metrology (VIM) - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - OrdinalQuantity - OrdinalQuantity - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - Hardness -Resilience - ordinal quantity + TemperatureTimeUnit + TemperatureTimeUnit - - - + + + + + + + + + + - In nuclear physics, the multiplication factor for an infinite medium. - InfiniteMultiplicationFactor - InfiniteMultiplicationFactor - https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor - https://www.wikidata.org/wiki/Q99440487 - 10-78.2 - In nuclear physics, the multiplication factor for an infinite medium. + Describes elements' or compounds' readiness to form bonds. + AffinityOfAChemicalReaction + ChemicalAffinity + AffinityOfAChemicalReaction + https://qudt.org/vocab/quantitykind/ChemicalAffinity + https://www.wikidata.org/wiki/Q382783 + 9-30 + Describes elements' or compounds' readiness to form bonds. + https://doi.org/10.1351/goldbook.A00178 - - - - - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - PhaseDifference - DisplacementAngle - PhaseDifference - https://www.wikidata.org/wiki/Q97222919 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 - 6-48 - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + + + + + ElementaryBoson + ElementaryBoson - - - - - - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - RollingResistance - RollingDrag - RollingFrictionForce - RollingResistance - https://www.wikidata.org/wiki/Q914921 - 4-9.5 - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - + + + + The class of individuals that stand for gravitons elementary particles. + While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. - - - - - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - RollingResistanceFactor - RollingResistanceFactor - https://www.wikidata.org/wiki/Q91738044 - 4-23.3 - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - +For this reason graviton is an useful concept to homogenize the approach between different fields. + Graviton + Graviton + The class of individuals that stand for gravitons elementary particles. + While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. - - - - - A process which is an holistic temporal part of an object. - Behaviour - Behaviour - A process which is an holistic temporal part of an object. - Accelerating is a behaviour of a car. +For this reason graviton is an useful concept to homogenize the approach between different fields. + https://en.wikipedia.org/wiki/Graviton - - - - - - A guess is a theory, estimated and subjective, since its premises are subjective. - Guess - Guess - A guess is a theory, estimated and subjective, since its premises are subjective. + + + + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + + ProcessingReproducibility + ProcessingReproducibility + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - + + - Estimated - Estimated - The biography of a person that the author have not met. + A declaration that provides a sign for an object that is independent from any assignment rule. + Naming + Naming + A declaration that provides a sign for an object that is independent from any assignment rule. + A unique id attached to an entity. - - + + + + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + DynamicMechanicalSpectroscopy + DMA + DynamicMechanicalSpectroscopy + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + + + + - Magnetizing - Magnetizing + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + 3DPrinting + 3DPrinting + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - - + + - SparkPlasmaSintering - SparkPlasmaSintering + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + AdditiveManufacturing + GenerativeManufacturing + AdditiveManufacturing + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - - - + + - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - MolarGasConstant - MolarGasConstant - http://qudt.org/vocab/constant/MolarGasConstant - 9-37.1 - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - https://doi.org/10.1351/goldbook.G02579 + Real part of the admittance. + ConductanceForAlternatingCurrent + ConductanceForAlternatingCurrent + https://www.wikidata.org/wiki/Q79464628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 + 6-52.2 + Real part of the admittance. - - - - - - - - - - - + + - SpecificGasConstant - SpecificGasConstant - https://www.wikidata.org/wiki/Q94372268 - 5-26 + Width of the forbidden energy band in a superconductor. + SuperconductorEnergyGap + SuperconductorEnergyGap + https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap + https://www.wikidata.org/wiki/Q106127898 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 + 12-37 + Width of the forbidden energy band in a superconductor. - - - - - RedUpQuark - RedUpQuark + + + + LiquidPhaseSintering + ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed + LiquidPhaseSintering - + + + + + T+3 L-2 M-1 I0 Θ0 N0 J+1 + + + + + LuminousEfficacyUnit + LuminousEfficacyUnit + + + - - + - Measure of voltage induced by change of temperature. - SeebeckCoefficient - SeebeckCoefficient - https://qudt.org/vocab/quantitykind/SeebeckCoefficient - https://www.wikidata.org/wiki/Q1091448 - 12-21 - Measure of voltage induced by change of temperature. + Force per unit oriented surface area . + Measure of the internal forces that neighboring particles of a continuous material exert on each other. + Stress + Stress + http://qudt.org/vocab/quantitykind/Stress + 4-15 - - - + + + + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + Milling + Milling + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + + + + + - DebyeTemperature - DebyeTemperature - https://qudt.org/vocab/quantitykind/DebyeTemperature - https://www.wikidata.org/wiki/Q3517821 - 12-11 + The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. + The value of magnetic permeability in a classical vacuum. + VacuumMagneticPermeability + PermeabilityOfVacuum + VacuumMagneticPermeability + http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum + 6-26.1 - + - T+2 L0 M+1 I0 Θ0 N0 J0 + T0 L0 M0 I+1 Θ-1 N0 J0 - MassSquareTimeUnit - MassSquareTimeUnit + ElectricCurrentPerTemperatureUnit + ElectricCurrentPerTemperatureUnit + + + + + + + A coarse dispersion of liquid in a solid continuum phase. + SolidLiquidSuspension + SolidLiquidSuspension + A coarse dispersion of liquid in a solid continuum phase. - + - T-1 L+2 M0 I0 Θ0 N0 J0 + T+1 L-1 M0 I+1 Θ0 N0 J0 - AreaPerTimeUnit - AreaPerTimeUnit - - - - - - PhotochemicalProcesses - PhotochemicalProcesses + ElectricChargePerLengthUnit + ElectricChargePerLengthUnit - - - - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - HardnessTesting - HardnessTesting - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + + + + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + SystemProgram + SystemProgram + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + An operating system. A graphic driver. - - - - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - DirectCoulometryAtControlledCurrent - DirectCoulometryAtControlledCurrent - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + + + + FormingFromGas + FormingFromGas - - - - - - HardwareManufacturer - HardwareManufacturer + + + + + T-3 L+1 M0 I0 Θ0 N0 J0 + + + + + LengthPerCubeTimeUnit + LengthPerCubeTimeUnit - + - + - - + - Measure of a material's ability to conduct an electric current. - -Conductivity is equeal to the resiprocal of resistivity. - ElectricConductivity - Conductivity - ElectricConductivity - http://qudt.org/vocab/quantitykind/ElectricConductivity - https://www.wikidata.org/wiki/Q4593291 - 6-43 - https://doi.org/10.1351/goldbook.C01245 + Quotient of the activity A of a sample and the mass m of that sample. + SpecificActivity + MassicActivity + SpecificActivity + https://qudt.org/vocab/quantitykind/SpecificActivity + https://www.wikidata.org/wiki/Q2823748 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 + 10-28 + Quotient of the activity A of a sample and the mass m of that sample. + https://doi.org/10.1351/goldbook.S05790 - - - - - - - - - - - - - - - - - - - 1 - - - - A real number. - Real - Real - A real number. + + + + HandlingDevice + HandlingDevice - - - - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - ApplicationSpecificScript - ApplicationSpecificScript - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. + + + + + Positron + Positron - + - - - - - - + + + T0 L-3 M0 I0 Θ0 N-1 J0 + - - - - An icon that not only resembles the object, but also can express some of the object's functions. - Replica - Replica - An icon that not only resembles the object, but also can express some of the object's functions. - A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. - Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). + + + ReciprocalAmountPerVolumeUnit + ReciprocalAmountPerVolumeUnit - - - + + + - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - RelaxationTime - RelaxationTime - https://www.wikidata.org/wiki/Q106041085 - 12-32.1 - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. + PhaseAngle + PhaseAngle + https://www.wikidata.org/wiki/Q415829 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 + 3-7 + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - - + + - SizeDefinedMaterial - SizeDefinedMaterial + AmorphousMaterial + NonCrystallineMaterial + AmorphousMaterial - - + + - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - LevelWidth - LevelWidth - https://qudt.org/vocab/quantitykind/LevelWidth - https://www.wikidata.org/wiki/Q98082340 - 10-26 - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - https://doi.org/10.1351/goldbook.L03507 + In nuclear physics, fraction of interacting particles per distance traversed in a given material. + LinearAttenuationCoefficient + LinearAttenuationCoefficient + https://www.wikidata.org/wiki/Q98583077 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 + 10-49 + In nuclear physics, fraction of interacting particles per distance traversed in a given material. - - - - - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - SubjectiveProperty - SubjectiveProperty - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - The measure of beauty on a scale from 1 to 10. + + + + + A type of sol in the form of one solid dispersed in another continuous solid. + SolidSol + SolidSol + A type of sol in the form of one solid dispersed in another continuous solid. - - - - - - - 1 - - - - - - - 2 - - - - An uncharged subatomic particle found in the atomic nucleus. - Neutron - Neutron - An uncharged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Neutron + + + + A real vector with 3 elements. + Shape3Vector + Shape3Vector + A real vector with 3 elements. + The quantity value of physical quantities if real space is a Shape3Vector. - + + + + + In condensed matter physics, quotient of momentum and the reduced Planck constant. + AngularWaveNumber + AngularRepetency + AngularWaveNumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q105542089 + 12-9.1 + In condensed matter physics, quotient of momentum and the reduced Planck constant. + + + + + + Process for joining two (base) materials by means of an adhesive polymer material + Gluing + Kleben + Gluing + + + + - - + - ThermalDiffusivity - ThermalDiffusionCoefficient - ThermalDiffusivity - https://qudt.org/vocab/quantitykind/ThermalDiffusivity - https://www.wikidata.org/wiki/Q3381809 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 - 5-14 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. + Magnetization + Magnetization + https://qudt.org/vocab/quantitykind/Magnetization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 + 6-24 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - - - + + - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - Gas - Gas - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + PhaseOfMatter + Phase + PhaseOfMatter + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - - - - - RedStrangeQuark - RedStrangeQuark + + + + + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + SourceCode + SourceCode + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - - Matter composed of both matter and antimatter fundamental particles. - HybridMatter - HybridMatter - Matter composed of both matter and antimatter fundamental particles. + + + + + Critical thermodynamic temperature of an antiferromagnet. + NeelTemperature + NeelTemperature + https://www.wikidata.org/wiki/Q830311 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 + 12-35.2 + Critical thermodynamic temperature of an antiferromagnet. - - - - - - - - - - - - - CompositeBoson - CompositeBoson - Examples of composite particles with integer spin: -spin 0: H1 and He4 in ground state, pion -spin 1: H1 and He4 in first excited state, meson -spin 2: O15 in ground state. + + + + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + DebyeAngularWaveNumber + DebyeAngluarRepetency + DebyeAngularWaveNumber + https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber + https://www.wikidata.org/wiki/Q105554370 + 12-9.3 + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - - - - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - - Signal - Signal - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + + + + + + + + + + + + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + Theorisation + Theorization + Theorisation + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - - - + + - The rest mass of a proton. - ProtonMass - ProtonMass - http://qudt.org/vocab/constant/ProtonMass - https://doi.org/10.1351/goldbook.P04914 + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + StandardAbsoluteActivity + StandardAbsoluteActivityInAMixture + StandardAbsoluteActivity + https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89406159 + 9-23 + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. - - - - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - SystemProgram - SystemProgram - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - An operating system. A graphic driver. + + + + + + + + + + + + + Product of the mean linear range R and the mass density ρ of the material. + MeanMassRange + MeanMassRange + https://qudt.org/vocab/quantitykind/MeanMassRange + https://www.wikidata.org/wiki/Q98681670 + 10-57 + Product of the mean linear range R and the mass density ρ of the material. + https://doi.org/10.1351/goldbook.M03783 - - - - - Dimensionless quantity in electromagnetism. - QualityFactor - QualityFactor - https://qudt.org/vocab/quantitykind/QualityFactor - https://www.wikidata.org/wiki/Q79467569 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 - 6-53 - Dimensionless quantity in electromagnetism. + + + + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + Chromatography + Chromatography + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + https://en.wikipedia.org/wiki/Chromatography - - - - - BlueTopQuark - BlueTopQuark + + + + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + CyclicChronopotentiometry + CyclicChronopotentiometry + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + chronopotentiometry where the change in applied current undergoes a cyclic current reversal - - - - Force of gravity acting on a body. - Weight - Weight - http://qudt.org/vocab/quantitykind/Weight - 4-9.2 - https://doi.org/10.1351/goldbook.W06668 + + + + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + ClassicalData + ClassicalData + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + + + + + + Python + Python - + + - - + - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - MagneticTension - MagneticTension - https://qudt.org/vocab/quantitykind/MagneticTension - https://www.wikidata.org/wiki/Q77993836 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 - 6-37.2 - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). + a photometric measure of the luminous intensity per unit area of light travelling in a given direction. + Luminance + Luminance + http://qudt.org/vocab/quantitykind/Luminance + https://doi.org/10.1351/goldbook.L03640 - - + + + + + + - - T0 L0 M-1 I0 Θ0 N+1 J0 + + - - + - AmountPerMassUnit - AmountPerMassUnit + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. + LuminousIntensity + LuminousIntensity + http://qudt.org/vocab/quantitykind/LuminousIntensity + 7-14 + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - - - - - T+3 L-1 M-1 I0 Θ+1 N0 J0 - - - + + - ThermalResistivityUnit - ThermalResistivityUnit - - - - - - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - PhaseOfMatter - Phase - PhaseOfMatter - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + Quantities categorised according to ISO 80000-7. + LightAndRadiationQuantity + LightAndRadiationQuantity + Quantities categorised according to ISO 80000-7. - - - - - T0 L+1 M0 I0 Θ0 N-1 J0 - - - + + + - LengthPerAmountUnit - LengthPerAmountUnit + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + ParticleEmissionRate + ParticleEmissionRate + https://www.wikidata.org/wiki/Q98153151 + 10-36 + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - + - - + - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - SurfaceMassDensity - AreicMass - SurfaceDensity - SurfaceMassDensity - https://www.wikidata.org/wiki/Q1907514 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 - 4-5 - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - https://doi.org/10.1351/goldbook.S06167 - - - - - - - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - The mass concentration of water at saturation is denoted wsat. - MassConcentrationOfWater - MassConcentrationOfWater - https://qudt.org/vocab/quantitykind/MassConcentrationOfWater - https://www.wikidata.org/wiki/Q76378758 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 - 5-27 - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - - - - - - - Product of damping coefficient and period duration. - LogarithmicDecrement - LogarithmicDecrement - https://www.wikidata.org/wiki/Q1399446 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 - 3-25 - Product of damping coefficient and period duration. + ReciprocalDuration + InverseDuration + InverseTime + ReciprocalTime + ReciprocalDuration + https://qudt.org/vocab/quantitykind/InverseTime + https://www.wikidata.org/wiki/Q98690850 - + - T+2 L+2 M-1 I+2 Θ0 N0 J0 + T-4 L+2 M0 I0 Θ0 N0 J0 - EnergyPerSquareMagneticFluxDensityUnit - EnergyPerSquareMagneticFluxDensityUnit + AreaPerQuarticTimeUnit + AreaPerQuarticTimeUnit - + - - - - - - + + + T-1 L+2 M+1 I0 Θ0 N-1 J0 + - - - - A gaseous solution made of more than one component type. - GasSolution - GasMixture - GasSolution - A gaseous solution made of more than one component type. - - - - - - A command must be interpretable by the computer system. - An instruction to a computer system to perform a given task. - Command - Command - From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. - A command must be interpretable by the computer system. - Commands are typically performed from a shell or a shell script, but not limited to them. - - - - - - A whole with temporal parts of its same type. - TemporallyRedundant - TemporallyRedundant - A whole with temporal parts of its same type. - - - - - - ElectrolyticDeposition - ElectrolyticDeposition - - - - - - - BlueBottomQuark - BlueBottomQuark + + + EnergyTimePerAmountUnit + EnergyTimePerAmountUnit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - BlueQuark - BlueQuark + + + + + A foam of trapped gas in a solid. + SolidFoam + SolidFoam + A foam of trapped gas in a solid. + Aerogel - - - - A real bond between atoms is always something hybrid between covalent, metallic and ionic. + + + + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + Screwing + Schrauben + Screwing + -In general, metallic and ionic bonds have atoms sharing electrons. - An bonded atom that shares at least one electron to the atom-based entity of which is part of. - The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. - This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. - BondedAtom - BondedAtom - An bonded atom that shares at least one electron to the atom-based entity of which is part of. + + + + + T-2 L+2 M0 I0 Θ0 N0 J0 + + + + + AbsorbedDoseUnit + AbsorbedDoseUnit - - - - - - + + - - + + T+2 L-5 M-1 I0 Θ0 N0 J0 - + + - Charge number is a quantity of dimension one defined in ChargeNumber. - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - IonicStrength - IonicStrength - https://qudt.org/vocab/quantitykind/IonicStrength - https://www.wikidata.org/wiki/Q898396 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 - 9-42 - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - https://doi.org/10.1351/goldbook.I03180 + EnergyDensityOfStatesUnit + EnergyDensityOfStatesUnit - - + + + - Sum of electric current and displacement current - TotalCurrent - TotalCurrent - https://qudt.org/vocab/quantitykind/TotalCurrent - https://www.wikidata.org/wiki/Q77679732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 - 6-19.2 - Sum of electric current and displacement current + Resistance quantum. + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + VonKlitzingConstant + VonKlitzingConstant + http://qudt.org/vocab/constant/VonKlitzingConstant + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. - - - + + + + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + FormingBlasting + Umformstrahlen + FormingBlasting + + + + - TauAntiNeutrino - TauAntiNeutrino + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. + CausalInteraction + CausalInteraction + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - - - + + - + - + - + @@ -19621,71 +19430,34 @@ In general, metallic and ionic bonds have atoms sharing electrons. - AntiNeutrinoType - AntiNeutrinoType + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + FundamentalInteraction + FundamentalInteraction + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - - - - - - + + - - + + T-4 L+3 M+1 I-2 Θ0 N0 J0 - - - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - DiffusionArea - DiffusionArea - https://qudt.org/vocab/quantitykind/DiffusionArea - https://www.wikidata.org/wiki/Q98966292 - 10-72.2 - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - - - - - - - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - Solid - Solid - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - - - - - - Width of the forbidden energy band in a superconductor. - SuperconductorEnergyGap - SuperconductorEnergyGap - https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap - https://www.wikidata.org/wiki/Q106127898 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 - 12-37 - Width of the forbidden energy band in a superconductor. - - - - - + + - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - GapEnergy - BandgapEnergy - GapEnergy - https://www.wikidata.org/wiki/Q103982939 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 - 12-27.2 - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - https://doi.org/10.1351/goldbook.B00593 + InversePermittivityUnit + InversePermittivityUnit - + @@ -19693,161 +19465,156 @@ In general, metallic and ionic bonds have atoms sharing electrons. - + - Mass increment per time. - MassChangeRate - MassChangeRate - https://www.wikidata.org/wiki/Q92020547 - 4-30.3 - Mass increment per time. - - - - - - - T-3 L+2 M+1 I-2 Θ0 N0 J0 - - - - - ElectricResistanceUnit - ElectricResistanceUnit - - - - - - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - This must be a mathematical function v(t), x(t). -A dataset as solution is a conventional sign. - PhysicsEquationSolution - PhysicsEquationSolution - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + MomentOfIntertia + MomentOfIntertia + https://qudt.org/vocab/quantitykind/MomentOfInertia + https://www.wikidata.org/wiki/Q165618 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 + 4-7 + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + https://doi.org/10.1351/goldbook.M04006 - - - + + + - Inverse of the radius of curvature. - Curvature - Curvature - https://qudt.org/vocab/quantitykind/CurvatureFromRadius - https://www.wikidata.org/wiki/Q214881 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 - https://dbpedia.org/page/Curvature - 3-2 - Inverse of the radius of curvature. + Factor taking into account health effects in the determination of the dose equivalent. + QualityFactor + QualityFactor + https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor + https://www.wikidata.org/wiki/Q2122099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 + 10-82 + Factor taking into account health effects in the determination of the dose equivalent. - - - - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - MeasurementSystemAdjustment - MeasurementSystemAdjustment - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - Adjustment + + + + + GreenDownAntiQuark + GreenDownAntiQuark - - - + + + + + + + + + + + + + + + + + + + + + DownAntiQuark + DownAntiQuark + + + + - Electric polarization divided by electric constant and electric field strength. - ElectricSusceptibility - ElectricSusceptibility - https://qudt.org/vocab/quantitykind/ElectricSusceptibility - https://www.wikidata.org/wiki/Q598305 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 - 6-16 - Electric polarization divided by electric constant and electric field strength. - https://en.wikipedia.org/wiki/Electric_susceptibility + Imaginary part of the complex power. + ReactivePower + ReactivePower + https://qudt.org/vocab/quantitykind/ReactivePower + https://www.wikidata.org/wiki/Q2144613 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 + 6-60 + Imaginary part of the complex power. - + + + + + BlueBottomAntiQuark + BlueBottomAntiQuark + + + - T+3 L-2 M-1 I+1 Θ0 N0 J0 + T+3 L0 M-1 I+2 Θ0 N-1 J0 - - ElectricCurrentPerUnitEnergyUnit - ElectricCurrentPerUnitEnergyUnit + + AmountConductivityUnit + AmountConductivityUnit - + - + - + - Coefficient in the law of recombination, - RecombinationCoefficient - RecombinationCoefficient - https://qudt.org/vocab/quantitykind/RecombinationCoefficient - https://www.wikidata.org/wiki/Q98842099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 - 10-63 - Coefficient in the law of recombination, + Volume per amount of substance. + MolarVolume + MolarVolume + https://qudt.org/vocab/quantitykind/MolarVolume + https://www.wikidata.org/wiki/Q487112 + 9-5 + Volume per amount of substance. - - - - - - - - - - - - The total luminous flux incident on a surface, per unit area. - Illuminance - Illuminance - http://qudt.org/vocab/quantitykind/Illuminance - The total luminous flux incident on a surface, per unit area. - https://doi.org/10.1351/goldbook.I02941 + + + + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + FibDic + FIBDICResidualStressAnalysis + FibDic + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - - - - - A solid solution made of two or more component substances. - SolidSolution - SolidSolution - A solid solution made of two or more component substances. + + + + + T-3 L+3 M+1 I-1 Θ0 N0 J0 + + + + + ElectricFluxUnit + ElectricFluxUnit - + - T+1 L+2 M0 I0 Θ0 N0 J0 + T+1 L+1 M0 I+1 Θ0 N0 J0 - - AreaTimeUnit - AreaTimeUnit + + LengthTimeCurrentUnit + LengthTimeCurrentUnit @@ -19863,1166 +19630,1173 @@ A dataset as solution is a conventional sign. Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - - - - - - + + - - + + T0 L-1 M0 I+1 Θ0 N0 J0 - - - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - MagneticFlux - MagneticFlux - http://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q177831 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 - https://dbpedia.org/page/Magnetic_flux - 6-22.1 - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - https://en.wikipedia.org/wiki/Magnetic_flux - https://doi.org/10.1351/goldbook.M03684 - - - - - - A liquid aerosol composed of water droplets in air or another gas. - Vapor - Vapor - A liquid aerosol composed of water droplets in air or another gas. + + + + MagneticFieldStrengthUnit + MagneticFieldStrengthUnit - + - + - + - Scalar potential of an irrotational magnetic field strength. - ScalarMagneticPotential - ScalarMagneticPotential - https://www.wikidata.org/wiki/Q17162107 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 - 6-37.1 - Scalar potential of an irrotational magnetic field strength. + SectionModulus + SectionModulus + https://qudt.org/vocab/quantitykind/SectionModulus + https://www.wikidata.org/wiki/Q1930808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 + 4-22 + + + + + + + The sample after a preparation process. + PreparedSample + PreparedSample + The sample after a preparation process. - - - - PlasticModeling - PlasticModeling + + + + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. + +-- International Vocabulary of Metrology(VIM) + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + + ReferenceSample + Certified Reference Material + Reference material + ReferenceSpecimen + ReferenceSample + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. + +-- International Vocabulary of Metrology(VIM) + Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Reference material - + + - - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - CyclotronAngularFrequency - CyclotronAngularFrequency - https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency - https://www.wikidata.org/wiki/Q97708211 - 10-16 - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - - - - - - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - CathodicStrippingVoltammetry - CSV - CathodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q4016325 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - https://doi.org/10.1515/pac-2018-0109 + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + MaximumBetaParticleEnergy + MaximumBetaParticleEnergy + https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy + https://www.wikidata.org/wiki/Q98148038 + 10-33 + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - - - - Numeral - Numeral + + + + GravitySintering + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder + Loose-powderSintering + PressurelessSintering + GravitySintering - + - T-2 L+1 M+1 I-2 Θ0 N0 J0 + T0 L-3 M0 I0 Θ0 N+1 J0 - PermeabilityUnit - PermeabilityUnit + AmountConcentrationUnit + AmountConcentrationUnit - - - - Quantities categorised according to ISO 80000-8. - AcousticQuantity - AcousticQuantity - Quantities categorised according to ISO 80000-8. + + + + + + A scientific theory is a description, objective and observed, produced with scientific methodology. + ScientificTheory + ScientificTheory + A scientific theory is a description, objective and observed, produced with scientific methodology. - + - T+4 L-3 M-1 I+2 Θ0 N0 J0 + T-1 L-3 M+1 I0 Θ0 N0 J0 - - PermittivityUnit - PermittivityUnit + + MassPerVolumeTimeUnit + MassPerVolumeTimeUnit - - + + + + + + + + + + - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. - StandardAbsoluteActivity - StandardAbsoluteActivityInAMixture - StandardAbsoluteActivity - https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89406159 - 9-23 - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + Perceived power of light. + LuminousFlux + LuminousFlux + http://qudt.org/vocab/quantitykind/LuminousFlux + 7-13 + Perceived power of light. + https://doi.org/10.1351/goldbook.L03646 - - + + + + + A generic step in a workflow, that is not the begin or the end. + InternalStep + InternalStep + A generic step in a workflow, that is not the begin or the end. + + + + + + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + + TransmissionElectronMicroscopy + TEM + TransmissionElectronMicroscopy + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + + + + + - Ratio of void volume and total volume of a porous material. - Porosity - Porosity - https://www.wikidata.org/wiki/Q622669 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 - Ratio of void volume and total volume of a porous material. - https://doi.org/10.1351/goldbook.P04762 + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + DisplacementVector + DisplacementVector + https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon + https://www.wikidata.org/wiki/Q105533558 + 12-7.3 + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - - + + + - Length in a given direction regarded as horizontal. - The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. - Width - Breadth - Width - https://qudt.org/vocab/quantitykind/Width - https://www.wikidata.org/wiki/Q35059 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 - 3-1.2 - Length in a given direction regarded as horizontal. + The amount of a constituent divided by the total amount of all constituents in a mixture. + AmountFraction + MoleFraction + AmountFraction + http://qudt.org/vocab/quantitykind/MoleFraction + The amount of a constituent divided by the total amount of all constituents in a mixture. + https://doi.org/10.1351/goldbook.A00296 - + - - - - + + + + - - - - - - - - - - MathematicalConstruct - MathematicalConstruct + + + A measurement unit symbol that do not have a metric prefix as a direct spatial part. + NonPrefixedUnit + NonPrefixedUnit + A measurement unit symbol that do not have a metric prefix as a direct spatial part. - - - - - - - - - - - - + + + + A meson with total spin 1 and odd parit. + VectorMeson + VectorMeson + A meson with total spin 1 and odd parit. + https://en.wikipedia.org/wiki/Vector_meson + + + + - Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. - The atomic mass is often expressed as an average of the commonly found isotopes. - The mass of an atom in the ground state. - AtomicMass - AtomicMass - The mass of an atom in the ground state. - 10-4.1 - https://en.wikipedia.org/wiki/Atomic_mass - https://doi.org/10.1351/goldbook.A00496 + Minimum length of a straight line segment between a point and a reference line or reference surface. + Height + Height + https://qudt.org/vocab/quantitykind/Height + https://www.wikidata.org/wiki/Q208826 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 + https://dbpedia.org/page/Height + 3-1.3 + Minimum length of a straight line segment between a point and a reference line or reference surface. + https://en.wikipedia.org/wiki/Height - - - - - - + + - - + + T-3 L+2 M+1 I-1 Θ0 N0 J0 - + + - Mass per length. - LinearMassDensity - LinearDensity - LineicMass - LinearMassDensity - https://qudt.org/vocab/quantitykind/LinearDensity - https://www.wikidata.org/wiki/Q56298294 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 - 4-6 - Mass per length. - - - - - - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - - ScanningTunnelingMicroscopy - STM - ScanningTunnelingMicroscopy - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + ElectricPotentialUnit + ElectricPotentialUnit - - - - Unit for quantities of dimension one that are the fraction of two speeds. - SpeedFractionUnit - SpeedFractionUnit - Unit for quantities of dimension one that are the fraction of two speeds. - Unit for refractive index. + + + + Length in a given direction regarded as horizontal. + The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. + Width + Breadth + Width + https://qudt.org/vocab/quantitykind/Width + https://www.wikidata.org/wiki/Q35059 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 + 3-1.2 + Length in a given direction regarded as horizontal. - - - - - RedBottomQuark - RedBottomQuark + + + + + average distance that phonons travel between two successive interactions + MeanFreePathOfPhonons + MeanFreePathOfPhonons + https://qudt.org/vocab/quantitykind/PhononMeanFreePath + https://www.wikidata.org/wiki/Q105672255 + 12-15.1 + average distance that phonons travel between two successive interactions - - - - - Positron - Positron + + + + A material that takes active part in a chemical reaction. + ReactiveMaterial + ReactiveMaterial + A material that takes active part in a chemical reaction. - + - + - + + - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - Coercivity - Coercivity - https://qudt.org/vocab/quantitykind/Coercivity - https://www.wikidata.org/wiki/Q432635 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 - 6-31 - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. + RelativePressureCoefficient + RelativePressureCoefficient + https://qudt.org/vocab/quantitykind/RelativePressureCoefficient + https://www.wikidata.org/wiki/Q74761852 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 + 5-3.3 - - + + + - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - MutualInductance - MutualInductance - https://www.wikidata.org/wiki/Q78101401 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 - 6-41.2 - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - https://doi.org/10.1351/goldbook.M04076 + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor + ElectronAffinity + ElectronAffinity + https://qudt.org/vocab/quantitykind/ElectronAffinity + https://www.wikidata.org/wiki/Q105846486 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 + 12-25 + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - + + - - + - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - ElectricInductance - Inductance - ElectricInductance - http://qudt.org/vocab/quantitykind/Inductance - https://www.wikidata.org/wiki/Q177897 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 - 6-41.1 - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - https://doi.org/10.1351/goldbook.M04076 + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. + Exposure + Exposure + https://qudt.org/vocab/quantitykind/Exposure + https://www.wikidata.org/wiki/Q336938 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 + 10-88 + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - - - - - T0 L-2 M+1 I0 Θ0 N0 J0 - - - - - AreaDensityUnit - AreaDensityUnit + + + + + Synchrotron + Synchrotron - - - - - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - PhaseCoefficient - PhaseChangeCoefficient - PhaseCoefficient - https://qudt.org/vocab/quantitykind/PhaseCoefficient - https://www.wikidata.org/wiki/Q32745742 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 - 3-26.2 - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant + + + + + + + + + + + + + + + + A chausal chain whose quantum parts are of the same standard model fundamental type. + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + ElementaryParticle + SingleParticleChain + ElementaryParticle + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + A chausal chain whose quantum parts are of the same standard model fundamental type. - + + - - + - Electric charge per volume. - ElectricChargeDensity - VolumeElectricCharge - ElectricChargeDensity - https://qudt.org/vocab/quantitykind/ElectricChargeDensity - https://www.wikidata.org/wiki/Q69425629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 - 6-3 - Electric charge per volume. - https://doi.org/10.1351/goldbook.C00988 + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + MassExcess + MassExcess + https://qudt.org/vocab/quantitykind/MassExcess + https://www.wikidata.org/wiki/Q1571163 + 10-21.1 + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + https://doi.org/10.1351/goldbook.M03719 - - - + + + + + RedUpAntiQuark + RedUpAntiQuark + + + + + + + + + + + + + + + + + + + + + - RedDownQuark - RedDownQuark + UpAntiQuark + UpAntiQuark - - - - - A coarse dispersion of solid in a gas continuum phase. - GasSolidSuspension - GasSolidSuspension - A coarse dispersion of solid in a gas continuum phase. - Dust, sand storm. + + + + + CharacterisationEnvironmentProperty + CharacterisationEnvironmentProperty - - - + + + + + T0 L+2 M0 I0 Θ0 N-1 J0 + + + - The amount of a constituent divided by the total amount of all constituents in a mixture. - AmountFraction - MoleFraction - AmountFraction - http://qudt.org/vocab/quantitykind/MoleFraction - The amount of a constituent divided by the total amount of all constituents in a mixture. - https://doi.org/10.1351/goldbook.A00296 - - - - - - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - DielectricAndImpedanceSpectroscopy - DielectricAndImpedanceSpectroscopy - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + AreaPerAmountUnit + AreaPerAmountUnit - + - T+3 L-2 M-1 I0 Θ0 N0 J+1 + T-1 L+2 M0 I0 Θ0 N0 J0 - - LuminousEfficacyUnit - LuminousEfficacyUnit + + AreaPerTimeUnit + AreaPerTimeUnit - + + + + + For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. + IsentropicExponent + IsentropicExponent + https://qudt.org/vocab/quantitykind/IsentropicExponent + https://www.wikidata.org/wiki/Q75775739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 + 5-17.2 + + + + + + + A neutrino belonging to the third generation of leptons. + TauNeutrino + TauNeutrino + A neutrino belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_neutrino + + + - - + - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - VolumeFlowRate - VolumetricFlowRate - VolumeFlowRate - https://qudt.org/vocab/quantitykind/VolumeFlowRate - https://www.wikidata.org/wiki/Q1134348 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 - 4-31 - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - https://en.wikipedia.org/wiki/Volumetric_flow_rate + Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + Torque + Torque + http://qudt.org/vocab/quantitykind/Torque + 4-12.2 + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + https://doi.org/10.1351/goldbook.T06400 - - + + + + + + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + ThermalDiffusionFactor + ThermalDiffusionFactor + https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor + https://www.wikidata.org/wiki/Q96249629 + 9-40.2 + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + + + + - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - DifferentialScanningCalorimetry - DSC - DifferentialScanningCalorimetry - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Dielectrometry + Dielectrometry + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + https://doi.org/10.1515/pac-2018-0109 - - - - - + + - - + + - - At a point in a fluid, the product of mass density and velocity. - MassFlow - MassFlow - https://www.wikidata.org/wiki/Q3265048 - 4-30.1 - At a point in a fluid, the product of mass density and velocity. + + Gradient + Gradient - - - - - + + + + DifferentialOperator + DifferentialOperator + + + + + - - + + + + + + - Absolute value of the magnetic moment of a nucleus. - NuclearMagneton - NuclearMagneton - https://www.wikidata.org/wiki/Q1166093 - 10-9.3 - Absolute value of the magnetic moment of a nucleus. - https://doi.org/10.1351/goldbook.N04236 - - - - - - - MuonAntiNeutrino - MuonAntiNeutrino + Number of protons in an atomic nucleus. + AtomicNumber + AtomicNumber + http://qudt.org/vocab/quantitykind/AtomicNumber + Number of protons in an atomic nucleus. + 10-1.1 + https://doi.org/10.1351/goldbook.A00499 - - - - - ElementaryBoson - ElementaryBoson + + + + + + + + + + + + + + + + + + + 1 + + + + An integer number. + Integer + Integer + An integer number. - - - - - Unit for dimensionless quantities that have the nature of count. - CountingUnit - CountingUnit - http://qudt.org/vocab/unit/NUM - 1 - Unit for dimensionless quantities that have the nature of count. - Unit of atomic number -Unit of number of cellular -Unit of degeneracy in quantum mechanics + + + + + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + MassFractionOfWater + MassFractionOfWater + https://qudt.org/vocab/quantitykind/MassFractionOfWater + https://www.wikidata.org/wiki/Q76379025 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 + 5-31 + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - + - T+1 L-3 M0 I+1 Θ0 N0 J0 + T+2 L-3 M-1 I0 Θ0 N+1 J0 - ElectricChargeDensityUnit - ElectricChargeDensityUnit + AmountSquareTimePerMassVolumeUnit + AmountSquareTimePerMassVolumeUnit - - + + - - RawSample - RawSample + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + DirectCurrentInternalResistance + DirectCurrentInternalResistance + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - - + + + + + + + + + + + + + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + ElectricFlux + ElectricFlux + https://qudt.org/vocab/quantitykind/ElectricFlux + https://www.wikidata.org/wiki/Q501267 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 + 6-17 + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + + + + - GreenUpQuark - GreenUpQuark + GreenTopQuark + GreenTopQuark - - - + + - Efficiency of an ideal heat engine operating according to the Carnot process. - MaximumEfficiency - CarnotEfficiency - MaximumEfficiency - https://www.wikidata.org/wiki/Q93949862 - 5-25.2 - Efficiency of an ideal heat engine operating according to the Carnot process. + The energy possessed by a body by virtue of its position or orientation in a potential field. + PotentialEnergy + PotentialEnergy + http://qudt.org/vocab/quantitykind/PotentialEnergy + 4-28.1 + The energy possessed by a body by virtue of its position or orientation in a potential field. + https://doi.org/10.1351/goldbook.P04778 - + + + + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + Assignment + Assignment + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. + + + - T+1 L0 M0 I+1 Θ0 N0 J0 + T+3 L-2 M-1 I+1 Θ0 N0 J0 - - ElectricChargeUnit - ElectricChargeUnit + + ElectricCurrentPerUnitEnergyUnit + ElectricCurrentPerUnitEnergyUnit - - - - - - - - - - + + + - Quotient of dynamic viscosity and mass density of a fluid. - KinematicViscosity - KinematicViscosity - https://qudt.org/vocab/quantitykind/KinematicViscosity - https://www.wikidata.org/wiki/Q15106259 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 - 4-25 - Quotient of dynamic viscosity and mass density of a fluid. - https://doi.org/10.1351/goldbook.K03395 + Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. + least energy required for the emission of a conduction electron. + WorkFunction + ElectronWorkFunction + WorkFunction + https://www.wikidata.org/wiki/Q783800 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 + 12-24.1 + least energy required for the emission of a conduction electron. + https://doi.org/10.1351/goldbook.E02015 - - - - - + + - - + + + + + + - - Conductivity per molar concentration of electrolyte. - MolarConductivity - MolarConductivity - https://qudt.org/vocab/quantitykind/MolarConductivity - https://www.wikidata.org/wiki/Q1943278 - 9-45 - Conductivity per molar concentration of electrolyte. - https://doi.org/10.1351/goldbook.M03976 + + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + Uncoded + Uncoded + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + A random generated id for a product. - + + + + BPMNDiagram + BPMNDiagram + + + + + + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + MembraneOsmometry + MembraneOsmometry + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + + + - + - + - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - NuclearQuadrupoleMoment - NuclearQuadrupoleMoment - https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment - https://www.wikidata.org/wiki/Q97921226 - 10-18 - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - - - - - - A meson with spin two. - TensorMeson - TensorMeson - A meson with spin two. - - - - - - The sample after having been subjected to a characterization process - CharacterisedSample - CharacterisedSample - The sample after having been subjected to a characterization process - - - - - - Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. - CalibrationDataPostProcessing - CalibrationDataPostProcessing - Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. - - - - - - A building or group of buildings where goods are manufactured or assembled. - Factory - IndustrialPlant - Factory - A building or group of buildings where goods are manufactured or assembled. + Negative quotient of Helmholtz energy and temperature. + MassieuFunction + MassieuFunction + https://qudt.org/vocab/quantitykind/MassieuFunction + https://www.wikidata.org/wiki/Q3077625 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 + 5-22 + Negative quotient of Helmholtz energy and temperature. - - - - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - HydrodynamicVoltammetry - HydrodynamicVoltammetry - https://www.wikidata.org/wiki/Q17028237 - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + A reference unit provided by a measurement procedure. + Procedure units and measurement units are disjoint. + ProcedureUnit + MeasurementProcedure + ProcedureUnit + A reference unit provided by a measurement procedure. + Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) + Procedure units and measurement units are disjoint. - - - - - GreenStrangeAntiQuark - GreenStrangeAntiQuark + + + + + + + + + + + + + + + A variable that stand for a well known numerical constant (a known number). + KnownConstant + KnownConstant + A variable that stand for a well known numerical constant (a known number). + π refers to the constant number ~3.14 - - - - - A generic step in a workflow, that is not the begin or the end. - InternalStep - InternalStep - A generic step in a workflow, that is not the begin or the end. + + + + A variable that stand for a numerical constant, even if it is unknown. + Constant + Constant + A variable that stand for a numerical constant, even if it is unknown. - - - + + + + + + + + + + - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - Lethargy - Lethargy - https://qudt.org/vocab/quantitykind/Lethargy - https://www.wikidata.org/wiki/Q25508781 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 - 10-69 - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + AngularVelocity + AngularVelocity + https://qudt.org/vocab/quantitykind/AngularVelocity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 + https://dbpedia.org/page/Angular_velocity + 3-12 + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + https://en.wikipedia.org/wiki/Angular_velocity - - - - - Relative change of length with respect the original length. - RelativeLinearStrain - RelativeLinearStrain - https://qudt.org/vocab/quantitykind/LinearStrain - https://www.wikidata.org/wiki/Q1990546 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 - 4-17.2 - Relative change of length with respect the original length. - https://doi.org/10.1351/goldbook.L03560 + + + + MetallicPowderSintering + MetallicPowderSintering - - + + - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. - DisplacementCurrent - DisplacementCurrent - https://qudt.org/vocab/quantitykind/DisplacementCurrent - https://www.wikidata.org/wiki/Q853178 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 - 6-19.1 - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + Ratio of void volume and total volume of a porous material. + Porosity + Porosity + https://www.wikidata.org/wiki/Q622669 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 + Ratio of void volume and total volume of a porous material. + https://doi.org/10.1351/goldbook.P04762 - - - - Broadcast - Broadcast + + + + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + Strain + Strain + http://qudt.org/vocab/quantitykind/Strain + 4-17.1 + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - - - - - - - - - - A well formed tessellation with at least a junction tile. - MixedTiling - MixedTiling - A well formed tessellation with at least a junction tile. + + + + ConcreteOrPlasterPouring + ConcreteOrPlasterPouring - - - - - T-2 L+3 M+1 I-1 Θ+1 N0 J0 - - - - - NewtonSquareMetrePerAmpereUnit - NewtonSquareMetrePerAmpereUnit + + + + + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + The mass concentration of water at saturation is denoted wsat. + MassConcentrationOfWater + MassConcentrationOfWater + https://qudt.org/vocab/quantitykind/MassConcentrationOfWater + https://www.wikidata.org/wiki/Q76378758 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 + 5-27 + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - - - - - T-1 L0 M+1 I0 Θ0 N0 J0 - - - - - MassPerTimeUnit - MassPerTimeUnit + + + + + A process which is an holistic temporal part of an object. + Behaviour + Behaviour + A process which is an holistic temporal part of an object. + Accelerating is a behaviour of a car. - - + + - + - + - - A charged vector boson that mediate the weak interaction. - WBoson - ChargedWeakBoson - IntermediateVectorBoson - WBoson - A charged vector boson that mediate the weak interaction. - https://en.wikipedia.org/wiki/W_and_Z_bosons - + + Physical constants are categorised into "exact" and measured constants. - - - - - An application aimed to functionally reproduce an object. - SimulationApplication - SimulationApplication - An application aimed to functionally reproduce an object. - An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. - +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + PhysicalConstant + PhysicalConstant + Physical constants are categorised into "exact" and measured constants. - - - - Parameter used for the sample preparation process - - SamplePreparationParameter - SamplePreparationParameter - Parameter used for the sample preparation process +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + https://en.wikipedia.org/wiki/List_of_physical_constants - - + + + - MaterialRelationComputation - MaterialRelationComputation - - - - - - - BlueCharmAntiQuark - BlueCharmAntiQuark - - - - - - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - CompressionTesting - CompressionTesting - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + PhysicsMathematicalComputation + PhysicsMathematicalComputation + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. - - - - Folding - Folding + + + + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + DataExchangeLanguage + DataExchangeLanguage + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + JSON, YAML, XML + https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages - - - - - - - - - - - - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - DissociationConstant - DissociationConstant - https://www.wikidata.org/wiki/Q898254 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + + + + + RedDownQuark + RedDownQuark - - - - - T-3 L+1 M+1 I0 Θ0 N0 J0 - - - - - MassLengthPerCubicTimeUnit - MassLengthPerCubicTimeUnit + + + + MesoscopicSubstance + MesoscopicSubstance - + + + + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + NumericalVariable + NumericalVariable + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + + + + - + + + + - Describes elements' or compounds' readiness to form bonds. - AffinityOfAChemicalReaction - ChemicalAffinity - AffinityOfAChemicalReaction - https://qudt.org/vocab/quantitykind/ChemicalAffinity - https://www.wikidata.org/wiki/Q382783 - 9-30 - Describes elements' or compounds' readiness to form bonds. - https://doi.org/10.1351/goldbook.A00178 + ParticleConcentration + ParticleConcentration + https://www.wikidata.org/wiki/Q39078574 + 9-9.1 - - - + + - RedUpAntiQuark - RedUpAntiQuark + GluonType2 + GluonType2 - - - - Unit for quantities of dimension one that are the fraction of two volumes. - VolumeFractionUnit - VolumeFractionUnit - Unit for quantities of dimension one that are the fraction of two volumes. - Unit for volume fraction. + + + + An analytical technique used for the elemental analysis or chemical characterization of a sample. + EnergyDispersiveXraySpectroscopy + EDS + EDX + EnergyDispersiveXraySpectroscopy + https://www.wikidata.org/wiki/Q386334 + An analytical technique used for the elemental analysis or chemical characterization of a sample. + https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy - - - - - - - - - - - + + - Measure of the tendency of a substance to leave a phase. - Fugacity - Fugacity - https://qudt.org/vocab/quantitykind/Fugacity - https://www.wikidata.org/wiki/Q898412 - 9-20 - Measure of the tendency of a substance to leave a phase. - https://doi.org/10.1351/goldbook.F02543 + Ratio of area on a sphere to its radius squared. + SolidAngle + SolidAngle + http://qudt.org/vocab/quantitykind/SolidAngle + 3-6 + Ratio of area on a sphere to its radius squared. + https://doi.org/10.1351/goldbook.S05732 - - - - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - 3DPrinting - 3DPrinting - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + + + A language object respecting the syntactic rules of C++. + CPlusPlus + C++ + CPlusPlus + A language object respecting the syntactic rules of C++. - - + + + + + - - - - - - + + - - Used to break-down a CalibrationProcess into his specific tasks. - CalibrationTask - CalibrationTask - Used to break-down a CalibrationProcess into his specific tasks. - - - - - - - T+1 L-1 M0 I0 Θ0 N0 J0 - - - - - TimePerLengthUnit - TimePerLengthUnit - - - - - - - T-2 L-2 M+1 I0 Θ0 N0 J0 - - - - - MassPerSquareLengthSquareTimeUnit - MassPerSquareLengthSquareTimeUnit - - - - - - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - RelativeMassDensity - RelativeDensity - RelativeMassDensity - https://www.wikidata.org/wiki/Q11027905 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 - 4-4 - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - https://doi.org/10.1351/goldbook.R05262 + Mass per unit area. + AreaDensity + AreaDensity + http://qudt.org/vocab/quantitykind/SurfaceDensity + https://doi.org/10.1351/goldbook.S06167 - - + + + - StandardEquilibriumConstant - ThermodynamicEquilibriumConstant - StandardEquilibriumConstant - https://www.wikidata.org/wiki/Q95993378 - 9-32 - https://doi.org/10.1351/goldbook.S05915 - - - - - - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - ShearCutting - Scherschneiden - ShearCutting - - - - - - A 'process' that is recognized by physical sciences and is categorized accordingly. - While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist - PhysicalPhenomenon - PhysicalPhenomenon - A 'process' that is recognized by physical sciences and is categorized accordingly. + Helmholtz energy per amount of substance. + MolarHelmholtzEnergy + MolarHelmholtzEnergy + https://www.wikidata.org/wiki/Q88862986 + 9-6.3 + Helmholtz energy per amount of substance. - - - + + + - Ratio of the mass of water to the mass of dry matter in a given volume of matter. - The mass concentration of water at saturation is denoted usat. - MassRatioOfWaterToDryMatter - MassRatioOfWaterToDryMatter - https://www.wikidata.org/wiki/Q76378860 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 - 5-29 - Ratio of the mass of water to the mass of dry matter in a given volume of matter. + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + ReactionEnergy + ReactionEnergy + https://qudt.org/vocab/quantitykind/ReactionEnergy + https://www.wikidata.org/wiki/Q98164745 + 10-37.1 + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - - - - - Average distance that electrons travel between two successive interactions. - MeanFreePathOfElectrons - MeanFreePathOfElectrons - https://qudt.org/vocab/quantitykind/ElectronMeanFreePath - https://www.wikidata.org/wiki/Q105672307 - 12-15.2 - Average distance that electrons travel between two successive interactions. + + + + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + QuantumDecay + QuantumDecay + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - - - - - The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - MeanFreePath - MeanFreePath - https://qudt.org/vocab/quantitykind/MeanFreePath - https://www.wikidata.org/wiki/Q756307 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 - 9-38 - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - https://doi.org/10.1351/goldbook.M03778 + + + + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + CausalExpansion + CausalExpansion + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - - - - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - PrecipitationHardening - PrecipitationHardening - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + + + + + T+3 L-3 M-1 I+2 Θ0 N0 J0 + + + + + ElectricConductivityUnit + ElectricConductivityUnit - - - - A language used to describe what a computer system should do. - SpecificationLanguage - SpecificationLanguage - A language used to describe what a computer system should do. - ACSL, VDM, LOTUS, MML, ... - https://en.wikipedia.org/wiki/Specification_language + + + + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + SurfaceCoefficientOfHeatTransfer + SurfaceCoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q74770365 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 + 5-10.2 + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + + + + + + + T+2 L-1 M-1 I+1 Θ0 N0 J0 + + + + + MagneticReluctivityUnit + MagneticReluctivityUnit @@ -21037,1706 +20811,1893 @@ Note 1 to entry: This term is often used in a non-technical context synonymously Time derivative of the dose equivalent. - - - - ElectricCurrentAssistedSintering - ElectricCurrentAssistedSintering + + + + + + + + + + + + + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + DirectionDistributionOfCrossSection + DirectionDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/AngularCrossSection + https://www.wikidata.org/wiki/Q98266630 + 10-39 + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - + + + + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + DifferentialScanningCalorimetry + DSC + DifferentialScanningCalorimetry + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + + + - T0 L+2 M0 I0 Θ-1 N0 J0 + T+4 L0 M-1 I+2 Θ0 N0 J0 - AreaPerTemperatureUnit - AreaPerTemperatureUnit + SquareCurrentQuarticTimePerMassUnit + SquareCurrentQuarticTimePerMassUnit - - - - - BlueDownQuark - BlueDownQuark + + + + GravityCasting + GravityCasting - - + + + - The corresponding Celsius temperature is denoted td and is also called dew point. - Thermodynamic temperature at which vapour in air reaches saturation. - DewPointTemperature - DewPointTemperature - https://www.wikidata.org/wiki/Q178828 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 - 5-36 - Thermodynamic temperature at which vapour in air reaches saturation. - https://doi.org/10.1351/goldbook.D01652 + Angle between the scattered ray and the lattice plane. + BraggAngle + BraggAngle + https://qudt.org/vocab/quantitykind/BraggAngle + https://www.wikidata.org/wiki/Q105488118 + 12-4 + Angle between the scattered ray and the lattice plane. + + + + + + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + ElectrochemicalPiezoelectricMicrogravimetry + ElectrochemicalPiezoelectricMicrogravimetry + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + https://doi.org/10.1515/pac-2018-0109 + + + + + + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Electrogravimetry + Electrogravimetry + https://www.wikidata.org/wiki/Q902953 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + https://en.wikipedia.org/wiki/Electrogravimetry + + + + + + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + Nailing + Nageln + Nailing + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + GreenQuark + GreenQuark - - - - Python - Python + + + + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + HPPC + HybridPulsePowerCharacterisation + HybridPulsePowerCharacterization + HPPC + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - - + + - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - AbrasiveStrippingVoltammetry - AbrasiveStrippingVoltammetry - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + ScanningAugerElectronMicroscopy + AES + ScanningAugerElectronMicroscopy + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - - - + + + - MicrocanonicalPartitionFunction - MicrocanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96106546 - 9-35.1 + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. + HyperfineTransitionFrequencyOfCs + HyperfineTransitionFrequencyOfCs + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. - - - - - T+1 L0 M0 I0 Θ0 N0 J0 - - - + + + - TimeUnit - TimeUnit + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. + InternalConversionFactor + InternalConversionCoefficient + InternalConversionFactor + https://qudt.org/vocab/quantitykind/InternalConversionFactor + https://www.wikidata.org/wiki/Q6047819 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 + 10-35 + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - - - - - - - - - - - - - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - ElectromagneticEnergyDensity - VolumicElectromagneticEnergy - ElectromagneticEnergyDensity - https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity - https://www.wikidata.org/wiki/Q77989624 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 - 6-33 - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + + + + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + This must be a mathematical function v(t), x(t). +A dataset as solution is a conventional sign. + PhysicsEquationSolution + PhysicsEquationSolution + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. - - + + - ChipboardManufacturing - ChipboardManufacturing + DropForging + DropForging - - - - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. - Solubility - Solubility - https://www.wikidata.org/wiki/Q170731 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - https://doi.org/10.1351/goldbook.S05740 + + + + A self-consistent encoded data entity. + Datum + Datum + A self-consistent encoded data entity. + A character, a bit, a song in a CD. - - + + + + Quantifies the raw data acquisition rate, if applicable. + DataAcquisitionRate + DataAcquisitionRate + Quantifies the raw data acquisition rate, if applicable. + + + + - StandardAbsoluteActivityOfSolvent - StandardAbsoluteActivityOfSolvent - https://www.wikidata.org/wiki/Q89556185 - 9-27.3 + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + InternalEnergy + ThermodynamicEnergy + InternalEnergy + http://qudt.org/vocab/quantitykind/InternalEnergy + 5.20-2 + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + https://doi.org/10.1351/goldbook.I03103 - + + - - BlueTopAntiQuark - BlueTopAntiQuark - - - - - - - T-1 L-2 M+1 I0 Θ0 N0 J0 - - - - - MassFluxUnit - MassFluxUnit + RedTopAntiQuark + RedTopAntiQuark - - - - - T-2 L+3 M+1 I0 Θ0 N-1 J0 - - - + + - EnergyLengthPerAmountUnit - EnergyLengthPerAmountUnit + Enthalpy per unit mass. + SpecificEnthalpy + SpecificEnthalpy + https://qudt.org/vocab/quantitykind/SpecificEnthalpy + https://www.wikidata.org/wiki/Q21572993 + 5-21.3 + Enthalpy per unit mass. + https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy - - - - - T-1 L+3 M0 I0 Θ0 N-1 J0 - - - - - VolumePerAmountTimeUnit - VolumePerAmountTimeUnit + + + + + + A guess is a theory, estimated and subjective, since its premises are subjective. + Guess + Guess + A guess is a theory, estimated and subjective, since its premises are subjective. - - + - + - Scalar line integral of the magnetic field strength along a closed path. - MagnetomotiveForce - MagnetomotiveForce - https://qudt.org/vocab/quantitykind/MagnetomotiveForce - https://www.wikidata.org/wiki/Q1266982 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 - 6-37.3 - Scalar line integral of the magnetic field strength along a closed path. - - - - - - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - FieldEmissionScanningElectronMicroscopy - FE-SEM - FieldEmissionScanningElectronMicroscopy - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - - - - - - - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - LatentHeatOfPhaseTransition - LatentHeatOfPhaseTransition - https://www.wikidata.org/wiki/Q106553458 - 9-16 - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + Electric field strength multiplied by magnetic field strength. + PoyntingVector + PoyntingVector + https://qudt.org/vocab/quantitykind/PoyntingVector + https://www.wikidata.org/wiki/Q504186 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 + 6-34 + Electric field strength multiplied by magnetic field strength. - - - - - LatentHeat - LatentHeat - https://www.wikidata.org/wiki/Q207721 - 5-6.2 + + + + The dependent variable for which an equation has been written. + Unknown + Unknown + The dependent variable for which an equation has been written. + Velocity, for the Navier-Stokes equation. - - - - - IsentropicCompressibility - IsentropicCompressibility - https://qudt.org/vocab/quantitykind/IsentropicCompressibility - https://www.wikidata.org/wiki/Q2990695 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 - 5-5.2 + + + + An interpreter who assigns a name to an object without any motivations related to the object characters. + Namer + Namer + An interpreter who assigns a name to an object without any motivations related to the object characters. - - - - The imaginary part of the impedance. - The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. - ElectricReactance - Reactance - ElectricReactance - http://qudt.org/vocab/quantitykind/Reactance - https://www.wikidata.org/wiki/Q193972 - 6-51.3 - The imaginary part of the impedance. - https://en.wikipedia.org/wiki/Electrical_reactance - https://doi.org/10.1351/goldbook.R05162 + + + + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + Organisation + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + Organisation + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - - - + + + - Quotient of electron and hole mobility. - MobilityRatio - MobilityRatio - https://qudt.org/vocab/quantitykind/MobilityRatio - https://www.wikidata.org/wiki/Q106010255 - 12-31 - Quotient of electron and hole mobility. + NumberOfTurnsInAWinding + NumberOfTurnsInAWinding + https://www.wikidata.org/wiki/Q77995997 + 6-38 - - - - - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - GibbsEnergy - GibbsFreeEnergy - GibbsEnergy - https://www.wikidata.org/wiki/Q334631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 - 5-20.5 - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - https://doi.org/10.1351/goldbook.G02629 + + + + PhysicalyUnbonded + PhysicalyUnbonded - - + + + + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + CharacterisationProtocol + CharacterisationProtocol + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + + + + + - + - For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - SolubilityProduct - SolubilityProductConstant - SolubilityProduct - https://www.wikidata.org/wiki/Q11229788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - https://doi.org/10.1351/goldbook.S05742 - + An objective comparative measure of hot or cold. - - - - - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - Electron - Electron - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron - +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + CelsiusTemperature + CelsiusTemperature + http://qudt.org/vocab/quantitykind/CelciusTemperature + 5-2 + An objective comparative measure of hot or cold. - - - - Unit for quantities of dimension one that are the fraction of two areas. - AreaFractionUnit - AreaFractionUnit - Unit for quantities of dimension one that are the fraction of two areas. - Unit for solid angle. +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + https://doi.org/10.1351/goldbook.T06261 - + - T0 L+3 M0 I0 Θ0 N0 J0 + T-3 L+2 M+1 I0 Θ0 N0 J0 - - VolumeUnit - VolumeUnit + + PowerUnit + PowerUnit - + + + + IsothermalConversion + IsothermalConversion + + + + + + + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + MeanLinearRange + MeanLinearRange + https://qudt.org/vocab/quantitykind/MeanLinearRange + https://www.wikidata.org/wiki/Q98681589 + 10-56 + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + https://doi.org/10.1351/goldbook.M03782 + + + + + + + + + + + + + + + + + + + + + + + BottomQuark + BottomQuark + https://en.wikipedia.org/wiki/Bottom_quark + + + + - + - Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). - a photometric measure of the luminous intensity per unit area of light travelling in a given direction. - Luminance - Luminance - http://qudt.org/vocab/quantitykind/Luminance - https://doi.org/10.1351/goldbook.L03640 - - - - - - - T+4 L-2 M-1 I+1 Θ0 N0 J0 - - - - - JosephsonConstantUnit - JosephsonConstantUnit + Mass per amount of substance. + MolarMass + MolarMass + https://qudt.org/vocab/quantitykind/MolarMass + https://www.wikidata.org/wiki/Q145623 + 9-4 + Mass per amount of substance. - - - - - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - Tau - Tau - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_(particle) + + + + Magnetizing + Magnetizing - - - - DrawForms - DrawForms + + + + + + + + + + + + Semiotics + Semiotics - - + + + + + - - T-2 L+2 M+1 I0 Θ0 N0 J0 + + - - + - EnergyUnit - EnergyUnit + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + MagneticTension + MagneticTension + https://qudt.org/vocab/quantitykind/MagneticTension + https://www.wikidata.org/wiki/Q77993836 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 + 6-37.2 + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - - + + - TransportationDevice - TransportationDevice + VaporDeposition + VaporDeposition - - - - - T0 L+3 M0 I0 Θ-1 N0 J0 - - - + + + - VolumePerTemperatureUnit - VolumePerTemperatureUnit - - - - - - A Material occurring in nature, without the need of human intervention. - NaturalMaterial - NaturalMaterial - A Material occurring in nature, without the need of human intervention. + ElectrolyticConductivity + ElectrolyticConductivity + https://qudt.org/vocab/quantitykind/ElectrolyticConductivity + https://www.wikidata.org/wiki/Q907564 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 + 9-44 - - - - - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - CharacterisationProperty - CharacterisationProperty - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + + + + ElectricCurrentPhasor + ElectricCurrentPhasor + https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor + https://www.wikidata.org/wiki/Q78514596 + 6-49 - - + + + - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - Milling - Milling - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + + HardwareManufacturer + HardwareManufacturer - + - T0 L0 M0 I0 Θ0 N0 J+1 + T-3 L0 M+1 I-1 Θ0 N0 J0 - LuminousIntensityUnit - LuminousIntensityUnit + ElectricPotentialPerAreaUnit + ElectricPotentialPerAreaUnit - - - - - T+2 L+2 M0 I0 Θ0 N0 J0 - - - - - AreaSquareTimeUnit - AreaSquareTimeUnit + + + + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + ArchetypeManufacturing + DIN 8580:2020 + PrimitiveForming + Urformen + ArchetypeManufacturing + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - + - T-2 L+2 M+1 I-1 Θ0 N0 J0 + T0 L0 M-1 I+1 Θ0 N0 J0 - MagneticFluxUnit - MagneticFluxUnit + ElectricCurrentPerMassUnit + ElectricCurrentPerMassUnit - - - - - Degenerency - Multiplicity - Degenerency - https://www.wikidata.org/wiki/Q902301 - 9-36.2 - https://doi.org/10.1351/goldbook.D01556 + + + + Filling + Filling - - - - + + - - + + + + + + - - In geometrical optics, vergence describes the curvature of optical wavefronts. - Vergence - Vergence - http://qudt.org/vocab/quantitykind/Curvature + + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + JunctionTile + JunctionTile + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. - - - - - - - - - - - - - The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. - Thermodynamic temperature difference divided by heat flow rate. - ThermalResistance - ThermalResistance - https://qudt.org/vocab/quantitykind/ThermalResistance - https://www.wikidata.org/wiki/Q899628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 - 5-12 - Thermodynamic temperature difference divided by heat flow rate. + + + + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + SupplyChain + SupplyChain + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - - - - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - DirectCurrentInternalResistance - DirectCurrentInternalResistance - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + + + + SystemUnit + SystemUnit - - + + + - Sum of electric current density and displacement current density. - TotalCurrentDensity - TotalCurrentDensity - https://qudt.org/vocab/quantitykind/TotalCurrentDensity - https://www.wikidata.org/wiki/Q77680811 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 - 6-20 - Sum of electric current density and displacement current density. + Square root of the slowing down area. + SlowingDownLength + SlowingDownLength + https://qudt.org/vocab/quantitykind/Slowing-DownLength + https://www.wikidata.org/wiki/Q98996963 + 10-73.1 + Square root of the slowing down area. - - - - LeftHandedParticle - LeftHandedParticle + + + + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + DataNormalisation + DataNormalisation + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + + + + + + + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + TotalAngularMomentum + TotalAngularMomentum + https://qudt.org/vocab/quantitykind/TotalAngularMomentum + https://www.wikidata.org/wiki/Q97496506 + 10-11 + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - - - - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - MarkupLanguage - MarkupLanguage - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - HTML - https://en.wikipedia.org/wiki/Markup_language + + + + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + InteractionVolume + InteractionVolume + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - - - - - - + + - - + + T+1 L+1 M-1 I0 Θ0 N0 J0 - + + - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - MassAttenuationCoefficient - MassAttenuationCoefficient - https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient - https://www.wikidata.org/wiki/Q98591983 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 - 10-50 - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + LengthTimePerMassUnit + LengthTimePerMassUnit - - - - The class of individuals that stand for photons elementary particles. - Photon - Photon - The class of individuals that stand for photons elementary particles. - https://en.wikipedia.org/wiki/Photon + + + + + Efficiency of an ideal heat engine operating according to the Carnot process. + MaximumEfficiency + CarnotEfficiency + MaximumEfficiency + https://www.wikidata.org/wiki/Q93949862 + 5-25.2 + Efficiency of an ideal heat engine operating according to the Carnot process. - - - - AmorphousMaterial - NonCrystallineMaterial - AmorphousMaterial + + + + + CanonicalPartitionFunction + CanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96142389 + 9-35.2 - + - - + + T-2 L0 M+1 I-1 Θ0 N0 J0 - - - - - - - - - A boolean number. - Boolean - Boolean - A boolean number. + + + MagneticFluxDensityUnit + MagneticFluxDensityUnit - - - - - BlueUpQuark - BlueUpQuark + + + + A command language designed to be run by a command-line interpreter, like a Unix shell. + ShellScript + ShellScript + A command language designed to be run by a command-line interpreter, like a Unix shell. + https://en.wikipedia.org/wiki/Shell_script - - - - A suspension of fine particles in the atmosphere. - Dust - Dust - A suspension of fine particles in the atmosphere. + + + + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + + ThreePointBendingTesting + ThreePointFlexuralTest + ThreePointBendingTesting + https://www.wikidata.org/wiki/Q2300905 + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + https://en.wikipedia.org/wiki/Three-point_flexural_test - - + + + + + + + + + - A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. - Parameter - Parameter - Viscosity in the Navier-Stokes equation + 3-dimensional array who's spatial direct parts are matrices. + Array3D + 3DArray + Array3D + 3-dimensional array who's spatial direct parts are matrices. - - - + + + + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + OpticalMicroscopy + OpticalMicroscopy + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + + + + - An object which is an holistic temporal part of another object. - Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. - SubObject - SubObject - An object which is an holistic temporal part of another object. - If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. + A process occurring by natural (non-intentional) laws. + NaturalProcess + NonIntentionalProcess + NaturalProcess + A process occurring by natural (non-intentional) laws. - - + + + - ElectricCurrentPhasor - ElectricCurrentPhasor - https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor - https://www.wikidata.org/wiki/Q78514596 - 6-49 + Quotient of mass defect and the unified atomic mass constant. + RelativeMassDefect + RelativeMassDefect + https://qudt.org/vocab/quantitykind/RelativeMassDefect + https://www.wikidata.org/wiki/Q98038718 + 10-22.2 + Quotient of mass defect and the unified atomic mass constant. - - - + + + + A meson with spin zero and even parity. + ScalarMeson + ScalarMeson + A meson with spin zero and even parity. + https://en.wikipedia.org/wiki/Scalar_meson + + + + + + + T0 L+3 M0 I0 Θ-1 N0 J0 + + + - Critical thermodynamic temperature of a superconductor. - SuperconductionTransitionTemperature - SuperconductionTransitionTemperature - https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature - https://www.wikidata.org/wiki/Q106103037 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 - 12-35.3 - Critical thermodynamic temperature of a superconductor. + VolumePerTemperatureUnit + VolumePerTemperatureUnit - + - T+1 L0 M-1 I+1 Θ0 N0 J0 + T+3 L-3 M-1 I+2 Θ0 N-1 J0 - ElectricChargePerMassUnit - ElectricChargePerMassUnit + ElectricConductivityPerAmountUnit + ElectricConductivityPerAmountUnit - - + + + + Data that are non-quantitatively interpreted (e.g., qualitative data, types). + NonNumericalData + NonNumericalData + Data that are non-quantitatively interpreted (e.g., qualitative data, types). + + + + - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - Tool - Tool - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + FiberboardManufacturing + FiberboardManufacturing - - + + + - Defines the Candela base unit in the SI system. - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - LuminousEfficacyOf540THzRadiation - LuminousEfficacyOf540THzRadiation - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + Proportionality constant between the particle current density J and the gradient of the particle number density n. + DiffusionCoefficientForParticleNumberDensity + DiffusionCoefficientForParticleNumberDensity + https://www.wikidata.org/wiki/Q98875545 + 10-64 + Proportionality constant between the particle current density J and the gradient of the particle number density n. - - + + + + Broadcast + Broadcast + + + + - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - PrimaryData - PrimaryData - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - Baseline subtraction, noise reduction , X and Y axes correction. + + DifferentialRefractiveIndex + DifferentialRefractiveIndex - - + + - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - PhotoluminescenceMicroscopy - PhotoluminescenceMicroscopy - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + IonMobilitySpectrometry + IMS + IonMobilitySpectrometry + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - + - T0 L+1 M0 I0 Θ-1 N0 J0 + T-1 L0 M0 I0 Θ+1 N0 J0 - LengthPerTemperatureUnit - LengthPerTemperatureUnit + TemperaturePerTimeUnit + TemperaturePerTimeUnit - + - T+3 L-3 M-1 I+2 Θ0 N0 J0 + T0 L0 M+1 I0 Θ0 N0 J0 - - ElectricConductivityUnit - ElectricConductivityUnit + + MassUnit + MassUnit - - - - - Sum of energies deposited by ionizing radiation in a given volume. - EnergyImparted - EnergyImparted - https://qudt.org/vocab/quantitykind/EnergyImparted - https://www.wikidata.org/wiki/Q99526944 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 - 10-80.1 - Sum of energies deposited by ionizing radiation in a given volume. + + + + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + Exafs + Exafs + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - + - T0 L+2 M0 I0 Θ+1 N0 J0 + T0 L+3 M0 I0 Θ0 N0 J0 - - AreaTemperatureUnit - AreaTemperatureUnit + + VolumeUnit + VolumeUnit - + - T0 L0 M0 I0 Θ+2 N0 J0 + T0 L+2 M0 I0 Θ+1 N0 J0 - SquareTemperatureUnit - SquareTemperatureUnit + AreaTemperatureUnit + AreaTemperatureUnit - - + + - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - FourierTransformInfraredSpectroscopy - FTIR - FourierTransformInfraredSpectroscopy - https://www.wikidata.org/wiki/Q901559 - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy + + RawSample + RawSample - - - - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - - PseudoOpenCircuitVoltageMethod - PseudoOCV - PseudoOpenCircuitVoltageMethod - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + + + + A physics-based model based on a physics equation describing the behaviour of electrons. + ElectronicModel + ElectronicModel + A physics-based model based on a physics equation describing the behaviour of electrons. + Density functional theory. +Hartree-Fock. - - + + + - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - RotationalFrequency - RotationalFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 - 3-17.2 - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + NuclearPrecessionAngularFrequency + NuclearPrecessionAngularFrequency + https://www.wikidata.org/wiki/Q97641779 + 10-15.3 + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - + - + - + - An objective comparative measure of hot or cold. + Coefficient in the law of recombination, + RecombinationCoefficient + RecombinationCoefficient + https://qudt.org/vocab/quantitykind/RecombinationCoefficient + https://www.wikidata.org/wiki/Q98842099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 + 10-63 + Coefficient in the law of recombination, + -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - CelsiusTemperature - CelsiusTemperature - http://qudt.org/vocab/quantitykind/CelciusTemperature - 5-2 - An objective comparative measure of hot or cold. + + + + + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + LinearIonization + LinearIonization + https://qudt.org/vocab/quantitykind/LinearIonization + https://www.wikidata.org/wiki/Q98690755 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 + 10-58 + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - https://doi.org/10.1351/goldbook.T06261 + + + + + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + FermiEnergy + FermiEnergy + https://qudt.org/vocab/quantitykind/FermiEnergy + https://www.wikidata.org/wiki/Q431335 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 + 12-27.1 + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + https://doi.org/10.1351/goldbook.F02340 - - + + + + + GreenStrangeAntiQuark + GreenStrangeAntiQuark + + + + + + A whole with temporal parts of its same type. + TemporallyRedundant + TemporallyRedundant + A whole with temporal parts of its same type. + + + + + + + A unit symbol that stands for a derived unit. + Special units are semiotic shortcuts to more complex composed symbolic objects. + SpecialUnit + SpecialUnit + A unit symbol that stands for a derived unit. + Pa stands for N/m2 +J stands for N m + + + + + + + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + ThermalUtilizationFactor + ThermalUtilizationFactor + https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor + https://www.wikidata.org/wiki/Q99197650 + 10-76 + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + + + + + + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + URN + URN + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + + + - Number of holes in valence band per volume. - HoleDensity - HoleDensity - https://qudt.org/vocab/quantitykind/HoleDensity - https://www.wikidata.org/wiki/Q105971101 - 12-29.2 - Number of holes in valence band per volume. + distance between successive lattice planes + LatticePlaneSpacing + LatticePlaneSpacing + https://qudt.org/vocab/quantitykind/LatticePlaneSpacing + https://www.wikidata.org/wiki/Q105488046 + 12-3 + distance between successive lattice planes - - - - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - UltrasonicTesting - UltrasonicTesting - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + + + + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + Welding + Schweißen + Welding - - - - StaticFrictionCoefficient - CoefficientOfStaticFriction - StaticFrictionFactor - StaticFrictionCoefficient - https://www.wikidata.org/wiki/Q73695673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 - 4-23.1 + + + + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + IonChromatography + IonChromatography + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + https://en.wikipedia.org/wiki/Ion_chromatography - - - - - Conventional radius of sphere in which the nuclear matter is included, - NuclearRadius - NuclearRadius - https://qudt.org/vocab/quantitykind/NuclearRadius - https://www.wikidata.org/wiki/Q3535676 - 10-19.1 - Conventional radius of sphere in which the nuclear matter is included, + + + + HardeningByDrawing + HardeningByDrawing - + - T-2 L+4 M+1 I0 Θ0 N0 J0 + T0 L0 M-2 I0 Θ0 N0 J0 - - EnergyAreaUnit - EnergyAreaUnit + + InverseSquareMassUnit + InverseSquareMassUnit - + - T-2 L+3 M+1 I-1 Θ0 N0 J0 + T0 L0 M-1 I0 Θ0 N0 J0 - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit + + ReciprocalMassUnit + ReciprocalMassUnit - + - T+1 L0 M-1 I0 Θ0 N0 J0 + T0 L+2 M0 I+1 Θ0 N0 J0 - MechanicalMobilityUnit - MechanicalMobilityUnit - - - - - - - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - The mixing ratio at saturation is denoted xsat. - MixingRatio - MassRatioOfWaterVapourToDryGas - MixingRatio - https://www.wikidata.org/wiki/Q76378940 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 - 5-30 - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - - - - - ElectronAntiNeutrino - ElectronAntiNeutrino + + + + + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + ElectronBackscatterDiffraction + EBSD + ElectronBackscatterDiffraction + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - - - - Spacing - Spacing + + + + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + + ScanningElectronMicroscopy + SEM + ScanningElectronMicroscopy + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - - - - A physics-based model based on a physics equation describing the behaviour of atoms. - AtomisticModel - AtomisticModel - A physics-based model based on a physics equation describing the behaviour of atoms. + + + + Voltage phasor multiplied by complex conjugate of the current phasor. + ComplexPower + ComplexApparentPower + ComplexPower + https://qudt.org/vocab/quantitykind/ComplexPower + https://www.wikidata.org/wiki/Q65239736 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 + 6-59 + Voltage phasor multiplied by complex conjugate of the current phasor. - - - - - - Δ - - - - Laplacian - Laplacian + + + + + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + PowerFactor + PowerFactor + https://qudt.org/vocab/quantitykind/PowerFactor + https://www.wikidata.org/wiki/Q750454 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 + 6-58 + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - - - - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - - XrayPowderDiffraction - XRPD - XrayPowderDiffraction - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - https://en.wikipedia.org/wiki/Powder_diffraction + + + + A molecule composed of more than one element type. + Heteronuclear + Heteronuclear + A molecule composed of more than one element type. + Nitric oxide (NO) or carbon dioxide (CO₂). - - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - Bending - Bending + + + + + T-2 L0 M0 I0 Θ+1 N0 J0 + + + + + TemperaturePerSquareTimeUnit + TemperaturePerSquareTimeUnit - - + + - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - FlexuralForming - Biegeumformen - FlexuralForming - - - - - - - - - - - - - - - - - AntiLepton - AntiLepton + GrowingCrystal + GrowingCrystal - - - - A real matrix with shape 4x3. - Shape4x3Matrix - Shape4x3Matrix - A real matrix with shape 4x3. + + + + + T-6 L-2 M+2 I0 Θ0 N0 J0 + + + + + SquarePressurePerSquareTimeUnit + SquarePressurePerSquareTimeUnit - - - - - + + + + A command must be interpretable by the computer system. + An instruction to a computer system to perform a given task. + Command + Command + From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. + A command must be interpretable by the computer system. + Commands are typically performed from a shell or a shell script, but not limited to them. + + + + - - + + + + + + - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - MomentOfIntertia - MomentOfIntertia - https://qudt.org/vocab/quantitykind/MomentOfInertia - https://www.wikidata.org/wiki/Q165618 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 - 4-7 - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - https://doi.org/10.1351/goldbook.M04006 + Number of nucleons in an atomic nucleus. + MassNumber + AtomicMassNumber + NucleonNumber + MassNumber + http://qudt.org/vocab/quantitykind/MassNumber + Number of nucleons in an atomic nucleus. - - - - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - NumericalData - NumericalData - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + + + + + in the free electron model, the Fermi energy divided by the Boltzmann constant + FermiTemperature + FermiTemperature + https://qudt.org/vocab/quantitykind/FermiTemperature + https://www.wikidata.org/wiki/Q105942324 + 12-28 + in the free electron model, the Fermi energy divided by the Boltzmann constant - - - - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - PhysicallyNonInteracting - PhysicallyNonInteracting - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + + + + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + ConductometricTitration + ConductometricTitration + https://www.wikidata.org/wiki/Q11778221 + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - + + + + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Conductometry + Conductometry + https://www.wikidata.org/wiki/Q901180 + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Monitoring of the purity of deionized water. + https://en.wikipedia.org/wiki/Conductometry + https://doi.org/10.1515/pac-2018-0109 + + + + - - + + T-1 L0 M0 I0 Θ+2 N0 J0 - + + - Measure for how the magnetization of material is affected by the application of an external magnetic field . - Permeability - ElectromagneticPermeability - Permeability - http://qudt.org/vocab/quantitykind/ElectromagneticPermeability - 6-26.2 - https://doi.org/10.1351/goldbook.P04503 + SquareTemperaturePerTimeUnit + SquareTemperaturePerTimeUnit - + + - + - Perceived power of light. - LuminousFlux - LuminousFlux - http://qudt.org/vocab/quantitykind/LuminousFlux - 7-13 - Perceived power of light. - https://doi.org/10.1351/goldbook.L03646 + Quotient of linear attenuation coefficient µ and the amount c of the medium. + MolarAttenuationCoefficient + MolarAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592828 + 10-51 + Quotient of linear attenuation coefficient µ and the amount c of the medium. - - - - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. - Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. - AssemblyLine - AssemblyLine - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + + + + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + WearTesting + WearTesting + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - - - - - Force opposing the motion of a body sliding on a surface. - KineticFrictionForce - DynamicFrictionForce - KineticFrictionForce - https://www.wikidata.org/wiki/Q91005629 - 4-9.4 - Force opposing the motion of a body sliding on a surface. + + + + A well-formed finite combination of mathematical symbols according to some specific rules. + Expression + Expression + A well-formed finite combination of mathematical symbols according to some specific rules. - - - + + - ThermodynamicEfficiency - ThermalEfficiency - ThermodynamicEfficiency - https://qudt.org/vocab/quantitykind/ThermalEfficiency - https://www.wikidata.org/wiki/Q1452104 - 5-25.1 + StaticFrictionCoefficient + CoefficientOfStaticFriction + StaticFrictionFactor + StaticFrictionCoefficient + https://www.wikidata.org/wiki/Q73695673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 + 4-23.1 - - + + + + + T+2 L+1 M-2 I0 Θ0 N+1 J0 + + + - RMS value voltage multiplied by rms value of electric current. - ApparentPower - ApparentPower - https://qudt.org/vocab/quantitykind/ApparentPower - https://www.wikidata.org/wiki/Q1930258 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 - 6-57 - RMS value voltage multiplied by rms value of electric current. - - - - - - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - VoltammetryAtARotatingDiskElectrode - VoltammetryAtARotatingDiskElectrode - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - https://doi.org/10.1515/pac-2018-0109 - - - - - - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - Peening - ShotPeening - Verfestigungsstrahlen - Peening - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - - - - - - PaperManufacturing - PaperManufacturing + AmountPerMassPressureUnit + AmountPerMassPressureUnit - - - - - - BeginTile - BeginTile + + + + + T0 L-2 M0 I0 Θ0 N+1 J0 + + + + + AmountPerAreaUnit + AmountPerAreaUnit - - - - A self-consistent encoded data entity. - Datum - Datum - A self-consistent encoded data entity. - A character, a bit, a song in a CD. + + + + SparkPlasmaSintering + SparkPlasmaSintering - + - T-1 L0 M+1 I-1 Θ0 N0 J0 + T-2 L-2 M0 I0 Θ0 N0 J0 - - MassPerElectricChargeUnit - MassPerElectricChargeUnit - - - - - - A tessellation in wich a tile is next for two or more non spatially connected tiles. - Join - Join - A tessellation in wich a tile is next for two or more non spatially connected tiles. + + FrequencyPerAreaTimeUnit + FrequencyPerAreaTimeUnit - - - - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - PhysicalBasedSimulationSoftware - PhysicalBasedSimulationSoftware - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + + + + + + + + + + + + + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + ExtentOfReaction + ExtentOfReaction + https://qudt.org/vocab/quantitykind/ExtentOfReaction + https://www.wikidata.org/wiki/Q899046 + 9-31 + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + https://doi.org/10.1351/goldbook.E02283 - - - + + + - Service - IntangibleProduct - Service - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + Moulding + Gesenkformen + Moulding - - - - - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. - BeginStep - BeginStep - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. + + + + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + ElectronProbeMicroanalysis + ElectronProbeMicroanalysis + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - - - - - T+2 L-5 M-1 I0 Θ0 N0 J0 - - - + + + - EnergyDensityOfStatesUnit - EnergyDensityOfStatesUnit + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + LatentHeatOfPhaseTransition + LatentHeatOfPhaseTransition + https://www.wikidata.org/wiki/Q106553458 + 9-16 + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - - - - DataProcessingApplication - DataProcessingApplication + + + + A CausalSystem that includes quantum parts that are not bonded with the rest. + PhysicalPhenomena + PhysicalPhenomena + A CausalSystem that includes quantum parts that are not bonded with the rest. - + + + + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + CompositePhysicalObject + CompositePhysicalObject + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + + + + + + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + Dismantling + Demontage + Dismantling + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + + + + + + + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + PhaseCoefficient + PhaseChangeCoefficient + PhaseCoefficient + https://qudt.org/vocab/quantitykind/PhaseCoefficient + https://www.wikidata.org/wiki/Q32745742 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 + 3-26.2 + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant + + + - + - + + - In nuclear physics, time derivative of the energy fluence. - EnergyFluenceRate - EnergyFluenceRate - https://qudt.org/vocab/quantitykind/EnergyFluenceRate - https://www.wikidata.org/wiki/Q98538655 - 10-47 - In nuclear physics, time derivative of the energy fluence. + Quantity in condensed matter physics. + EnergyDensityOfStates + EnergyDensityOfStates + https://qudt.org/vocab/quantitykind/EnergyDensityOfStates + https://www.wikidata.org/wiki/Q105687031 + 12-16 + Quantity in condensed matter physics. - + + + + + StoichiometricNumberOfSubstance + StoichiometricNumberOfSubstance + https://qudt.org/vocab/quantitykind/StoichiometricNumber + https://www.wikidata.org/wiki/Q95443720 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 + 9-29 + https://doi.org/10.1351/goldbook.S06025 + + + - T+2 L0 M0 I0 Θ0 N0 J0 + T-3 L+2 M+1 I-2 Θ0 N0 J0 - SquareTimeUnit - SquareTimeUnit - - - - - - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - PhysicalLaw - PhysicalLaw - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - - - - - - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - NaturalLaw - NaturalLaw - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + ElectricResistanceUnit + ElectricResistanceUnit - - - - - - - ThermodynamicCriticalMagneticFluxDensity - ThermodynamicCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106103200 - 12-36.1 + + + + + T+4 L-2 M-1 I+1 Θ0 N0 J0 + + + + + JosephsonConstantUnit + JosephsonConstantUnit - - - + + - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - LowerCriticalMagneticFluxDensity - LowerCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127355 - 12-36.2 - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + Force of gravity acting on a body. + Weight + Weight + http://qudt.org/vocab/quantitykind/Weight + 4-9.2 + https://doi.org/10.1351/goldbook.W06668 - - - - - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - NuclearPrecessionAngularFrequency - NuclearPrecessionAngularFrequency - https://www.wikidata.org/wiki/Q97641779 - 10-15.3 - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + + + + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + VoltammetryAtARotatingDiskElectrode + VoltammetryAtARotatingDiskElectrode + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + https://doi.org/10.1515/pac-2018-0109 - - - - - A type of sol in the form of one solid dispersed in another continuous solid. - SolidSol - SolidSol - A type of sol in the form of one solid dispersed in another continuous solid. + + + + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + + PulsedElectroacousticMethod + PulsedElectroacousticMethod + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + https://doi.org/10.1007/s10832-023-00332-y - + - T-3 L+2 M+1 I-1 Θ0 N0 J0 + T0 L0 M+1 I0 Θ+1 N0 J0 - ElectricPotentialUnit - ElectricPotentialUnit + MassTemperatureUnit + MassTemperatureUnit - - - + + + + + T-1 L0 M+1 I0 Θ0 N0 J0 + + + - average distance that phonons travel between two successive interactions - MeanFreePathOfPhonons - MeanFreePathOfPhonons - https://qudt.org/vocab/quantitykind/PhononMeanFreePath - https://www.wikidata.org/wiki/Q105672255 - 12-15.1 - average distance that phonons travel between two successive interactions + MassPerTimeUnit + MassPerTimeUnit - - - - - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - ParticleEmissionRate - ParticleEmissionRate - https://www.wikidata.org/wiki/Q98153151 - 10-36 - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + + + + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + ElectrochemicalImpedanceSpectroscopy + EIS + ElectrochemicalImpedanceSpectroscopy + https://www.wikidata.org/wiki/Q3492904 + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + https://doi.org/10.1515/pac-2018-0109 - + - T-3 L-3 M+1 I0 Θ0 N0 J0 + T+3 L-1 M-1 I0 Θ0 N0 J+1 - - PowerPerAreaVolumeUnit - PowerPerAreaVolumeUnit + + LuminousEfficacyUnit + LuminousEfficacyUnit - - + + + + DrawForms + DrawForms + + + + + + + - - - - - - + + - Number of direct parts of a Reductionistic. - Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. - NumberOfElements - NumberOfElements - Number of direct parts of a Reductionistic. + Vector characterising a dislocation in a crystal lattice. + BurgersVector + BurgersVector + https://qudt.org/vocab/quantitykind/BurgersVector + https://www.wikidata.org/wiki/Q623093 + 12-6 + Vector characterising a dislocation in a crystal lattice. - - - + + - - + + T0 L+3 M0 I0 Θ0 N-1 J0 - - - The small, dense region at the centre of an atom consisting of protons and neutrons. - Nucleus - Nucleus - The small, dense region at the centre of an atom consisting of protons and neutrons. + + + + VolumePerAmountUnit + VolumePerAmountUnit - - - - UTF8 - UTF8 + + + + + BlueBottomQuark + BlueBottomQuark - - - - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - ConductometricTitration - ConductometricTitration - https://www.wikidata.org/wiki/Q11778221 - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - https://doi.org/10.1515/pac-2018-0109 + + + + + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + SlowingDownArea + SlowingDownArea + https://qudt.org/vocab/quantitykind/Slowing-DownArea + https://www.wikidata.org/wiki/Q98950918 + 10-72.1 + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - - - - Unit for quantities of dimension one that are the fraction of two masses. - MassFractionUnit - MassFractionUnit - Unit for quantities of dimension one that are the fraction of two masses. - Unit for mass fraction. + + + + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + CausalConvexSystem + CausalConvexSystem + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + A CausalSystem whose quantum parts are all bonded to the rest of the system. - + - Voltage phasor multiplied by complex conjugate of the current phasor. - ComplexPower - ComplexApparentPower - ComplexPower - https://qudt.org/vocab/quantitykind/ComplexPower - https://www.wikidata.org/wiki/Q65239736 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 - 6-59 - Voltage phasor multiplied by complex conjugate of the current phasor. + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + NonActivePower + NonActivePower + https://qudt.org/vocab/quantitykind/NonActivePower + https://www.wikidata.org/wiki/Q79813060 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 + 6-61 + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - - - - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - URN - URN - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + + + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + DataFiltering + DataFiltering + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + + + + + + + + + + + + + + + Number of particles per time and area crossing a surface. + ParticleCurrentDensity + ParticleCurrentDensity + https://qudt.org/vocab/quantitykind/ParticleCurrent + https://www.wikidata.org/wiki/Q2400689 + 10-48 + Number of particles per time and area crossing a surface. + + + + + + A law that provides a connection between a material property and other properties of the object. + MaterialLaw + MaterialLaw + A law that provides a connection between a material property and other properties of the object. - + - + - Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. - least energy required for the emission of a conduction electron. - WorkFunction - ElectronWorkFunction - WorkFunction - https://www.wikidata.org/wiki/Q783800 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 - 12-24.1 - least energy required for the emission of a conduction electron. - https://doi.org/10.1351/goldbook.E02015 + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + AverageEnergyLossPerElementaryChargeProduced + AverageEnergyLossPerElementaryChargeProduced + https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced + https://www.wikidata.org/wiki/Q98793042 + 10-60 + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - - - - A molecule composed of only one element type. - Homonuclear - ElementalMolecule - Homonuclear - A molecule composed of only one element type. - Hydrogen molecule (H₂). + + + + CeramicSintering + CeramicSintering - - + + + + + T0 L0 M+1 I0 Θ0 N-1 J0 + + + - Inverse of the time constant of an exponentially varying quantity. - DampingCoefficient - DampingCoefficient - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 - 3-24 - Inverse of the time constant of an exponentially varying quantity. + MassPerAmountUnit + MassPerAmountUnit - - - - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - OpenCircuitHold - OCVHold - OpenCircuitHold - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + + + + CSharp + C# + CSharp - - - - - MolarEnthalpy - MolarEnthalpy - Enthalpy per amount of substance. - https://www.wikidata.org/wiki/Q88769977 - 9-6.2 - + + + + A material is a crystal if it has essentially a sharp diffraction pattern. - - - - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - Ellipsometry - Ellipsometry - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) + Crystal + Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. + +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) - - - - - - - - - - - - - - A set of units that correspond to the base quantities in a system of units. - BaseUnit - BaseUnit - A set of units that correspond to the base quantities in a system of units. - base unit + + + + + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + ResonanceEnergy + ResonanceEnergy + https://qudt.org/vocab/quantitykind/ResonanceEnergy + https://www.wikidata.org/wiki/Q98165187 + 10-37.2 + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. - - - + + - - - - - - + + T-1 L0 M-1 I0 Θ0 N+1 J0 - - - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - Uncoded - Uncoded - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - A random generated id for a product. + + + + AmountPerMassTimeUnit + AmountPerMassTimeUnit - - - + + - - - - - - + + T0 L-3 M0 I0 Θ0 N0 J0 - - - A computer language used to describe simulations. - SimulationLanguage - SimulationLanguage - A computer language used to describe simulations. - https://en.wikipedia.org/wiki/Simulation_language + + + + PerVolumeUnit + PerVolumeUnit @@ -22752,1285 +22713,1423 @@ Temperature is a relative quantity that can be used to express temperature diffe ElectricCurrentUnit - - - - PowderCoating - PowderCoating + + + + + + + + + + + + Fundamental translation vectors for the reciprocal lattice. + FundamentalReciprocalLatticeVector + FundamentalReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475399 + 12-2.2 + Fundamental translation vectors for the reciprocal lattice. - - - - - RedTopQuark - RedTopQuark + + + + + + + + + + + + + In nuclear physics, product of the number density of atoms of a given type and the cross section. + VolumicCrossSection + MacroscopicCrossSection + VolumicCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicCrossSection + https://www.wikidata.org/wiki/Q98280520 + 10-42.1 + In nuclear physics, product of the number density of atoms of a given type and the cross section. + https://doi.org/10.1351/goldbook.M03674 + + + + + + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + OpenCircuitHold + OCVHold + OpenCircuitHold + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + + + + + + JavaScript + JavaScript + + + + + + PhotochemicalProcesses + PhotochemicalProcesses - - - - - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. - EndStep - EndStep - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. + + + + InspectionDevice + InspectionDevice - - + + + + + - - T-1 L0 M-1 I0 Θ0 N0 J0 + + - - + - PerTimeMassUnit - PerTimeMassUnit + ReciprocalVolume + ReciprocalVolume - - - + + - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - PowerFactor - PowerFactor - https://qudt.org/vocab/quantitykind/PowerFactor - https://www.wikidata.org/wiki/Q750454 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 - 6-58 - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. + Solubility + Solubility + https://www.wikidata.org/wiki/Q170731 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + https://doi.org/10.1351/goldbook.S05740 - - - - Java - Java + + + + Inverse of the impendance. + Admittance + ComplexAdmittance + Admittance + https://qudt.org/vocab/quantitykind/Admittance + https://www.wikidata.org/wiki/Q214518 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 + https://dbpedia.org/page/Admittance + 6-52.1 + Inverse of the impendance. - - - - - T+1 L+2 M0 I0 Θ+1 N0 J0 - - - - - AreaTimeTemperatureUnit - AreaTimeTemperatureUnit - + + + + A property that is associated to an object by convention, or assumption. + A quantitative property attributed by agreement to a quantity for a given purpose. + ConventionalProperty + ConventionalProperty + A quantitative property attributed by agreement to a quantity for a given purpose. + The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. - - - - - DifferentialRefractiveIndex - DifferentialRefractiveIndex +If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. + +Then I have two different physical quantities that are properties thanks to two different semiotic processes. - - - - - T0 L0 M-1 I0 Θ0 N0 J0 - - - + + + - ReciprocalMassUnit - ReciprocalMassUnit + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + PhaseDifference + DisplacementAngle + PhaseDifference + https://www.wikidata.org/wiki/Q97222919 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 + 6-48 + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - - - - - + + - - + + + - - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - LuminousIntensity - LuminousIntensity - http://qudt.org/vocab/quantitykind/LuminousIntensity - 7-14 - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. + + Plus + Plus - - - - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - DeepFreezing - Cryogenic treatment, Deep-freeze - Tieftemperaturbehandeln - DeepFreezing - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + + + + + BlueUpAntiQuark + BlueUpAntiQuark - - - - - T+2 L0 M-1 I+1 Θ0 N0 J0 - - - - - ElectricMobilityUnit - ElectricMobilityUnit + + + + + A coarse dispersion of gas in a liquid continuum phase. + LiquidGasSuspension + LiquidGasSuspension + A coarse dispersion of gas in a liquid continuum phase. + Sparkling water - - - - Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - PrincipalQuantumNumber - PrincipalQuantumNumber - https://qudt.org/vocab/quantitykind/PrincipalQuantumNumber - https://www.wikidata.org/wiki/Q867448 - 10-13.2 - Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. + + + + + + + + + + + + + + + + + + + + + + + + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + Hyperon + Hyperon + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + https://en.wikipedia.org/wiki/Hyperon - - - - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - HPPC - HybridPulsePowerCharacterisation - HybridPulsePowerCharacterization - HPPC - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + + + + + ElementaryFermion + ElementaryFermion - - + + + - - - - - - Vector characterising a dislocation in a crystal lattice. - BurgersVector - BurgersVector - https://qudt.org/vocab/quantitykind/BurgersVector - https://www.wikidata.org/wiki/Q623093 - 12-6 - Vector characterising a dislocation in a crystal lattice. + + + + + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + MassEnergyTransferCoefficient + MassEnergyTransferCoefficient + https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient + https://www.wikidata.org/wiki/Q99714619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 + 10-87 + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - + - T-3 L+2 M+1 I0 Θ-1 N0 J0 + T-1 L0 M0 I0 Θ-1 N0 J0 - ThermalConductanceUnit - ThermalConductanceUnit - - - - - - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - NanoMaterial - NanoMaterial - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + PerTemperatureTimeUnit + PerTemperatureTimeUnit - - - - MetallicMaterial - MetallicMaterial + + + + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + DataBasedSimulationSoftware + DataBasedSimulationSoftware + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - - + + + - Characteristic quantum number s of a particle, related to its spin. - SpinQuantumNumber - SpinQuantumNumber - https://qudt.org/vocab/quantitykind/SpinQuantumNumber - https://www.wikidata.org/wiki/Q3879445 - 10-13.5 - Characteristic quantum number s of a particle, related to its spin. + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. + DiffusionLength + DiffusionLength + https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength + https://www.wikidata.org/wiki/Q106097176 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 + 12-33 + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - - - - Cementing - Cementing + + + + + A solid solution made of two or more component substances. + SolidSolution + SolidSolution + A solid solution made of two or more component substances. - + - T+3 L-2 M-1 I+2 Θ0 N0 J0 + T-2 L+1 M+1 I-2 Θ0 N0 J0 - ElectricConductanceUnit - ElectricConductanceUnit - - - - - - AlgebricOperator - AlgebricOperator - - - - - - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - Chromatography - Chromatography - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - https://en.wikipedia.org/wiki/Chromatography + PermeabilityUnit + PermeabilityUnit - - - - - + + - - + + * - - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - UnifiedAtomicMassConstant - UnifiedAtomicMassConstant - https://www.wikidata.org/wiki/Q4817337 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 - 10-4.3 - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - https://doi.org/10.1351/goldbook.A00497 + + Multiplication + Multiplication - + - T0 L-2 M0 I0 Θ0 N+1 J0 + T0 L+3 M-1 I0 Θ0 N0 J0 - AmountPerAreaUnit - AmountPerAreaUnit + VolumePerMassUnit + VolumePerMassUnit - - - + + + + Removal of material by means of rigid or flexible discs or belts containing abrasives. + Grinding + Schleifen + Grinding + + + + + - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. + Square root of the migration area, M^2. + MigrationLength + MigrationLength + https://qudt.org/vocab/quantitykind/MigrationLength + https://www.wikidata.org/wiki/Q98998318 + 10-73.3 + Square root of the migration area, M^2. + -It defines the Kelvin unit in the SI system. - The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. - BoltzmannConstant - BoltzmannConstant - http://qudt.org/vocab/constant/BoltzmannConstant - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. + + + + + A coarse dispersion of solid in a solid continuum phase. + SolidSolidSuspension + SolidSolidSuspension + A coarse dispersion of solid in a solid continuum phase. + Granite, sand, dried concrete. + -It defines the Kelvin unit in the SI system. - https://doi.org/10.1351/goldbook.B00695 + + + + + Number of donor levels per volume. + DonorDensity + DonorDensity + https://qudt.org/vocab/quantitykind/DonorDensity + https://www.wikidata.org/wiki/Q105979886 + 12-29.4 + Number of donor levels per volume. - - - + + + + ChipboardManufacturing + ChipboardManufacturing + + + + + + GluonType5 + GluonType5 + + + + + + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + MagneticQuantumNumber + MagneticQuantumNumber + https://qudt.org/vocab/quantitykind/MagneticQuantumNumber + https://www.wikidata.org/wiki/Q2009727 + 10-13.4 + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + + + + + + A whole with spatial parts of its same type. + SpatiallyRedundant + SpatiallyRedundant + A whole with spatial parts of its same type. + + + + + + Unit for quantities of dimension one that are the fraction of two speeds. + SpeedFractionUnit + SpeedFractionUnit + Unit for quantities of dimension one that are the fraction of two speeds. + Unit for refractive index. + + + + + + ElectrolyticDeposition + ElectrolyticDeposition + + + + + + "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." +International vocabulary of metrology (VIM) + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + OrdinalQuantity + OrdinalQuantity + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + Hardness +Resilience + ordinal quantity + + + + - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - MassFractionOfWater - MassFractionOfWater - https://qudt.org/vocab/quantitykind/MassFractionOfWater - https://www.wikidata.org/wiki/Q76379025 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 - 5-31 - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + StandardAbsoluteActivityOfSolvent + StandardAbsoluteActivityOfSolvent + https://www.wikidata.org/wiki/Q89556185 + 9-27.3 - + - T0 L-1 M0 I0 Θ+1 N0 J0 + T-2 L+3 M+1 I-1 Θ0 N0 J0 - - TemperaturePerLengthUnit - TemperaturePerLengthUnit + + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - - - - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - CyclicVoltammetry - CV - CyclicVoltammetry - https://www.wikidata.org/wiki/Q1147647 - https://dbpedia.org/page/Cyclic_voltammetry - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - https://en.wikipedia.org/wiki/Cyclic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + RedCharmQuark + RedCharmQuark - - + + + + + Extrusion + Extrusion + + + + - Chronopotentiometry where the applied current is changed linearly. - LinearChronopotentiometry - LinearChronopotentiometry - Chronopotentiometry where the applied current is changed linearly. - chronopotentiometry where the applied current is changed linearly + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + ConfocalMicroscopy + ConfocalMicroscopy + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - + + + + A group of machineries used to process a group of similar parts. + Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. + MachineCell + MachineCell + A group of machineries used to process a group of similar parts. + + + - T0 L-2 M0 I+1 Θ-1 N0 J0 + T+3 L-2 M-1 I+2 Θ0 N0 J0 - - ElectricCurrentDensityPerTemperatureUnit - ElectricCurrentDensityPerTemperatureUnit + + ElectricConductanceUnit + ElectricConductanceUnit - - - + + + - Partition function of a molecule. - MolecularPartitionFunction - MolecularPartitionFunction - https://www.wikidata.org/wiki/Q96192064 - 9-35.4 - Partition function of a molecule. + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + IonizationEnergy + IonizationEnergy + https://qudt.org/vocab/quantitykind/IonizationEnergy + https://www.wikidata.org/wiki/Q483769 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 + 12-24.2 + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + https://doi.org/10.1351/goldbook.I03199 - - - - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - MassSpectrometry - MassSpectrometry - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + + + + + + The abstract notion of angle. + AngularMeasure + AngularMeasure + https://qudt.org/vocab/quantitykind/Angle + https://www.wikidata.org/wiki/Q1357788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 + 3-5 + The abstract notion of angle. + https://doi.org/10.1351/goldbook.A00346 - - - - InspectionDevice - InspectionDevice + + + + + CouplingFactor + InductiveCouplingFactor + CouplingFactor + https://www.wikidata.org/wiki/Q78101715 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 + 6-42.1 - - - - - T-3 L+4 M+1 I0 Θ0 N0 J0 - - - - - PowerAreaUnit - PowerAreaUnit + + + + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + NuclearMagneticResonance + Magnetic resonance spectroscopy (MRS) + NMR + NuclearMagneticResonance + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - - + + - BPMNDiagram - BPMNDiagram + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + NormalPulseVoltammetry + NPV + NormalPulseVoltammetry + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + https://doi.org/10.1515/pac-2018-0109 - + - T-1 L-1 M+1 I0 Θ0 N0 J0 + T-3 L0 M+1 I0 Θ0 N0 J0 - MassPerLengthTimeUnit - MassPerLengthTimeUnit - - - - - - Measurement of energy in a thermodynamic system. - Enthalpy - Enthalpy - http://qudt.org/vocab/quantitykind/Enthalpy - 5.20-3 - https://doi.org/10.1351/goldbook.E02141 - - - - - - Helmholtz energy per unit mass. - SpecificHelmholtzEnergy - SpecificHelmholtzEnergy - https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy - https://www.wikidata.org/wiki/Q76359554 - 5-21.4 - Helmholtz energy per unit mass. + PowerDensityUnit + PowerDensityUnit - + - T-3 L-1 M+1 I0 Θ+1 N0 J0 + T-2 L0 M0 I0 Θ0 N0 J0 - TemperaturePressurePerTimeUnit - TemperaturePressurePerTimeUnit - - - - - - - An object which is an holistic temporal part of a process. - Status - State - Status - An object which is an holistic temporal part of a process. - A semi-naked man is a status in the process of a man's dressing. + AngularFrequencyUnit + AngularFrequencyUnit - - - + + + + + + + + + + + + - Retarding force on a body moving in a fluid. - DragForce - DragForce - https://www.wikidata.org/wiki/Q206621 - 4-9.6 - Retarding force on a body moving in a fluid. + Number of direct parts of a Reductionistic. + Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. + NumberOfElements + NumberOfElements + Number of direct parts of a Reductionistic. - - - - - Parameter used for the sample inspection process - - SampleInspectionParameter - SampleInspectionParameter - Parameter used for the sample inspection process + + + + + GluonType7 + GluonType7 - + - T-2 L+4 M0 I0 Θ0 N0 J0 + T-2 L+2 M+1 I-1 Θ0 N0 J0 - MassStoppingPowerUnit - MassStoppingPowerUnit + MagneticFluxUnit + MagneticFluxUnit - - - - - T-2 L-2 M0 I0 Θ0 N0 J0 - - - + + + - FrequencyPerAreaTimeUnit - FrequencyPerAreaTimeUnit + Reciprocal of the decay constant λ. + MeanDurationOfLife + MeanLifeTime + MeanDurationOfLife + https://qudt.org/vocab/quantitykind/MeanLifetime + https://www.wikidata.org/wiki/Q1758559 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 + 10-25 + Reciprocal of the decay constant λ. - - - - - T-1 L+1 M0 I0 Θ0 N0 J0 - - - - - SpeedUnit - SpeedUnit + + + + + The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + ElementaryCharge + ElementaryCharge + http://qudt.org/vocab/quantitykind/ElementaryCharge + 10-5.1 + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + https://doi.org/10.1351/goldbook.E02032 - - - - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) - Crystal - Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + + + + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + DebyeAngularFrequency + DebyeAngularFrequency + https://qudt.org/vocab/quantitykind/DebyeAngularFrequency + https://www.wikidata.org/wiki/Q105580986 + 12-10 + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + + + + + + CharacterisationComponent + CharacterisationComponent + -H=∑ni=1hia∗i (n≥3) + + + + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + MeasurementSystemAdjustment + MeasurementParameterAdjustment + MeasurementSystemAdjustment + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Adjustment - - + + + - + - + - Number of electrons in conduction band per volume. - ElectronDensity - ElectronDensity - https://qudt.org/vocab/quantitykind/ElectronDensity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 - 12-29.1 - Number of electrons in conduction band per volume. - + "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." - - - - - number of nucleons in an atomic nucleus - NucleonNumber - MassNumber - NucleonNumber - https://qudt.org/vocab/quantitykind/NucleonNumber - https://www.wikidata.org/wiki/Q101395 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 - https://dbpedia.org/page/Mass_number - 10-1.3 - number of nucleons in an atomic nucleus - https://en.wikipedia.org/wiki/Mass_number - https://doi.org/10.1351/goldbook.M03726 +-- SI Brochure + The number of elementary entities present. + AmountOfSubstance + AmountOfSubstance + http://qudt.org/vocab/quantitykind/AmountOfSubstance + 9-2 + The number of elementary entities present. + https://doi.org/10.1351/goldbook.A00297 - + - T0 L+4 M0 I0 Θ0 N0 J0 + T-2 L+3 M+1 I0 Θ0 N-1 J0 - QuarticLengthUnit - QuarticLengthUnit + EnergyLengthPerAmountUnit + EnergyLengthPerAmountUnit - - - - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - Organisation - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - Organisation - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + + + + BlowMolding + BlowMolding - + + + + Painting + Painting + + + - T+2 L0 M-1 I+1 Θ+1 N0 J0 + T0 L-1 M0 I0 Θ+1 N0 J0 - TemperaturePerMagneticFluxDensityUnit - TemperaturePerMagneticFluxDensityUnit - - - - - - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - DataNormalisation - DataNormalisation - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - - - - - - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - DataPreparation - DataPreparation - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + TemperaturePerLengthUnit + TemperaturePerLengthUnit - - - - PolymericMaterial - PolymericMaterial + + + + + T0 L-2 M0 I0 Θ0 N0 J0 + + + + + PerAreaUnit + PerAreaUnit - - + + - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - DataBasedSimulationSoftware - DataBasedSimulationSoftware - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + MaterialRelationComputation + MaterialRelationComputation - - - - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - CoulometricTitration - CoulometricTitration - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + + + + + Quantity characterizing the deviation of a solvent from ideal behavior. + OsmoticCoefficientOfSolvent + OsmoticFactorOfSolvent + OsmoticCoefficientOfSolvent + https://qudt.org/vocab/quantitykind/OsmoticCoefficient + https://www.wikidata.org/wiki/Q5776102 + 9-27.2 + Quantity characterizing the deviation of a solvent from ideal behavior. + https://doi.org/10.1351/goldbook.O04342 - + - T+2 L0 M-1 I0 Θ0 N0 J0 + T-1 L0 M-1 I0 Θ0 N0 J0 - SquareTimePerMassUnit - SquareTimePerMassUnit + PerTimeMassUnit + PerTimeMassUnit - + + - + - vector quantity giving the rate of change of angular velocity - AngularAcceleration - AngularAcceleration - https://qudt.org/vocab/quantitykind/AngularAcceleration - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 - https://dbpedia.org/page/Angular_acceleration - 3-13 - vector quantity giving the rate of change of angular velocity - https://en.wikipedia.org/wiki/Angular_acceleration + Number of electrons in conduction band per volume. + ElectronDensity + ElectronDensity + https://qudt.org/vocab/quantitykind/ElectronDensity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 + 12-29.1 + Number of electrons in conduction band per volume. - - - + + + + + T+3 L-1 M-1 I0 Θ+1 N0 J0 + + + - ElectrolyticConductivity - ElectrolyticConductivity - https://qudt.org/vocab/quantitykind/ElectrolyticConductivity - https://www.wikidata.org/wiki/Q907564 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 - 9-44 + ThermalResistivityUnit + ThermalResistivityUnit - - - - chronopotentiometry where the applied current is changed in steps - - StepChronopotentiometry - StepChronopotentiometry - chronopotentiometry where the applied current is changed in steps + + + + Assigned + Assigned - - - - - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - ComptonWavelength - ComptonWavelength - https://qudt.org/vocab/constant/ComptonWavelength - https://www.wikidata.org/wiki/Q1145377 - 10-20 - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - https://en.wikipedia.org/wiki/Compton_wavelength + + + + Electroplating + Electroplating - - - - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - GFactorOfNucleusOrNuclearParticle - NuclearGFactor - GFactorOfNucleusOrNuclearParticle - https://qudt.org/vocab/quantitykind/GFactorOfNucleus - https://www.wikidata.org/wiki/Q97591250 - 10-14.2 - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + + + + Riveting + Riveting - - - - A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - MaterialRelation - MaterialRelation - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - The Lennard-Jones potential. -A force field. -An Hamiltonian. + + + + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. + NuclearSpinQuantumNumber + NuclearSpinQuantumNumber + https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber + https://www.wikidata.org/wiki/Q97577403 + 10-13.7 + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - - + + + + + + - - T+4 L-2 M-1 I+2 Θ0 N0 J0 + + - - + - CapacitanceUnit - CapacitanceUnit - - - - - - - A coarse dispersion of gas in a solid continuum phase. - SolidGasSuspension - SolidGasSuspension - A coarse dispersion of gas in a solid continuum phase. + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + UnifiedAtomicMassConstant + UnifiedAtomicMassConstant + https://www.wikidata.org/wiki/Q4817337 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 + 10-4.3 + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + https://doi.org/10.1351/goldbook.A00497 - - - - - A estimation of a property using a functional icon. - Simulation - Modelling - Simulation - A estimation of a property using a functional icon. - I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. + + + + + For a particle, electric charge q divided by elementary charge e. + The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. + The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. + ChargeNumber + IonizationNumber + ChargeNumber + https://qudt.org/vocab/quantitykind/ChargeNumber + https://www.wikidata.org/wiki/Q1800063 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 + https://dbpedia.org/page/Charge_number + 10-5.2 + For a particle, electric charge q divided by elementary charge e. + https://en.wikipedia.org/wiki/Charge_number + https://doi.org/10.1351/goldbook.C00993 - - - - - A foam of trapped gas in a solid. - SolidFoam - SolidFoam - A foam of trapped gas in a solid. - Aerogel + + + + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + CoulometricTitration + CoulometricTitration + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - - - - - T+1 L+1 M0 I0 Θ+1 N0 J0 - - - + + + - LengthTimeTemperatureUnit - LengthTimeTemperatureUnit + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + LondonPenetrationDepth + LondonPenetrationDepth + https://qudt.org/vocab/quantitykind/LondonPenetrationDepth + https://www.wikidata.org/wiki/Q3277853 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 + 12-38.1 + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - - - - Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - Amperometry - Amperometry - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - https://doi.org/10.1515/pac-2018-0109 + + + + The corresponding Celsius temperature is denoted td and is also called dew point. + Thermodynamic temperature at which vapour in air reaches saturation. + DewPointTemperature + DewPointTemperature + https://www.wikidata.org/wiki/Q178828 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 + 5-36 + Thermodynamic temperature at which vapour in air reaches saturation. + https://doi.org/10.1351/goldbook.D01652 - - - + + + + + + + + + + - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - TotalAngularMomentum - TotalAngularMomentum - https://qudt.org/vocab/quantitykind/TotalAngularMomentum - https://www.wikidata.org/wiki/Q97496506 - 10-11 - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + +It defines the base unit mole in the SI system. + AvogadroConstant + AvogadroConstant + http://qudt.org/vocab/constant/AvogadroConstant + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + +It defines the base unit mole in the SI system. + https://doi.org/10.1351/goldbook.A00543 - + - T-4 L+2 M0 I0 Θ0 N0 J0 + T-4 L+2 M+1 I-1 Θ0 N0 J0 - AreaPerQuarticTimeUnit - AreaPerQuarticTimeUnit + ElectricPotentialPerTimeUnit + ElectricPotentialPerTimeUnit - - - - - CriticalAndSupercriticalChromatography - CriticalAndSupercriticalChromatography + + + + A chain of linked physics based model simulations, where equations are solved sequentially. + LinkedModelsSimulation + LinkedModelsSimulation + A chain of linked physics based model simulations, where equations are solved sequentially. - - - - - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Emulsion - Emulsion - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Mayonnaise, milk. + + + + A physics based simulation with multiple physics based models. + MultiSimulation + MultiSimulation + A physics based simulation with multiple physics based models. - - - - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - DynamicMechanicalAnalysis - DynamicMechanicalAnalysis - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + + + + C + C - - - - - T-6 L+4 M+2 I-2 Θ0 N0 J0 - - - + + + - LorenzNumberUnit - LorenzNumberUnit + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + ResonanceEscapeProbability + ResonanceEscapeProbability + https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability + https://www.wikidata.org/wiki/Q4108072 + 10-68 + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - - - - CompositeMaterial - CompositeMaterial + + + + HardeningByForging + HardeningByForging - - - - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. - EmpiricalSimulationSoftware - EmpiricalSimulationSoftware - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + + + + + GreenCharmQuark + GreenCharmQuark - + - - + - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - PeltierCoefficient - PeltierCoefficient - https://qudt.org/vocab/quantitykind/PeltierCoefficient - https://www.wikidata.org/wiki/Q105801003 - 12-22 - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - - - - - - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - DifferentialStaircasePulseVoltammetry - DifferentialStaircasePulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - - - - - - - The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. - RybergConstant - RybergConstant - http://qudt.org/vocab/constant/RydbergConstant - https://doi.org/10.1351/goldbook.R05430 + In geometrical optics, vergence describes the curvature of optical wavefronts. + Vergence + Vergence + http://qudt.org/vocab/quantitykind/Curvature - - + + + - - T-1 L0 M0 I0 Θ+1 N0 J0 + + - - - - TemperaturePerTimeUnit - TemperaturePerTimeUnit - - - - - - Gibbs energy per unit mass. - SpecificGibbsEnergy - SpecificGibbsEnergy - https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy - https://www.wikidata.org/wiki/Q76360636 - 5-21.5 - Gibbs energy per unit mass. - - - - - - Heat treatment process that generally produces martensite in the matrix. - Hardening - Hardening - Heat treatment process that generally produces martensite in the matrix. + + + A workflow whose steps (iterative steps) are the repetition of the same workflow type. + IterativeWorkflow + IterativeWorkflow + A workflow whose steps (iterative steps) are the repetition of the same workflow type. - + - T-1 L0 M0 I0 Θ+2 N0 J0 + T-4 L0 M+1 I0 Θ0 N0 J0 - SquareTemperaturePerTimeUnit - SquareTemperaturePerTimeUnit + MassPerQuarticTimeUnit + MassPerQuarticTimeUnit - - + + - ModulusOfImpedance - ModulusOfImpedance - https://qudt.org/vocab/quantitykind/ModulusOfImpedance - https://www.wikidata.org/wiki/Q25457909 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 - 6-51.4 + Factor by which the phase velocity of light is reduced in a medium. + RefractiveIndex + RefractiveIndex + http://qudt.org/vocab/quantitykind/RefractiveIndex + https://doi.org/10.1351/goldbook.R05240 - - - - - + + - - + + - - - Differential quotient of fluence Φ with respect to time. - ParticleFluenceRate - ParticleFluenceRate - https://qudt.org/vocab/quantitykind/ParticleFluenceRate - https://www.wikidata.org/wiki/Q98497410 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 - 10-44 - Differential quotient of fluence Φ with respect to time. + + Minus + Minus - - + + + + + TauAntiNeutrino + TauAntiNeutrino + + + + - TransferMolding - TransferMolding + MicrowaveSintering + MicrowaveSintering + + + + + + GluonType1 + GluonType1 + + + + + + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + ICI + IntermittentCurrentInterruptionMethod + ICI + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + + + + + + Helmholtz energy per unit mass. + SpecificHelmholtzEnergy + SpecificHelmholtzEnergy + https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy + https://www.wikidata.org/wiki/Q76359554 + 5-21.4 + Helmholtz energy per unit mass. - + - T-3 L+1 M+1 I0 Θ-1 N0 J0 + T-3 L-1 M+1 I0 Θ+1 N0 J0 - ThermalConductivityUnit - ThermalConductivityUnit + TemperaturePressurePerTimeUnit + TemperaturePressurePerTimeUnit - - - - A whole with spatial parts of its same type. - SpatiallyRedundant - SpatiallyRedundant - A whole with spatial parts of its same type. + + + + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + OxidationNumber + OxidationState + OxidationNumber + https://www.wikidata.org/wiki/Q484152 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 + https://dbpedia.org/page/Oxidation_state + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + https://en.wikipedia.org/wiki/Oxidation_state + https://doi.org/10.1351/goldbook.O04363 - - + + - WPositiveBoson - WPositiveBoson + RightHandedParticle + RightHandedParticle - - + + - MicrowaveSintering - MicrowaveSintering - - - - - - Describes how raw data are corrected and/or modified through calibrations. - DataProcessingThroughCalibration - DataProcessingThroughCalibration - Describes how raw data are corrected and/or modified through calibrations. + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + ShearForming + Schubumformen + ShearForming - + - T0 L+5 M0 I0 Θ0 N0 J0 + T0 L-2 M0 I0 Θ0 N0 J+1 - - SectionAreaIntegralUnit - SectionAreaIntegralUnit + + LuminanceUnit + LuminanceUnit - - - + + + + + + + + + + + - Critical thermodynamic temperature of a ferromagnet. - CurieTemperature - CurieTemperature - https://qudt.org/vocab/quantitykind/CurieTemperature - https://www.wikidata.org/wiki/Q191073 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 - 12-35.1 - Critical thermodynamic temperature of a ferromagnet. + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + CatalyticActivity + CatalyticActivity + http://qudt.org/vocab/quantitykind/CatalyticActivity + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + https://doi.org/10.1351/goldbook.C00881 - - - - - Kinetic energy released per mass. - Kerma - Kerma - https://qudt.org/vocab/quantitykind/Kerma - https://www.wikidata.org/wiki/Q1739288 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 - 10-86.1 - Kinetic energy released per mass. + + + + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + NumericalData + NumericalData + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - - + + - An object which supports the specimen in the correct position for the characterisation process. - Holder - Holder - An object which supports the specimen in the correct position for the characterisation process. + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + XpsVariableKinetic + Electron spectroscopy for chemical analysis (ESCA) + X-ray photoelectron spectroscopy (XPS) + XpsVariableKinetic + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - - - - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - Soldering - Löten - Soldering + + + + The energy of an object due to its motion. + KineticEnergy + KineticEnergy + http://qudt.org/vocab/quantitykind/KineticEnergy + 4-28.2 + The energy of an object due to its motion. + https://doi.org/10.1351/goldbook.K03402 - - - - - - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - Hypothesis - Hypothesis - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + + + + Product of force and displacement. + Work + Work + http://qudt.org/vocab/quantitykind/Work + Product of force and displacement. + 4-28.4 + https://doi.org/10.1351/goldbook.W06684 - - - - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - Annealing - Annealing - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + + + + + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + SubjectiveProperty + SubjectiveProperty + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + The measure of beauty on a scale from 1 to 10. - - - - - T-1 L0 M0 I0 Θ0 N+1 J0 - - - - - CatalyticActivityUnit - CatalyticActivityUnit + + + + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + TransformationLanguage + TransformationLanguage + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + https://en.wikipedia.org/wiki/Transformation_language + Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML - - - - FORTRAN - FORTRAN + + + + A function defined using functional notation. + A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). + MathematicalFunction + FunctionDefinition + MathematicalFunction + A function defined using functional notation. + y = f(x) - - - - - + + + + An equation that define a new variable in terms of other mathematical entities. + DefiningEquation + DefiningEquation + An equation that define a new variable in terms of other mathematical entities. + The definition of velocity as v = dx/dt. + +The definition of density as mass/volume. + +y = f(x) + + + + + + + CriticalAndSupercriticalChromatography + CriticalAndSupercriticalChromatography + + + + + - - + + - - - quotient of Thomson heat power developed, and the electric current and temperature difference - ThomsonCoefficient - ThomsonCoefficient - https://qudt.org/vocab/quantitykind/ThomsonCoefficient - https://www.wikidata.org/wiki/Q105801233 - 12-23 - quotient of Thomson heat power developed, and the electric current and temperature difference + + 2-dimensional array who's spatial direct parts are vectors. + Matrix + 2DArray + Matrix + 2-dimensional array who's spatial direct parts are vectors. - - - - Filling - Filling + + + + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + DirectCoulometryAtControlledPotential + DirectCoulometryAtControlledPotential + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + https://doi.org/10.1515/pac-2018-0109 - - - - - AntiTau - AntiTau + + + + + + + + + + + + + + Used to break-down a CalibrationProcess into his specific tasks. + CalibrationTask + CalibrationTask + Used to break-down a CalibrationProcess into his specific tasks. - + - T-4 L0 M+1 I0 Θ0 N0 J0 + T-2 L+2 M0 I0 Θ-1 N0 J0 - MassPerQuarticTimeUnit - MassPerQuarticTimeUnit - - - - - - A device that is designed to participate to a manufacturing process. - ManufacturingDevice - ManufacturingDevice - A device that is designed to participate to a manufacturing process. + EntropyPerMassUnit + EntropyPerMassUnit - - + + - Rest mass of a nuclide X in the ground state. - NuclidicMass - NuclidicMass - https://www.wikidata.org/wiki/Q97010809 - 10-4.2 - Rest mass of a nuclide X in the ground state. - https://doi.org/10.1351/goldbook.N04258 + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + PhaseVelocity + PhaseSpeed + PhaseVelocity + https://www.wikidata.org/wiki/Q13824 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 + https://dbpedia.org/page/Phase_velocity + 3-23.1 + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + https://en.wikipedia.org/wiki/Phase_velocity @@ -24046,643 +24145,635 @@ An Hamiltonian. Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - - - - - T-2 L0 M+1 I-1 Θ0 N0 J0 - - - - - MagneticFluxDensityUnit - MagneticFluxDensityUnit - - - - - - Punctuation - Punctuation - - - - + + - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - NormalPulseVoltammetry - NPV - NormalPulseVoltammetry - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - https://doi.org/10.1515/pac-2018-0109 + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + + Profilometry + Profilometry + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - - - - - T+3 L0 M-1 I+2 Θ0 N-1 J0 - - - + + + - AmountConductivityUnit - AmountConductivityUnit + Voltage between substances a and b caused by the thermoelectric effect. + ThermoelectricVoltage + ThermoelectricVoltage + https://www.wikidata.org/wiki/Q105761637 + 12-20 + Voltage between substances a and b caused by the thermoelectric effect. - - - - - T0 L-2 M0 I0 Θ0 N0 J+1 - - - + + + - LuminanceUnit - LuminanceUnit - + E_0 = m_0 * c_0^2 - - - - - T-1 L+2 M0 I0 Θ0 N0 J0 - - - - - AreicSpeedUnit - AreicSpeedUnit +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + Product of the rest mass and the square of the speed of light in vacuum. + RestEnergy + RestEnergy + https://www.wikidata.org/wiki/Q11663629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 + 10-3 + Product of the rest mass and the square of the speed of light in vacuum. + E_0 = m_0 * c_0^2 + +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy - - - - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - DrawForming - DrawForming + + + + Letter + Letter - - - - - RedDownAntiQuark - RedDownAntiQuark + + + + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + Smoke + Smoke + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - - - - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Dielectrometry - Dielectrometry - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + File + File + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - + + - - + - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - ElectricDipoleMoment - ElectricDipoleMoment - http://qudt.org/vocab/quantitykind/ElectricDipoleMoment - https://www.wikidata.org/wiki/Q735135 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 - 6-6 - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - https://doi.org/10.1351/goldbook.E01929 + Differential quotient of fluence Φ with respect to time. + ParticleFluenceRate + ParticleFluenceRate + https://qudt.org/vocab/quantitykind/ParticleFluenceRate + https://www.wikidata.org/wiki/Q98497410 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 + 10-44 + Differential quotient of fluence Φ with respect to time. - - - - - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - MigrationArea - MigrationArea - https://qudt.org/vocab/quantitykind/MigrationArea - https://www.wikidata.org/wiki/Q98966325 - 10-72.3 - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + + + + CentrifugalCasting + CentrifugalCasting - + - T+4 L0 M-1 I+2 Θ0 N0 J0 + T0 L0 M0 I0 Θ+1 N+1 J0 - SquareCurrentQuarticTimePerMassUnit - SquareCurrentQuarticTimePerMassUnit - - - - - - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - PhaseVelocity - PhaseSpeed - PhaseVelocity - https://www.wikidata.org/wiki/Q13824 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 - https://dbpedia.org/page/Phase_velocity - 3-23.1 - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - https://en.wikipedia.org/wiki/Phase_velocity - - - - - - - - - - - - Gradient - Gradient + AmountTemperatureUnit + AmountTemperatureUnit - + - T+3 L-3 M-1 I+2 Θ0 N-1 J0 + T-3 L0 M+1 I0 Θ-4 N0 J0 - ElectricConductivityPerAmountUnit - ElectricConductivityPerAmountUnit - - - - - - - Dissociation may occur stepwise. - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - DegreeOfDissociation - DissociationFraction - DegreeOfDissociation - https://qudt.org/vocab/quantitykind/DegreeOfDissociation - https://www.wikidata.org/wiki/Q907334 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 - 9-43 - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - https://doi.org/10.1351/goldbook.D01566 + MassPerCubicTimeQuarticTemperatureUnit + MassPerCubicTimeQuarticTemperatureUnit - - + + + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - XrdGrazingIncidence - XrdGrazingIncidence - - - - - - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - IonMobilitySpectrometry - IMS - IonMobilitySpectrometry - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - - - - - - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - Calorimetry - Calorimetry - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + ScanningTunnelingMicroscopy + STM + ScanningTunnelingMicroscopy + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - + - T-4 L+2 M+1 I-1 Θ0 N0 J0 + T+2 L0 M-1 I+1 Θ+1 N0 J0 - ElectricPotentialPerTimeUnit - ElectricPotentialPerTimeUnit + TemperaturePerMagneticFluxDensityUnit + TemperaturePerMagneticFluxDensityUnit - - - - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - ICI - IntermittentCurrentInterruptionMethod - ICI - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + + + + + Critical thermodynamic temperature of a superconductor. + SuperconductionTransitionTemperature + SuperconductionTransitionTemperature + https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature + https://www.wikidata.org/wiki/Q106103037 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 + 12-35.3 + Critical thermodynamic temperature of a superconductor. - - - - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - ProcessingReproducibility - ProcessingReproducibility - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + + + + A estimator that uses its predefined knowledge to declare a property of an object. + Assigner + Assigner + A estimator that uses its predefined knowledge to declare a property of an object. + I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. - - - - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - FibDic - FIBDICResidualStressAnalysis - FibDic - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + + + + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + Estimator + Estimator + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). - - - - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - Chronoamperometry - AmperiometricDetection - AmperometricCurrentTimeCurve - Chronoamperometry - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - https://doi.org/10.1515/pac-2018-0109 + + + + FORTRAN + FORTRAN - - - - BlowMolding - BlowMolding + + + + + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + SolidAngularMeasure + SolidAngle + SolidAngularMeasure + https://qudt.org/vocab/quantitykind/SolidAngle + https://www.wikidata.org/wiki/Q208476 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 + https://dbpedia.org/page/Solid_angle + 3-8 + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + https://en.wikipedia.org/wiki/Solid_angle - - - - A suspension of liquid droplets dispersed in a gas through an atomization process. - Spray - Spray - A suspension of liquid droplets dispersed in a gas through an atomization process. + + + + + Energy of the electron in a hydrogen atom in its ground state + HartreeEnergy + HartreeEnergy + https://qudt.org/vocab/unit/E_h.html + https://www.wikidata.org/wiki/Q476572 + https://dbpedia.org/page/Hartree + 10-8 + Energy of the electron in a hydrogen atom in its ground state + https://en.wikipedia.org/wiki/Hartree + https://doi.org/10.1351/goldbook.H02748 + + + + + + + + + + + + + + + Surface density of electric charge multiplied by velocity + LinearElectricCurrentDensity + LinearElectricCurrentDensity + https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity + https://www.wikidata.org/wiki/Q2356741 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 + 6-9 + Surface density of electric charge multiplied by velocity + + + + + + + Average distance that electrons travel between two successive interactions. + MeanFreePathOfElectrons + MeanFreePathOfElectrons + https://qudt.org/vocab/quantitykind/ElectronMeanFreePath + https://www.wikidata.org/wiki/Q105672307 + 12-15.2 + Average distance that electrons travel between two successive interactions. - - - - A tessellation in wich a tile has next two or more non spatially connected tiles. - Fork - Fork - A tessellation in wich a tile has next two or more non spatially connected tiles. + + + + SandMolds + SandMolds - + + + + + In nuclear physics, the multiplication factor for an infinite medium. + InfiniteMultiplicationFactor + InfiniteMultiplicationFactor + https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor + https://www.wikidata.org/wiki/Q99440487 + 10-78.2 + In nuclear physics, the multiplication factor for an infinite medium. + + + - T0 L-3 M0 I0 Θ0 N-1 J0 + T+2 L-2 M-1 I+1 Θ0 N0 J0 - ReciprocalAmountPerVolumeUnit - ReciprocalAmountPerVolumeUnit + ElectricCurrentPerEnergyUnit + ElectricCurrentPerEnergyUnit - - - - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - DeepDrawing - Tiefziehen - DeepDrawing + + + + + A neutrino belonging to the second generation of leptons. + MuonNeutrino + MuonNeutrino + A neutrino belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon_neutrino - - - + + + + + T0 L-2 M0 I+1 Θ-2 N0 J0 + + + - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. - ResonanceEnergy - ResonanceEnergy - https://qudt.org/vocab/quantitykind/ResonanceEnergy - https://www.wikidata.org/wiki/Q98165187 - 10-37.2 - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + RichardsonConstantUnit + RichardsonConstantUnit - - - - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - Polishing - Polishing - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + + + + + Dimensionless parameter to quantify fluid resistance. + DragCoefficient + DragFactor + DragCoefficient + https://qudt.org/vocab/quantitykind/DragCoefficient + https://www.wikidata.org/wiki/Q1778961 + 4-23.4 + Dimensionless parameter to quantify fluid resistance. - - - - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - IonChromatography - IonChromatography - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - https://en.wikipedia.org/wiki/Ion_chromatography + + + + + Dissociation may occur stepwise. + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + DegreeOfDissociation + DissociationFraction + DegreeOfDissociation + https://qudt.org/vocab/quantitykind/DegreeOfDissociation + https://www.wikidata.org/wiki/Q907334 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 + 9-43 + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + https://doi.org/10.1351/goldbook.D01566 - + + + + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + ComputerSystem + Computer + ComputerSystem + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + https://en.wikipedia.org/wiki/Computer + + + - T0 L-1 M+1 I0 Θ0 N0 J0 + T-3 L+4 M+1 I0 Θ0 N0 J0 - MassPerLengthUnit - MassPerLengthUnit + PowerAreaUnit + PowerAreaUnit - - - - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - EnvironmentalScanningElectronMicroscopy - EnvironmentalScanningElectronMicroscopy - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + + + + + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + ActivityOfSolvent + ActivityOfSolvent + https://www.wikidata.org/wiki/Q89486193 + 9-27.1 + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - - + + - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. - SurfaceCoefficientOfHeatTransfer - SurfaceCoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q74770365 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 - 5-10.2 - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + TotalCrossSection + TotalCrossSection + https://qudt.org/vocab/quantitykind/TotalCrossSection + https://www.wikidata.org/wiki/Q98206553 + 10-38.2 + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - - - - - BlueStrangeAntiQuark - BlueStrangeAntiQuark + + + + + Arctan of the loss factor + LossAngle + LossAngle + https://www.qudt.org/vocab/quantitykind/LossAngle + https://www.wikidata.org/wiki/Q20820438 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 + 6-55 + Arctan of the loss factor - - + + + + Foaming + Foaming + + + + + + FunctionallyDefinedMaterial + FunctionallyDefinedMaterial + + + + + + + + + + + + + + + + ArithmeticExpression + ArithmeticExpression + 2+2 + + + + + + Measurement of energy in a thermodynamic system. + Enthalpy + Enthalpy + http://qudt.org/vocab/quantitykind/Enthalpy + 5.20-3 + https://doi.org/10.1351/goldbook.E02141 + + + + + + + + + + + + + + + The derivative of the electric charge of a system with respect to the length. + LinearDensityOfElectricCharge + LinearDensityOfElectricCharge + https://www.wikidata.org/wiki/Q77267838 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 + 6-5 + The derivative of the electric charge of a system with respect to the length. + + + + + + + - - - + + - - Minus - Minus + + Ngative quotient of Gibbs energy and temperature. + PlanckFunction + PlanckFunction + https://qudt.org/vocab/quantitykind/PlanckFunction + https://www.wikidata.org/wiki/Q76364998 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 + 5-23 + Ngative quotient of Gibbs energy and temperature. - + + + + UTF8 + UTF8 + + + + + + + Quotient of change of volume and original volume. + RelativeVolumeStrain + BulkStrain + VolumeStrain + RelativeVolumeStrain + https://qudt.org/vocab/quantitykind/VolumeStrain + https://www.wikidata.org/wiki/Q73432507 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 + 4-17.4 + Quotient of change of volume and original volume. + https://doi.org/10.1351/goldbook.V06648 + + + - T-4 L+3 M+1 I-2 Θ0 N0 J0 + T-2 L+3 M+1 I0 Θ0 N0 J0 - InversePermittivityUnit - InversePermittivityUnit + ForceAreaUnit + ForceAreaUnit - - + + + - - T+1 L0 M0 I0 Θ+1 N0 J0 + + - - - - TemperatureTimeUnit - TemperatureTimeUnit + + + The sample is mounted on a holder. + The sample is mounted on a holder. + Mounting + Mounting + The sample is mounted on a holder. - - + + + - GluonType6 - GluonType6 + GreenDownQuark + GreenDownQuark - - - - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. - LandeFactor - GFactorOfAtom - LandeFactor - https://qudt.org/vocab/quantitykind/LandeGFactor - https://www.wikidata.org/wiki/Q1191684 - 10-14.1 - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + + + + A suspension of fine particles in the atmosphere. + Dust + Dust + A suspension of fine particles in the atmosphere. - - - - - GreenUpAntiQuark - GreenUpAntiQuark + + + + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + EmpiricalSimulationSoftware + EmpiricalSimulationSoftware + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. - - - - Quantum number in an atom describing the magnitude of total angular momentum J. - TotalAngularMomentumQuantumNumber - TotalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1141095 - 10-13.6 - Quantum number in an atom describing the magnitude of total angular momentum J. + + + + DataProcessingApplication + DataProcessingApplication - + - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. - RatioOfSpecificHeatCapacities - RatioOfSpecificHeatCapacities - https://qudt.org/vocab/quantitykind/HeatCapacityRatio - https://www.wikidata.org/wiki/Q503869 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 - 5-17.1 - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. - - - - - - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Chronocoulometry - Chronocoulometry - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - https://doi.org/10.1515/pac-2018-0109 - - - - - - A process occurring by natural (non-intentional) laws. - NaturalProcess - NonIntentionalProcess - NaturalProcess - A process occurring by natural (non-intentional) laws. - - - - - - Internal energy per unit mass. - SpecificInternalEnergy - SpecificInternalEnergy - https://qudt.org/vocab/quantitykind/SpecificInternalEnergy - https://www.wikidata.org/wiki/Q76357367 - 5-21.2 - Internal energy per unit mass. - - - - - - - The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. - The value of magnetic permeability in a classical vacuum. - VacuumMagneticPermeability - PermeabilityOfVacuum - VacuumMagneticPermeability - http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum - 6-26.1 - - - - - - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - Inequality - Inequality - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - f(x) > 0 - - - - - - - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - PartialPressure - PartialPressure - https://qudt.org/vocab/quantitykind/PartialPressure - https://www.wikidata.org/wiki/Q27165 - 9-19 - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - https://doi.org/10.1351/goldbook.P04420 - - - - - - - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - LarmonAngularFrequency - LarmonAngularFrequency - 10-15.1 - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - - - - - - Describes the level of automation of the test. - LevelOfAutomation - LevelOfAutomation - Describes the level of automation of the test. - - - - - - - T+3 L-1 M-1 I0 Θ0 N0 J+1 - - - - - LuminousEfficacyUnit - LuminousEfficacyUnit - - - - - - Molds - Molds + RelativeMassFractionOfVapour + RelativeMassFractionOfVapour + 5-35 - - - - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - NeutronSpinEchoSpectroscopy - NSE - NeutronSpinEchoSpectroscopy - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + + + + + + + + + + + + Quotient of dynamic viscosity and mass density of a fluid. + KinematicViscosity + KinematicViscosity + https://qudt.org/vocab/quantitykind/KinematicViscosity + https://www.wikidata.org/wiki/Q15106259 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 + 4-25 + Quotient of dynamic viscosity and mass density of a fluid. + https://doi.org/10.1351/goldbook.K03395 - + - T-3 L+1 M0 I0 Θ0 N0 J0 + T+7 L-3 M-2 I+3 Θ0 N0 J0 - - LengthPerCubeTimeUnit - LengthPerCubeTimeUnit - - - - - - Exponent - Exponent + + CubicElectricChargeLengthPerSquareEnergyUnit + CubicElectricChargeLengthPerSquareEnergyUnit @@ -24694,161 +24785,75 @@ An Hamiltonian. A chain of linked physics based model simulations solved iteratively, where equations are segregated. - - - - - A coarse dispersion of liquid in a liquid continuum phase. - LiquidLiquidSuspension - LiquidLiquidSuspension - A coarse dispersion of liquid in a liquid continuum phase. - - - - - - - T+10 L-2 M-3 I+4 Θ0 N0 J0 - - - - - QuarticElectricDipoleMomentPerCubicEnergyUnit - QuarticElectricDipoleMomentPerCubicEnergyUnit - - - - - - - A coarse dispersion of liquid in a solid continuum phase. - SolidLiquidSuspension - SolidLiquidSuspension - A coarse dispersion of liquid in a solid continuum phase. - - - - + + - - / + + - - Division - Division - - - - - - A type of sol in the form of one solid dispersed in liquid. - LiquidSol - LiquidSol - A type of sol in the form of one solid dispersed in liquid. - - - - - - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - OpticalMicroscopy - OpticalMicroscopy - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + The small, dense region at the centre of an atom consisting of protons and neutrons. + Nucleus + Nucleus + The small, dense region at the centre of an atom consisting of protons and neutrons. - - - + + + + - Radius of the circular movement of an electrically charged particle in a magnetic field. - Gyroradius - LarmorRadius - Gyroradius - https://www.wikidata.org/wiki/Q1194458 - 10-17 - Radius of the circular movement of an electrically charged particle in a magnetic field. + Amount of heat through a surface during a time interval divided by the duration of this interval. + HeatFlowRate + HeatFlowRate + https://qudt.org/vocab/quantitykind/HeatFlowRate + https://www.wikidata.org/wiki/Q12160631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 + 5-7 + Amount of heat through a surface during a time interval divided by the duration of this interval. - - + + - VaporDeposition - VaporDeposition + Application of additive manufacturing intended for reducing the time needed for producing prototypes. + RapidPrototyping + RapidPrototyping + Application of additive manufacturing intended for reducing the time needed for producing prototypes. - - - - - + + - - + + Δ - - Activity per unit volume of the sample. - ActivityDensity - ActivityConcentration - VolumetricActivity - VolumicActivity - ActivityDensity - https://qudt.org/vocab/quantitykind/ActivityConcentration - https://www.wikidata.org/wiki/Q423263 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 - 10-29 - Activity per unit volume of the sample. + + Laplacian + Laplacian - - - - HardeningByForging - HardeningByForging + + + + + SampleInspectionInstrument + SampleInspectionInstrument - - + + - Vector quantity equal to the time derivative of the electric flux density. - DisplacementCurrentDensity - DisplacementCurrentDensity - https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity - https://www.wikidata.org/wiki/Q77614612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 - 6-18 - Vector quantity equal to the time derivative of the electric flux density. - - - - - - SandMolds - SandMolds - - - - - - - T-3 L+3 M+1 I-1 Θ0 N0 J0 - - - - - ElectricFluxUnit - ElectricFluxUnit - - - - - - FlameCutting - FlameCutting + Inverse of the time constant of an exponentially varying quantity. + DampingCoefficient + DampingCoefficient + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 + 3-24 + Inverse of the time constant of an exponentially varying quantity. @@ -24859,479 +24864,436 @@ An Hamiltonian. RedCharmAntiQuark - - + + + + Numeral + Numeral + + + + + + + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + The mixing ratio at saturation is denoted xsat. + MixingRatio + MassRatioOfWaterVapourToDryGas + MixingRatio + https://www.wikidata.org/wiki/Q76378940 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 + 5-30 + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + + + + + + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + RotationalFrequency + RotationalFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 + 3-17.2 + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + + + + - LaserCutting - LaserCutting + ElectroSinterForging + ElectroSinterForging - + - T0 L-2 M+1 I0 Θ+1 N0 J0 + T0 L+1 M+1 I0 Θ0 N0 J0 - TemperatureMassPerAreaUnit - TemperatureMassPerAreaUnit - - - - - - - - - - - - - - - Physical quantity of dimension energy × time. - Action - Action - https://qudt.org/vocab/quantitykind/Action - https://www.wikidata.org/wiki/Q846785 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 - 4-32 - Physical quantity of dimension energy × time. + LengthMassUnit + LengthMassUnit - - + + - ThermodynamicGrueneisenParameter - ThermodynamicGrueneisenParameter - https://www.wikidata.org/wiki/Q105658620 - 12-13 + Quotient of electron and hole mobility. + MobilityRatio + MobilityRatio + https://qudt.org/vocab/quantitykind/MobilityRatio + https://www.wikidata.org/wiki/Q106010255 + 12-31 + Quotient of electron and hole mobility. - - - - - T+1 L+1 M0 I+1 Θ0 N0 J0 - - - - - LengthTimeCurrentUnit - LengthTimeCurrentUnit + + + + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + + VaporPressureDepressionOsmometry + VPO + VaporPressureDepressionOsmometry + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - - - - - T-2 L+3 M-1 I0 Θ0 N0 J0 - - - - - NewtonianConstantOfGravityUnit - NewtonianConstantOfGravityUnit + + + + ThermalSprayingForming + ThermalSprayingForming - + - T+2 L-2 M-1 I+2 Θ0 N0 J0 + T-1 L+3 M0 I-1 Θ0 N0 J0 - MagneticReluctanceUnit - MagneticReluctanceUnit - - - - - - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - AnalyticalElectronMicroscopy - AnalyticalElectronMicroscopy - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + ReciprocalElectricChargeDensityUnit + ReciprocalElectricChargeDensityUnit - - - - - Dimensionless parameter to quantify fluid resistance. - DragCoefficient - DragFactor - DragCoefficient - https://qudt.org/vocab/quantitykind/DragCoefficient - https://www.wikidata.org/wiki/Q1778961 - 4-23.4 - Dimensionless parameter to quantify fluid resistance. + + + + Folding + Folding - + - T-2 L+3 M+1 I0 Θ0 N0 J0 + T-3 L-2 M+2 I0 Θ0 N0 J0 - ForceAreaUnit - ForceAreaUnit - - - - - - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - ElectronProbeMicroanalysis - ElectronProbeMicroanalysis - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - - - - - - - Inverse of the quality factor. - LossFactor - LossFactor - https://qudt.org/vocab/quantitykind/LossFactor - https://www.wikidata.org/wiki/Q79468728 - 6-54 - Inverse of the quality factor. + SquarePressureTimeUnit + SquarePressureTimeUnit - - - - FiberReinforcePlasticManufacturing - FiberReinforcePlasticManufacturing + + + + Spacing + Spacing - - - - LowPressureCasting - LowPressureCasting + + + + Unit for quantities of dimension one that are the fraction of two pressures. + PressureFractionUnit + PressureFractionUnit + Unit for quantities of dimension one that are the fraction of two pressures. - - + + - DippingForms - DippingForms - - - - - - A estimator that uses its predefined knowledge to declare a property of an object. - Assigner - Assigner - A estimator that uses its predefined knowledge to declare a property of an object. - I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + PrecipitationHardening + PrecipitationHardening + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - - + + - FiberboardManufacturing - FiberboardManufacturing - - - - - - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - TensileTesting - TensionTest - TensileTesting - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - - - - - - - A unit symbol that stands for a derived unit. - Special units are semiotic shortcuts to more complex composed symbolic objects. - SpecialUnit - SpecialUnit - A unit symbol that stands for a derived unit. - Pa stands for N/m2 -J stands for N m - - - - - - - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. - -It defines the base unit second in the SI system. - HyperfineTransitionFrequencyOfCs - HyperfineTransitionFrequencyOfCs - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. - -It defines the base unit second in the SI system. - - - - - - - RedTopAntiQuark - RedTopAntiQuark + ReactionSintering + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + ReactionSintering - + - + - Proportionality constant between the particle current density J and the gradient of the particle number density n. - DiffusionCoefficientForParticleNumberDensity - DiffusionCoefficientForParticleNumberDensity - https://www.wikidata.org/wiki/Q98875545 - 10-64 - Proportionality constant between the particle current density J and the gradient of the particle number density n. + Quotient of Larmor angular frequency and 2π. + LarmonFrequency + LarmonFrequency + 10-15.2 + Quotient of Larmor angular frequency and 2π. - - - + + + - ElementaryFermion - ElementaryFermion + GreenBottomQuark + GreenBottomQuark - + + + + Unit for quantities of dimension one that are the fraction of two areas. + AreaFractionUnit + AreaFractionUnit + Unit for quantities of dimension one that are the fraction of two areas. + Unit for solid angle. + + + - T-2 L0 M+2 I0 Θ0 N0 J0 + T+1 L-1 M0 I0 Θ0 N0 J0 - SquareMassPerSquareTimeUnit - SquareMassPerSquareTimeUnit + TimePerLengthUnit + TimePerLengthUnit - - - - Polynomial - Polynomial - 2 * x^2 + x + 3 + + + + + + + + + + + + + Product of mass and velocity. + Momentum + Momentum + http://qudt.org/vocab/quantitykind/Momentum + 4-8 + https://doi.org/10.1351/goldbook.M04007 - - - - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - UserCase - UserCase - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + + + + + T+4 L-2 M-1 I+2 Θ0 N0 J0 + + + + + CapacitanceUnit + CapacitanceUnit - - + + - IsothermalConversion - IsothermalConversion + ElectricCurrentAssistedSintering + ElectricCurrentAssistedSintering - - - - A standalone simulation, where a single physics equation is solved. - StandaloneModelSimulation - StandaloneModelSimulation - A standalone simulation, where a single physics equation is solved. + + + + + A coarse dispersion of liquid in a gas continuum phase. + GasLiquidSuspension + GasLiquidSuspension + A coarse dispersion of liquid in a gas continuum phase. + Rain, spray. - + + + + Defines the Candela base unit in the SI system. + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + LuminousEfficacyOf540THzRadiation + LuminousEfficacyOf540THzRadiation + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + + + - T-6 L-2 M+2 I0 Θ0 N0 J0 + T-6 L+4 M+2 I-2 Θ0 N0 J0 - SquarePressurePerSquareTimeUnit - SquarePressurePerSquareTimeUnit + LorenzNumberUnit + LorenzNumberUnit - - - - Foaming - Foaming + + + + + StatisticalWeightOfSubsystem + StatisticalWeightOfSubsystem + https://www.wikidata.org/wiki/Q96207431 + 9-36.1 - - - - - - - - - - - - - - ArithmeticExpression - ArithmeticExpression - 2+2 + + + + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + CharacterisationExperiment + CharacterisationExperiment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - - - - Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - LinkedFlux - LinkedFlux - https://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q4374882 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-77 - 6-22.2 - Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. + + + + Procedure to validate the characterisation data. + CharacterisationDataValidation + CharacterisationDataValidation + Procedure to validate the characterisation data. - - - - Riveting - Riveting + + + + A physics-based model based on a physics equation describing the behaviour of continuum volume. + ContinuumModel + ContinuumModel + A physics-based model based on a physics equation describing the behaviour of continuum volume. - - - - CSharp - C# - CSharp + + + + Unit for quantities of dimension one that are the fraction of two lengths. + LengthFractionUnit + LengthFractionUnit + Unit for quantities of dimension one that are the fraction of two lengths. + Unit for plane angle. - + - T+4 L-4 M-2 I0 Θ0 N0 J0 + T+1 L-2 M0 I+1 Θ0 N0 J0 - ReciprocalSquareEnergyUnit - ReciprocalSquareEnergyUnit + ElectricDisplacementFieldUnit + ElectricDisplacementFieldUnit - - - - - T0 L+1 M+1 I0 Θ0 N0 J0 - - - - - LengthMassUnit - LengthMassUnit + + + + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + AtomicForceMicroscopy + AtomicForceMicroscopy + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - + - T-2 L+1 M0 I0 Θ0 N0 J0 + T+2 L-2 M-1 I+2 Θ0 N0 J0 - - AccelerationUnit - AccelerationUnit + + MagneticReluctanceUnit + MagneticReluctanceUnit - - - - Galvanizing - Galvanizing + + + + + RedBottomQuark + RedBottomQuark - - - - ConcreteOrPlasterPouring - ConcreteOrPlasterPouring + + + + + Retarding force on a body moving in a fluid. + DragForce + DragForce + https://www.wikidata.org/wiki/Q206621 + 4-9.6 + Retarding force on a body moving in a fluid. - - + + + - - T-1 L-4 M+1 I0 Θ0 N0 J0 + + / - - - - MassPerQuarticLengthTimeUnit - MassPerQuarticLengthTimeUnit + + + Division + Division - + + + + GluonType8 + GluonType8 + + + - T-1 L-1 M0 I0 Θ0 N0 J0 + T+2 L+2 M0 I0 Θ0 N0 J0 - PerLengthTimeUnit - PerLengthTimeUnit + AreaSquareTimeUnit + AreaSquareTimeUnit - + - T-1 L-2 M0 I0 Θ0 N+1 J0 + T+1 L0 M0 I+1 Θ-1 N0 J0 - AmountPerAreaTimeUnit - AmountPerAreaTimeUnit + ElectricChargePerTemperatureUnit + ElectricChargePerTemperatureUnit - - - - - SerialStep - SerialStep + + + + LaserCutting + LaserCutting - - - - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - IsothermalMicrocalorimetry - IMC - IsothermalMicrocalorimetry - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + + + + A suspension of liquid droplets dispersed in a gas through an atomization process. + Spray + Spray + A suspension of liquid droplets dispersed in a gas through an atomization process. @@ -25341,350 +25303,394 @@ It defines the base unit second in the SI system.InterferenceFitting - - - - CentrifugalCasting - CentrifugalCasting + + + + + BlueTopQuark + BlueTopQuark - + - T+1 L+1 M-1 I0 Θ0 N0 J0 + T0 L+6 M0 I0 Θ0 N0 J0 - LengthTimePerMassUnit - LengthTimePerMassUnit - - - - - - ContinuousCasting - ContinuousCasting + SexticLengthUnit + SexticLengthUnit - - + + + - Real part of the admittance. - ConductanceForAlternatingCurrent - ConductanceForAlternatingCurrent - https://www.wikidata.org/wiki/Q79464628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 - 6-52.2 - Real part of the admittance. + Square root of the product of electron and hole density in a semiconductor. + IntrinsicCarrierDensity + IntrinsicCarrierDensity + https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity + https://www.wikidata.org/wiki/Q1303188 + 12-29.3 + Square root of the product of electron and hole density in a semiconductor. - - - - A law that provides a connection between a material property and other properties of the object. - MaterialLaw - MaterialLaw - A law that provides a connection between a material property and other properties of the object. + + + + Molds + Molds - + - T+1 L-1 M0 I+1 Θ0 N0 J0 + T0 L0 M0 I0 Θ+1 N0 J0 - ElectricChargePerLengthUnit - ElectricChargePerLengthUnit + TemperatureUnit + TemperatureUnit - - + + + + + T+1 L0 M0 I0 Θ0 N0 J0 + + + - Inverse of the magnetic flux quantum. - The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. - JosephsonConstant - JosephsonConstant - http://qudt.org/vocab/constant/JosephsonConstant - Inverse of the magnetic flux quantum. - - - - - - An product that is ready for commercialisation. - CommercialProduct - Product - CommercialProduct - An product that is ready for commercialisation. - - - - - - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - AnodicStrippingVoltammetry - AnodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q939328 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - https://doi.org/10.1515/pac-2018-0109 - - - - - - A system of independent elements that are assembled together to perform a function. - Assembled - Assembled - A system of independent elements that are assembled together to perform a function. + TimeUnit + TimeUnit - + - T0 L0 M0 I+1 Θ-1 N0 J0 + T-3 L+2 M+1 I0 Θ-1 N0 J0 - ElectricCurrentPerTemperatureUnit - ElectricCurrentPerTemperatureUnit - - - - - - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - GalvanostaticIntermittentTitrationTechnique - GITT - GalvanostaticIntermittentTitrationTechnique - https://www.wikidata.org/wiki/Q120906986 - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + ThermalConductanceUnit + ThermalConductanceUnit - - - - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - DataFiltering - DataFiltering - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + + + + + Position vector of a particle. + ParticlePositionVector + ParticlePositionVector + https://qudt.org/vocab/quantitykind/ParticlePositionVector + https://www.wikidata.org/wiki/Q105533324 + 12-7.1 + Position vector of a particle. - - - - A real vector with 3 elements. - Shape3Vector - Shape3Vector - A real vector with 3 elements. - The quantity value of physical quantities if real space is a Shape3Vector. + + + + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + PhysicalBasedSimulationSoftware + PhysicalBasedSimulationSoftware + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - - - - - - * - - - - Multiplication - Multiplication + + + + + + + + + + + + + An icon that not only resembles the object, but also can express some of the object's functions. + Replica + Replica + An icon that not only resembles the object, but also can express some of the object's functions. + A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. + Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). - - - - An aerosol composed of fine solid particles in air or another gas. - SolidAerosol - SolidAerosol - An aerosol composed of fine solid particles in air or another gas. + + + + PlasticModeling + PlasticModeling - + - T+1 L0 M0 I+1 Θ-1 N0 J0 + T+2 L0 M+1 I0 Θ0 N0 J0 - ElectricChargePerTemperatureUnit - ElectricChargePerTemperatureUnit + MassSquareTimeUnit + MassSquareTimeUnit - - - - DropForging - DropForging + + + + Quantum number in an atom describing the magnitude of total angular momentum J. + TotalAngularMomentumQuantumNumber + TotalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1141095 + 10-13.6 + Quantum number in an atom describing the magnitude of total angular momentum J. - + - T-1 L0 M-1 I0 Θ0 N+1 J0 + T+1 L0 M-1 I0 Θ0 N0 J0 - - AmountPerMassTimeUnit - AmountPerMassTimeUnit - - - - - - ThermalSprayingForming - ThermalSprayingForming + + MechanicalMobilityUnit + MechanicalMobilityUnit - + - - T-1 L-3 M0 I0 Θ0 N+1 J0 + + - + + + + + + + + + + + + 1 + + + + A real number. + Real + Real + A real number. + + + + - AmountPerVolumeTimeUnit - AmountPerVolumeTimeUnit + Parameter for diffusion and fluid flow in porous media. + Tortuosity + Tortuosity + https://www.wikidata.org/wiki/Q2301683 + Parameter for diffusion and fluid flow in porous media. - - - - - ShearOrTorsionTesting - ShearOrTorsionTesting + + + + A real matrix with shape 4x3. + Shape4x3Matrix + Shape4x3Matrix + A real matrix with shape 4x3. - + - T+2 L+1 M-2 I0 Θ0 N+1 J0 + T-1 L+3 M0 I0 Θ0 N0 J0 - AmountPerMassPressureUnit - AmountPerMassPressureUnit + VolumePerTimeUnit + VolumePerTimeUnit - - - - WNegativeBoson - WNegativeBoson + + + + Java + Java - - - - - SampleInspectionInstrument - SampleInspectionInstrument + + + + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + Modeller + Modeller + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - - - - Gathering - Gathering + + + + + ThermodynamicGrueneisenParameter + ThermodynamicGrueneisenParameter + https://www.wikidata.org/wiki/Q105658620 + 12-13 - - - - PhysicalyUnbonded - PhysicalyUnbonded + + + + + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + ReactorTimeConstant + ReactorTimeConstant + https://qudt.org/vocab/quantitykind/ReactorTimeConstant + https://www.wikidata.org/wiki/Q99518950 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 + 10-79 + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - - + + + + + BlueStrangeAntiQuark + BlueStrangeAntiQuark + + + + + + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + LightScattering + LightScattering + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + + + + - Painting - Painting + FlameCutting + FlameCutting - - - - - BlueCharmQuark - BlueCharmQuark + + + + The sample after having been subjected to a characterization process + CharacterisedSample + CharacterisedSample + The sample after having been subjected to a characterization process - - - - Assigned - Assigned + + + + + T-1 L-2 M0 I0 Θ0 N+1 J0 + + + + + AmountPerAreaTimeUnit + AmountPerAreaTimeUnit - - - + + + + + T0 L0 M0 I0 Θ0 N-1 J0 + + + + + PerAmountUnit + PerAmountUnit + + + + + + + T+4 L-1 M-1 I+2 Θ0 N0 J0 + + + - Internal energy per amount of substance. - MolarInternalEnergy - MolarInternalEnergy - https://www.wikidata.org/wiki/Q88523106 - 9-6.1 - Internal energy per amount of substance. + CapacitancePerLengthUnit + CapacitancePerLengthUnit - + - T-3 L0 M+1 I-1 Θ0 N0 J0 + T0 L+2 M0 I0 Θ-1 N0 J0 - ElectricPotentialPerAreaUnit - ElectricPotentialPerAreaUnit + AreaPerTemperatureUnit + AreaPerTemperatureUnit - + + + + + InjectionMolding + InjectionMolding + + + + + + Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. + NewtonianConstantOfGravity + NewtonianConstantOfGravity + http://qudt.org/vocab/constant/NewtonianConstantOfGravitation + https://doi.org/10.1351/goldbook.G02695 + + + - T+2 L-3 M-1 I0 Θ0 N+1 J0 + T-3 L-1 M+1 I0 Θ0 N0 J0 - AmountSquareTimePerMassVolumeUnit - AmountSquareTimePerMassVolumeUnit + PressurePerTimeUnit + PressurePerTimeUnit - - + + - HandlingDevice - HandlingDevice - - - - - - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - Smoke - Smoke - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + FiberReinforcePlasticManufacturing + FiberReinforcePlasticManufacturing @@ -25699,494 +25705,143 @@ It defines the base unit second in the SI system. - - Gerhard Goldbeck - Gerhard Goldbeck - Gerhard Goldbeck - - - - - - - Pierluigi Del Nostro - Pierluigi Del Nostro - Pierluigi Del Nostro - - - - - - - - - - - The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. - universe - universe - The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. - - - - - - - - - - - - EMMO applies the naming convension to its sub-properties of rdfs:seeAlso that their label must end with one of the following terms: - - 'Match': resolvable URLs to corresponding entity in another ontology - - 'Entry': resolvable URLs to a human readable resource describing the subject - - 'Ref': non-resolvable reference to a human readable resource describing the subject - Indicate a resource that might provide additional information about the subject resource. - - - - - - - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 3 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 1 - - - - 4 - - - - 2 - - - - 1 - - - - - - Whole - From Middle English hole (“healthy, unhurt, whole”). - - - - - - Factory - From Latin factor, from fact- ‘done’, from the verb facere (to do). - - - - - - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 - - - - - - Icon - From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - - - - - - Computation - From Latin con- +‎ putō (“I reckon”). - - - - - - Holistic - Holism (from Greek ὅλος holos "all, whole, entire"). - - - - - - Estimation - From Latin aestimatus (“to value, rate, esteem”). - - - - - - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - http://www.linfo.org/program.html - - - - - - Data - From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). - - - - - - Boson - 1940s: named after S.N. Bose. - - - - - - FunctionalIcon - From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). - - - - - - - - - - - - - - - + + Gerhard Goldbeck + Gerhard Goldbeck + Gerhard Goldbeck + - - - - Matter - From Latin materia (“matter, stuff, material”), from mater (“mother”). - + + + + + Pierluigi Del Nostro + Pierluigi Del Nostro + Pierluigi Del Nostro + - - - - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 - + + + + The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. + universe + universe + The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. + - - - - Model - From Latin modus (“measure”). - + + + - - - - - - - - - - - - - - All EMMO individuals are part of the most comprehensive entity which is the universe. - + + + - - - - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - DIN EN 13831:2007-12 - + + EMMO applies the naming convension to its sub-properties of rdfs:seeAlso that their label must end with one of the following terms: + - 'Match': resolvable URLs to corresponding entity in another ontology + - 'Entry': resolvable URLs to a human readable resource describing the subject + - 'Ref': non-resolvable reference to a human readable resource describing the subject + Indicate a resource that might provide additional information about the subject resource. + - - - - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - DIN 8590 Berichtigung 1:2004-02 - + - - - - Software - From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. - + - - - - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - ISO 4885:2018-02 - + - - - - CausalObject - From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). - + + 1 + - - - - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - https://en.wiktionary.org/wiki/procedure - + + 3 + - - - - The disjoint union of the Item and Collection classes. - The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). -Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. - + + 1 + - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - DIN 8586:2003-09 - + + 1 + - - - - Simulacrum - From Latin simulacrum ("likeness, semblance") - + + 1 + - - - - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - + + 1 + - - - - CausalSystem - From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”). - + + 1 + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Transitivity for proper parthood. - + + 1 + - - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing a strict one-way causality direction. - + + 1 + - - - - Artifact - From Latin arte ‘by or using art’ + factum ‘something made’. - + + 1 + - - - - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - https://www.ietf.org/rfc/rfc3986.txt - + + 1 + - - - - CausalChain - From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). - + + 1 + - - - - Quantum - From Latin quantum (plural quanta) "as much as, so much as". - + + 1 + - - - - Observation - From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”), - + + 4 + - - - - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - DIN 8589-0:2003-09 - + + 1 + + + + 2 + - - - PhysicalObject - From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + + chronopotentiometry where the applied current is changed linearly + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - + - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - https://www.collinsdictionary.com/it/dizionario/inglese/technology + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + DIN 8588:2013-08 - - - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - ISO/ASTM 52900:2021(en), 3.3.1 + + + Part + From Latin partire, partiri ‘divide, share’. - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing reflexivity of overlapping. - - - + @@ -26197,72 +25852,43 @@ Note 1 to entry: This term is often used in a non-technical context synonymously - - + - + - Enforcing exclusivity between overlapping and causality. - - - chronopotentiometry where the applied current is changed in steps - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + + + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + http://www.linfo.org/program.html - - - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 + + + Particle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing parthood reflexivity. - - - - - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - DIN 65099-3:1989-11 + + + PhysicalObject + From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). - - - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - DIN EN ISO 4885:2018-07 + + + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 @@ -26270,105 +25896,88 @@ organization: person or group of people that has its own functions with responsi - + - + + + + + + + + + + + + - - - + + + - Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. + Transitivity for parthood. - - - CausalParticle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). - - - - + - Role - From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. - - - - - - the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - - - - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL + EMMO + EMMO is the acronym of Elementary Multiperspective Material Ontology. - - - Verfestigen durch Umformen - DIN 8580:2022-12 + + + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + http://www.linfo.org/program.html - - - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en + + + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 - + - Crystal - From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). - - - - - - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - EN 10028-1:2017-07 + Icon + From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - - - ISO 8887-1:2017 -manufacturing: production of components - https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5 + + + isCauseOf + From Latin causa (“reason, sake, cause”). - - - Assemblying - From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. + + + Engineered + From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). - - - IntentionalProcess - From Latin intentionem, derived from intendere ("stretching out") + + + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + DIN 65099-3:1989-11 @@ -26379,38 +25988,17 @@ manufacturing: production of components - - - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - DIN 8589-3:2003-09 + + + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + https://www.ietf.org/rfc/rfc3986.txt - + - Existent - ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). - - - - - - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - DIN 55405:2014-12 - - - - - - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - DIN 8584-2:2003-09 - - - - - - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - DIN 8586:2003-09 + Tool + Old English tōl, from a Germanic base meaning ‘prepare’. @@ -26420,6 +26008,13 @@ manufacturing: production of components From Ancient Greek πάτος (pátos, “path”). + + + + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL + + @@ -26429,212 +26024,334 @@ We call "interpreting" the act of providing semantic meaning to data, which is c - - - Heat treatment process that generally produces martensite in the matrix. - ISO/TR 10809-1:2009, 0000_19 - - - - + - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). - DIN 65099-5:1989-11 + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + ISO 14034:2016-11 - - - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + + + Verfestigen durch Umformen DIN 8580:2022-12 - - - - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - - - - AnalogicalIcon - From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). - + + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing exclusivity between overlapping and causality. + - + - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + ISO 4885:2018-02 - - - the time between changes in potential in step 2 is related to the concentration of analyte in the solution - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org - + - EMMO - EMMO is the acronym of Elementary Multiperspective Material Ontology. + Boson + 1940s: named after S.N. Bose. - - - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) - https://dictionary.iucr.org/Crystal + + + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + https://www.iso.org/standard/45324.html - - - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + + + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + ISO/ASTM 52900:2021(en), 3.3.1 - - - - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - https://en.wikipedia.org/wiki/Condensed_matter_physics - + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing reflexivity of overlapping. + - - - - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - ISO 23704-1:2022(en), 3.1.2 - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Transitivity for proper parthood. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - DIN 8583-2:2003-09 + + + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 - - - chronopotentiometry where the applied current is changed linearly - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + + + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 - - - - Engineered - From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). - + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing the fact that an entity cannot cause itself. + - - - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - https://www.iso.org/standard/45324.html + + + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - :isCauseOf owl:propertyDisjointWith :overlaps - Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. + + + CausalStructure + From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). - + - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - DIN 65099-3:1989-11 + the accumulation is similar to that used in stripping voltammetry + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - Equipment - From French équipement, from équiper ‘equip’. + + + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 - - - Elementary - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + Software + From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. - - - Cogniser - From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” + + + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + http://www.linfo.org/source_code.html - - - TangibleProduct - From late Latin tangibilis, from tangere ‘to touch’. + + + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + DIN EN 13831:2007-12 - - - Lifetime - From Middle English liftime, equivalent to life +‎ time. + + + Technology is the application of knowledge for achieving practical goals in a reproducible way. + https://en.wikipedia.org/wiki/Technology - + - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - http://www.linfo.org/source_code.html + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + ISO 23704-1:2022(en), 3.1.2 - - - Variable - Fom Latin variabilis ("changeable"). + + + Removal of material by means of rigid or flexible discs or belts containing abrasives. + DIN EN 12258-1:2012-08 - - - mereological - Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). -https://en.wiktionary.org/wiki/mereology + + + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + https://www.ietf.org/rfc/rfc3986.txt - + - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. - DIN EN 13956:2013-03 + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + https://de.wikipedia.org/wiki/Werkst%C3%BCck - - - - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - DIN 8590 Berichtigung 1:2004-02 - + + + + + + + + + + + + + + - + - Dedomena - From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + DIN 8589-0:2003-09 @@ -26642,65 +26359,116 @@ https://en.wiktionary.org/wiki/mereology - + - - - - - - - - - - - + - - - + + + + Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. - + + + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + + - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - http://www.linfo.org/program.html + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + DIN EN 9110:2018-08 + + + + + + Model + From Latin modus (“measure”). + + + + + + Simulacrum + From Latin simulacrum ("likeness, semblance") + + + + + + + + + + + + Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. + + + + + + Dedomena + From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) + + + + + + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + DIN 65099-5:1989-11 + + + + + + CausalObject + From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + + + + + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + DIN 8589-2:2003-09 - - - Product - From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. + + + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + DIN 8587:2003-09 - - - ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 + + + Perspective + From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. - + - Tool - Old English tōl, from a Germanic base meaning ‘prepare’. + Crystal + From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). @@ -26708,7 +26476,7 @@ sintering: thermal treatment of a powder or compact, at a temperature below the - + @@ -26716,10 +26484,11 @@ sintering: thermal treatment of a powder or compact, at a temperature below the - - - - + + + + + @@ -26729,390 +26498,429 @@ sintering: thermal treatment of a powder or compact, at a temperature below the - - + - + + Implementation of equality based on mereology. - - - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - DIN EN ISO 15156-3:2015-12 + + + Device + From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". - - - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - https://en.wikipedia.org/wiki/Supply_chain + + + Factory + From Latin factor, from fact- ‘done’, from the verb facere (to do). - + - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - https://en.wikipedia.org/wiki/Tessellation + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). - + - Technology is the application of knowledge for achieving practical goals in a reproducible way. - https://en.wikipedia.org/wiki/Technology + the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + - + - the accumulation is similar to that used in stripping voltammetry - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + DIN 65099-3:1989-11 - - - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + + + Lifetime + From Middle English liftime, equivalent to life +‎ time. - - - Definitions are usually taken from Wiktionary. - https://en.wiktionary.org/wiki/Wiktionary + + + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 - + - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - - - - - - - - - - - - - - - - + - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - DIN 8588:2013-08 + Object that is processed with a machine + DIN EN ISO 5349-2:2015-12 - + - chronopotentiometry where the change in applied current undergoes a cyclic current reversal - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - DIN 65099-4:1989-11 + + + FundamentalBoson + 1940s: named after S.N. Bose. - + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + DIN 8586:2003-09 + + + + + + Index + From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). + + + + + + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + + + + + + + + + + + + + + + + All EMMO individuals are part of the most comprehensive entity which is the universe. + + + + - Particle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + Artifact + From Latin arte ‘by or using art’ + factum ‘something made’. - + + + A material is a crystal if it has essentially a sharp diffraction pattern. + +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) + https://dictionary.iucr.org/Crystal + + + + + + Machine + From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. + + + + + + The disjoint union of the Item and Collection classes. + The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). +Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. + + + + - Object that is processed with a machine - DIN EN ISO 5349-2:2015-12 + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - - - Perspective - From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. + + + chronopotentiometry where the change in applied current undergoes a cyclic current reversal + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - + - Collection - From Latin collectio, from colligere ‘gather together’. + Quantum + From Latin quantum (plural quanta) "as much as, so much as". - + - Fundamental - From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). + Procedure + From Latin pro-cedere (“to go forward, to proceed”). - - - Language - From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). + + + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + https://en.wikipedia.org/wiki/Supply_chain - + - Process for joining two (base) materials by means of an adhesive polymer material - DIN EN 62047-1:2016-12 + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + DIN EN 13956:2013-03 - - - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + + + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - https://en.wikipedia.org/wiki/Phase_(matter) + + + + IntentionalProcess + From Latin intentionem, derived from intendere ("stretching out") - - - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org + + + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + DIN 65099-4:1989-11 - - - Process for removing unwanted residual or waste material from a given product or material - ISO 13574:2015-02 + + + Definitions are usually taken from Wiktionary. + https://en.wiktionary.org/wiki/Wiktionary - - - Part - From Latin partire, partiri ‘divide, share’. + + + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + https://en.wikipedia.org/wiki/Tessellation - + - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + Cogniser + From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” - - - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - ISO 23952:2020(en), 3.4.143 + + + mereological + Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). +https://en.wiktionary.org/wiki/mereology - + - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - DIN 65099-5:1989-11 + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + DIN 55405:2014-12 - + - isCauseOf - From Latin causa (“reason, sake, cause”). + Assemblying + From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. - + - Procedure - From Latin pro-cedere (“to go forward, to proceed”). + Estimation + From Latin aestimatus (“to value, rate, esteem”). - - - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - DIN 65099-3:1989-11 + + + Equipment + From French équipement, from équiper ‘equip’. - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 - + + + CausalChain + From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). + + + + - The raw material or partially finished piece that is shaped by performing various operations. - https://en.wiktionary.org/wiki/workpiece + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + EN 16603-11:2019-11 - - - Index - From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). + + + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 + + + + + + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + DIN EN ISO 4885:2018-07 - - + + - - + - - - - - - - - - - - - + - + + - - + + - Implementation of equality based on mereology. + Enforcing parthood reflexivity. - - - Device - From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". + + + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + DIN 8584-1:2003-09 - - - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 + + + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + ISO 23952:2020(en), 3.4.143 - - - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - https://www.ietf.org/rfc/rfc3986.txt + + + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. + DIN 8583-1:2003-09 - - - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + :isCauseOf owl:propertyDisjointWith :overlaps + Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. - - - measurand - VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity. + + + Computation + From Latin con- +‎ putō (“I reckon”). - - - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - DIN 65099-7:1989-11 + + + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + DIN 8590 Berichtigung 1:2004-02 - - - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - https://www.ietf.org/rfc/rfc3986.txt + + + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + https://en.wiktionary.org/wiki/procedure - + - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - DIN 8589-6:2003-09 + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + DIN 65099-3:1989-11 - - - - - - - - - - - - - - - - - - - - - - - - - Enforcing the fact that an entity cannot cause itself. - - - + - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - DIN 8583-1:2003-09 + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + DIN 65099-5:1989-11 @@ -27120,7 +26928,7 @@ discrete manufacturing: production of discrete items. - + @@ -27128,11 +26936,10 @@ discrete manufacturing: production of discrete items. - - - - - + + + + @@ -27143,55 +26950,114 @@ discrete manufacturing: production of discrete items. - + - + - Transitivity for parthood. - + + + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + https://en.wikipedia.org/wiki/Variable_(mathematics) + + + + + + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + https://en.wikipedia.org/wiki/Phase_(matter) + + + + - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - DIN EN ISO 472/A1:2019-03 + Process for joining two (base) materials by means of an adhesive polymer material + DIN EN 62047-1:2016-12 - - - Symbolic - From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). + + + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + DIN 8584-2:2003-09 - + + + ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 + + + + + + Elementary + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + + + + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + DIN 8590 Berichtigung 1:2004-02 + + + + - - + + + 2 - Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. + Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). - + - Property - From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). + ResemblanceIcon + From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). - + + + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + https://www.ietf.org/rfc/rfc3986.txt + + + + + + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + DIN 8580:2022-12 + + + + - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - DIN 8584-1:2003-09 + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + DIN EN ISO 472/A1:2019-03 + + + + + + Matter + From Latin materia (“matter, stuff, material”), from mater (“mother”). @@ -27202,73 +27068,155 @@ discrete manufacturing: production of discrete items. - + + + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en + + + + + + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + DIN 8589-3:2003-09 + + + + + + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + EN 10028-1:2017-07 + + + + + + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + DIN 8593-3:2003-09 + + + + + + CausalSystem + From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”). + + + + + + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + DIN 8585-3:2003-09 + + + + + + Holistic + Holism (from Greek ὅλος holos "all, whole, entire"). + + + + + + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + DIN 8583-2:2003-09 + + + + - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 + ISO 8887-1:2017 +manufacturing: production of components + https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5 - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - https://de.wikipedia.org/wiki/Werkst%C3%BCck + The raw material or partially finished piece that is shaped by performing various operations. + https://en.wiktionary.org/wiki/workpiece - - - Machine - From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. + + + Conversion of materials and assembly of components for the manufacture of products + DIN EN 14943:2006-03 - + - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - EN 16603-11:2019-11 + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] + https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol - - - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - DIN EN 9110:2018-08 + + + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + DIN 8586:2003-09 - + - Wholistic - From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - + - FundamentalBoson - 1940s: named after S.N. Bose. + Existent + ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). - - - - - - - 2 - - - Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). + + + Fundamental + From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). + + + + + + CausalParticle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + + + + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + + + + + + chronopotentiometry where the applied current is changed in steps + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + + + + + + FunctionalIcon + From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). - - - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - DIN 8588:2013-08 + + + Data + From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). @@ -27279,24 +27227,24 @@ liquid-phase sintering: sintering of a powder or compact containing at least two - - - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + DIN 8593-0:2003-09 - - - Item - From Latin item, "likewise, just so, moreover". + + + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). + DIN 8588:2013-08 - - - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - https://en.wikipedia.org/wiki/Variable_(mathematics) + + + Role + From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. @@ -27307,43 +27255,87 @@ liquid-phase sintering: sintering of a powder or compact containing at least two - - - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - DIN 8585-3:2003-09 + + + Wholistic + From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. + + + + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing a strict one-way causality direction. + + + + + + Collection + From Latin collectio, from colligere ‘gather together’. - - - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + + + Symbolic + From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). - - - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + + + Heat treatment process that generally produces martensite in the matrix. + ISO/TR 10809-1:2009, 0000_19 - - - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 + + + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + https://en.wikipedia.org/wiki/Condensed_matter_physics - + - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] - https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol + Process for removing unwanted residual or waste material from a given product or material + ISO 13574:2015-02 + + + + + + Product + From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. + + + + + + AnalogicalIcon + From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). @@ -27354,107 +27346,116 @@ loose-powder sintering, gravity sintering: sintering of uncompacted powder - + - Manufacturing - From Latin manu factum ("made by hand"). + Language + From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). - - - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - DIN 8589-2:2003-09 + + + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 - + - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - DIN 8593-3:2003-09 + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + DIN 8589-6:2003-09 - - - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - DIN 8593-0:2003-09 + + + measurand + VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity. - - - Removal of material by means of rigid or flexible discs or belts containing abrasives. - DIN EN 12258-1:2012-08 + + + Variable + Fom Latin variabilis ("changeable"). - - - - - - - - - - - - - - + + + + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + - - - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - DIN 8587:2003-09 + + + TangibleProduct + From late Latin tangibilis, from tangere ‘to touch’. - + + + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + DIN 65099-7:1989-11 + + + + - ResemblanceIcon - From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). + Item + From Latin item, "likewise, just so, moreover". - + - CausalStructure - From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). + Manufacturing + From Latin manu factum ("made by hand"). - - - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - ISO 14034:2016-11 + + + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; - - - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). + + + Whole + From Middle English hole (“healthy, unhurt, whole”). - - - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 + + + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + DIN EN ISO 15156-3:2015-12 - Conversion of materials and assembly of components for the manufacture of products - DIN EN 14943:2006-03 + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + https://www.collinsdictionary.com/it/dizionario/inglese/technology + + + + + + Observation + From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”), + + + + + + Property + From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). diff --git a/chameo-inferred.ttl b/chameo-inferred.ttl index a3936af..cee41e5 100644 --- a/chameo-inferred.ttl +++ b/chameo-inferred.ttl @@ -2256,14 +2256,6 @@ ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b rdf:type owl:ObjectProperty ; skos:prefLabel "hasInstrumentForCalibration"@en . -### https://w3id.org/emmo/domain/characterisation-methodology/chameo#hasInstrumentToBeCalibrated -:hasInstrumentToBeCalibrated rdf:type owl:ObjectProperty ; - rdfs:subPropertyOf ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; - rdfs:domain :CalibrationProcess ; - rdfs:range :CharacterisationMeasurementInstrument ; - rdfs:isDefinedBy : . - - ### https://w3id.org/emmo/domain/characterisation-methodology/chameo#hasInteractionVolume :hasInteractionVolume rdf:type owl:ObjectProperty ; rdfs:subPropertyOf ns1:EMMO_ae2d1a96_bfa1_409a_a7d2_03d69e8a125a ; @@ -3305,7 +3297,7 @@ ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 rdf:type owl:Class ; rdfs:comment "A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules."@en , """A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. In other words, a sequence of bit \"1000010\" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter \"B\". The same holds for an entity standing for the sound of a voice saying: \"Hello\", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Symbolic"@en ; skos:prefLabel "Symbolic"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules."@en ; @@ -3422,7 +3414,7 @@ ns1:EMMO_06658d8d_dcde_4fc9_aae1_17f71c0bcdec rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_21f56795_ee72_4858_b571_11cfaa59c1a8 ] ; rdfs:comment "1-dimensional array who's spatial direct parts are numbers."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Vector"@en ; skos:altLabel "1DArray"@en , "LinearArray" ; @@ -5218,7 +5210,7 @@ ns1:EMMO_1c0b22a2_be82_4fa8_9e2b_a569a625d442 rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_4a1c73f1_b6f5_4d10_a3a6_5de90bac7cd0 ] ; rdfs:comment "A determination of an object without any actual interaction."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Estimation"@en ; skos:prefLabel "Estimation"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A determination of an object without any actual interaction."@en . @@ -5525,7 +5517,7 @@ ns1:EMMO_1eb6b28e_f260_4f04_ada1_19c6dcb668d9 rdf:type owl:Class ; ns1:EMMO_1eed0732_e3f1_4b2c_a9c4_b4e75eeb5895 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 ; rdfs:comment "A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Variable"@en ; skos:prefLabel "Variable"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set."@en ; @@ -5858,7 +5850,7 @@ In the EMMO abstract entities do not exists, and numbers are simply defined by o Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. For these reasons, the EMMO will consider numerals and numbers as the same concept."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Number"@en ; skos:altLabel "Numeral"@en ; skos:prefLabel "Number"@en ; @@ -6069,7 +6061,7 @@ This happens due to e.g. the complexity of the object, the lack of a underlying A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. e.g. you cannot evaluate the beauty of a person on objective basis."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Subjective"@en ; skos:prefLabel "Subjective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box."@en ; @@ -6411,7 +6403,7 @@ ns1:EMMO_28fbea28_2204_4613_87ff_6d877b855fcd rdf:type owl:Class ; See Shape4x3Matrix as an example."""@en , "Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays."@en , "Arrays are ordered objects, since they are a subclasses of Arrangement."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Array"@en ; skos:prefLabel "Array"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays."@en ; @@ -6584,7 +6576,7 @@ ns1:EMMO_2a888cdf_ec4a_4ec5_af1c_0343372fc978 rdf:type owl:Class ; """The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Objective"@en ; skos:prefLabel "Objective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel."@en . @@ -6944,7 +6936,7 @@ ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 rdf:type owl:Class ; ] ; rdfs:subClassOf ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 ; rdfs:comment "https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a" ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "SpatioTemporalTile" ; skos:altLabel "WellFormedTile"@en ; skos:prefLabel "SpatioTemporalTile" ; @@ -7171,7 +7163,7 @@ ns1:EMMO_321af35f_f0cc_4a5c_b4fe_8c2c0303fb0c rdf:type owl:Class ; ns1:EMMO_3227b821_26a5_4c7c_9c01_5c24483e0bd0 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_b081b346_7279_46ef_9a3d_2c088fcd79f4 ; rdfs:comment "The subclass of measurement units with no physical dimension."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "DimensionlessUnit"@en ; skos:prefLabel "DimensionlessUnit"@en ; ns1:EMMO_1f1b164d_ec6a_4faa_8d5e_88bda62316cc "http://qudt.org/vocab/unit/UNITLESS"^^xsd:anyURI ; @@ -7535,7 +7527,7 @@ ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 rdf:type owl:Class ; """The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself."""@en , "The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Arrangement"@en ; skos:altLabel "MereologicalState"@en ; skos:prefLabel "Arrangement"@en ; @@ -7940,7 +7932,7 @@ ns1:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68 rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 ] ; rdfs:comment "A characterisation of an object with an actual interaction."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Observation"@en ; skos:prefLabel "Observation"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characterisation of an object with an actual interaction."@en . @@ -8796,7 +8788,7 @@ ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce rdf:type owl:Class ; """Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). For this reason, the definition of every specific process subclass requires the introduction of a primitive concept."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Process"@en ; skos:altLabel "Occurrent"@en , "Perdurant"@en ; @@ -9086,7 +9078,7 @@ ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 rdf:type owl:Class ; rdfs:comment "A procedure can be considered as an intentional process with a plan."@en , "The process in which an agent works with some entities according to some existing formalised operative rules."@en , "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Procedure"@en ; skos:altLabel "Elaboration"@en , "Work"@en ; @@ -9337,7 +9329,7 @@ ns1:EMMO_49267eba_5548_4163_8f36_518d65b583f9 rdf:type owl:Class ; rdfs:comment "The class of causal objects that stand for world objects according to a specific representational perspective."@en , """This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Perspective"@en ; skos:prefLabel "Perspective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of causal objects that stand for world objects according to a specific representational perspective."@en ; @@ -9417,7 +9409,7 @@ ns1:EMMO_498aad49_f8d4_40a4_a9eb_efd563a0115f rdf:type owl:Class ; ns1:EMMO_4a1c73f1_b6f5_4d10_a3a6_5de90bac7cd0 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_1b52ee70_121e_4d8d_8419_3f97cd0bd89c ; rdfs:comment "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Estimator"@en ; skos:prefLabel "Estimator"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en . @@ -9475,7 +9467,7 @@ ns1:EMMO_4b32fc1e_5293_4247_9e8d_1175df9f1c0b rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_aaad78a9_abaf_4f97_9c1a_d763a94c4ba3 , ns1:EMMO_f055e217_0b1b_4e7e_b8be_7340211b0c5e ; rdfs:comment "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "StrictFundamental"@en ; skos:prefLabel "StrictFundamental"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en . @@ -9607,7 +9599,7 @@ ns1:EMMO_4cdec724_8ed2_4e8e_b145_260a828bb1ed rdf:type owl:Class ; ns1:EMMO_4ce76d7f_03f8_45b6_9003_90052a79bfaa rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 ; rdfs:comment "A 'Mathematical' that has no unknown value, i.e. all its 'Variable\"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Numerical"@en ; skos:prefLabel "Numerical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A 'Mathematical' that has no unknown value, i.e. all its 'Variable\"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations)."@en . @@ -9947,7 +9939,7 @@ ns1:EMMO_501f9b3a_c469_48f7_9281_2e6a8d805d7a rdf:type owl:Class ; ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment "A direct part that is obtained by partitioning a whole purely in temporal parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "TemporalTile"@en ; skos:prefLabel "TemporalTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A direct part that is obtained by partitioning a whole purely in temporal parts."@en . @@ -10522,7 +10514,7 @@ ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; rdfs:comment "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en , "A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions." ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Mathematical"@en ; skos:prefLabel "Mathematical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en . @@ -11672,7 +11664,7 @@ ns1:EMMO_64963ed6_39c9_4258_85e0_6466c4b5420c rdf:type owl:Class ; ns1:EMMO_5848e476_2768_4988_98f9_9053c532307b ) ; rdfs:comment "A procedure that has at least two procedures (tasks) as proper parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Workflow"@en ; skos:prefLabel "Workflow"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A procedure that has at least two procedures (tasks) as proper parts."@en . @@ -14519,7 +14511,7 @@ ns1:EMMO_8944581c_64da_46a9_be29_7074f7cc8098 rdf:type owl:Class ; owl:allValuesFrom ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ] ; rdfs:comment "A well formed tessellation with tiles that all spatial."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "SpatialTiling"@en ; skos:prefLabel "SpatialTiling"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A well formed tessellation with tiles that all spatial."@en . @@ -14762,7 +14754,7 @@ ns1:EMMO_8c537c06_8e1d_4a3b_a251_1c89bb2c4790 rdf:type owl:Class ; ns1:EMMO_8c64fcfa_23aa_45f8_9e58_bdfd065fab8f rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_9e029526_79a2_47a8_a151_dd0545db471b ; rdfs:comment "A variable that stand for a numerical constant, even if it is unknown."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Constant"@en ; skos:prefLabel "Constant"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A variable that stand for a numerical constant, even if it is unknown."@en . @@ -15174,7 +15166,7 @@ However that's not possible in general, since we will finally end to temporal pa In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental."""@en , "A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Object"@en ; skos:altLabel "Continuant"@en , "Endurant"@en ; @@ -15367,7 +15359,7 @@ ns1:EMMO_9226c7af_573f_4762_865c_e3a68a4832dd rdf:type owl:Class ; ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c ; rdfs:comment "A tessellation of temporal slices."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Sequence"@en ; skos:prefLabel "Sequence"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tessellation of temporal slices."@en . @@ -15863,7 +15855,7 @@ Examples of correspondance between dimensional units and their dimensional units - AmountOfSubstanceUnit <=> \"T0 L0 M0 I0 Θ0 N+1 J0\" - TimeUnit <=> \"T+1 L0 M0 I0 Θ0 N0 J0\" - ElectricCurrentDensityUnit <=> \"T0 L-2 M0 I+1 Θ0 N0 J0\""""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "SIDimensionalUnit"@en ; skos:prefLabel "SIDimensionalUnit"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI)."@en ; @@ -15941,7 +15933,7 @@ ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_ee0466e4_780d_4236_8281_ace7ad3fc5d2 ] ; rdfs:comment "A causal object that is direct part of a tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Tile"@en ; skos:prefLabel "Tile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A causal object that is direct part of a tessellation."@en . @@ -16012,7 +16004,7 @@ ns1:EMMO_9b075686_4ac2_43bb_b2a3_17b3ea24ff17 rdf:type owl:Class ; ### https://w3id.org/emmo#EMMO_9b87d718_9dcc_4f7d_ad20_12c2aa4c76be ns1:EMMO_9b87d718_9dcc_4f7d_ad20_12c2aa4c76be rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_7286b164_df4c_4c14_a4b5_d41ad9c121f3 ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Estimated"@en ; skos:prefLabel "Estimated"@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "The biography of a person that the author have not met."@en . @@ -16113,7 +16105,7 @@ ns1:EMMO_9bc6da11_528a_44e8_bd9e_c4154eae7e55 rdf:type owl:Class ; ns1:EMMO_9be5fcc4_0d8b_481d_b984_6338d4b55588 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 ; rdfs:comment "An observer that makes use of a measurement tool and provides a quantitative property."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Measurer"@en ; skos:prefLabel "Measurer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An observer that makes use of a measurement tool and provides a quantitative property."@en . @@ -16220,7 +16212,7 @@ ns1:EMMO_9d8f708a_f291_4d72_80ec_362c6e6bbca6 rdf:type owl:Class ; ns1:EMMO_9e029526_79a2_47a8_a151_dd0545db471b rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_1eed0732_e3f1_4b2c_a9c4_b4e75eeb5895 ; rdfs:comment "A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "NumericalVariable"@en ; skos:prefLabel "NumericalVariable"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers."@en . @@ -16482,7 +16474,7 @@ e.g. a math symbol is not made of other math symbols A Symbol may be a String in another language. e.g. \"Bq\" is the symbol for Becquerel units when dealing with metrology, or a string of \"B\" and \"q\" symbols when dealing with characters."""@en , "The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Symbol"@en ; skos:altLabel "AlphabeticEntity"@en ; skos:prefLabel "Symbol"@en ; @@ -17107,7 +17099,7 @@ ns1:EMMO_aa7397ff_2815_434e_9b99_e4c6a80e034e rdf:type owl:Class ; ns1:EMMO_aaad78a9_abaf_4f97_9c1a_d763a94c4ba3 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_57c75ca1_bf8a_42bc_85d9_58cfe38c7df2 ; rdfs:comment "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "TemporallyFundamental"@en ; skos:prefLabel "TemporallyFundamental"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en . @@ -18072,7 +18064,7 @@ ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba rdf:type owl:Class ; ] ; rdfs:comment "A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction."@en , "A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Property"@en ; skos:prefLabel "Property"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction."@en ; @@ -18300,7 +18292,7 @@ ns1:EMMO_bafc17b5_9be4_4823_8bbe_ab4e90b6738c rdf:type owl:Class ; owl:someValuesFrom ns1:EMMO_c130614a_2985_476d_a7ed_8a137847703c ] ; rdfs:comment "A process occurring with the active participation of an agent that drives the process according to a specific objective (intention)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "IntentionalProcess"@en ; skos:altLabel "Project"@en ; skos:prefLabel "IntentionalProcess"@en ; @@ -18532,7 +18524,7 @@ ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 rdf:type owl:Class ; rdfs:comment """A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules."""@en , "Data whose variations are decoded according to a discrete schema."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "DiscreteData"@en ; skos:prefLabel "DiscreteData"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data whose variations are decoded according to a discrete schema."@en ; @@ -18862,7 +18854,7 @@ ns1:EMMO_c2f5ee66_579c_44c6_a2e9_fa2eaa9fa4da rdf:type owl:Class ; is desirable (μm/m, nmol/mol). -- SI Brochure"""@en , "Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "FractionUnit"@en ; skos:altLabel "RatioUnit"@en ; skos:prefLabel "FractionUnit"@en ; @@ -19031,7 +19023,7 @@ The unity criterion beyond the definition of a causal structure (the most genera - is made of at least two quantums (a structure is not a simple entity) - all quantum parts form a causally connected graph"""@en , "The union of CausalPath and CausalSystem classes."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "CausalStructure"@en ; skos:altLabel "CausalObject"@en ; skos:prefLabel "CausalStructure"@en ; @@ -19485,7 +19477,7 @@ ns1:EMMO_ca54593a_6828_491b_8fda_22b0ad85e446 rdf:type owl:Class ; ns1:EMMO_caa63d00_80b1_4408_ac1b_cd0d23b0ec50 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment "A tile that has next and is next of other tiles within the same tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "ThroughTile"@en ; skos:prefLabel "ThroughTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tile that has next and is next of other tiles within the same tessellation."@en . @@ -19597,7 +19589,7 @@ ns1:EMMO_cbdea88b_fef1_4c7c_b69f_ae1f0f241c4a rdf:type owl:Class ; The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units)."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "DimensionalUnit"@en ; skos:prefLabel "DimensionalUnit"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit."@en ; @@ -20507,7 +20499,7 @@ Then I have two different physical quantities that are properties thanks to two ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; rdfs:comment "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Language"@en ; skos:prefLabel "Language"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en . @@ -21995,7 +21987,7 @@ ns1:EMMO_ea47add2_8e93_4659_a5f0_e6879032dee0 rdf:type owl:Class ; ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_1b52ee70_121e_4d8d_8419_3f97cd0bd89c ; rdfs:comment "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Observer"@en ; skos:prefLabel "Observer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en . @@ -22403,7 +22395,7 @@ ns1:EMMO_ed7dd267_e2ee_4565_8117_e5c1eafa3e66 rdf:type owl:Class ; ns1:EMMO_edf72228_e040_4edc_8b46_78b2a47c72d7 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "EndTile"@en ; skos:prefLabel "EndTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e . @@ -23072,7 +23064,7 @@ ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c rdf:type owl:Class ; owl:allValuesFrom ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ] ; rdfs:comment "A well formed tessellation with tiles that are all temporal."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "TemporalTiling"@en ; skos:prefLabel "TemporalTiling"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A well formed tessellation with tiles that are all temporal."@en . @@ -23191,7 +23183,7 @@ ns1:EMMO_f8bd64d5_5d3e_4ad4_a46e_c30714fecb7f rdf:type owl:Class ; owl:onDataRange xsd:integer ] ; rdfs:comment "An integer number."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "Integer"@en ; skos:prefLabel "Integer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An integer number."@en . @@ -23323,7 +23315,7 @@ ns1:EMMO_fa3c9d4d_9fc9_4e8a_82c1_28c84e34133a rdf:type owl:Class ; ns1:EMMO_fa595892_070d_455e_9459_06c97179c080 rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; rdfs:comment ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:label "BeginTile"@en ; skos:prefLabel "BeginTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b . @@ -25457,6 +25449,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated." ; rdfs:isDefinedBy : ; rdfs:label "MeasurementSystemAdjustment" ; + skos:altLabel "MeasurementParameterAdjustment" ; skos:prefLabel "MeasurementSystemAdjustment" ; ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 "From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated."@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process."@en ; @@ -25821,6 +25814,14 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; :ProbeSampleInteraction rdf:type owl:Class ; rdfs:subClassOf ns1:EMMO_1efe8b96_e006_4a33_bc9a_421406cbb9f0 , ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce , + [ rdf:type owl:Restriction ; + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:someValuesFrom :Probe + ] , + [ rdf:type owl:Restriction ; + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:someValuesFrom :Sample + ] , [ rdf:type owl:Restriction ; owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; owl:someValuesFrom :Signal @@ -26514,12 +26515,6 @@ materials – Selected terms and definitions, definition 2.1.1) for both measure # Individuals ################################################################# -### http://ext.org/LoadDisplacementCurve1 - rdf:type owl:NamedIndividual , - :CharacterisationData ; - rdfs:isDefinedBy : . - - ### https://orcid.org/0000-0002-4181-2852 rdf:type owl:NamedIndividual , foaf:Person ; @@ -26566,9 +26561,6 @@ ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 rdf:type owl:NamedIndividual , [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger - ] . - [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . @@ -26578,34 +26570,37 @@ ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 rdf:type owl:NamedIndividual , [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "4"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger +[ owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger +[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger ] . [ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . -[ owl:qualifiedCardinality "4"^^xsd:nonNegativeInteger +[ owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger + ] . + +[ owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] . ################################################################# diff --git a/chameo.html b/chameo.html index 9dac7e0..54eaead 100644 --- a/chameo.html +++ b/chameo.html @@ -52,10 +52,6 @@

ACVoltammetryElucidation voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - - Wikidatareference - https://www.wikidata.org/wiki/Q120895154 - Preflabel ACVoltammetry @@ -64,6 +60,10 @@

ACVoltammetryAltlabel ACV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. @@ -77,8 +77,8 @@

ACVoltammetry - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q120895154 Label @@ -190,6 +190,10 @@

AdsorptiveStrippingVoltammetryAltlabel AdSV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. @@ -198,10 +202,6 @@

AdsorptiveStrippingVoltammetryComment Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label AdsorptiveStrippingVoltammetry @@ -266,6 +266,10 @@

AmperometryPreflabel Amperometry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. @@ -274,10 +278,6 @@

AmperometryComment The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label Amperometry @@ -338,21 +338,21 @@

AnodicStrippingVoltammetryElucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - - Wikidatareference - https://www.wikidata.org/wiki/Q939328 - Preflabel AnodicStrippingVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q939328 Label @@ -482,10 +482,6 @@

BrunauerEmmettTellerMethodElucidation A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - - Wikidatareference - https://www.wikidata.org/wiki/Q795838 - Preflabel BrunauerEmmettTellerMethod @@ -498,6 +494,10 @@

BrunauerEmmettTellerMethodComment A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + + Wikidatareference + https://www.wikidata.org/wiki/Q795838 + Wikipediareference https://en.wikipedia.org/wiki/BET_theory @@ -730,10 +730,6 @@

CathodicStrippingVoltammetryElucidation Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - - Wikidatareference - https://www.wikidata.org/wiki/Q4016325 - Preflabel CathodicStrippingVoltammetry @@ -742,13 +738,17 @@

CathodicStrippingVoltammetryAltlabel CSV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q4016325 Label @@ -1726,14 +1726,14 @@

ChronoamperometryAltlabel AmperometricCurrentTimeCurve - - Comment - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + Label Chronoamperometry @@ -1764,14 +1764,14 @@

ChronocoulometryPreflabel Chronocoulometry - - Comment - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Label Chronocoulometry @@ -1802,14 +1802,14 @@

ChronopotentiometryPreflabel Chronopotentiometry - - Comment - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Label Chronopotentiometry @@ -1870,21 +1870,21 @@

ConductometricTitrationElucidation Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - - Wikidatareference - https://www.wikidata.org/wiki/Q11778221 - Preflabel ConductometricTitration + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q11778221 Label @@ -1912,30 +1912,30 @@

ConductometryElucidation Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - - Wikidatareference - https://www.wikidata.org/wiki/Q901180 - Preflabel Conductometry - - Comment - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Iupacreference https://doi.org/10.1515/pac-2018-0109 - Wikipediareference - https://en.wikipedia.org/wiki/Conductometry + Comment + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + + + Wikidatareference + https://www.wikidata.org/wiki/Q901180 Example Monitoring of the purity of deionized water. + + Wikipediareference + https://en.wikipedia.org/wiki/Conductometry + Label Conductometry @@ -2030,25 +2030,25 @@

CoulometryElucidation Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - - Wikidatareference - https://www.wikidata.org/wiki/Q1136979 - Preflabel Coulometry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 + Wikidatareference + https://www.wikidata.org/wiki/Q1136979 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 Wikipediareference @@ -2182,14 +2182,6 @@

CyclicVoltammetryElucidation Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - - Dbpediareference - https://dbpedia.org/page/Cyclic_voltammetry - - - Wikidatareference - https://www.wikidata.org/wiki/Q1147647 - Preflabel CyclicVoltammetry @@ -2198,13 +2190,21 @@

CyclicVoltammetryAltlabel CV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q1147647 + + + Dbpediareference + https://dbpedia.org/page/Cyclic_voltammetry Wikipediareference @@ -2240,14 +2240,14 @@

DCPolarographyPreflabel DCPolarography - - Comment - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + Label DCPolarography @@ -2638,14 +2638,14 @@

DielectrometryPreflabel Dielectrometry - - Comment - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Label Dielectrometry @@ -2706,10 +2706,6 @@

DifferentialPulseVoltammetryElucidation Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - - Wikidatareference - https://www.wikidata.org/wiki/Q5275361 - Preflabel DifferentialPulseVoltammetry @@ -2718,13 +2714,17 @@

DifferentialPulseVoltammetryAltlabel DPV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q5275361 Wikipediareference @@ -2972,6 +2972,10 @@

DirectCoulometryAtControlledPotentialPreflabel DirectCoulometryAtControlledPotential + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. @@ -2980,10 +2984,6 @@

DirectCoulometryAtControlledPotentialComment In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label DirectCoulometryAtControlledPotential @@ -3154,10 +3154,6 @@

ElectrochemicalImpedanceSpectroscopyElucidation Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - - Wikidatareference - https://www.wikidata.org/wiki/Q3492904 - Preflabel ElectrochemicalImpedanceSpectroscopy @@ -3166,13 +3162,17 @@

ElectrochemicalImpedanceSpectroscopyAltlabel EIS + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q3492904 Label @@ -3204,14 +3204,14 @@

ElectrochemicalPiezoelectricMicrogravimetryPreflabel ElectrochemicalPiezoelectricMicrogravimetry - - Comment - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + Label ElectrochemicalPiezoelectricMicrogravimetry @@ -3280,10 +3280,6 @@

ElectrogravimetryElucidation method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - - Wikidatareference - https://www.wikidata.org/wiki/Q902953 - Preflabel Electrogravimetry @@ -3292,6 +3288,10 @@

ElectrogravimetryComment Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + + Wikidatareference + https://www.wikidata.org/wiki/Q902953 + Ievreference https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 @@ -3436,10 +3436,6 @@

EnergyDispersiveXraySpectroscopyElucidation An analytical technique used for the elemental analysis or chemical characterization of a sample. - - Wikidatareference - https://www.wikidata.org/wiki/Q386334 - Preflabel EnergyDispersiveXraySpectroscopy @@ -3456,6 +3452,10 @@

EnergyDispersiveXraySpectroscopyComment An analytical technique used for the elemental analysis or chemical characterization of a sample. + + Wikidatareference + https://www.wikidata.org/wiki/Q386334 + Wikipediareference https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy @@ -3664,10 +3664,6 @@

FourierTransformInfraredSpectroscopyElucidation A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - - Wikidatareference - https://www.wikidata.org/wiki/Q901559 - Preflabel FourierTransformInfraredSpectroscopy @@ -3680,6 +3676,10 @@

FourierTransformInfraredSpectroscopyComment A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + + Wikidatareference + https://www.wikidata.org/wiki/Q901559 + Wikipediareference https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy @@ -3778,10 +3778,6 @@

GalvanostaticIntermittentTitrationTechniqueElucidation Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - Wikidatareference - https://www.wikidata.org/wiki/Q120906986 - Preflabel GalvanostaticIntermittentTitrationTechnique @@ -3794,6 +3790,10 @@

GalvanostaticIntermittentTitrationTechniqueComment Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + + Wikidatareference + https://www.wikidata.org/wiki/Q120906986 + Label GalvanostaticIntermittentTitrationTechnique @@ -4132,21 +4132,21 @@

HydrodynamicVoltammetryElucidation Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - - Wikidatareference - https://www.wikidata.org/wiki/Q17028237 - Preflabel HydrodynamicVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q17028237 Wikipediareference @@ -4220,14 +4220,14 @@

ImpedimetryPreflabel Impedimetry - - Comment - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Label Impedimetry @@ -4622,10 +4622,6 @@

LinearScanVoltammetryElucidation Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - - Wikidatareference - https://www.wikidata.org/wiki/Q620700 - Preflabel LinearScanVoltammetry @@ -4642,13 +4638,17 @@

LinearScanVoltammetryAltlabel LinearSweepVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q620700 Wikipediareference @@ -4798,6 +4798,10 @@

MeasurementSystemAdjustmentPreflabel MeasurementSystemAdjustment + + Altlabel + MeasurementParameterAdjustment + Comment Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. @@ -5232,14 +5236,14 @@

NormalPulseVoltammetryAltlabel NPV - - Comment - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + Label NormalPulseVoltammetry @@ -5734,25 +5738,25 @@

PotentiometryElucidation Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - - Wikidatareference - https://www.wikidata.org/wiki/Q900632 - Preflabel Potentiometry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 + Wikidatareference + https://www.wikidata.org/wiki/Q900632 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 Label @@ -5937,6 +5941,14 @@

ProbeSampleInteractionSubclass Of Process + + Subclass Of + hasTemporaryParticipant some Probe + + + Subclass Of + hasTemporaryParticipant some Sample + Subclass Of hasOutput some Signal @@ -6078,6 +6090,10 @@

PulsedElectroacousticMethodPreflabel PulsedElectroacousticMethod + + Iupacreference + https://doi.org/10.1007/s10832-023-00332-y + Comment The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. @@ -6086,10 +6102,6 @@

PulsedElectroacousticMethodComment - - Iupacreference - https://doi.org/10.1007/s10832-023-00332-y - Label PulsedElectroacousticMethod @@ -6682,6 +6694,10 @@

SampledDCPolarographyAltlabel TASTPolarography + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. @@ -6694,10 +6710,6 @@

SampledDCPolarographyComment - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Label SampledDCPolarography @@ -7212,10 +7224,6 @@

SquareWaveVoltammetryElucidation voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - - Wikidatareference - https://www.wikidata.org/wiki/Q4016323 - Preflabel SquareWaveVoltammetry @@ -7232,6 +7240,10 @@

SquareWaveVoltammetryAltlabel SWV + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. @@ -7253,8 +7265,8 @@

SquareWaveVoltammetry - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Wikidatareference + https://www.wikidata.org/wiki/Q4016323 Wikipediareference @@ -7328,6 +7340,10 @@

StrippingVoltammetryPreflabel StrippingVoltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. @@ -7356,10 +7372,6 @@

StrippingVoltammetryComment - - Iupacreference - https://doi.org/10.1515/pac-2018-0109 - Wikipediareference https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis @@ -7546,10 +7558,6 @@

ThreePointBendingTestingElucidation Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - - Wikidatareference - https://www.wikidata.org/wiki/Q2300905 - Preflabel ThreePointBendingTesting @@ -7566,6 +7574,10 @@

ThreePointBendingTestingComment + + Wikidatareference + https://www.wikidata.org/wiki/Q2300905 + Wikipediareference https://en.wikipedia.org/wiki/Three-point_flexural_test @@ -7824,14 +7836,14 @@

VoltammetryElucidation Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - - Wikidatareference - https://www.wikidata.org/wiki/Q904093 - Preflabel Voltammetry + + Iupacreference + https://doi.org/10.1515/pac-2018-0109 + Comment The current vs. potential (I-E) curve is called a voltammogram. @@ -7845,12 +7857,12 @@

Voltammetry - Ievreference - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 + Wikidatareference + https://www.wikidata.org/wiki/Q904093 - Iupacreference - https://doi.org/10.1515/pac-2018-0109 + Ievreference + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 Wikipediareference @@ -7886,14 +7898,14 @@

VoltammetryAtARotatingDiskElectrodePreflabel VoltammetryAtARotatingDiskElectrode - - Comment - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - Iupacreference https://doi.org/10.1515/pac-2018-0109 + + Comment + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + Label VoltammetryAtARotatingDiskElectrode @@ -7996,10 +8008,6 @@

XrayDiffractionElucidation a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - - Wikidatareference - https://www.wikidata.org/wiki/Q12101244 - Preflabel XrayDiffraction @@ -8016,6 +8024,10 @@

XrayDiffractionComment + + Wikidatareference + https://www.wikidata.org/wiki/Q12101244 + Wikipediareference https://en.wikipedia.org/wiki/X-ray_crystallography @@ -8925,28 +8937,6 @@

hasInstrumentForCalibrationSubclass Of hasTemporaryParticipant -
-
-

hasInstrumentToBeCalibrated

- - - - - - - - - - - - - - - - - - -
Irihttps://w3id.org/emmo/domain/characterisation-methodology/chameo#hasInstrumentToBeCalibrated
Annotations
Formal description
Subclass OfObjectProperty
Subclass OfhasTemporaryParticipant

hasInteractionVolume

@@ -10185,7 +10175,6 @@

chameo-inferred

  • hasHazard
  • hasHolder
  • hasInstrumentForCalibration
  • -
  • hasInstrumentToBeCalibrated
  • hasInteractionVolume
  • hasInteractionWithProbe
  • hasInteractionWithSample
  • diff --git a/chameo.owl b/chameo.owl index ee15926..20f01c3 100644 --- a/chameo.owl +++ b/chameo.owl @@ -51,6 +51,30 @@ https://raw.githubusercontent.com/emmo-repo/domain-characterisation-methodology/main/images/chameo_logo_small.png + + + + hasSpatialSlice + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. + hasSpatialIntegralPart + hasSpatialSlice + A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. + In EMMO FOL this is a defined property. In OWL spatial relations are primitive. + + + + + + + hasSpatialPart + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + hasSpatialPart + A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + + @@ -62,119 +86,39 @@ Length hasUnit only LengthUnit - - - - - isCauseOf - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - isCauseOf - We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. -An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. - The relation between an individuals x and y, that holds if and only if: -a) y having a part that is causing an effect on a part of x -b) y and x non-overlapping - :isCauseOf owl:propertyDisjointWith :overlaps - Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. - It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. - The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. -While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. - - - - - - - - hasMetrologicalUncertainty - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - hasMetrologicalUncertainty - Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. - Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - - - - - - - hasObjectiveProperty - Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. - hasObjectiveProperty - - - - - - - - hasInstrumentForCalibration - - hasInstrumentForCalibration - - - - - - - - hasTemporaryParticipant - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - hasTemporaryParticipant - The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - - - - - - - - hasSampleForInspection - - hasSampleForInspection - - - + - - - hasSign - A relation that connects the semiotic object to the sign in a semiotic process. - hasSign - A relation that connects the semiotic object to the sign in a semiotic process. + + + hasProperty + A semiotic relation that connects a semiotic object to a property in a declaration process. + hasProperty + A semiotic relation that connects a semiotic object to a property in a declaration process. - + + - - semiotical - The generic EMMO semiotical relation. - semiotical - The generic EMMO semiotical relation. + + + hasConvention + A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. + hasConvention + A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - - + + + - - - hasStatus - hasStatus - - - - - - - - hasHolisticTemporalPart - hasHolisticTemporalPart + + + hasPortion + The relation between a object whole and its spatial part of the same type. + hasPortion + The relation between a object whole and its spatial part of the same type. + A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). @@ -196,535 +140,453 @@ On the contrary, the holistic parthood, is expected to go that deep. - - + - - - hasHolisticRelation - The relation between a holistic whole and its related entities, being them parts or other overlapping entities. - hasHolisticRelation - The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + + + + hasHolisticPart + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + hasHolisticPart + The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. + An holistic part of water fluid is a water molecule. - - + - - hasSpatialPart - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - hasSpatialPart - A proper part of a whole, whose parts always cover the full temporal extension of the whole within a spatial interval. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - - - hasEndCharacterisationTask - - hasEndCharacterizationTask - hasEndCharacterisationTask - - - - - - hasEndTask - hasEndTask + + + hasMaximalPart + hasMaximalPart - - - - - - - - hasInterval - The relation between a process whole and a temporal part of the same type. - hasInterval - The relation between a process whole and a temporal part of the same type. + + + + hasNonMaximalPart + hasNonMaximalPart - - + + + + - hasTemporalPart - A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. - A temporal part of an item cannot both cause and be caused by any other proper part of the item. - -A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. - hasTemporalPart - A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. - A temporal part of an item cannot both cause and be caused by any other proper part of the item. - -A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. - In EMMO FOL this is a defined property. In OWL temporal relations are primitive. + hasDatum + Relates a dataset to its datum. + hasDatum + Relates a dataset to its datum. - + - - - isSpatiallyRelatedWith - isSpatiallyRelatedWith + + + notOverlaps + notOverlaps - - - - - hasSampleInspectionInstrument - - hasSampleInspectionInstrument - - - - - - - hasProductOutput - hasProductOutput - - - - - - - hasOutput - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - hasOutput - The outcome of a process. - The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - - - - - - - - hasDeclarer - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - hasDeclarer - A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. + + + + + + hasMaximalCollection + hasMaximalCollection - - - - - - hasInterpreter - A relation connecting a sign to the interpreter in a semiotic process. - hasInterpreter - A relation connecting a sign to the interpreter in a semiotic process. + + + + + + hasSubCollection + hasSubCollection - - - - - - hasDescription - A semiotic relation that connects a declared semiotic object to a description in a declaration process. - hasDescription - A semiotic relation that connects a declared semiotic object to a description in a declaration process. + + + + + + hasHolisticNonTemporalPart + hasHolisticNonTemporalPart - - - - - - hasConvention - A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. - hasConvention - A semiotic relation that connects a declared semiotic object to a conventional sign in a declaration process. + + + + hasNonTemporalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). + hasNonTemporalPart + The part is not connected with the rest item or members with hasNext relation (or its inverse). - + + - - hasCharacterisationOutput + + + hasPhysicsOfInteraction - hasCharacterizationOutput - hasCharacterisationOutput + hasPhysicsOfInteraction - - - - - hasPart - All other mereology relations can be defined in FOL using hasPart as primitive. - The primitive relation that express the concept of an entity being part of another one. - hasPart - The primitive relation that express the concept of an entity being part of another one. - All other mereology relations can be defined in FOL using hasPart as primitive. + + + + hasModel + hasModel - - - - - hasResourceIdentifier - Relates a resource to its identifier. - hasResourceIdentifier - Relates a resource to its identifier. + + + + + + hasCharacterised + hasCharacterised - - - - - - - hasHolisticOverlap - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - hasHolisticOverlap - A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. - A man and the process of building a house. -The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. -The process of building a house is a whole that possesses an holistic spatial part which is a builder. -The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. -In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. - This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + + + + + + hasDeclared + A semiotic relation connecting a declaring interpreter to the "declared" semiotic object in a declaration process. + hasDeclared + A semiotic relation connecting a declaring interpreter to the "declared" semiotic object in a declaration process. - - - - - - properOverlaps - The relation between two entities that overlaps and neither of both is part of the other. - properOverlaps - The relation between two entities that overlaps and neither of both is part of the other. + + + + + + hasSubObject + hasSubObject - - - - hasSpatialSection - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - hasSpatialPartialPart - hasSpatialSection - A proper part of the whole that is not Spatial or Temporal. - This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). - This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. -A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. + + + + + + hasHolisticTemporalPart + hasHolisticTemporalPart - - + + - - - hasConstitutiveProcess - hasConstitutiveProcess + + hasInput + The input of a process. + hasInput + The input of a process. - - - - - - hasHolisticNonTemporalPart - hasHolisticNonTemporalPart + + + + + + hasSubItem + hasSubItem - - + + - - - hasSampleBeforeSamplePreparation - hasSampleForPreparation + + + hasCharacterisationEnvironment - hasSampleBeforeSamplePreparation + hasCharacterizationEnvironment + hasCharacterisationEnvironment - - - - - - hasMetricPrefix - Relates a prefixed unit to its metric prefix part. - hasMetricPrefix + + + + isPartOf + isPartOf - + + - - - hasLab + + + hasCharacterisationProperty - hasLab + hasCharacterizationProperty + hasCharacterisationProperty - - - - - hasServiceOutput - hasServiceOutput - - - - - - - - hasProperty - A semiotic relation that connects a semiotic object to a property in a declaration process. - hasProperty - A semiotic relation that connects a semiotic object to a property in a declaration process. + + + + + hasMeasuredProperty + Assigns a quantity to an object via a well-defined measurement procedure. + hasMeasuredProperty + Assigns a quantity to an object via a well-defined measurement procedure. - - + - + - hasInteractionWithSample - - hasInteractionWithSample - - - - - - - - hasPeerReviewedArticle - - hasPeerReviewedArticle - - - - - - - hasHazard - - hasHazard - - - - - - - - hasSamplePreparationParameter + hasCharacterisationSoftware - hasSamplePreparationParameter + hasCharacterizationSoftware + hasCharacterisationSoftware - + + - hasInput - The input of a process. - hasInput - The input of a process. + hasTemporaryParticipant + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. + hasTemporaryParticipant + The relation between a process P and an object whole O that overcrosses it. The intersection between P and O is a participant of P. - - + + + + + + hasUnitSymbol + Relates a prefixed unit to its unit symbol part. + hasUnitSymbol + Relates a prefixed unit to its unit symbol part. + + + + - + - hasCharacterisationEnvironment + hasMeasurementTime - hasCharacterizationEnvironment - hasCharacterisationEnvironment + hasMeasurementTime - + + - - - - - hasConnectedPortion - hasConnectedPortion + + isCauseOf + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + isCauseOf + We say that an entity causes another if there is a quantum part of the first that is in causal relation with a quantum parts of the second. +An entity cannot cause itself (causal loops are forbidden) or a part of itself. For this reasons causality between entities excludes reflexivity and prevents them to overlap. + The relation between an individuals x and y, that holds if and only if: +a) y having a part that is causing an effect on a part of x +b) y and x non-overlapping + :isCauseOf owl:propertyDisjointWith :overlaps + Each pair of causally connected entities is either in isDirectCauseOf or isIndirectCauseOf relation. The two are mutually exclusive. + It applies to both quantums and macro-entities (entities made of more than one quantum). It is admissible for two entities to be one the cause of the other, excepts when they are both quantums. + The OWL 2 DL version of the EMMO introduces this object property as primitive causal relation. It refers to the macro causality relation mC(x,y), defined in the EMMO FOL version. +While the EMMO FOL introduces the quantum causality relation C(x,y) as primitive, the OWL 2 DL version substantially simplifies the theory, neglecting these lower level relations that are well above DL expressivity. - + - - - - hasScatteredPortion - hasScatteredPortion + + + hasPart + All other mereology relations can be defined in FOL using hasPart as primitive. + The primitive relation that express the concept of an entity being part of another one. + hasPart + The primitive relation that express the concept of an entity being part of another one. + All other mereology relations can be defined in FOL using hasPart as primitive. - - - - - - hasParticipant - Participation is a parthood relation: you must be part of the process to contribute to it. A participant whose 4D extension is totally contained within the process. + + + + + hasConventionalProperty + An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. -Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters. - The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - hasParticipant - The relation between a process and an object participating to it, i.e. that is relevant to the process itself. +The quantity is selected without an observation aimed to measure its actual value, but by convention. + Assigns a quantity to an object by convention. + hasConventionalProperty + Assigns a quantity to an object by convention. + An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. - - - - - - hasHolisticPart - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - hasHolisticPart - The relation between the whole and a proper part of the whole that scale down to the point which it lose the characteristics of the whole and become something else. - An holistic part of water fluid is a water molecule. + + + + + hasObjectiveProperty + Relates an object to a quantity describing a quantifiable property of the object obtained via a well-defined procedure. + hasObjectiveProperty - - - - - - - hasPortion - The relation between a object whole and its spatial part of the same type. - hasPortion - The relation between a object whole and its spatial part of the same type. - A volume of 1 cc of milk within a 1 litre can be considered still milk as a whole. If you scale down to a cluster of molecules, than the milk cannot be considered a fluid no more (and then no more a milk). + + + + + + isDirectCauseOf + A causal relation between the causing and the effected entities occurring without intermediaries. + Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. +It does not exclude the possibility of indirect causal routes between proper parts of the two entities. + Direct cause is irreflexive. + isDirectCauseOf + Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. +It does not exclude the possibility of indirect causal routes between proper parts of the two entities. + A causal relation between the causing and the effected entities occurring without intermediaries. + Direct cause is irreflexive. + Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. - - - - - - hasCharacterised - hasCharacterised + + + + + + + contacts + A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). +It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). +Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. + An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. + Spatial contact is symmetric and irreflexive. + hasSpatiialnteractionWith + contacts + A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). +It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). +Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. + An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. + Spatial contact is symmetric and irreflexive. + The contact relation is not an ordering relation since is symmetric. - - - - - - hasDeclared - A semiotic relation connecting a declaring interpreter to the "declared" semiotic object in a declaration process. - hasDeclared - A semiotic relation connecting a declaring interpreter to the "declared" semiotic object in a declaration process. + + + + + + hasCharacterisationProcedureValidation + + hasCharacterisationProcedureValidation - - - - - - hasDatum - Relates a dataset to its datum. - hasDatum - Relates a dataset to its datum. + + + + + + hasMeasurementSample + + hasMeasurementSample - - - - - - hasVariable - hasVariable + + + + + + hasMetrologicalUncertainty + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. + hasMetrologicalUncertainty + Assigns a quantifiable uncertainty to an objective property through a well-defined procecure. + Since measurement uncertainty is a subclass of objective property, this relation can also describe the uncertainty of an measurement uncertainty. - - - - hasSpatialSlice - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. - hasSpatialIntegralPart - hasSpatialSlice - A relation that identify a proper part of the whole that extends itself in time along the overall lifetime of the whole, and whose parts never cover the full spatial extension of the 4D whole. - In EMMO FOL this is a defined property. In OWL spatial relations are primitive. + + + + + + + hasHolisticOverlap + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. + hasHolisticOverlap + A relation between two holistic wholes that properly overlap, sharing one of their holistic parts. + A man and the process of building a house. +The man is a whole that possesses an holistic temporal part which is an interval of six monts and represents a working period in his lifetime. +The process of building a house is a whole that possesses an holistic spatial part which is a builder. +The working period of the man and the builder participating the building process are the same individual, belonging both to a man lifetime and to a building holistic views. +In this sense, the man and the building process overcrosses. and the overlapping individual is represented differently in both holistic views. + This relation is about two wholes that overlap, and whose intersection is an holistic part of both. - - - - - overlaps - The relation between two entities that share at least one of their parts. - overlaps - The relation between two entities that share at least one of their parts. + + + + + + hasEndCharacterisationTask + + hasEndCharacterizationTask + hasEndCharacterisationTask - - - - mereological - The EMMO adheres to Atomistic General Extensional Mereology (AGEM). - The superclass of all mereological EMMO relations. - mereological - The superclass of all mereological EMMO relations. - The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + + + + hasEndTask + hasEndTask - - - - isGatheredPartOf - isGatheredPartOf + + + + + + hasUnitNonPrefixPart + Relates a prefixed unit to its non-prefixed part. + hasUnitNonPrefixPart + Relates a prefixed unit to its non-prefixed part. + For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". - - - - - - hasHardwareSpecification - - hasHardwareSpecification + + + + + hasTemporalItemSlice + A temporal part that is an item. + hasTemporalItemSlice + A temporal part that is an item. - - - - - - hasDataAcquisitionRate - - hasDataAcquisitionRate + + + + hasTemporalSlice + A temporal part that capture the overall spatial extension of the causal object. + hasTemporalSlice + A temporal part that capture the overall spatial extension of the causal object. - - + - - - isDirectCauseOf - A causal relation between the causing and the effected entities occurring without intermediaries. - Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. -It does not exclude the possibility of indirect causal routes between proper parts of the two entities. - Direct cause is irreflexive. - isDirectCauseOf - Direct causality is a concept that capture the idea of contact between two entities, given the fact that there are no causal intermediaries between them. It requires that at least a quantum of the causing entity is direct cause of a quantum of the caused entity. -It does not exclude the possibility of indirect causal routes between proper parts of the two entities. - A causal relation between the causing and the effected entities occurring without intermediaries. - Direct cause is irreflexive. - Direct cause provides the edges for the transitive restriction of the direct acyclic causal graph whose nodes are the quantum entities. + + + + + hasConnectedPortion + hasConnectedPortion @@ -752,183 +614,230 @@ It does not exclude the possibility of indirect causal routes between proper par The relation between two causally reachable entities through a path of contacts relations (i.e. representing physical interactions). - - - - - - hasInteractionVolume - - hasInteractionVolume + + + + causal + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + The superclass of all causal EMMO relations. + causal + Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. +Embracing a strong reductionistic view, causality originates at quantum entities level. + The superclass of all causal EMMO relations. + Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - - - - - - hasBeginCharacterisationTask - - hasBeginCharacterizationTask - hasBeginCharacterisationTask - + + + + hasTemporalPart + A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. + A temporal part of an item cannot both cause and be caused by any other proper part of the item. - - - - hasBeginTask - hasBeginTask +A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. + hasTemporalPart + A relation that identify a proper item part of the whole, whose parts always cover the full spatial extension of the whole within a time interval. + A temporal part of an item cannot both cause and be caused by any other proper part of the item. + +A temporal part is not constraint to be causally self-connected, i.e. it can be either an item or a collection. We therefore introduce two subproperties in order to distinguish between both cases. + In EMMO FOL this is a defined property. In OWL temporal relations are primitive. - - - - - - hasReferent - A relation that connects the interpreter to the semiotic object in a semiotic process. - hasSemioticObject - hasReferent - A relation that connects the interpreter to the semiotic object in a semiotic process. + + + + + overlaps + The relation between two entities that share at least one of their parts. + overlaps + The relation between two entities that share at least one of their parts. - + + - + - hasCharacterisationSoftware + hasReferenceSample - hasCharacterizationSoftware - hasCharacterisationSoftware + hasReferenceSample - + + + + + + hasDataAcquisitionRate + + hasDataAcquisitionRate + + + - - isPartOf - isPartOf + + + + hasScatteredPortion + hasScatteredPortion - - - - - hasQuantity - Relates the result of a semiotic process to ont of its optained quantities. - hasQuantity - Relates the result of a semiotic process to ont of its optained quantities. + + + + + + hasDataQuality + + hasDataQuality - - + + - - - hasCognised - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. - hasCognised - A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + + + hasDescription + A semiotic relation that connects a declared semiotic object to a description in a declaration process. + hasDescription + A semiotic relation that connects a declared semiotic object to a description in a declaration process. - - - - - hasInterpretant - A relation that connects a semiotic object to the interpretant in a semiotic process. - hasInterpretant - A relation that connects a semiotic object to the interpretant in a semiotic process. + + + + + + hasManufacturedOutput + hasManufacturedOutput - - - - - - - equalsTo - Equality is here defined following a mereological approach. - The relation between two entities that stands for the same individuals. - equalsTo - The relation between two entities that stands for the same individuals. - Equality is here defined following a mereological approach. + + + + + hasProductOutput + hasProductOutput - - - - - hasDataset - - hasDataset + + + + + hasQuantity + Relates the result of a semiotic process to ont of its optained quantities. + hasQuantity + Relates the result of a semiotic process to ont of its optained quantities. - - - - - - hasTask - hasTask + + + + + + hasMetricPrefix + Relates a prefixed unit to its metric prefix part. + hasMetricPrefix - + + + + + hasModelledProperty + Assigns a quantity to an object via a well-defined modelling procedure. + hasModelledProperty + Assigns a quantity to an object via a well-defined modelling procedure. + + + - - isOvercrossedBy - isOvercrossedBy + + + + hasFractionalMember + hasFractionalMember - - + + + + + + isNotCauseOf + x isNotCauseOf y iff not(x isCauseOf y) + isNotCauseOf + x isNotCauseOf y iff not(x isCauseOf y) + + + - - - hasCharacterisationProperty + + hasCharacterisationComponent - hasCharacterizationProperty - hasCharacterisationProperty + hasCharacterizationComponent + hasCharacterisationComponent - - - - - hasMeasuredProperty - Assigns a quantity to an object via a well-defined measurement procedure. - hasMeasuredProperty - Assigns a quantity to an object via a well-defined measurement procedure. + + + + + + hasComponent + hasComponent - - + + + + + + hasPostProcessingModel + + hasPostProcessingModel + + + + - + - hasConstituent - The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. - hasConstituent - The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. + hasSubProcess + The relation between a process and one of its process parts. + hasSubProcess + The relation between a process and one of its process parts. - - - - - - hasDataProcessingThroughCalibration - - hasDataProcessingThroughCalibration + + + + + + hasTask + hasTask - - - - - - hasInteractionWithProbe - - hasInteractionWithProbe + + + + mereological + The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + The superclass of all mereological EMMO relations. + mereological + The superclass of all mereological EMMO relations. + The EMMO adheres to Atomistic General Extensional Mereology (AGEM). + + + + + + + + hasFractionalCollection + hasFractionalCollection @@ -943,207 +852,299 @@ It does not exclude the possibility of indirect causal routes between proper par The relation between an entity that overlaps another without being its part. - - + - - - hasSampleInspectionParameter + + + hasOperator - hasSampleInspectionParameter + hasOperator - - - - - - - contacts - A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). -It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). -Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. - An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. - Spatial contact is symmetric and irreflexive. - hasSpatiialnteractionWith - contacts - A spatial contact between two entities occurs when the two entities are in an interaction relation whose causal structure is a representation of the fundamental interactions between elementary particles (Feynman diagrams). -It means that if two entities are in contact, then there is at least a couple of elementary particles, one part of the first and one part of the second, interacting according to one of the fundamental interactions through virtual particles. This kind of connection is space-like (i.e. interconnecting force carrier particle is offshelf). -Contacts between two entities exclude the possibility of other causal relations that are not included in a fundamental space-like interaction. - An interaction that is the sum of direct causality relations between two entities that are interpretable as fundamental physical interactions. - Spatial contact is symmetric and irreflexive. - The contact relation is not an ordering relation since is symmetric. + + + + + hasAgent + The relation within a process and an agengt participant. + hasAgent + The relation within a process and an agengt participant. - - - - - hasMeasurementProbe + + + + + + hasDeducer + A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. + hasDeducer + A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. + + + + + + + + hasInterpreter + A relation connecting a sign to the interpreter in a semiotic process. + hasInterpreter + A relation connecting a sign to the interpreter in a semiotic process. + + + + + + + hasLab - hasMeasurementProbe + hasLab - - - - hasTemporalSection - A temporal part that is not a slice. - hasTemporalSection - A temporal part that is not a slice. + + + + + + hasCollaborationWith + hasCollaborationWith - + + + - - hasNonTemporalPart - The part is not connected with the rest item or members with hasNext relation (or its inverse). - hasNonTemporalPart - The part is not connected with the rest item or members with hasNext relation (or its inverse). + + + isSpatiallyRelatedWith + isSpatiallyRelatedWith - - + + + + + + + - + - hasIndex - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. - hasIndex - A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + hasInterpretant + A relation that connects a semiotic object to the interpretant in a semiotic process. + hasInterpretant + A relation that connects a semiotic object to the interpretant in a semiotic process. - - - - - - hasProcessingReproducibility - - hasProcessingReproducibility + + + + + + hasSign + A relation that connects the semiotic object to the sign in a semiotic process. + hasSign + A relation that connects the semiotic object to the sign in a semiotic process. - - - - - - hasComponent - hasComponent + + + + + hasJunctionPart + The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. + hasSpatioTemporalPart + hasJunctionPart + The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - - - - - hasMeasurementDetector - - hasMeasurementDetector + + + + hasHeterogeneousPart + The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. + hasHeterogeneousPart + The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - - + + + + + + hasVariable + hasVariable + + + - - - hasSampledSample + + + requiresLevelOfExpertise - hasSampledSample + requiresLevelOfExpertise - - + + - - - hasPhysicsOfInteraction + + + hasSampleBeforeSamplePreparation + hasSampleForPreparation - hasPhysicsOfInteraction + hasSampleBeforeSamplePreparation - - - - hasModel - hasModel + + + + isOvercrossedBy + isOvercrossedBy - - - - - - hasReferencePart - Relates a quantity to its reference unit through spatial direct parthood. - hasReferencePart - Relates a quantity to its reference unit through spatial direct parthood. + + + + + + hasHolisticRelation + The relation between a holistic whole and its related entities, being them parts or other overlapping entities. + hasHolisticRelation + The relation between a holistic whole and its related entities, being them parts or other overlapping entities. - - - - - - hasUnitSymbol - Relates a prefixed unit to its unit symbol part. - hasUnitSymbol - Relates a prefixed unit to its unit symbol part. + + + + + + properOverlaps + The relation between two entities that overlaps and neither of both is part of the other. + properOverlaps + The relation between two entities that overlaps and neither of both is part of the other. - - - - - - hasUnitNonPrefixPart - Relates a prefixed unit to its non-prefixed part. - hasUnitNonPrefixPart - Relates a prefixed unit to its non-prefixed part. - For example the unit CentiNewtonMetre has prefix "Centi" and non-prefix part "NewtonMetre". + + + + + + hasParticipant + Participation is a parthood relation: you must be part of the process to contribute to it. A participant whose 4D extension is totally contained within the process. + +Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters. + The relation between a process and an object participating to it, i.e. that is relevant to the process itself. + hasParticipant + The relation between a process and an object participating to it, i.e. that is relevant to the process itself. - + + - - - hasOperator + + + hasSampledSample - hasOperator + hasSampledSample - + + - - - hasAgent - The relation within a process and an agengt participant. - hasAgent - The relation within a process and an agengt participant. + + hasOutput + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. + hasOutput + The outcome of a process. + The partial overlapping is required since the creating process is distinct with the process in which the output is used or consumed. - - + + - + - hasPostProcessingModel + hasCharacterisationMeasurementInstrument - hasPostProcessingModel + hasCharacterizationMeasurementInstrument + hasCharacterisationMeasurementInstrument - + + + + + + hasSampleForInspection + + hasSampleForInspection + + + + + + + + hasSamplePreparationInstrument + + hasSamplePreparationInstrument + + + + + + + hasServiceOutput + hasServiceOutput + + + + + + + + hasCognised + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + hasCognised + A semiotic relation connecting a recognising interpreter to the "cognised" semiotic object in a cognition process. + + + + + + + + hasReferent + A relation that connects the interpreter to the semiotic object in a semiotic process. + hasSemioticObject + hasReferent + A relation that connects the interpreter to the semiotic object in a semiotic process. + + + + + + + + equalsTo + Equality is here defined following a mereological approach. + The relation between two entities that stands for the same individuals. + equalsTo + The relation between two entities that stands for the same individuals. + Equality is here defined following a mereological approach. + + + + - causal - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. - The superclass of all causal EMMO relations. - causal - Causality is the fundamental concept describing how entities affect each other, and occurs before time and space relations. -Embracing a strong reductionistic view, causality originates at quantum entities level. - The superclass of all causal EMMO relations. - Each pair of entities is either in isCauseOf or isNotCauseOf relation. The two are mutually exclusive. + semiotical + The generic EMMO semiotical relation. + semiotical + The generic EMMO semiotical relation. @@ -1157,57 +1158,50 @@ Embracing a strong reductionistic view, causality originates at quantum entities The class for all relations used by the EMMO. - - - - - - hasMeasurementTime - - hasMeasurementTime - - - - - - - - hasManufacturedOutput - hasManufacturedOutput + + + + + + hasConstituent + The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. + hasConstituent + The relation between an object and one of its holistic part that contributes to the object under some spatial-based criteria. - - - - - hasModelledProperty - Assigns a quantity to an object via a well-defined modelling procedure. - hasModelledProperty - Assigns a quantity to an object via a well-defined modelling procedure. + + + + hasBeginTask + hasBeginTask - - - - hasNonMaximalPart - hasNonMaximalPart + + + + + + hasConstitutiveProcess + hasConstitutiveProcess - - - - isPortionPartOf - isPortionPartOf + + + + + + hasStatus + hasStatus - - - - - - hasSamplePreparationInstrument - - hasSamplePreparationInstrument + + + + + hasResourceIdentifier + Relates a resource to its identifier. + hasResourceIdentifier + Relates a resource to its identifier. @@ -1220,56 +1214,14 @@ Embracing a strong reductionistic view, causality originates at quantum entities A temporal part that is a collection. - - - - hasTemporalSlice - A temporal part that capture the overall spatial extension of the causal object. - hasTemporalSlice - A temporal part that capture the overall spatial extension of the causal object. - - - - - - - - hasCharacterisationProcedureValidation - - hasCharacterisationProcedureValidation - - - - - - - - hasMeasurementSample - - hasMeasurementSample - - - - - - - - isNotCauseOf - x isNotCauseOf y iff not(x isCauseOf y) - isNotCauseOf - x isNotCauseOf y iff not(x isCauseOf y) - - - - - - - - - - - - + + + + + hasOutcome + The relation between a process and the entity that represents how things have turned out. + hasOutcome + The relation between a process and the entity that represents how things have turned out. @@ -1283,34 +1235,25 @@ Embracing a strong reductionistic view, causality originates at quantum entities A semiotic relation that connects a recognised semiotic object to an icon in a cognition process. - - - - - hasJunctionPart - The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - hasSpatioTemporalPart - hasJunctionPart - The part is connected with the rest item or members with hasNext (or its inverse) and hasContact relations only. - - - - - - hasHeterogeneousPart - The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - hasHeterogeneousPart - The part is not connected with the rest item or members with hasNext (or its inverse) only or hasContact relations only. - - - - + + - - - hasReferenceSample + + + hasMeasurementParameter - hasReferenceSample + hasMeasurementParameter + + + + + + + + hasCogniser + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + hasCogniser + A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. @@ -1322,149 +1265,192 @@ Embracing a strong reductionistic view, causality originates at quantum entities hasCharacterisationInput - - - - - - hasSubItem - hasSubItem + + + + + hasMeasurementProbe + + hasMeasurementProbe - - + + - - hasOutcome - The relation between a process and the entity that represents how things have turned out. - hasOutcome - The relation between a process and the entity that represents how things have turned out. + + + hasBehaviour + hasBehaviour - + - - hasCharacterisationTask + + hasBeginCharacterisationTask - hasCharacterizationTask - hasCharacterisationTask + hasBeginCharacterizationTask + hasBeginCharacterisationTask - + + - + - requiresLevelOfExpertise + hasCharacterisationEnvironmentProperty - requiresLevelOfExpertise + hasCharacterizationEnvironmentProperty + hasCharacterisationEnvironmentProperty - - + + + + + + hasCharacteriser + hasCharacteriser + + + + - - - hasDeduced - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - hasDeduced - A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + + + hasDeclarer + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. + hasDeclarer + A semiotic relation connecting a conventional sign to the interpreter (declarer) in a declaration process. - - - - - hasMaximalPart - hasMaximalPart + + + + + hasMeasurementDetector + + hasMeasurementDetector - - + + - hasCharacterisationMeasurementInstrument + hasInstrumentForCalibration - hasCharacterizationMeasurementInstrument - hasCharacterisationMeasurementInstrument + hasInstrumentForCalibration - - + + + + isGatheredPartOf + isGatheredPartOf + + + + + + isPortionPartOf + isPortionPartOf + + + + - - - hasMeasurementParameter + + + hasProcessingReproducibility - hasMeasurementParameter + hasProcessingReproducibility - - + + + + + + + + hasInterval + The relation between a process whole and a temporal part of the same type. + hasInterval + The relation between a process whole and a temporal part of the same type. + + + + + + + + hasStage + hasStage + + + + - - - hasCharacterisationEnvironmentProperty + + hasSampleInspectionInstrument - hasCharacterizationEnvironmentProperty - hasCharacterisationEnvironmentProperty + hasSampleInspectionInstrument - - - - - - hasCharacteriser - hasCharacteriser + + + + hasCharacterisationOutput + + hasCharacterizationOutput + hasCharacterisationOutput - - + + - - - hasLevelOfAutomation + + + hasSamplePreparationParameter - hasLevelOfAutomation + hasSamplePreparationParameter - - + + - - - hasDataQuality + + + hasSampleInspectionParameter - hasDataQuality + hasSampleInspectionParameter - - - - - hasTemporalItemSlice - A temporal part that is an item. - hasTemporalItemSlice - A temporal part that is an item. + + + + + + hasInteractionVolume + + hasInteractionVolume - - + - - + + - - - - - - hasCollaborationWith - hasCollaborationWith + + + + + hasDataset + + hasDataset @@ -1477,150 +1463,157 @@ Embracing a strong reductionistic view, causality originates at quantum entities hasHolder - - - - - - hasSubProcess - The relation between a process and one of its process parts. - hasSubProcess - The relation between a process and one of its process parts. + + + + + + hasLevelOfAutomation + + hasLevelOfAutomation - - - - - - - notOverlaps - notOverlaps + + + + + + hasDeduced + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. + hasDeduced + A semiotic relation connecting a decucing interpreter to the "deduced" semiotic object in a deduction process. - - + - + - hasAccessConditions + hasHazard - hasAccessConditions - - - - - - - - hasSubCollection - hasSubCollection + hasHazard - - + + - - - hasDeducer - A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. - hasDeducer - A semiotic relation connecting an index sign to the interpreter (deducer) in a deduction process. + + + hasIndex + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. + hasIndex + A semiotic relation that connects a deduced semiotic object to an indexin a deduction process. - + - - - - hasFractionalCollection - hasFractionalCollection + + hasTemporalSection + A temporal part that is not a slice. + hasTemporalSection + A temporal part that is not a slice. - - - - - hasConventionalProperty - An object can be represented by a quantity for the fact that it has been recognized to belong to a specific class. + + + + + + hasDataProcessingThroughCalibration + + hasDataProcessingThroughCalibration + -The quantity is selected without an observation aimed to measure its actual value, but by convention. - Assigns a quantity to an object by convention. - hasConventionalProperty - Assigns a quantity to an object by convention. - An Hydrogen atom has the quantity atomic number Z = 1 as its conventional property. + + + + + + hasCharacterisationTask + + hasCharacterizationTask + hasCharacterisationTask - - + + - - + + + hasInteractionWithSample + + hasInteractionWithSample - - - - - - hasFractionalMember - hasFractionalMember + + + + + + hasHardwareSpecification + + hasHardwareSpecification - - - - - - hasStage - hasStage + + + + + + hasPeerReviewedArticle + + hasPeerReviewedArticle - - - - - - hasSubObject - hasSubObject + + + + + + hasReferencePart + Relates a quantity to its reference unit through spatial direct parthood. + hasReferencePart + Relates a quantity to its reference unit through spatial direct parthood. - - - - - - hasCogniser - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. - hasCogniser - A semiotic relation connecting an icon to a interpreter (cogniser) in a cognision process. + + + + hasSpatialSection + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + hasSpatialPartialPart + hasSpatialSection + A proper part of the whole that is not Spatial or Temporal. + This relation identifies parts of a 4D object that do not fully cover the lifetime extent of the whole (spatial) nor the full spatial extent (temporal). + This relation is a filler, to categorise the parts of an entity that are not covered by the other parthood relations. +A proper part is then the disjoint union of: spatial part, temporal part and spatio temporal part relations. - + + - - hasCharacterisationComponent + + + hasAccessConditions - hasCharacterizationComponent - hasCharacterisationComponent + hasAccessConditions - - - - - - hasMaximalCollection - hasMaximalCollection + + + + + - - - - - - hasBehaviour - hasBehaviour + + + + + + hasInteractionWithProbe + + hasInteractionWithProbe @@ -1643,18 +1636,6 @@ The quantity is selected without an observation aimed to measure its actual valu The owl:dataProperty that provides a serialisation of an EMMO numerical data entity. - - - - - hasDataValue - The owl:dataProperty that provides a serialisation of an EMMO data entity. - This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). - hasDataValue - The owl:dataProperty that provides a serialisation of an EMMO data entity. - This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). - - @@ -1667,29 +1648,79 @@ The quantity is selected without an observation aimed to measure its actual valu The owl:dataProperty that provides a serialisation of an EMMO symbol data entity. - + - hasUniqueID - A string representing the UniqueID of a CharacterisationHardware - hasUniqueID - A string representing the UniqueID of a CharacterisationHardware + hasModel + A string representing the model of a CharacterisationHardware + hasModel + A string representing the model of a CharacterisationHardware - + + + + hasURLValue + hasURLValue + + + + + + + hasURIValue + hasURIValue + + + - hasManufacturer - A string representing the Manufacturer of a CharacterisationHardware - hasManufacturer - A string representing the Manufacturer of a CharacterisationHardware + hasUniqueID + A string representing the UniqueID of a CharacterisationHardware + hasUniqueID + A string representing the UniqueID of a CharacterisationHardware - + + + + + + + hasStringValue + The owl:dataProperty that provides a serialisation of an EMMO string data entity. + hasStringValue + The owl:dataProperty that provides a serialisation of an EMMO string data entity. + + + + + + + hasDataValue + The owl:dataProperty that provides a serialisation of an EMMO data entity. + This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). + hasDataValue + The owl:dataProperty that provides a serialisation of an EMMO data entity. + This is the superproperty of all data properties used to serialise a fundamental data type in the EMMO Data perspective. An entity can have only one data value expressing its serialisation (e.g. a Real entity cannot have two different real values). + + + + + + + + hasManufacturer + A string representing the Manufacturer of a CharacterisationHardware + hasManufacturer + A string representing the Manufacturer of a CharacterisationHardware + + + @@ -1706,44 +1737,6 @@ The quantity is selected without an observation aimed to measure its actual valu hasURNValue - - - - - hasURIValue - hasURIValue - - - - - - - - hasModel - A string representing the model of a CharacterisationHardware - hasModel - A string representing the model of a CharacterisationHardware - - - - - - hasURLValue - hasURLValue - - - - - - - - - hasStringValue - The owl:dataProperty that provides a serialisation of an EMMO string data entity. - hasStringValue - The owl:dataProperty that provides a serialisation of an EMMO string data entity. - - @@ -1752,47 +1745,15 @@ The quantity is selected without an observation aimed to measure its actual valu - - - - - - - - - - - - - - - - - - - - - - - - omReference - IRI to corresponding concept in the Ontology of units of Measure. - https://enterpriseintegrationlab.github.io/icity/OM/doc/index-en.html - https://github.com/HajoRijgersberg/OM - omReference - IRI to corresponding concept in the Ontology of units of Measure. - - - - - - metrologicalReference - metrologicalReference - - - + - + + comment + A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. + A text that add some information about the entity. + comment + A text that add some information about the entity. + A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. @@ -1811,33 +1772,30 @@ The quantity is selected without an observation aimed to measure its actual valu An elucidation should address the real world entities using the concepts introduced by the conceptualisation annotation. - - - - - - - - IEVReference - URL for the entry in the International Electrotechnical Vocabulary (IEV). - https://www.electropedia.org/ - IEVReference - URL for the entry in the International Electrotechnical Vocabulary (IEV). + + - + - comment - A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. - A text that add some information about the entity. - comment - A text that add some information about the entity. - A comment can be addressed to facilitate interpretation, to suggest possible usage, to clarify the concepts behind each entity with respect to other ontological apporaches. + conceptualisation + A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. + The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. + conceptualisation + The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. + A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. + An elucidation can provide references to external knowledge sources (i.e. ISO, Goldbook, RoMM). - - + + + + + figure + A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. + figure + A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. @@ -1849,24 +1807,65 @@ The quantity is selected without an observation aimed to measure its actual valu Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - + + + + + + + + ISO14040Reference + ISO14040Reference + + + - - - figure - A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. - figure - A link to a graphical representation aimed to facilitate understanding of the concept, or of an annotation. + - + + + + + + uneceCommonCode + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + uneceCommonCode + The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. + + + - - iupacReference - DOI to corresponding concept in IUPAC - https://goldbook.iupac.org/ - iupacReference + metrologicalReference + metrologicalReference + + + + + + + + + + + + + + + + + + + + + + + + + + ISO9000Reference + ISO9000Reference @@ -1883,16 +1882,29 @@ The quantity is selected without an observation aimed to measure its actual valu The Unified Code for Units of Measure (UCUM) is a code system intended to include all units of measures being contemporarily used in international science, engineering, and business. The purpose is to facilitate unambiguous electronic communication of quantities together with their units. - + - - + + + + IEVReference + URL for the entry in the International Electrotechnical Vocabulary (IEV). + https://www.electropedia.org/ + IEVReference + URL for the entry in the International Electrotechnical Vocabulary (IEV). - - + + + + + dbpediaReference + URL to corresponding dpbedia entry. + https://wiki.dbpedia.org/ + dbpediaReference + URL to corresponding dpbedia entry. @@ -1907,27 +1919,27 @@ The quantity is selected without an observation aimed to measure its actual valu The term in the International vocabulary of metrology (VIM) (JCGM 200:2008) that corresponds to the annotated term in EMMO. - - - - - - uneceCommonCode - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - uneceCommonCode - The UN/CEFACT Recommendation 20 provides three character alphabetic and alphanumeric codes for representing units of measurement for length, area, volume/capacity, mass (weight), time, and other quantities used in international trade. The codes are intended for use in manual and/or automated systems for the exchange of information between participants in international trade. - - - + - conceptualisation - A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. - The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. - conceptualisation - The conceptualisation annotation is a comment that helps the reader to understand how the world has been conceptualised by the ontology authors. - A conceptualisation is the preliminary step behind each theory, preceding each logical formalisation. The readers approaching an ontology entity should first read the conceptualisation annotation to clearly understand "what we are talking about" and the accompanying terminology, and then read the elucidation. - An elucidation can provide references to external knowledge sources (i.e. ISO, Goldbook, RoMM). + etymology + Definitions are usually taken from Wiktionary. + The etymology annotation explains the origin of a word and the historical development of its meaning. + etymology + The etymology annotation explains the origin of a word and the historical development of its meaning. + Definitions are usually taken from Wiktionary. + The etymology annotation is usually applied to rdfs:label entities, to better understand the connection between a label and the concept it concisely represents. + + + + + + ISO80000Reference + Corresponding item number in ISO 80 000. + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en + ISO80000Reference + Corresponding item number in ISO 80 000. + 3-1.1 (ISO80000 reference to length) @@ -1941,8 +1953,25 @@ The quantity is selected without an observation aimed to measure its actual valu A definition univocally determines a OWL entity using necessary and sufficient conditions referring to other OWL entities. - - + + + + + wikipediaReference + URL to corresponding Wikipedia entry. + https://www.wikipedia.org/ + wikipediaReference + URL to corresponding Wikipedia entry. + + + + + + + iupacReference + DOI to corresponding concept in IUPAC + https://goldbook.iupac.org/ + iupacReference @@ -1954,31 +1983,15 @@ The quantity is selected without an observation aimed to measure its actual valu Illustrative example of how the entity is used. - + - etymology - Definitions are usually taken from Wiktionary. - The etymology annotation explains the origin of a word and the historical development of its meaning. - etymology - The etymology annotation explains the origin of a word and the historical development of its meaning. - Definitions are usually taken from Wiktionary. - The etymology annotation is usually applied to rdfs:label entities, to better understand the connection between a label and the concept it concisely represents. - - - - - - - - - - - dbpediaReference - URL to corresponding dpbedia entry. - https://wiki.dbpedia.org/ - dbpediaReference - URL to corresponding dpbedia entry. + contact + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. + contact + A person or organisation acting as a contact point for enquiries about the ontology resource + The annotation should include an email address. @@ -1991,31 +2004,16 @@ The quantity is selected without an observation aimed to measure its actual valu URL to corresponing entity in QUDT. - - - + + - - - - ISO80000Reference - Corresponding item number in ISO 80 000. - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en - ISO80000Reference - Corresponding item number in ISO 80 000. - 3-1.1 (ISO80000 reference to length) + + - - - - contact - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. - contact - A person or organisation acting as a contact point for enquiries about the ontology resource - The annotation should include an email address. + + @@ -2028,235 +2026,244 @@ The quantity is selected without an observation aimed to measure its actual valu URL corresponding to entry in Wikidata. - - + + - + - - - - - wikipediaReference - URL to corresponding Wikipedia entry. - https://www.wikipedia.org/ - wikipediaReference - URL to corresponding Wikipedia entry. + + + + omReference + IRI to corresponding concept in the Ontology of units of Measure. + https://enterpriseintegrationlab.github.io/icity/OM/doc/index-en.html + https://github.com/HajoRijgersberg/OM + omReference + IRI to corresponding concept in the Ontology of units of Measure. - - - - ISO14040Reference - ISO14040Reference + + + - - + + - + - - - - ISO9000Reference - ISO9000Reference + + - - + + - + - + - + - + - - + + - - - - CommercialProduct - An product that is ready for commercialisation. - Product - CommercialProduct - An product that is ready for commercialisation. + + + MesoscopicModel + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. + MesoscopicModel + A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - - - + + + + + PureParallelWorkflow + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + EmbarassinglyParallelWorkflow + PureParallelWorkflow + A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + + + + + + Arrangement + A causal object which is tessellated with only spatial direct parts. + The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. +This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. + The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. + MereologicalState + Arrangement + A causal object which is tessellated with only spatial direct parts. + e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. + +If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. + + + + + + ParallelWorkflow + ParallelWorkflow + + + + + WNegativeBoson + WNegativeBoson + + + + + + + InternalStep + A generic step in a workflow, that is not the begin or the end. + InternalStep + A generic step in a workflow, that is not the begin or the end. + + + + + + - - + + + - Product - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. - Output - Product - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 - https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 - The overall lifetime of an holistic that has been the output of an intentional process. - This concepts encompass the overall lifetime of a product. -Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. -A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. -It must have and initial stage of its life that is also an outcome of a intentional process. + Step + A step is part of a specific granularity level for the workflow description, as composition of tasks. + A task that is a well formed tile of a workflow, according to a reductionistic description. + Step + A task that is a well formed tile of a workflow, according to a reductionistic description. + A step is part of a specific granularity level for the workflow description, as composition of tasks. - - - - - - - - - - - - - - - PhysicalConstant - Physical constants are categorised into "exact" and measured constants. - -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - PhysicalConstant - Physical constants are categorised into "exact" and measured constants. - -With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. - https://en.wikipedia.org/wiki/List_of_physical_constants + + + + ThroughTile + A tile that has next and is next of other tiles within the same tessellation. + ThroughTile + A tile that has next and is next of other tiles within the same tessellation. - - - - - - - - - - - - - - - - - - - - PhysicalQuantity - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. - In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. -ISO 80000-1 - Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. - -Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. - Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. - -For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. - -However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. - -For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. - -As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). - — quantities of the same kind have the same quantity dimension, -— quantities of different quantity dimensions are always of different kinds, and -— quantities having the same quantity dimension are not necessarily of the same kind. -ISO 80000-1 - PhysicalQuantity - A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + + + + Hazard + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. + Hazard + Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - - + + - - + + - - - KnownConstant - A variable that stand for a well known numerical constant (a known number). - KnownConstant - A variable that stand for a well known numerical constant (a known number). - π refers to the constant number ~3.14 + Property + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). + Property + A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. + Hardness is a subclass of properties. +Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. + The name "red" which is atomic in the code made of the list of colors. + A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - - - - Numerical - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - Numerical - A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + + + + + MultiplicationFactor + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + MultiplicationFactor + https://qudt.org/vocab/quantitykind/MultiplicationFactor + https://www.wikidata.org/wiki/Q99440471 + 10-78.1 + Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - - - - Constant - A variable that stand for a numerical constant, even if it is unknown. - Constant - A variable that stand for a numerical constant, even if it is unknown. + + + + AtomicAndNuclearPhysicsQuantity + Quantities categorised according to ISO 80000-10. + AtomicAndNuclearPhysicsQuantity + Quantities categorised according to ISO 80000-10. - + + + + RatioQuantity + Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). + +Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 + RatioQuantity + http://qudt.org/vocab/quantitykind/DimensionlessRatio + The class of quantities that are the ratio of two quantities with the same physical dimensionality. + refractive index, +volume fraction, +fine structure constant + + + - T+4 L0 M-1 I+2 Θ0 N0 J0 + T0 L-2 M0 I+1 Θ-1 N0 J0 - SquareCurrentQuarticTimePerMassUnit - SquareCurrentQuarticTimePerMassUnit + ElectricCurrentDensityPerTemperatureUnit + ElectricCurrentDensityPerTemperatureUnit - + SIDimensionalUnit Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI). @@ -2300,59 +2307,23 @@ Examples of correspondance between dimensional units and their dimensional units - ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0" - - - - ComplexPower - Voltage phasor multiplied by complex conjugate of the current phasor. - ComplexApparentPower - ComplexPower - https://qudt.org/vocab/quantitykind/ComplexPower - https://www.wikidata.org/wiki/Q65239736 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 - 6-59 - Voltage phasor multiplied by complex conjugate of the current phasor. - - - - - - - - - - - - - - Power - Rate of transfer of energy per unit time. - Power - http://qudt.org/vocab/quantitykind/Power - 4-27 - 6-45 - Rate of transfer of energy per unit time. - https://doi.org/10.1351/goldbook.P04792 - - - + - + - - - MolecularConcentration - Number of molecules of a substance in a mixture per volume. - MolecularConcentration - https://qudt.org/vocab/quantitykind/MolecularConcentration - https://www.wikidata.org/wiki/Q88865973 - 9-9.2 - Number of molecules of a substance in a mixture per volume. + + + SecondPolarMomentOfArea + SecondPolarMomentOfArea + https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea + https://www.wikidata.org/wiki/Q1049636 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 + 4-21.2 @@ -2365,361 +2336,379 @@ Examples of correspondance between dimensional units and their dimensional units Derived quantities defined in the International System of Quantities (ISQ). - + - PhysioChemicalQuantity - Quantities categorised according to ISO 80000-9. - PhysioChemicalQuantity - Quantities categorised according to ISO 80000-9. + MechanicalQuantity + Quantities categorised according to ISO 80000-4. + MechanicalQuantity + Quantities categorised according to ISO 80000-4. - + + + + + + + - Concentration - the abundance of a constituent divided by the total volume of a mixture. - Concentration - https://qudt.org/vocab/quantitykind/Concentration - https://www.wikidata.org/wiki/Q3686031 - https://dbpedia.org/page/Concentration - the abundance of a constituent divided by the total volume of a mixture. - https://en.wikipedia.org/wiki/Concentration - https://goldbook.iupac.org/terms/view/C01222 + + SecondAxialMomentOfArea + SecondAxialMomentOfArea + https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea + https://www.wikidata.org/wiki/Q91405496 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 + 4-21.1 - + + + + FreeForming + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + Non la metterei + Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). + FreeForming + + + + + + CompressiveForming + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. + lasciano tensioni residue di compressione + Druckumformen + CompressiveForming + + + - - - SpeedOfLightInVacuum - The speed of light in vacuum. Defines the base unit metre in the SI system. - SpeedOfLightInVacuum - http://qudt.org/vocab/constant/SpeedOfLight_Vacuum - 6-35.2 - The speed of light in vacuum. Defines the base unit metre in the SI system. - https://doi.org/10.1351/goldbook.S05854 + + + StaticFrictionCoefficient + CoefficientOfStaticFriction + StaticFrictionFactor + StaticFrictionCoefficient + https://www.wikidata.org/wiki/Q73695673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 + 4-23.1 - + + + + + CoefficientOfFriction + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + FrictionCoefficient + FrictionFactor + CoefficientOfFriction + https://www.wikidata.org/wiki/Q1932524 + Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. + https://doi.org/10.1351/goldbook.F02530 + + + - + - Speed - Length per unit time. - -Speed in the absolute value of the velocity. - Speed - http://qudt.org/vocab/quantitykind/Speed - 3-8.2 - https://doi.org/10.1351/goldbook.S05852 + + ParticleFluence + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. + ParticleFluence + https://qudt.org/vocab/quantitykind/ParticleFluence + https://www.wikidata.org/wiki/Q82965908 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 + 10-43 + Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - + - - SIExactConstant - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - SIExactConstant - Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + + + + + T-3 L+2 M+1 I-1 Θ-1 N0 J0 + + + ElectricPotentialPerTemperatureUnit + ElectricPotentialPerTemperatureUnit - - + + + GreenUpAntiQuark + GreenUpAntiQuark + + + + - - + + + 1 - - - - - - Velocity - The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. + + + + + + + + + + + + + + Real + A real number. + Real + A real number. + --- IEC, note 2 - The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. + + + + + Number + A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. + A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). + A numerical data value. + In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. +More than one numeral stands for the same number. +In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). +Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). +The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. +For these reasons, the EMMO will consider numerals and numbers as the same concept. + Numeral + Number + A numerical data value. + --- IEC, note 1 - Vector quantity giving the rate of change of a position vector. + + + + + + + + + + + + + JunctionTile + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + JunctionTile + A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + --- ISO 80000-3 - Velocity - http://qudt.org/vocab/quantitykind/Velocity - https://www.wikidata.org/wiki/Q11465 - Vector quantity giving the rate of change of a position vector. + + + + AssemblyLine + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. + AssemblyLine + A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + --- ISO 80000-3 - 3-8.1 - 3‑10.1 + + + + ManufacturingSystem + A system arranged to setup a specific manufacturing process. + ManufacturingSystem + A system arranged to setup a specific manufacturing process. - - + + - - + + - - Vector - 1-dimensional array who's spatial direct parts are numbers. - LinearArray - 1DArray - Vector - 1-dimensional array who's spatial direct parts are numbers. + SpatialTiling + A well formed tessellation with tiles that all spatial. + SpatialTiling + A well formed tessellation with tiles that all spatial. - + - - Intensive - A quantity whose magnitude is independent of the size of the system. - Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. - Intensive - A quantity whose magnitude is independent of the size of the system. - Temperature -Density -Pressure -ChemicalPotential + + + + + + + + + LinearDensityOfElectricCharge + The derivative of the electric charge of a system with respect to the length. + LinearDensityOfElectricCharge + https://www.wikidata.org/wiki/Q77267838 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 + 6-5 + The derivative of the electric charge of a system with respect to the length. - + - SpaceAndTimeQuantity - Quantities categorised according to ISO 80000-3. - SpaceAndTimeQuantity - Quantities categorised according to ISO 80000-3. - - - - - - - NucleonNumber - number of nucleons in an atomic nucleus - MassNumber - NucleonNumber - https://qudt.org/vocab/quantitykind/NucleonNumber - https://www.wikidata.org/wiki/Q101395 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 - https://dbpedia.org/page/Mass_number - 10-1.3 - number of nucleons in an atomic nucleus - https://en.wikipedia.org/wiki/Mass_number - https://doi.org/10.1351/goldbook.M03726 - - - - - - AtomicAndNuclearPhysicsQuantity - Quantities categorised according to ISO 80000-10. - AtomicAndNuclearPhysicsQuantity - Quantities categorised according to ISO 80000-10. - - - - - - PureNumberQuantity - A pure number, typically the number of something. - According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. - -This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. - -There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. - PureNumberQuantity - A pure number, typically the number of something. - 1, -i, -π, -the number of protons in the nucleus of an atom + ElectromagneticQuantity + Quantities categorised according to ISO 80000-6. + ElectromagneticQuantity + Quantities categorised according to ISO 80000-6. - - - - Chronoamperometry - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - AmperiometricDetection - AmperometricCurrentTimeCurve - Chronoamperometry - Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. - https://doi.org/10.1515/pac-2018-0109 + + + + ThermalCutting + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + Thermisches Abtragen + ThermalCutting + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - - - - Amperometry - Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - Amperometry - The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + StandaloneAtom + A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. + An atom that does not share electrons with other atoms. + StandaloneAtom + An atom that does not share electrons with other atoms. - - + + - - + + - - - ExposureRate - Time derivative of exposure. - ExposureRate - https://qudt.org/vocab/quantitykind/ExposureRate - https://www.wikidata.org/wiki/Q99720212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 - 10-89 - Time derivative of exposure. - + + + + + + + + Atom + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - - - - PhysicalBasedSimulationSoftware - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - PhysicalBasedSimulationSoftware - A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. - +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - - - - - SimulationApplication - An application aimed to functionally reproduce an object. - SimulationApplication - An application aimed to functionally reproduce an object. - An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + ChemicalElement + Atom + A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. + +An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. + +In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. + +We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. + An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - + - + + - - + + T-1 L0 M0 I0 Θ+1 N0 J0 - - - - MassEnergyTransferCoefficient - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R - MassEnergyTransferCoefficient - https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient - https://www.wikidata.org/wiki/Q99714619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 - 10-87 - For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + + TemperaturePerTimeUnit + TemperaturePerTimeUnit - + - + - - - SpecificActivity - Quotient of the activity A of a sample and the mass m of that sample. - MassicActivity - SpecificActivity - https://qudt.org/vocab/quantitykind/SpecificActivity - https://www.wikidata.org/wiki/Q2823748 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 - 10-28 - Quotient of the activity A of a sample and the mass m of that sample. - https://doi.org/10.1351/goldbook.S05790 - - - - - - - - - - - - - ManufacturedMaterial - A material that is obtained through a manufacturing process. - EngineeredMaterial - ProcessedMaterial - ManufacturedMaterial - A material that is obtained through a manufacturing process. + + + ThermodynamicTemperature + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + ThermodynamicTemperature + http://qudt.org/vocab/quantitykind/ThermodynamicTemperature + 5-1 + Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. + https://doi.org/10.1351/goldbook.T06321 - + - - - ResonanceEscapeProbability - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - ResonanceEscapeProbability - https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability - https://www.wikidata.org/wiki/Q4108072 - 10-68 - In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + + Intensive + A quantity whose magnitude is independent of the size of the system. + Note that not all physical quantities can be categorised as being either intensive or extensive. For example the square root of the mass. + Intensive + A quantity whose magnitude is independent of the size of the system. + Temperature +Density +Pressure +ChemicalPotential - + - - Probability - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. - Probability - Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. - https://doi.org/10.1351/goldbook.P04855 + + ThermodynamicalQuantity + Quantities categorised according to ISO 80000-5. + ThermodynamicalQuantity + Quantities categorised according to ISO 80000-5. - - - - Riveting - Riveting - - - - - - FormingJoin - FormingJoin - - - - - DiscreteData - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - Data whose variations are decoded according to a discrete schema. - DiscreteData - Data whose variations are decoded according to a discrete schema. - A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. - A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. -Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + + + + + DebyeAngularFrequency + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. + DebyeAngularFrequency + https://qudt.org/vocab/quantitykind/DebyeAngularFrequency + https://www.wikidata.org/wiki/Q105580986 + 12-10 + Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. @@ -2731,200 +2720,274 @@ Discrete does not mean tha the material basis is discrete, but that the data are Quantities categorised according to ISO 80000-12. - + - - ISO80000Categorised - ISO80000Categorised + + AngularFrequency + Rate of change of the phase angle. + AngularFrequency + https://qudt.org/vocab/quantitykind/AngularFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 + https://dbpedia.org/page/Angular_frequency + 3-18 + Rate of change of the phase angle. + https://en.wikipedia.org/wiki/Angular_frequency + https://doi.org/10.1351/goldbook.A00352 - - - - Determined - Determined + + + Description + A coded that is not atomic with respect to a code of description. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + Description + A coded that is not atomic with respect to a code of description. + A biography. + A sentence about some object, depticting its properties. + A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. - - - Declared - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - Declared - A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + + + + URI + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + URI + https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] - - - - - - - + + + + + + + + + + + + SemioticObject + Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. + +The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. + +In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). + The object, in Peirce semiotics, as participant to a semiotic process. + Object + SemioticObject + The object, in Peirce semiotics, as participant to a semiotic process. + + + + + + + - - + - - - - CompositePhysicalParticle - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - CompositePhysicalParticle - A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + + + + + Observation + A characterisation of an object with an actual interaction. + Observation + A characterisation of an object with an actual interaction. - - - - Gluing - Process for joining two (base) materials by means of an adhesive polymer material - Kleben - Gluing + + + + Heat + Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. + AmountOfHeat + Heat + http://qudt.org/vocab/quantitykind/Heat + 5-6.1 + https://doi.org/10.1351/goldbook.H02752 - + - + + - - IonNumberDensity - Number of ions per volume. - IonDensity - IonNumberDensity - https://www.wikidata.org/wiki/Q98831218 - 10-62.2 - Number of ions per volume. - - - - - - - - - T0 L0 M0 I0 Θ0 N0 J+1 - - - LuminousIntensityUnit - LuminousIntensityUnit - - - - - - Nailing - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). - Nageln - Nailing + Energy + A property of objects which can be transferred to other objects or converted into different forms. + Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. + Energy + http://qudt.org/vocab/quantitykind/Energy + 5-20-1 + A property of objects which can be transferred to other objects or converted into different forms. + https://doi.org/10.1351/goldbook.E02101 - + - - - MassDefect - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - MassDefect - https://qudt.org/vocab/quantitykind/MassDefect - https://www.wikidata.org/wiki/Q26897126 - 10-21.2 - Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + + + PhaseSpeedOfElectromagneticWaves + Angular frequency divided by angular wavenumber. + PhaseSpeedOfElectromagneticWaves + https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed + https://www.wikidata.org/wiki/Q77990619 + 6-35.1 + Angular frequency divided by angular wavenumber. - + - + + + Speed + Length per unit time. + +Speed in the absolute value of the velocity. + Speed + http://qudt.org/vocab/quantitykind/Speed + 3-8.2 + https://doi.org/10.1351/goldbook.S05852 + + + + - - - - - - + + - - - Mass - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - Mass - http://qudt.org/vocab/quantitykind/Mass - 4-1 - Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. - https://doi.org/10.1351/goldbook.M03709 - - - - - - CommandLanguage - An interpreted computer language for job control in computing. - CommandLanguage - An interpreted computer language for job control in computing. - Unix shell. -Batch programming languages. - https://en.wikipedia.org/wiki/Command_language + + + + ElectricCurrentDensity + Electric current divided by the cross-sectional area it is passing through. + AreicElectricCurrent + CurrentDensity + ElectricCurrentDensity + http://qudt.org/vocab/quantitykind/ElectricCurrentDensity + https://www.wikidata.org/wiki/Q234072 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 + 6-8 + https://en.wikipedia.org/wiki/Current_density + https://doi.org/10.1351/goldbook.E01928 - - - - ConstructionLanguage - A computer language by which a human can specify an executable problem solution to a computer. - ConstructionLanguage - A computer language by which a human can specify an executable problem solution to a computer. - https://en.wikipedia.org/wiki/Software_construction#Construction_languages + + + + + + + T-2 L-1 M+1 I0 Θ0 N0 J0 + + + PressureUnit + PressureUnit - - - - GammaSpectrometry - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - GammaSpectrometry - Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + + + Object + A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). +However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. +In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. +To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. + Continuant + Endurant + Object + A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - - - - Spectrometry - - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - Spectrometry - Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + + + + + + + + + + + + Redundant + A whole possessing some proper parts of its same type. + NonMaximal + Redundant + A whole possessing some proper parts of its same type. + An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. + +If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. - - - - - - - - - - - - Volume - Extent of an object in space. - Volume - http://qudt.org/vocab/quantitykind/Volume - https://www.wikidata.org/wiki/Q39297 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 - https://dbpedia.org/page/Volume - 3-4 + + + + + + + + + + + CompositeBoson + CompositeBoson + Examples of composite particles with integer spin: +spin 0: H1 and He4 in ground state, pion +spin 1: H1 and He4 in first excited state, meson +spin 2: O15 in ground state. + + + + + + + + + + + + + + + + + + + + + Item + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. + +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The class of individuals standing for direct causally self-connected world entities. + The disjoint union of Elementary, Quantum and CausalSystem classes. + Item + A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. +All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. +Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. + +Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. + The disjoint union of Elementary, Quantum and CausalSystem classes. + The class of individuals standing for direct causally self-connected world entities. @@ -2941,649 +3004,706 @@ Volume Entropy - - - BlueBottomAntiQuark - BlueBottomAntiQuark + + + + VaporDeposition + VaporDeposition - - - - StepChronopotentiometry - - chronopotentiometry where the applied current is changed in steps - StepChronopotentiometry - chronopotentiometry where the applied current is changed in steps + + + + FormingFromGas + FormingFromGas - - - - Chronopotentiometry - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - Chronopotentiometry - Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. - https://doi.org/10.1515/pac-2018-0109 + + + + + + + T-1 L0 M-1 I0 Θ0 N0 J0 + + + PerTimeMassUnit + PerTimeMassUnit - - - - - MaterialTreatment - esce workpiece - Has shaped bodies as input and output. - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - DIN 8580:2020 - Stoffeigenschaft ändern - WorkPieceTreatment - MaterialTreatment - The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - Has shaped bodies as input and output. + + + GreenTopAntiQuark + GreenTopAntiQuark - - - - MaterialsProcessing - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - A material process requires the output to be classified as an individual of a material subclass. - ContinuumManufacturing - MaterialsProcessing - A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. - Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. - A material process requires the output to be classified as an individual of a material subclass. + + + + Detector + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Detector + Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. + Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM + Displacement and force sensors for mechanical testing - - - - - - - - - - - - - - + + - - + + - - Manufacturing - Deals with entities that have a defined shape. - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - DIN 8580:2020 - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area - Manufacturing - The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. - Deals with entities that have a defined shape. - https://de.wikipedia.org/wiki/Fertigungsverfahren + + + EquilibriumPositionVector + In condensed matter physics, position vector of an atom or ion in equilibrium. + EquilibriumPositionVector + https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon + https://www.wikidata.org/wiki/Q105533477 + 12-7.2 + In condensed matter physics, position vector of an atom or ion in equilibrium. - - - - ICI - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. - IntermittentCurrentInterruptionMethod - ICI - Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + + + + + + + T-3 L+2 M+1 I-2 Θ0 N0 J0 + + + ElectricResistanceUnit + ElectricResistanceUnit - - - - - Service - IntangibleProduct - Service - https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 + + + + + MolarEnthalpy + MolarEnthalpy + https://www.wikidata.org/wiki/Q88769977 + Enthalpy per amount of substance. + 9-6.2 - - - - - - - - - - IntentionalProcess - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - Project - IntentionalProcess - A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + + + + PhysioChemicalQuantity + Quantities categorised according to ISO 80000-9. + PhysioChemicalQuantity + Quantities categorised according to ISO 80000-9. - + - + - - MagneticDipoleMoment - For an atom or nucleus, this energy is quantized and can be written as: - - W = g μ M B - -where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. - --- ISO 80000 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - MagneticDipoleMoment - http://qudt.org/vocab/quantitykind/MagneticDipoleMoment - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 - 10-9.1 - 6-30 - Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - ΔW = −μ · B - http://goldbook.iupac.org/terms/view/M03688 + MolarEnergy + Energy per amount of substance. + MolarEnergy + https://qudt.org/vocab/quantitykind/MolarEnergy + https://www.wikidata.org/wiki/Q69427512 + Energy per amount of substance. - - - - ElectromagneticQuantity - Quantities categorised according to ISO 80000-6. - ElectromagneticQuantity - Quantities categorised according to ISO 80000-6. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BlueQuark + BlueQuark - + - - - LowerCriticalMagneticFluxDensity - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - LowerCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127355 - 12-36.2 - For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + + Diameter + The diameter of a circle or a sphere is twice its radius. + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + Diameter + https://qudt.org/vocab/quantitykind/Diameter + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 + https://dbpedia.org/page/Diameter + 3-1.5 + maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. + https://en.wikipedia.org/wiki/Diameter - + - + - - - MagneticFluxDensity - Often denoted B. - Strength of the magnetic field. - MagneticInduction - MagneticFluxDensity - http://qudt.org/vocab/quantitykind/MagneticFluxDensity - https://www.wikidata.org/wiki/Q30204 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 - 6-21 - Strength of the magnetic field. - https://doi.org/10.1351/goldbook.M03686 - - - - - TemporallyRedundant - A whole with temporal parts of its same type. - TemporallyRedundant - A whole with temporal parts of its same type. + + + Length + Extend of a spatial dimension. + Length is a non-negative additive quantity attributed to a one-dimensional object in space. + Length + http://qudt.org/vocab/quantitykind/Length + 3-1.1 + Extend of a spatial dimension. + https://doi.org/10.1351/goldbook.L03498 - - - - XrayPowderDiffraction - - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - XRPD - XrayPowderDiffraction - a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample - https://en.wikipedia.org/wiki/Powder_diffraction + + + + + + + + + HolisticSystem + A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. + HolisticSystem + An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - - - - XrayDiffraction - - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - XRD - XrayDiffraction - https://www.wikidata.org/wiki/Q12101244 - a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice - https://en.wikipedia.org/wiki/X-ray_crystallography + + + + + VolumeFraction + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + VolumeFraction + http://qudt.org/vocab/quantitykind/VolumeFraction + 9-14 + Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. + https://doi.org/10.1351/goldbook.V06643 - - - - Porosimetry - - Porosimetry - - - - - - CharacterisationTechnique - A characterisation technique is not only related to the measurement process which can be one of its steps. - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - Characterisation procedure - Characterisation technique - CharacterisationTechnique - The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). - A characterisation technique is not only related to the measurement process which can be one of its steps. + + + + + + + T+3 L-3 M-1 I+2 Θ0 N-1 J0 + + + ElectricConductivityPerAmountUnit + ElectricConductivityPerAmountUnit - - - - TechnologyProcess - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. - Conversion of materials and assembly of components for the manufacture of products - Technology is the application of knowledge for achieving practical goals in a reproducible way. - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective - ProductionEngineeringProcess - TechnologyProcess - Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + + + AnalogicalIcon + An icon that focus on HOW the object works. + An icon that represents the internal logical structure of the object. + AnalogicalIcon + An icon that represents the internal logical structure of the object. + A physics equation is replicating the mechanisms internal to the object. + Electrical diagram is diagrammatic and resemblance + MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. + An icon that focus on HOW the object works. + The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). - - + + - T0 L0 M0 I0 Θ0 N-1 J0 + T-3 L+2 M+1 I0 Θ0 N0 J0 - PerAmountUnit - PerAmountUnit + PowerUnit + PowerUnit - - - - Porosity - Ratio of void volume and total volume of a porous material. - Porosity - https://www.wikidata.org/wiki/Q622669 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 - Ratio of void volume and total volume of a porous material. - https://doi.org/10.1351/goldbook.P04762 + + + + ConcreteOrPlasterPouring + ConcreteOrPlasterPouring - + + + + FormingFromPulp + FormingFromPulp + + + - - RatioQuantity - Quantities defined as ratios `Q=A/B` having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as dim(A)/dim(B). + + ModulusOfImpedance + ModulusOfImpedance + https://qudt.org/vocab/quantitykind/ModulusOfImpedance + https://www.wikidata.org/wiki/Q25457909 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 + 6-51.4 + -Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219–230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394. - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012 - RatioQuantity - http://qudt.org/vocab/quantitykind/DimensionlessRatio - The class of quantities that are the ratio of two quantities with the same physical dimensionality. - refractive index, -volume fraction, -fine structure constant + + + + + + + + + + + ElectricResistance + Inverse of 'ElectricalConductance'. + Measure of the difficulty to pass an electric current through a material. + Resistance + ElectricResistance + http://qudt.org/vocab/quantitykind/Resistance + https://www.wikidata.org/wiki/Q25358 + 6-46 + Measure of the difficulty to pass an electric current through a material. + https://doi.org/10.1351/goldbook.E01936 - - - - - - ScientificTheory - A scientific theory is a description, objective and observed, produced with scientific methodology. - ScientificTheory - A scientific theory is a description, objective and observed, produced with scientific methodology. + + + + ApplicationProgram + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + App + Application + ApplicationProgram + A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. + Word processors, graphic image processing programs, database management systems, numerical simulation software and games. - - - Observed - Observed - The biography of a person met by the author. + + + + + + + T+1 L0 M0 I0 Θ+1 N0 J0 + + + TemperatureTimeUnit + TemperatureTimeUnit - - - Objective - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + + + + HardeningByDrawing + HardeningByDrawing + -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - Objective - A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + + + + HardeningByForming + Verfestigen durch Umformen + HardeningByForming - - - - Theory - A 'conventional' that stand for a 'physical'. - The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. + + + + + Extrusion + Extrusion + -It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. + + + + + ReshapeManufacturing + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. + DIN 8580:2020 + Umformen + Forming + ReshapeManufacturing + A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. + The mass of the raw part is equal to the mass of the finished part. + -In Peirce semiotics: legisign-symbol-argument - Theory - A 'conventional' that stand for a 'physical'. + + + + FormingFromPlastic + FormingFromPlastic - + - + - Capacitance - The derivative of the electric charge of a system with respect to the electric potential. - ElectricCapacitance - Capacitance - http://qudt.org/vocab/quantitykind/Capacitance - 6-13 - The derivative of the electric charge of a system with respect to the electric potential. - https://doi.org/10.1351/goldbook.C00791 - - - - - - - CountingUnit - Unit for dimensionless quantities that have the nature of count. - CountingUnit - http://qudt.org/vocab/unit/NUM - 1 - Unit for dimensionless quantities that have the nature of count. - Unit of atomic number -Unit of number of cellular -Unit of degeneracy in quantum mechanics + ScalarMagneticPotential + Scalar potential of an irrotational magnetic field strength. + ScalarMagneticPotential + https://www.wikidata.org/wiki/Q17162107 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 + 6-37.1 + Scalar potential of an irrotational magnetic field strength. - - - DimensionlessUnit - The subclass of measurement units with no physical dimension. - DimensionlessUnit - http://qudt.org/vocab/unit/UNITLESS - The subclass of measurement units with no physical dimension. - Refractive index -Plane angle -Number of apples + + + + + FastFissionFactor + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + FastFissionFactor + https://qudt.org/vocab/quantitykind/FastFissionFactor + https://www.wikidata.org/wiki/Q99197493 + 10-75 + In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - - - - FractionUnit - Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this -is desirable (μm/m, nmol/mol). --- SI Brochure - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - RatioUnit - FractionUnit - Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + + + DataSet + Encoded data made of more than one datum. + DataSet + Encoded data made of more than one datum. - - - - CriticalTemperature - Temperature below which quantum effects dominate. - CriticalTemperature - https://www.wikidata.org/wiki/Q1450516 - Temperature below which quantum effects dominate. + + + Datum + A self-consistent encoded data entity. + Datum + A self-consistent encoded data entity. + A character, a bit, a song in a CD. - + - - - - - - ThermodynamicTemperature - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - ThermodynamicTemperature - http://qudt.org/vocab/quantitykind/ThermodynamicTemperature - 5-1 - Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point. - https://doi.org/10.1351/goldbook.T06321 - - - - - - Mixture - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - Mixture - A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - - - - - - - - - - - - - - + - - Atom - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. - -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. - ChemicalElement - Atom - A standalone atom has direct part one 'nucleus' and one 'electron_cloud'. - -An O 'atom' within an O₂ 'molecule' is an 'e-bonded_atom'. - -In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud. - -We cannot say that H₂ molecule has direct part two H atoms, but has direct part two H nucleus. - An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons. + + ChemicalPotential + Energy per unit change in amount of substance. + ChemicalPotential + http://qudt.org/vocab/quantitykind/ChemicalPotential + 9-17 + https://doi.org/10.1351/goldbook.C01032 - - - - - MolecularEntity - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - https://goldbook.iupac.org/terms/view/M03986 - ChemicalEntity - MolecularEntity - Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. - Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. - Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. - Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. -Note that the name of a compound may refer to the respective molecular entity or to the chemical species, - This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). + + + + HyperfineStructureQuantumNumber + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + HyperfineStructureQuantumNumber + https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber + https://www.wikidata.org/wiki/Q97577449 + 10-13.8 + Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - + - - LinearAttenuationCoefficient - In nuclear physics, fraction of interacting particles per distance traversed in a given material. - LinearAttenuationCoefficient - https://www.wikidata.org/wiki/Q98583077 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 - 10-49 - In nuclear physics, fraction of interacting particles per distance traversed in a given material. + + QuantumNumber + Number describing a particular state of a quantum system. + QuantumNumber + https://qudt.org/vocab/quantitykind/QuantumNumber + https://www.wikidata.org/wiki/Q232431 + 10-13.1 + Number describing a particular state of a quantum system. - + - + - ReciprocalLength - The inverse of length. - InverseLength - ReciprocalLength - http://qudt.org/vocab/quantitykind/InverseLength - The inverse of length. - https://en.wikipedia.org/wiki/Reciprocal_length + + HeatCapacity + Examples of condition might be constant volume or constant pressure for a gas. + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + HeatCapacity + https://qudt.org/vocab/quantitykind/HeatCapacity + https://www.wikidata.org/wiki/Q179388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 + https://dbpedia.org/page/Heat_capacity + 5-15 + Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. + https://en.wikipedia.org/wiki/Heat_capacity + https://doi.org/10.1351/goldbook.H02753 - + - - + - - T-2 L+2 M+1 I0 Θ-1 N-1 J0 + + - - EntropyPerAmountUnit - EntropyPerAmountUnit + + + + KermaRate + Time derivative of kerma. + KermaRate + https://qudt.org/vocab/quantitykind/KermaRate + https://www.wikidata.org/wiki/Q99713105 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 + 10-86.2 + Time derivative of kerma. - - + + - - + + - - FineStructureConstant - A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. - FineStructureConstant - http://qudt.org/vocab/constant/FineStructureConstant - https://doi.org/10.1351/goldbook.F02389 - + + MeasurementResult + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + Result of a measurement. - - - MeasuredConstant - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. - MeasuredConstant - For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. - +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. - - - - - - - T0 L-2 M0 I0 Θ0 N0 J0 - - - PerAreaUnit - PerAreaUnit - +-- VIM + MeasurementResult + Result of a measurement. - - - SpatialTile - A direct part that is obtained by partitioning a whole purely in spatial parts. - SpatialTile - A direct part that is obtained by partitioning a whole purely in spatial parts. - +A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. - +-- VIM + measurement result + A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). + A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. + + + + + Objective + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + Objective + A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel. + + + + + + LowPressureCasting + LowPressureCasting + + + + + + Casting + Casting + + + + + + FromNotProperShapeToWorkPiece + From Powder, from liquid, from gas + da una forma non propria ad una forma propria + FromNotProperShapeToWorkPiece + From Powder, from liquid, from gas + Powder: +particles that are usually less than 1 mm in size + + + - - DisplacementCurrent - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. - DisplacementCurrent - https://qudt.org/vocab/quantitykind/DisplacementCurrent - https://www.wikidata.org/wiki/Q853178 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 - 6-19.1 - Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + + Array + Array subclasses with a specific shape can be constructed with cardinality restrictions. + +See Shape4x3Matrix as an example. + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + Arrays are ordered objects, since they are a subclasses of Arrangement. + Array + Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. + A Vector is a 1-dimensional Array with Number as spatial direct parts, +a Matrix is a 2-dimensional Array with Vector as spatial direct parts, +an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, +and so forth... - + - + + Mathematical + A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. + The class of general mathematical symbolic objects respecting mathematical syntactic rules. + Mathematical + The class of general mathematical symbolic objects respecting mathematical syntactic rules. + + + + + + - - + + T-2 L+1 M+1 I-2 Θ0 N0 J0 - - - - ElectricCurrent - A flow of electric charge. - ElectricCurrent - http://qudt.org/vocab/quantitykind/ElectricCurrent - 6-1 - A flow of electric charge. - https://doi.org/10.1351/goldbook.E01927 + + PermeabilityUnit + PermeabilityUnit - + + + + WorkPiece + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. + It has a shape, so we conclude that it is solid + Object that is processed with a machine + Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product + The raw material or partially finished piece that is shaped by performing various operations. + They are not powders or threads + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + fili e polveri non sono compresi + it seems to be an intermediate product, that has to reach the final shape. + it seems to be solid, so it has a proper shape + powder is not workpiece because it has the shape of the recipient containing them + Werkstück + WorkPiece + A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + + + + + + + + + + + + + ManufacturedMaterial + A material that is obtained through a manufacturing process. + EngineeredMaterial + ProcessedMaterial + ManufacturedMaterial + A material that is obtained through a manufacturing process. + + + - + - DebyeWallerFactor - Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. - DebyeWallerFactor - https://qudt.org/vocab/quantitykind/Debye-WallerFactor - https://www.wikidata.org/wiki/Q902587 - 12-8 - Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. + RelaxationTime + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + RelaxationTime + https://www.wikidata.org/wiki/Q106041085 + 12-32.1 + time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles + + + + + + TimeConstant + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + TimeConstant + https://www.wikidata.org/wiki/Q1335249 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 + 3-15 + parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + + + + + + AcousticQuantity + Quantities categorised according to ISO 80000-8. + AcousticQuantity + Quantities categorised according to ISO 80000-8. + + + + + + ISO80000Categorised + ISO80000Categorised + + + + + + + + ActivityFactor + ActivityFactor + https://www.wikidata.org/wiki/Q89335167 + 9-22 @@ -3604,1636 +3724,1586 @@ Note that the name of a compound may refer to the respective molecular entity or https://doi.org/10.1351/goldbook.D01742 - - - - HardeningByForming - Verfestigen durch Umformen - HardeningByForming - - - + - - MeanFreePath - The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - MeanFreePath - https://qudt.org/vocab/quantitykind/MeanFreePath - https://www.wikidata.org/wiki/Q756307 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 - 9-38 - in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. - https://doi.org/10.1351/goldbook.M03778 + + ActivityCoefficient + ActivityCoefficient + https://qudt.org/vocab/quantitykind/ActivityCoefficient + https://www.wikidata.org/wiki/Q745224 + 9-25 + https://doi.org/10.1351/goldbook.A00116 - + - - PathLength - Length of a rectifiable curve between two of its points. - ArcLength - PathLength - https://www.wikidata.org/wiki/Q7144654 - https://dbpedia.org/page/Arc_length - 3-1.7 - Length of a rectifiable curve between two of its points. - https://en.wikipedia.org/wiki/Arc_length - - - - - - Shape4x3Matrix - A real matrix with shape 4x3. - Shape4x3Matrix - A real matrix with shape 4x3. + + Wavenumber + The number of waves per unit length along the direction of propagation. + Wavenumber + http://qudt.org/vocab/quantitykind/Wavenumber + 3-18 + https://doi.org/10.1351/goldbook.W06664 - - - + + + - - + + - - Matrix - 2-dimensional array who's spatial direct parts are vectors. - 2DArray - Matrix - 2-dimensional array who's spatial direct parts are vectors. + + ReciprocalLength + The inverse of length. + InverseLength + ReciprocalLength + http://qudt.org/vocab/quantitykind/InverseLength + The inverse of length. + https://en.wikipedia.org/wiki/Reciprocal_length - - - - + + + - - T0 L+1 M0 I0 Θ0 N-1 J0 + + - - LengthPerAmountUnit - LengthPerAmountUnit + + + PhysicsBasedModel + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedModel + A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - - - - ObjectiveProperty - A quantity that is obtained from a well-defined procedure. - Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - PhysicalProperty - QuantitativeProperty - ObjectiveProperty - A quantity that is obtained from a well-defined procedure. - The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. + + + + AlphaSpectrometry + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + AlphaSpectrometry + Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + -This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + + + + Spectrometry + + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. + Spectrometry + Spectroscopic techniques are numerous and varied, but all involve measuring the response of a material to different frequencies of electromagnetic radiation. Depending on the technique used, material characterization may be based on the absorption, emission, impedance, or reflection of incident energy by a sample. - - - - MetrologicalUncertainty - In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. - MetrologicalUncertainty - The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. - - Standard deviation -- Half-width of an interval with a stated coverage probability - Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + + + + + HalfValueThickness + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + HalfValueThickness + https://qudt.org/vocab/quantitykind/Half-ValueThickness + https://www.wikidata.org/wiki/Q127526 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 + 10-53 + Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - + - - - StandardEquilibriumConstant - ThermodynamicEquilibriumConstant - StandardEquilibriumConstant - https://www.wikidata.org/wiki/Q95993378 - 9-32 - https://doi.org/10.1351/goldbook.S05915 + + Thickness + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + Thickness + https://www.wikidata.org/wiki/Q3589038 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 + 3-1.4 + Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - + - - - EquilibriumConstant - The physical dimension can change based on the stoichiometric numbers of the substances involved. - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - EquilibriumConstantConcentrationBasis - EquilibriumConstant - https://qudt.org/vocab/quantitykind/EquilibriumConstant - https://www.wikidata.org/wiki/Q857809 - for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. - https://en.wikipedia.org/wiki/Equilibrium_constant - https://doi.org/10.1351/goldbook.E02177 + + + ElectronAffinity + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor + ElectronAffinity + https://qudt.org/vocab/quantitykind/ElectronAffinity + https://www.wikidata.org/wiki/Q105846486 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 + 12-25 + energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - + - - - GrandCanonicalPartionFunction - GrandPartionFunction - GrandCanonicalPartionFunction - https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96176022 - 9-35.3 + + + VacuumElectricPermittivity + The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. + The value of the absolute dielectric permittivity of classical vacuum. + PermittivityOfVacuum + VacuumElectricPermittivity + http://qudt.org/vocab/constant/PermittivityOfVacuum + 6-14.1 + https://doi.org/10.1351/goldbook.P04508 - - - - - - - - + + - - - 1 + + - - CalibrationProcess - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. + + + + Permittivity + Measure for how the polarization of a material is affected by the application of an external electric field. + Permittivity + http://qudt.org/vocab/quantitykind/Permittivity + 6-14.1 + 6-14.2 + https://doi.org/10.1351/goldbook.P04507 + --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - CalibrationProcess - Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. + + + MeasuredConstant + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + MeasuredConstant + For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty. + --- International Vocabulary of Metrology(VIM) - Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. - In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. - Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. + + + + Thermogravimetry + + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + TGA + Thermogravimetry + Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - + - - - - - - - - - - - - - - - CharacterisationMeasurementInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - CharacterisationMeasurementInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. - The instrument used for characterising a material, which usually has a probe and a detector as parts. - In nanoindentation is the nanoindenter - Measuring instrument + + ThermochemicalTesting + + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. + TMA + ThermochemicalTesting + Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - - - - Gas - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - Gas - Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + + + + CriticalTemperature + Temperature below which quantum effects dominate. + CriticalTemperature + https://www.wikidata.org/wiki/Q1450516 + Temperature below which quantum effects dominate. - - - - DynamicMechanicalSpectroscopy - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - DMA - DynamicMechanicalSpectroscopy - Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + + + + + + + T0 L+4 M0 I0 Θ0 N0 J0 + + + QuarticLengthUnit + QuarticLengthUnit - - - - Spectroscopy - - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - Spectroscopy - Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + + + + SpaceAndTimeQuantity + Quantities categorised according to ISO 80000-3. + SpaceAndTimeQuantity + Quantities categorised according to ISO 80000-3. - - - ProcedureUnit - A reference unit provided by a measurement procedure. - Procedure units and measurement units are disjoint. - MeasurementProcedure - ProcedureUnit - A reference unit provided by a measurement procedure. - Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) - Procedure units and measurement units are disjoint. + + + + + + + + + Tessellation + A causal object that is tessellated in direct parts. + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + Tiling + Tessellation + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + A causal object that is tessellated in direct parts. - + - - + + - - - Magnetization - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - Magnetization - https://qudt.org/vocab/quantitykind/Magnetization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 - 6-24 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - - - - - + - + + PhysicalQuantity + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + In the same system of quantities, dim ρB = ML−3 is the quantity dimension of mass concentration of component B, and ML−3 is also the quantity dimension of mass density, ρ. +ISO 80000-1 + Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model. + +Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions. + Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind. + +For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind. + +However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only. + +For example, the measurement unit ‘second to the power minus one’ (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides. + +As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre (N · m). + — quantities of the same kind have the same quantity dimension, +— quantities of different quantity dimensions are always of different kinds, and +— quantities having the same quantity dimension are not necessarily of the same kind. +ISO 80000-1 + PhysicalQuantity + A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model. + + + + + + Software + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + Software + All or part of the programs, procedures, rules, and associated documentation of an information processing system. + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + + + + + + DigitalData + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + BinaryData + DigitalData + Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + + + + + + + + + T-1 L+1 M0 I0 Θ0 N0 J0 + + + SpeedUnit + SpeedUnit + + + + + + + + + + + - + - + - CausalSystem - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - CausalSystem - A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). - A non-path causal structure - A electron binded by a nucleus. + Workflow + A procedure that has at least two procedures (tasks) as proper parts. + Workflow + A procedure that has at least two procedures (tasks) as proper parts. - - - - - - - - - - - + + + - - - - - - - - + + + T0 L0 M+1 I0 Θ0 N0 J0 + - ClassicallyDefinedMaterial - ClassicallyDefinedMaterial - - - - - - - Material - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - Material - The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. - A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. - Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. + MassUnit + MassUnit - + + + + + + + + - - TotalAngularMomentum - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - TotalAngularMomentum - https://qudt.org/vocab/quantitykind/TotalAngularMomentum - https://www.wikidata.org/wiki/Q97496506 - 10-11 - Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + EnergyFluence + In nuclear physics, incident radiant energy per cross-sectional area. + EnergyFluence + https://qudt.org/vocab/quantitykind/EnergyFluence + https://www.wikidata.org/wiki/Q98538612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 + 10-46 + In nuclear physics, incident radiant energy per cross-sectional area. - - - - - - - - - - - AngularMomentum - Measure of the extent and direction an object rotates about a reference point. - AngularMomentum - http://qudt.org/vocab/quantitykind/AngularMomentum - 4-11 - https://doi.org/10.1351/goldbook.A00353 + + + CausalConvexSystem + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + CausalConvexSystem + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + A CausalSystem whose quantum parts are all bonded to the rest of the system. - - - - - - RelativeHumidity - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - The relative humidity is often expressed in per cent. - RelativeHumidity - https://qudt.org/vocab/quantitykind/RelativeHumidity - https://www.wikidata.org/wiki/Q2499617 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 - 5-33 - Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. - https://en.wikipedia.org/wiki/Humidity#Relative_humidity + + + + + + Path + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + Path + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + /etc/fstab (UNIX-like path) +C:\\Users\\John\\Desktop (DOS-like path) - - - - ThermodynamicalQuantity - Quantities categorised according to ISO 80000-5. - ThermodynamicalQuantity - Quantities categorised according to ISO 80000-5. - + + + + String + A physical made of more than one symbol sequentially arranged. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + String + A physical made of more than one symbol sequentially arranged. + The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. - - - - - RelativeMassConcentrationOfWaterVapour - For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - RelativeMassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour - https://www.wikidata.org/wiki/Q76379357 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 - ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - +In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). - - - - DataAcquisitionRate - Quantifies the raw data acquisition rate, if applicable. - DataAcquisitionRate - Quantifies the raw data acquisition rate, if applicable. +If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. + A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). + A string is not requested to respect any syntactic rule: it's simply directly made of symbols. - - + + - + - + - Property - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - Property - A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction. - Hardness is a subclass of properties. -Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test. - The name "red" which is atomic in the code made of the list of colors. - A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg). - - - - - - - MathematicalOperator - A mapping that acts on elements of one space and produces elements of another space. - MathematicalOperator - A mapping that acts on elements of one space and produces elements of another space. - The algebraic operator '+' that acts on two real numbers and produces one real number. - The differential operator that acts on a C1 real function and produces another real function. + + ResourceIdentifier + A formal computer-interpretable identifier of a system resource. + ResourceIdentifier + A formal computer-interpretable identifier of a system resource. - - - - Mathematical - A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions. - The class of general mathematical symbolic objects respecting mathematical syntactic rules. - Mathematical - The class of general mathematical symbolic objects respecting mathematical syntactic rules. + + + + Rationale + A set of reasons or a logical basis for a decision or belief + Rationale + A set of reasons or a logical basis for a decision or belief - - - - Symbol - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - AlphabeticEntity - Symbol - The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). - The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". - Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. -e.g. a math symbol is not made of other math symbols -A Symbol may be a String in another language. -e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. - Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). - -Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. -(Wikipedia) - The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. + + + + + + + + + + + + + + SystemResource + Any physical or virtual component of limited availability within a computer system. + Resource + SystemResource + Any physical or virtual component of limited availability within a computer system. - + - - - InternalConversionFactor - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - InternalConversionCoefficient - InternalConversionFactor - https://qudt.org/vocab/quantitykind/InternalConversionFactor - https://www.wikidata.org/wiki/Q6047819 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 - 10-35 - Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. - - - - - - - - - - - - - - - - AntiLepton - AntiLepton + + TotalCurrentDensity + Sum of electric current density and displacement current density. + TotalCurrentDensity + https://qudt.org/vocab/quantitykind/TotalCurrentDensity + https://www.wikidata.org/wiki/Q77680811 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 + 6-20 + Sum of electric current density and displacement current density. - + - - + - - T-2 L-1 M+1 I0 Θ0 N0 J0 + + - - PressureUnit - PressureUnit - - - - - - - - - - - - - - - - CausalStructure - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. - A self-connected composition of more than one quantum entities. - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - CausalObject - CausalStructure - The most fundamental unity criterion for the definition of an structure is that: -- is made of at least two quantums (a structure is not a simple entity) -- all quantum parts form a causally connected graph - The union of CausalPath and CausalSystem classes. - A self-connected composition of more than one quantum entities. - A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. -The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + + + + + + + + + + + + + + Density + Quantity representing the spatial distribution of mass in a continuous material. + MassConcentration + MassDensity + Density + http://qudt.org/vocab/quantitykind/Density + 4-2 + 9-10 + Mass per volume. + https://doi.org/10.1351/goldbook.D01590 - + - - - PlanckConstant - The quantum of action. It defines the kg base unit in the SI system. - PlanckConstant - http://qudt.org/vocab/constant/PlanckConstant - The quantum of action. It defines the kg base unit in the SI system. - https://doi.org/10.1351/goldbook.P04685 - - - - - - SampleInspection - - Analysis of the sample in order to determine information that are relevant for the characterisation method. - SampleInspection - Analysis of the sample in order to determine information that are relevant for the characterisation method. - In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. + + Weight + Force of gravity acting on a body. + Weight + http://qudt.org/vocab/quantitykind/Weight + 4-9.2 + https://doi.org/10.1351/goldbook.W06668 - - - - Sample - - Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. - Specimen - Sample - Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. - Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. + + + + + + + + + + + Force + Any interaction that, when unopposed, will change the motion of an object + Force + http://qudt.org/vocab/quantitykind/Force + 4-9.1 + Any interaction that, when unopposed, will change the motion of an object + https://doi.org/10.1351/goldbook.F02480 - - - - PhysicsBasedSimulation - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedSimulation - A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. + + + + + + + T0 L+2 M+1 I0 Θ0 N0 J0 + + + MassAreaUnit + MassAreaUnit - - - - - Simulation - A estimation of a property using a functional icon. - Modelling - Simulation - A estimation of a property using a functional icon. - I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. + + + BlueStrangeAntiQuark + BlueStrangeAntiQuark - - - - - - - - - - - MathematicalModel - A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. - -Abramowitz and Stegun, 1968 - An analogical icon expressed in mathematical language. - MathematicalModel - An analogical icon expressed in mathematical language. + + + NonTemporalRole + An holistic spatial part of a whole. + HolisticSpatialPart + NonTemporalRole + An holistic spatial part of a whole. - - + + - - + + - - AffinityOfAChemicalReaction - Describes elements' or compounds' readiness to form bonds. - ChemicalAffinity - AffinityOfAChemicalReaction - https://qudt.org/vocab/quantitykind/ChemicalAffinity - https://www.wikidata.org/wiki/Q382783 - 9-30 - Describes elements' or compounds' readiness to form bonds. - https://doi.org/10.1351/goldbook.A00178 - - - - - - PseudoOpenCircuitVoltageMethod + + + + + + + + + + + + + + + + + + + + SamplePreparation - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - PseudoOCV - PseudoOpenCircuitVoltageMethod - a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + SamplePreparation + Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - - - - - - - - - - - - SemioticObject - Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation. - -The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s. - -In this way the 'sign'-ed entity becomes an 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign). - The object, in Peirce semiotics, as participant to a semiotic process. - Object - SemioticObject - The object, in Peirce semiotics, as participant to a semiotic process. + + + + CharacterisationProcedure + Characterisation procedure may refer to the full characterisation process or just a part of the full process. + The process of performing characterisation by following some existing formalised operative rules. + CharacterisationProcedure + The process of performing characterisation by following some existing formalised operative rules. + Sample preparation +Sample inspection +Calibration +Microscopy +Viscometry +Data sampling + Characterisation procedure may refer to the full characterisation process or just a part of the full process. - - + + + - - - + + - Sign - A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. - -A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). - -Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. - According to Peirce, 'Sign' includes three subcategories: -- symbols: that stand for an object through convention -- indeces: that stand for an object due to causal continguity -- icons: that stand for an object due to similitudes e.g. in shape or composition - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - Sign - An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. - A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). - -Each of them are 'sign'-s. - -A character can be the a-tomistic 'sign' for the class of texts. - -The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. - -For plain text we can propose the ASCII symbols, for math the fundamental math symbols. - - - - - - - ManufacturedProduct - An object that has been designed and manufactured for a particular purpose. - Artifact - Engineered - TangibleProduct - ManufacturedProduct - An object that has been designed and manufactured for a particular purpose. - Car, tire, composite material. - - - - - Process - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). - -For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. - Occurrent - Perdurant - Process - A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. - A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + Symbolic + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + Symbolic + A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. + fe780 +emmo +!5*a +cat +for(i=0;i<N;++i) + A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. +In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. + A symbolic object possesses a reductionistic oriented structure. +For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). - - - - - Status - An object which is an holistic temporal part of a process. - State - Status - An object which is an holistic temporal part of a process. - A semi-naked man is a status in the process of a man's dressing. + + + DiscreteData + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. + Data whose variations are decoded according to a discrete schema. + DiscreteData + Data whose variations are decoded according to a discrete schema. + A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands. + A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. +Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules. - - - - - - - - - - - - - - - - - - + + - - - + + + + + + + + - Interpreter - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. - -On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. - Interpreter - The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. - For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). - -The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). - - - - - - Signal - - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - Signal - According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). - Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. - Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + FirstGenerationFermion + FirstGenerationFermion - - - - CharacterisationData - Represents every type of data that is produced during a characterisation process - CharacterisationData - Represents every type of data that is produced during a characterisation process + + + + PhaseVelocity + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + PhaseSpeed + PhaseVelocity + https://www.wikidata.org/wiki/Q13824 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 + https://dbpedia.org/page/Phase_velocity + 3-23.1 + For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. + https://en.wikipedia.org/wiki/Phase_velocity - + + + + + + + + + - - AmountFraction - The amount of a constituent divided by the total amount of all constituents in a mixture. - MoleFraction - AmountFraction - http://qudt.org/vocab/quantitykind/MoleFraction - The amount of a constituent divided by the total amount of all constituents in a mixture. - https://doi.org/10.1351/goldbook.A00296 + + + Velocity + The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description. + +-- IEC, note 2 + The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave. + +-- IEC, note 1 + Vector quantity giving the rate of change of a position vector. + +-- ISO 80000-3 + Velocity + http://qudt.org/vocab/quantitykind/Velocity + https://www.wikidata.org/wiki/Q11465 + Vector quantity giving the rate of change of a position vector. + +-- ISO 80000-3 + 3-8.1 + 3‑10.1 - - - - - StandardAbsoluteActivityOfSolvent - StandardAbsoluteActivityOfSolvent - https://www.wikidata.org/wiki/Q89556185 - 9-27.3 + + + + Tempering + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + QuenchingAndTempering + Vergüten + Tempering + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - + - AbsoluteActivity - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - AbsoluteActivity - https://qudt.org/vocab/quantitykind/AbsoluteActivity - https://www.wikidata.org/wiki/Q56638155 - 9-18 - The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. - https://goldbook.iupac.org/terms/view/A00019 + ActivityOfSolute + RelativeActivityOfSolute + ActivityOfSolute + https://www.wikidata.org/wiki/Q89408862 + 9-24 - - - - OrbitalAngularMomentumQuantumNumber - Atomic quantum number related to the orbital angular momentum l of a one-electron state. - OrbitalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1916324 - 10-13.3 - Atomic quantum number related to the orbital angular momentum l of a one-electron state. + + + + ThermochemicalTreatment + ThermochemicalTreatment - - - - - QuantumNumber - Number describing a particular state of a quantum system. - QuantumNumber - https://qudt.org/vocab/quantitykind/QuantumNumber - https://www.wikidata.org/wiki/Q232431 - 10-13.1 - Number describing a particular state of a quantum system. + + + + HeatTreatment + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + wärmebehandeln + HeatTreatment + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - + + + + + + + + + + + + + + + + + + + UpQuark + UpQuark + https://en.wikipedia.org/wiki/Up_quark + + + - - - ChargeNumber - For a particle, electric charge q divided by elementary charge e. - The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. - The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. - IonizationNumber - ChargeNumber - https://qudt.org/vocab/quantitykind/ChargeNumber - https://www.wikidata.org/wiki/Q1800063 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 - https://dbpedia.org/page/Charge_number - 10-5.2 - For a particle, electric charge q divided by elementary charge e. - https://en.wikipedia.org/wiki/Charge_number - https://doi.org/10.1351/goldbook.C00993 + + + AbsoluteHumidity + Mass of the contained water vapour per volume. + MassConcentrationOfWaterVapour + AbsoluteHumidity + https://qudt.org/vocab/quantitykind/AbsoluteHumidity + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + 5-28 + Mass of the contained water vapour per volume. - + + + + MassConcentration + Mass of a constituent divided by the volume of the mixture. + MassConcentration + http://qudt.org/vocab/quantitykind/MassConcentration + https://doi.org/10.1351/goldbook.M03713 + + + + + + + + + T+3 L-2 M-1 I+1 Θ0 N0 J0 + + + ElectricCurrentPerUnitEnergyUnit + ElectricCurrentPerUnitEnergyUnit + + + + - - + + - - - BohrMagneton - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - BohrMagneton - https://www.wikidata.org/wiki/Q737120 - 10-9.2 - Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + + + + + + + + + MathematicalConstruct + MathematicalConstruct - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EncodedData + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. +Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). +A data object may be used as the physical basis for a sign, under Semiotics perspective. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + EncodedVariation + EncodedData + A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. + A Radio Morse Code transmission can be addressed by combination of perspectives. + +Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). +Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. +Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. +Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). + A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + https://no.wikipedia.org/wiki/Data + + + - T+3 L-3 M-1 I+2 Θ0 N-1 J0 + T+1 L-2 M0 I+1 Θ0 N0 J0 - ElectricConductivityPerAmountUnit - ElectricConductivityPerAmountUnit + ElectricDisplacementFieldUnit + ElectricDisplacementFieldUnit - + - - - RybergConstant - The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. - RybergConstant - http://qudt.org/vocab/constant/RydbergConstant - https://doi.org/10.1351/goldbook.R05430 + + Porosity + Ratio of void volume and total volume of a porous material. + Porosity + https://www.wikidata.org/wiki/Q622669 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=801-31-32 + Ratio of void volume and total volume of a porous material. + https://doi.org/10.1351/goldbook.P04762 - + - - Wavenumber - The number of waves per unit length along the direction of propagation. - Wavenumber - http://qudt.org/vocab/quantitykind/Wavenumber - 3-18 - https://doi.org/10.1351/goldbook.W06664 - - - - - - FlexuralForming - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. - Biegeumformen - FlexuralForming + + + SpeedOfLightInVacuum + The speed of light in vacuum. Defines the base unit metre in the SI system. + SpeedOfLightInVacuum + http://qudt.org/vocab/constant/SpeedOfLight_Vacuum + 6-35.2 + The speed of light in vacuum. Defines the base unit metre in the SI system. + https://doi.org/10.1351/goldbook.S05854 - - - - - ReshapeManufacturing - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. - DIN 8580:2020 - Umformen - Forming - ReshapeManufacturing - A manufacturing in which workpieces are produced from solid raw parts through permanent deformation, provided that neither material is added nor removed. - The mass of the raw part is equal to the mass of the finished part. + + + + SIExactConstant + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. + SIExactConstant + Physical constant that by definition (after the latest revision of the SI system that was enforsed May 2019) has a known exact numerical value when expressed in SI units. - - - - PhotoluminescenceMicroscopy - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. - PhotoluminescenceMicroscopy - Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + + + + Measurer + An observer that makes use of a measurement tool and provides a quantitative property. + Measurer + An observer that makes use of a measurement tool and provides a quantitative property. - - - - Microscopy - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - Microscopy - Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - - - - - BaseQuantity - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - BaseQuantity - "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" -ISO 80000-1 - base quantity + + + Observer + A characteriser that declares a property for an object through the specific interaction required by the property definition. + Observer + A characteriser that declares a property for an object through the specific interaction required by the property definition. - - - - DifferentialLinearPulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - DifferentialLinearPulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + + + + + Service + IntangibleProduct + Service + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-4:v1:en:term:3.7.7 - - - - - ElectronAffinity - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor - ElectronAffinity - https://qudt.org/vocab/quantitykind/ElectronAffinity - https://www.wikidata.org/wiki/Q105846486 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-22 - 12-25 - energy difference between an electron at rest at infinity and an electron at the lowest level of the conduction band in an insulator or semiconductor + + + + + + + + + + + + Product + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. + Output + Product + https://www.iso.org/obp/ui/#iso:std:iso:9000:ed-3:v1:en:term:3.4.2 + https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en:term:3.9 + The overall lifetime of an holistic that has been the output of an intentional process. + This concepts encompass the overall lifetime of a product. +Is temporaly fundamental, meaning that it can have other products as holistic spatial parts, but its holistic temporal parts are not products. In other words, the individual must encompass the whole lifetime from creation to disposal. +A product can be a tangible object (e.g. a manufactured object), a process (e.g. service). It can be the outcome of a natural or an artificially driven process. +It must have and initial stage of its life that is also an outcome of a intentional process. - - + + - - + + - - - Energy - A property of objects which can be transferred to other objects or converted into different forms. - Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work. - Energy - http://qudt.org/vocab/quantitykind/Energy - 5-20-1 - A property of objects which can be transferred to other objects or converted into different forms. - https://doi.org/10.1351/goldbook.E02101 + + IntentionalProcess + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). + Project + IntentionalProcess + A process occurring with the active participation of an agent that drives the process according to a specific objective (intention). - + - - MeasuringInstrument - A measuring instrument that can be used alone is a measuring system. - Device used for making measurements, alone or in conjunction with one or more supplementary devices. - --- VIM - MeasuringInstrument - Device used for making measurements, alone or in conjunction with one or more supplementary devices. - --- VIM - measuring instrument + + + + + + + + + + + + + + + + + + + + + Measurement + A measurement always implies a causal interaction between the object and the observer. + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + Measurement + An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. + measurement - - - - CharacterisationHardware - Whatever hardware is used during the characterisation process. - CharacterisationHardware - Whatever hardware is used during the characterisation process. + + + + Procedure + A procedure can be considered as an intentional process with a plan. + The process in which an agent works with some entities according to some existing formalised operative rules. + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + Elaboration + Work + Procedure + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + The process in which an agent works with some entities according to some existing formalised operative rules. + The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). +The process in which a librarian order books alphabetically on a shelf. +The execution of an algorithm. + A procedure can be considered as an intentional process with a plan. - - - - - - - T0 L+2 M0 I0 Θ0 N0 J0 - - - AreaUnit - AreaUnit + + + + + + + + + + + + + + + + + + + CharmQuark + CharmQuark + https://en.wikipedia.org/wiki/Charm_quark - + - + - AverageEnergyLossPerElementaryChargeProduced - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - AverageEnergyLossPerElementaryChargeProduced - https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced - https://www.wikidata.org/wiki/Q98793042 - 10-60 - Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + ReactorTimeConstant + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. + ReactorTimeConstant + https://qudt.org/vocab/quantitykind/ReactorTimeConstant + https://www.wikidata.org/wiki/Q99518950 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 + 10-79 + Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - + + + + Duration + Physical quantity for describing the temporal distance between events. + Duration + https://www.wikidata.org/wiki/Q2199864 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 + 3-9 + Physical quantity for describing the temporal distance between events. + + + + + OrdinalQuantity + "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." +International vocabulary of metrology (VIM) + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + OrdinalQuantity + "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" +International vocabulary of metrology (VIM) + Hardness +Resilience + ordinal quantity + + + - T+2 L0 M-1 I+1 Θ0 N0 J0 + T+2 L-3 M-1 I0 Θ0 N+1 J0 - ElectricMobilityUnit - ElectricMobilityUnit + AmountSquareTimePerMassVolumeUnit + AmountSquareTimePerMassVolumeUnit - + - - + + - - - SecondAxialMomentOfArea - SecondAxialMomentOfArea - https://qudt.org/vocab/quantitykind/SecondAxialMomentOfArea - https://www.wikidata.org/wiki/Q91405496 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-29 - 4-21.1 + + Vector + 1-dimensional array who's spatial direct parts are numbers. + LinearArray + 1DArray + Vector + 1-dimensional array who's spatial direct parts are numbers. - - - - MechanicalQuantity - Quantities categorised according to ISO 80000-4. - MechanicalQuantity - Quantities categorised according to ISO 80000-4. + + + + SamplePreparationInstrument + + SamplePreparationInstrument - - - - - IonTransportNumber - Faction of electrical current carried by given ionic species. - CurrentFraction - TransferrenceNumber - IonTransportNumber - https://qudt.org/vocab/quantitykind/IonTransportNumber - https://www.wikidata.org/wiki/Q331854 - 9-46 - Faction of electrical current carried by given ionic species. - https://doi.org/10.1351/goldbook.I03181 - https://doi.org/10.1351/goldbook.T06489 + + + + CharacterisationHardware + Whatever hardware is used during the characterisation process. + CharacterisationHardware + Whatever hardware is used during the characterisation process. - + - + + - - + + T-2 L+1 M+1 I-1 Θ0 N0 J0 - - - - LinearEnergyTransfer - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - LinearEnergyTransfer - https://qudt.org/vocab/quantitykind/LinearEnergyTransfer - https://www.wikidata.org/wiki/Q1699996 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 - 10-85 - Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. - https://doi.org/10.1351/goldbook.L03550 - - - - - RedStrangeAntiQuark - RedStrangeAntiQuark + + MagneticPotentialUnit + MagneticPotentialUnit - - - - WorkpieceManufacturing - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. - DIN 8580:2020 - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. - ISO 8887-1:2017 -manufacturing: production of components - Werkstücke - DiscreteManufacturing - WorkpieceManufacturing - A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + + + + + + + + + + + + + + + + + + + + + + ClassicallyDefinedMaterial + ClassicallyDefinedMaterial - - - MuonAntiNeutrino - MuonAntiNeutrino + + + + + Material + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + Material + The class of individuals standing for an amount of ordinary matter substance (or mixture of substances) in different states of matter or phases. + A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found. + Material usually means some definite kind, quality, or quantity of matter, especially as intended for use. - - + + - - + + - - - RecombinationCoefficient - Coefficient in the law of recombination, - RecombinationCoefficient - https://qudt.org/vocab/quantitykind/RecombinationCoefficient - https://www.wikidata.org/wiki/Q98842099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 - 10-63 - Coefficient in the law of recombination, + + + + + + + + + + + + + + ProbeSampleInteraction + + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + ProbeSampleInteraction + Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - - - - - LarmonAngularFrequency - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - LarmonAngularFrequency - 10-15.1 - Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + + + + + + + + + + + PhysicsOfInteraction + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). + PhysicsOfInteraction + Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. + In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - - - - AngularFrequency - Rate of change of the phase angle. - AngularFrequency - https://qudt.org/vocab/quantitykind/AngularFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-03 - https://dbpedia.org/page/Angular_frequency - 3-18 - Rate of change of the phase angle. - https://en.wikipedia.org/wiki/Angular_frequency - https://doi.org/10.1351/goldbook.A00352 + + + + Determined + Determined - - - - FromWorkPIecetoWorkPiece - FromWorkPIecetoWorkPiece + + + Declared + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. + Declared + A semantic object that is connected to a conventional sign by an interpreter (a declarer) according to a specific convention. - - - - WorkpieceForming - A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. - ArchetypeForming - PrimitiveForming - WorkpieceForming + + + + SquareWaveVoltammetry + + Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. + The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped + The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + OSWV + OsteryoungSquareWaveVoltammetry + SWV + SquareWaveVoltammetry + https://www.wikidata.org/wiki/Q4016323 + voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp + https://en.wikipedia.org/wiki/Squarewave_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - - - - T-6 L+4 M+2 I-2 Θ0 N0 J0 - - - LorenzNumberUnit - LorenzNumberUnit + + + + Voltammetry + + The current vs. potential (I-E) curve is called a voltammogram. + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + Voltammetry + https://www.wikidata.org/wiki/Q904093 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 + Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. + https://en.wikipedia.org/wiki/Voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - SurfaceDensityOfElectricCharge - The derivative of the electric charge of a system with respect to the area. - AreicElectricCharge - SurfaceChargeDensity - SurfaceDensityOfElectricCharge - https://www.wikidata.org/wiki/Q12799324 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 - 6-4 - The derivative of the electric charge of a system with respect to the area. - https://doi.org/10.1351/goldbook.S06159 + + + + ArithmeticOperator + ArithmeticOperator - - - - - - - - - - - ElectricFluxDensity - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - ElectricDisplacement - ElectricFluxDensity - https://qudt.org/vocab/quantitykind/ElectricDisplacementField - https://www.wikidata.org/wiki/Q371907 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 - 6-12 - Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. + + + + AlgebricOperator + AlgebricOperator - - - - - GibbsEnergy - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - GibbsFreeEnergy - GibbsEnergy - https://www.wikidata.org/wiki/Q334631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 - 5-20.5 - Type of thermodynamic potential; useful for calculating reversible work in certain systems. - https://doi.org/10.1351/goldbook.G02629 + + + + Assemblying + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + The act of connecting together the parts of something + Assemblying + The act of connecting together the parts of something + No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - + + + + JoinManufacturing + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + A manufacturing involving the creation of long-term connection of several workpieces. + DIN 8580:2020 + Fügen + JoinManufacturing + A manufacturing involving the creation of long-term connection of several workpieces. + + + - + - HeatCapacity - Examples of condition might be constant volume or constant pressure for a gas. - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - HeatCapacity - https://qudt.org/vocab/quantitykind/HeatCapacity - https://www.wikidata.org/wiki/Q179388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-47 - https://dbpedia.org/page/Heat_capacity - 5-15 - Quantity C = dQ/dT, when the thermodynamic temperature of a system is increased by dT as a result of the addition of a amount of heat dQ, under given condition. - https://en.wikipedia.org/wiki/Heat_capacity - https://doi.org/10.1351/goldbook.H02753 + ThermalDiffusivity + ThermalDiffusionCoefficient + ThermalDiffusivity + https://qudt.org/vocab/quantitykind/ThermalDiffusivity + https://www.wikidata.org/wiki/Q3381809 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 + 5-14 - - - - Peening - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - ShotPeening - Verfestigungsstrahlen - Peening - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + + + VoltammetryAtARotatingDiskElectrode + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + VoltammetryAtARotatingDiskElectrode + Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation + https://doi.org/10.1515/pac-2018-0109 - - + + + + HydrodynamicVoltammetry + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + HydrodynamicVoltammetry + https://www.wikidata.org/wiki/Q17028237 + Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). + https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry + https://doi.org/10.1515/pac-2018-0109 + + + + - - + + - - MassNumber - Number of nucleons in an atomic nucleus. - AtomicMassNumber - NucleonNumber - MassNumber - http://qudt.org/vocab/quantitykind/MassNumber - Number of nucleons in an atomic nucleus. - - - - - - HeatTreatment - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. - wärmebehandeln - HeatTreatment - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + + + + + + + + Determiner + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. + Determiner + An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - - - - PlasticModeling - PlasticModeling + + + ResemblanceIcon + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + An icon that mimics the spatial or temporal shape of the object. + The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). + ResemblanceIcon + An icon that mimics the spatial or temporal shape of the object. + A geographical map that imitates the shape of the landscape and its properties at a specific historical time. + An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. - - - - FormingFromPlastic - FormingFromPlastic + + + + + ThermoelectricVoltage + Voltage between substances a and b caused by the thermoelectric effect. + ThermoelectricVoltage + https://www.wikidata.org/wiki/Q105761637 + 12-20 + Voltage between substances a and b caused by the thermoelectric effect. - + - - - - - - - - - SurfaceMassDensity - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - AreicMass - SurfaceDensity - SurfaceMassDensity - https://www.wikidata.org/wiki/Q1907514 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 - 4-5 - at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. - https://doi.org/10.1351/goldbook.S06167 + + Voltage + Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. + The difference in electric potential between two points. + ElectricPotentialDifference + ElectricTension + Voltage + http://qudt.org/vocab/quantitykind/Voltage + 6-11.3 + The difference in electric potential between two points. + https://doi.org/10.1351/goldbook.A00424 + https://doi.org/10.1351/goldbook.V06635 - - - + + - - - - + + + + - Redundant - A whole possessing some proper parts of its same type. - NonMaximal - Redundant - A whole possessing some proper parts of its same type. - An object A which is classified as water-fluid possesses a proper part B which is water itself if the lenght scale of the B is larger than the water intermolecular distance keeping it in the continuum range. In this sense, A is redundant. - -If A is a water-fluid so small that its every proper part is no more a continuum object (i.e. no more a fluid), then A is fundamental. + GasMixture + GasMixture - - - - - - - - - Whole - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - A whole is categorized as fundamental (or maximal) or redundant (non-maximal). - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - Whole - The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. - A whole is always defined using a criterion expressed through the classical transitive parthood relation. -This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + + + + PH + At about 25 °C aqueous solutions with: +pH < 7 are acidic; +pH = 7 are neutral; +pH > 7 are alkaline. +At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + Written as pH + PH + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 + For more details, see ISO 80000-9:2009, Annex C + Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ +pH = −10 log(a_H+). + https://doi.org/10.1351/goldbook.P04524 - + - + + IonActivity + Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. + The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + IonActivity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 + ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + + + + + - - - T-1 L-3 M0 I0 Θ0 N0 J0 - + + + + + + - FrequencyPerVolumeUnit - FrequencyPerVolumeUnit - + Fundamental + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + Lifetime + Maximal + Fundamental + A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. + A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - - - - - - - - - - - AreaDensity - Mass per unit area. - AreaDensity - http://qudt.org/vocab/quantitykind/SurfaceDensity - https://doi.org/10.1351/goldbook.S06167 - +On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. - - - - - - - - - TemporalTiling - A well formed tessellation with tiles that are all temporal. - TemporalTiling - A well formed tessellation with tiles that are all temporal. +Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. - + - + - - Molality - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - AmountPerMass - Molality - https://www.wikidata.org/wiki/Q172623 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 - 9-15 - quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. - https://doi.org/10.1351/goldbook.M03970 + ReciprocalVolume + ReciprocalVolume - + - + - - - VolumicTotalCrossSection - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - MacroscopicTotalCrossSection - VolumicTotalCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection - https://www.wikidata.org/wiki/Q98280548 - 10-42.2 - Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - - - - - - - RelativePermittivity - Permittivity divided by electric constant. - RelativePermittivity - https://qudt.org/vocab/unit/PERMITTIVITY_REL - https://www.wikidata.org/wiki/Q4027242 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 - 6-15 - Permittivity divided by electric constant. + + StructureFactor + Mathematical description in crystallography. + StructureFactor + https://qudt.org/vocab/quantitykind/StructureFactor + https://www.wikidata.org/wiki/Q900684 + 12-5.4 + Mathematical description in crystallography. - + - + - + - + @@ -5241,514 +5311,459 @@ This class is expected to host the definition of world objects as they appear in - StrangeAntiQuark - StrangeAntiQuark + UpQuarkType + UpQuarkType - - - - DifferentialPulseVoltammetry - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - DPV - DifferentialPulseVoltammetry - https://www.wikidata.org/wiki/Q5275361 - Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. - https://en.wikipedia.org/wiki/Differential_pulse_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + + + + + + + + + + + + MeasurementUnit + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + A metrological reference for a physical quantity. + MeasurementUnit + A metrological reference for a physical quantity. + kg +m/s +km + measurement unit (VIM3 1.9) + "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" +ISO 80000-1 + "Unit symbols are mathematical entities and not abbreviations." + +"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." + +https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf + Measurement units and procedure units are disjoint. + Quantitative value are expressed as a multiple of the 'MeasurementUnit'. - + - - - - - - - - - - - - - - - - CharacterisationWorkflow - A characterisation procedure that has at least two characterisation tasks as proper parts. - CharacterisationWorkflow - A characterisation procedure that has at least two characterisation tasks as proper parts. + + DataFiltering + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + DataFiltering + Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - + - - - - - - - - - - - - - - - - - - - - CharacterisationTask - - CharacterisationTask + + DataPreparation + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + DataPreparation + Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - - - - - - - - - - Torque - Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - Torque - http://qudt.org/vocab/quantitykind/Torque - 4-12.2 - The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. - https://doi.org/10.1351/goldbook.T06400 + + + FunctionalIcon + An icon that focusing WHAT the object does. + An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. + This subclass of icon inspired by Peirceian category (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else. + FunctionalIcon + An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. + A data based model is only a functional icon, since it provide the same relations between the properties of the object (e.g., it can predict some properties as function of others) but is not considering the internal mechanisms (i.e., it can ignore the physics). + A guinea pig. + An icon that focusing WHAT the object does. - - + + - T0 L+3 M0 I0 Θ0 N0 J0 + T0 L+2 M0 I0 Θ0 N-1 J0 - VolumeUnit - VolumeUnit + AreaPerAmountUnit + AreaPerAmountUnit - - - - - - - - - - - - - - - - - - - - Fluid - A continuum that has no fixed shape and yields easily to external pressure. - Fluid - A continuum that has no fixed shape and yields easily to external pressure. - Gas, liquid, plasma, + + + + CyclicVoltammetry + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + CV + CyclicVoltammetry + https://www.wikidata.org/wiki/Q1147647 + https://dbpedia.org/page/Cyclic_voltammetry + Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. + https://en.wikipedia.org/wiki/Cyclic_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - ContinuumSubstance - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - ContinuumSubstance - A state that is a collection of sufficiently large number of other parts such that: -- it is the bearer of qualities that can exists only by the fact that it is a sum of parts -- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 - A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. - A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). - -A single continuum individual can be the whole fluid in a pipe. - A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. + + + + + ParticleEmissionRate + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + ParticleEmissionRate + https://www.wikidata.org/wiki/Q98153151 + 10-36 + Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - + - - - - - - + + - - AtomicMass - Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. - The atomic mass is often expressed as an average of the commonly found isotopes. - The mass of an atom in the ground state. - AtomicMass - The mass of an atom in the ground state. - 10-4.1 - https://en.wikipedia.org/wiki/Atomic_mass - https://doi.org/10.1351/goldbook.A00496 + + ReciprocalDuration + InverseDuration + InverseTime + ReciprocalTime + ReciprocalDuration + https://qudt.org/vocab/quantitykind/InverseTime + https://www.wikidata.org/wiki/Q98690850 - - - - - - - T+3 L-2 M-1 I+1 Θ0 N0 J0 - - - ElectricCurrentPerUnitEnergyUnit - ElectricCurrentPerUnitEnergyUnit + + + + GasLiquidSuspension + A coarse dispersion of liquid in a gas continuum phase. + GasLiquidSuspension + A coarse dispersion of liquid in a gas continuum phase. + Rain, spray. - - - - DifferentialStaircasePulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - DifferentialStaircasePulseVoltammetry - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + + + + Gas + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. + Gas + Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume. - + - - ElectricImpedance - Measure of the opposition that a circuit presents to a current when a voltage is applied. - Impedance - ElectricImpedance - http://qudt.org/vocab/quantitykind/Impedance - https://www.wikidata.org/wiki/Q179043 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 - 6-51.1 - https://en.wikipedia.org/wiki/Electrical_impedance + + + ComptonWavelength + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + ComptonWavelength + https://qudt.org/vocab/constant/ComptonWavelength + https://www.wikidata.org/wiki/Q1145377 + 10-20 + Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. + https://en.wikipedia.org/wiki/Compton_wavelength - + + + + Wavelength + Length of the repetition interval of a wave. + Wavelength + https://qudt.org/vocab/quantitykind/Wavelength + https://www.wikidata.org/wiki/Q41364 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 + https://dbpedia.org/page/Wavelength + 3-19 + Length of the repetition interval of a wave. + https://en.wikipedia.org/wiki/Wavelength + https://doi.org/10.1351/goldbook.W06659 + + + + + + ElectricCurrentPhasor + ElectricCurrentPhasor + https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor + https://www.wikidata.org/wiki/Q78514596 + 6-49 + + + - + - + - ElectricResistance - Inverse of 'ElectricalConductance'. - Measure of the difficulty to pass an electric current through a material. - Resistance - ElectricResistance - http://qudt.org/vocab/quantitykind/Resistance - https://www.wikidata.org/wiki/Q25358 - 6-46 - Measure of the difficulty to pass an electric current through a material. - https://doi.org/10.1351/goldbook.E01936 - - - + ElectricCurrent + A flow of electric charge. + ElectricCurrent + http://qudt.org/vocab/quantitykind/ElectricCurrent + 6-1 + A flow of electric charge. + https://doi.org/10.1351/goldbook.E01927 + + + - - Device - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - Equipment - Machine - Device - An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + + ThermalSprayingForming + ThermalSprayingForming - - - - Solution - A solution is a homogeneous mixture composed of two or more substances. - Solutions are characterized by the occurrence of Rayleigh scattering on light, - Solution - A solution is a homogeneous mixture composed of two or more substances. + + + + FormingFromPowder + FormingFromPowder - + + + + + + + + + + + + Semiotics + Semiotics + + + + + + Perspective + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + Perspective + The class of causal objects that stand for world objects according to a specific representational perspective. + This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. +Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + + + + + + + StandardAbsoluteActivity + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + StandardAbsoluteActivityInAMixture + StandardAbsoluteActivity + https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89406159 + 9-23 + For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + + + + + + + AbsoluteActivity + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + AbsoluteActivity + https://qudt.org/vocab/quantitykind/AbsoluteActivity + https://www.wikidata.org/wiki/Q56638155 + 9-18 + The exponential of the ratio of the chemical potential to R*T where R is the gas constant and T the thermodynamic temperature. + https://goldbook.iupac.org/terms/view/A00019 + + + + + + + + + T-2 L0 M0 I0 Θ+1 N0 J0 + + + TemperaturePerSquareTimeUnit + TemperaturePerSquareTimeUnit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + EMMO + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The class of all the OWL individuals declared by EMMO as standing for world entities. + The disjoint union of the Item and Collection classes. + EMMO + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + The disjoint union of the Item and Collection classes. + The class of all the OWL individuals declared by EMMO as standing for world entities. + EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. +The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. +For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). + + + - + - ActivityDensity - Activity per unit volume of the sample. - ActivityConcentration - VolumetricActivity - VolumicActivity - ActivityDensity - https://qudt.org/vocab/quantitykind/ActivityConcentration - https://www.wikidata.org/wiki/Q423263 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 - 10-29 - Activity per unit volume of the sample. + SpecificActivity + Quotient of the activity A of a sample and the mass m of that sample. + MassicActivity + SpecificActivity + https://qudt.org/vocab/quantitykind/SpecificActivity + https://www.wikidata.org/wiki/Q2823748 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-08 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-43 + 10-28 + Quotient of the activity A of a sample and the mass m of that sample. + https://doi.org/10.1351/goldbook.S05790 - - + + - T+2 L+1 M-1 I0 Θ0 N0 J0 + T0 L0 M+1 I0 Θ0 N+1 J0 - PerPressureUnit - PerPressureUnit + MassAmountOfSubstanceUnit + MassAmountOfSubstanceUnit - + + + SpatiallyRedundant + A whole with spatial parts of its same type. + SpatiallyRedundant + A whole with spatial parts of its same type. + + + - - - ResonanceEnergy - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. - ResonanceEnergy - https://qudt.org/vocab/quantitykind/ResonanceEnergy - https://www.wikidata.org/wiki/Q98165187 - 10-37.2 - Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + + + + + T-1 L-3 M+1 I0 Θ0 N0 J0 + + + MassPerVolumeTimeUnit + MassPerVolumeTimeUnit - + + + + + + + + - - RestMass - For particle X, mass of that particle at rest in an inertial frame. - InvariantMass - ProperMass - RestMass - https://qudt.org/vocab/quantitykind/RestMass - https://www.wikidata.org/wiki/Q96941619 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 - https://dbpedia.org/page/Mass_in_special_relativity - 10-2 - For particle X, mass of that particle at rest in an inertial frame. - https://en.wikipedia.org/wiki/Invariant_mass + NuclearQuadrupoleMoment + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). + NuclearQuadrupoleMoment + https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment + https://www.wikidata.org/wiki/Q97921226 + 10-18 + z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - - - - SubjectiveProperty - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - SubjectiveProperty - A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). - The measure of beauty on a scale from 1 to 10. - - - - - Subjective - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. - -This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. - -A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. - -e.g. you cannot evaluate the beauty of a person on objective basis. - Subjective - A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. - The beauty of that girl. -The style of your clothing. - - - - - - Chromatography - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - Chromatography - In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. - https://en.wikipedia.org/wiki/Chromatography - - - - - - MaterialRelation - A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - MaterialRelation - An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). - The Lennard-Jones potential. -A force field. -An Hamiltonian. - - - - - - - - - - - - - Equation - An equation with variables can always be represented as: - -f(v0, v1, ..., vn) = g(v0, v1, ..., vn) - -where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - Equation - The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. - 2+3 = 5 -x^2 +3x = 5x -dv/dt = a -sin(x) = y - - - - - - Wavelength - Length of the repetition interval of a wave. - Wavelength - https://qudt.org/vocab/quantitykind/Wavelength - https://www.wikidata.org/wiki/Q41364 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-10 - https://dbpedia.org/page/Wavelength - 3-19 - Length of the repetition interval of a wave. - https://en.wikipedia.org/wiki/Wavelength - https://doi.org/10.1351/goldbook.W06659 - - - - - - - - - - - - - Length - Extend of a spatial dimension. - Length is a non-negative additive quantity attributed to a one-dimensional object in space. - Length - http://qudt.org/vocab/quantitykind/Length - 3-1.1 - Extend of a spatial dimension. - https://doi.org/10.1351/goldbook.L03498 - - - - - - - - - - - - - - - - - - - - - Item - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The class of individuals standing for direct causally self-connected world entities. - The disjoint union of Elementary, Quantum and CausalSystem classes. - Item - A world entity is direct causally self-connected if any two parts that make up the whole are direct causally connected to each other. In the EMMO, topological connectivity is based on causality. -All physical objects, i.e. entities whose behaviour is explained by physics laws, are represented only by items. In other words, a physical object part is embedded in a direct causal graph that provides always a path between two of its parts. -Members of a collection lack such direct causality connection, i.e. they do not constitute a physical object. - -Following graph theory concepts, the quantums of an item are all connected together within a network of causal relations, forming a connected causal graph. A collection is then a set of disconnected graphs. - The disjoint union of Elementary, Quantum and CausalSystem classes. - The class of individuals standing for direct causally self-connected world entities. - - - - - - Letter - Letter - - - - - - GrowingCrystal - GrowingCrystal - - - - - - FormingFromLiquid - FormingFromLiquid - - - + - T0 L-3 M+1 I0 Θ0 N0 J0 + T-2 L+2 M+1 I-2 Θ0 N0 J0 - DensityUnit - DensityUnit + InductanceUnit + InductanceUnit - - - - - - - T+3 L-2 M-1 I0 Θ+1 N0 J0 - - - ThermalResistanceUnit - ThermalResistanceUnit + + + + Variable + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + Variable + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + x +k - + @@ -5757,991 +5772,721 @@ Following graph theory concepts, the quantums of an item are all connected toget - + - - + + + - Conventional - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. - Conventional - A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + Icon + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. +For example, when a Boeing 747 is used as a sign for another Boeing 747. + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] + Model + Simulacrum + Icon + A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. + A picture that reproduces the aspect of a person. + An equation that reproduces the logical connection of the properties of a physical entity. - - + + - - - - - - + + - - - - - - - - - Declarer - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - Declarer - An interpreter who establish the connection between an conventional sign and an object according to a specific convention. - A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). - Someone who assigns a name to an object. + + SolubilityProduct + For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + SolubilityProductConstant + SolubilityProduct + https://www.wikidata.org/wiki/Q11229788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 + product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. + https://doi.org/10.1351/goldbook.S05742 - - - - - - - - - - Baryon - Subatomic particle which contains an odd number of valence quarks, at least 3. - Baryon - Subatomic particle which contains an odd number of valence quarks, at least 3. - https://en.wikipedia.org/wiki/Baryon + + + + + EquilibriumConstant + The physical dimension can change based on the stoichiometric numbers of the substances involved. + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + EquilibriumConstantConcentrationBasis + EquilibriumConstant + https://qudt.org/vocab/quantitykind/EquilibriumConstant + https://www.wikidata.org/wiki/Q857809 + for solutions, product for all substances B of concentration c_B of substance B in power of its stoichiometric number v_B: K_p = \sum_B{c_B^{v_B}}. + https://en.wikipedia.org/wiki/Equilibrium_constant + https://doi.org/10.1351/goldbook.E02177 - - - - - - - - - - - CompositeFermion - CompositeFermion - Examples of composite particles with half-integer spin: -spin 1/2: He3 in ground state, proton, neutron -spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) + + + + Work + Product of force and displacement. + Work + http://qudt.org/vocab/quantitykind/Work + Product of force and displacement. + 4-28.4 + https://doi.org/10.1351/goldbook.W06684 - + + + + + FermiTemperature + in the free electron model, the Fermi energy divided by the Boltzmann constant + FermiTemperature + https://qudt.org/vocab/quantitykind/FermiTemperature + https://www.wikidata.org/wiki/Q105942324 + 12-28 + in the free electron model, the Fermi energy divided by the Boltzmann constant + + + - - - - - - + + + + + + + + - - - + + - Icon - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - If object and sign belongs to the same class, then the sign is fuctional, diagrammatic and resemblance. -For example, when a Boeing 747 is used as a sign for another Boeing 747. - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] - Model - Simulacrum - Icon - A sign that stands for an object by resembling or imitating it, in shape, function or by sharing a similar logical structure. - A picture that reproduces the aspect of a person. - An equation that reproduces the logical connection of the properties of a physical entity. + Determination + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Characterisation + Determination + A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. + Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. - + - - - LossAngle - Arctan of the loss factor - LossAngle - https://www.qudt.org/vocab/quantitykind/LossAngle - https://www.wikidata.org/wiki/Q20820438 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 - 6-55 - Arctan of the loss factor + + + + + T+1 L+1 M-1 I0 Θ0 N0 J0 + + + LengthTimePerMassUnit + LengthTimePerMassUnit - + - - Angle - Ratio of circular arc length to radius. - PlaneAngle - Angle - http://qudt.org/vocab/quantitykind/PlaneAngle - Ratio of circular arc length to radius. - 3-5 - https://doi.org/10.1351/goldbook.A00346 - - - - - - DataExchangeLanguage - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - DataExchangeLanguage - A computer language that is domain-independent and can be used for expressing data from any kind of discipline. - JSON, YAML, XML - https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages + + + ElectricSusceptibility + Electric polarization divided by electric constant and electric field strength. + ElectricSusceptibility + https://qudt.org/vocab/quantitykind/ElectricSusceptibility + https://www.wikidata.org/wiki/Q598305 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 + 6-16 + Electric polarization divided by electric constant and electric field strength. + https://en.wikipedia.org/wiki/Electric_susceptibility - - - - ComputerLanguage - A formal language used to communicate with a computer. - The categorisation of computer languages is based on - -Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. -https://www.computer.org/education/bodies-of-knowledge/software-engineering - ComputerLanguage - A formal language used to communicate with a computer. - The categorisation of computer languages is based on - -Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. -https://www.computer.org/education/bodies-of-knowledge/software-engineering - https://en.wikipedia.org/wiki/Computer_language + + + + + SubObject + An object which is an holistic temporal part of another object. + Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. + SubObject + An object which is an holistic temporal part of another object. + If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. - - - GluonType5 - GluonType5 + + + + Device + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. + Equipment + Machine + Device + An object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment. - + - T0 L0 M-1 I+1 Θ0 N0 J0 + T-3 L-1 M+1 I0 Θ0 N0 J0 - ElectricCurrentPerMassUnit - ElectricCurrentPerMassUnit - - - - - - Hardening - Heat treatment process that generally produces martensite in the matrix. - Hardening - Heat treatment process that generally produces martensite in the matrix. + PressurePerTimeUnit + PressurePerTimeUnit - + - + - - DirectionAndEnergyDistributionOfCrossSection - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - DirectionAndEnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection - https://www.wikidata.org/wiki/Q98269571 - 10-41 - Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + + ModulusOfRigidity + Ratio of shear stress to the shear strain. + ShearModulus + ModulusOfRigidity + https://qudt.org/vocab/quantitykind/ShearModulus + https://www.wikidata.org/wiki/Q461466 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 + 4-19.2 + Ratio of shear stress to the shear strain. + https://doi.org/10.1351/goldbook.S05635 - + + + Height + Minimum length of a straight line segment between a point and a reference line or reference surface. + Height + https://qudt.org/vocab/quantitykind/Height + https://www.wikidata.org/wiki/Q208826 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 + https://dbpedia.org/page/Height + 3-1.3 + Minimum length of a straight line segment between a point and a reference line or reference surface. + https://en.wikipedia.org/wiki/Height + + + + - - + + + 2 - - - EnergyDistributionOfCrossSection - Differential quotient of the cross section for a process and the energy of the scattered particle. - EnergyDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/SpectralCrossSection - https://www.wikidata.org/wiki/Q98267245 - 10-40 - Differential quotient of the cross section for a process and the energy of the scattered particle. + Collection + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + Collection + A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. +A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. +The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. + The class of not direct causally self-connected world entities. + The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. - - - - EffectiveDiffusionCoefficient - Diffusion coefficient through the pore space of a porous media. - EffectiveDiffusionCoefficient - https://www.wikidata.org/wiki/Q258852 - Diffusion coefficient through the pore space of a porous media. + + + + Sample + + Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. + Specimen + Sample + Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen. + Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero. - + + + + InspectionDevice + InspectionDevice + + + - + - - - DiffusionCoefficient - Proportionality constant in some physical laws. - DiffusionCoefficient - Proportionality constant in some physical laws. - - - - - - PulsedElectroacousticMethod - - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - PulsedElectroacousticMethod - The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. - https://doi.org/10.1007/s10832-023-00332-y - - - - - - ChargeDistribution - - ChargeDistribution - - - - - - Chronocoulometry - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - Chronocoulometry - Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. - https://doi.org/10.1515/pac-2018-0109 - - - - - - Coulometry - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - Coulometry - https://www.wikidata.org/wiki/Q1136979 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 - Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). - https://en.wikipedia.org/wiki/Coulometry - https://doi.org/10.1515/pac-2018-0109 + + + LatticeVector + translation vector that maps the crystal lattice on itself + LatticeVector + https://qudt.org/vocab/quantitykind/LatticeVector + https://www.wikidata.org/wiki/Q105435234 + 12-1.1 + translation vector that maps the crystal lattice on itself - + - - - IonizationEnergy - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - IonizationEnergy - https://qudt.org/vocab/quantitykind/IonizationEnergy - https://www.wikidata.org/wiki/Q483769 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 - 12-24.2 - Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. - https://doi.org/10.1351/goldbook.I03199 + + Displacement + vector quantity between any two points in space + Displacement + https://qudt.org/vocab/quantitykind/Displacement + https://www.wikidata.org/wiki/Q190291 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 + https://dbpedia.org/page/Displacement_(geometry) + 3-1.11 + vector quantity between any two points in space + https://en.wikipedia.org/wiki/Displacement_(geometry) - - + + - T-1 L+2 M+1 I0 Θ0 N-1 J0 + T+1 L+1 M0 I+1 Θ0 N0 J0 - EnergyTimePerAmountUnit - EnergyTimePerAmountUnit + LengthTimeCurrentUnit + LengthTimeCurrentUnit - - - - - - - - - - - - - - PhysicallyInteractingConvex - PhysicallyInteractingConvex + + + + WorkpieceForming + A manufacturing in which it is formed a solid body with its shape from shapeless original material parts, whose cohesion is created during the process. + ArchetypeForming + PrimitiveForming + WorkpieceForming - - - - AbrasiveStrippingVoltammetry - - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve - AbrasiveStrippingVoltammetry - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + + SolidAerosol + An aerosol composed of fine solid particles in air or another gas. + SolidAerosol + An aerosol composed of fine solid particles in air or another gas. - - - - Voltammetry - - The current vs. potential (I-E) curve is called a voltammogram. - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - Voltammetry - https://www.wikidata.org/wiki/Q904093 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-11 - Voltammetry is an analytical technique based on the measure of the current flowing through an electrode dipped in a solution containing electro-active compounds, while a potential scanning is imposed upon it. - https://en.wikipedia.org/wiki/Voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + Aerosol + A colloid composed of fine solid particles or liquid droplets in air or another gas. + Aerosol + A colloid composed of fine solid particles or liquid droplets in air or another gas. - - - - MassFractionUnit - Unit for quantities of dimension one that are the fraction of two masses. - MassFractionUnit - Unit for quantities of dimension one that are the fraction of two masses. - Unit for mass fraction. + + + + + MeanDurationOfLife + Reciprocal of the decay constant λ. + MeanLifeTime + MeanDurationOfLife + https://qudt.org/vocab/quantitykind/MeanLifetime + https://www.wikidata.org/wiki/Q1758559 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 + 10-25 + Reciprocal of the decay constant λ. - - - - - - - - - - - - - - + + - - + + - Deduction - IndexSemiosis - Deduction - - - - - - - - - - - - - - - - Task - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - Job - Task - A procedure that is an hoilistic part of a workflow. - A task is a generic part of a workflow, without taking care of the task granularities. -It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + + + DensityOfVibrationalStates + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume + DensityOfVibrationalStates + https://qudt.org/vocab/quantitykind/DensityOfStates + https://www.wikidata.org/wiki/Q105637294 + 12-12 + quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - - - - SystemProgram - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - SystemProgram - System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. - An operating system. A graphic driver. + + + + UnitOne + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Represents the number 1, used as an explicit unit to say something has no units. + Unitless + UnitOne + http://qudt.org/vocab/unit/UNITLESS + Represents the number 1, used as an explicit unit to say something has no units. + "The unit one is the neutral element of any system of units – necessary and present automatically." + +-- SI Brochure + Refractive index or volume fraction. + Typically used for ratios of two units whos dimensions cancels out. - - - - - - Path - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - Path - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - /etc/fstab (UNIX-like path) -C:\\Users\\John\\Desktop (DOS-like path) + + + DimensionlessUnit + The subclass of measurement units with no physical dimension. + DimensionlessUnit + http://qudt.org/vocab/unit/UNITLESS + The subclass of measurement units with no physical dimension. + Refractive index +Plane angle +Number of apples - - - - - - - - - - - - Data - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - A perspective in which entities are represented according to the variation of their properties. - Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 - Contrast - Dedomena - Pattern - Data - A perspective in which entities are represented according to the variation of their properties. - A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. -A data can be of different physical types (e.g., matter, wave, atomic excited states). -How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. -Variations are pure physical variations and do not necessarily possess semantic meaning. - The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. + + + + + + + + + + Mounting + The sample is mounted on a holder. + The sample is mounted on a holder. + Mounting + The sample is mounted on a holder. - - - - - Kerma - Kinetic energy released per mass. - Kerma - https://qudt.org/vocab/quantitykind/Kerma - https://www.wikidata.org/wiki/Q1739288 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 - 10-86.1 - Kinetic energy released per mass. + + + + + EndStep + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. + EndStep + The final step of a workflow. + There may be more than one end task, if they run in parallel leading to more than one output. - + + + + + + EndTile + EndTile + + + - + - - - SpecificEnergy - Energy per unit mass - SpecificEnergy - https://qudt.org/vocab/quantitykind/SpecificEnergy - https://www.wikidata.org/wiki/Q3023293 - https://dbpedia.org/page/Specific_energy - 5-21.1 - Energy per unit mass - https://en.wikipedia.org/wiki/Specific_energy + + LinearEnergyTransfer + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + LinearEnergyTransfer + https://qudt.org/vocab/quantitykind/LinearEnergyTransfer + https://www.wikidata.org/wiki/Q1699996 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-30 + 10-85 + Measure for the energy lost by charged particles per traversed distance, including only interactions up to a given energy. + https://doi.org/10.1351/goldbook.L03550 - - - Description - A coded that is not atomic with respect to a code of description. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. - Description - A coded that is not atomic with respect to a code of description. - A biography. - A sentence about some object, depticting its properties. - A description is a collection of properties that depicts an object. It is not atomic since it is made of several properties collected together. + + + CompositeMaterial + CompositeMaterial - - - - + + + - - T-2 L+1 M+1 I-2 Θ0 N0 J0 + + + + + + ElectricInductance + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + Inductance + ElectricInductance + http://qudt.org/vocab/quantitykind/Inductance + https://www.wikidata.org/wiki/Q177897 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 + 6-41.1 + A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. + https://doi.org/10.1351/goldbook.M04076 + + + + + + + + + + + + + + + + + + + + + - PermeabilityUnit - PermeabilityUnit + MathematicalSymbol + MathematicalSymbol - - - - AtomicForceMicroscopy - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - AtomicForceMicroscopy - Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + + + Process + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). + +For this reason, the definition of every specific process subclass requires the introduction of a primitive concept. + Occurrent + Perdurant + Process + A whole that is identified according to a criteria based on its temporal evolution that is satisfied throughout its time extension. + A process can be defined only according to an entity type. The minimum process is an entity made of two entities of the same type that are temporally related. - - - - PhaseVelocity - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - PhaseSpeed - PhaseVelocity - https://www.wikidata.org/wiki/Q13824 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-13 - https://dbpedia.org/page/Phase_velocity - 3-23.1 - For a sinusoidal wave at a given point, velocity in the direction of propagation of the wavefront corresponding to a specified phase. - https://en.wikipedia.org/wiki/Phase_velocity - - - - - - SandMolds - SandMolds - - - - - - FormingFromPowder - FormingFromPowder - - - - - - LiquidSolidSuspension - A coarse dispersion of solids in a liquid continuum phase. - LiquidSolidSuspension - A coarse dispersion of solids in a liquid continuum phase. - Mud + + + + OpticalTesting + + OpticalTesting - - - - - - - T0 L-1 M+1 I0 Θ0 N0 J0 - - - MassPerLengthUnit - MassPerLengthUnit + + + + CharacterisationTechnique + A characterisation technique is not only related to the measurement process which can be one of its steps. + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + Characterisation procedure + Characterisation technique + CharacterisationTechnique + The description of the overall characterisation technique. It can be composed of different steps (e.g. sample preparation, calibration, measurement, post-processing). + A characterisation technique is not only related to the measurement process which can be one of its steps. - + - - - ElectricSusceptibility - Electric polarization divided by electric constant and electric field strength. - ElectricSusceptibility - https://qudt.org/vocab/quantitykind/ElectricSusceptibility - https://www.wikidata.org/wiki/Q598305 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-19 - 6-16 - Electric polarization divided by electric constant and electric field strength. - https://en.wikipedia.org/wiki/Electric_susceptibility - - - - - - + + - - - - - - - - - - - - - Workflow - A procedure that has at least two procedures (tasks) as proper parts. - Workflow - A procedure that has at least two procedures (tasks) as proper parts. - - - - - - Procedure - A procedure can be considered as an intentional process with a plan. - The process in which an agent works with some entities according to some existing formalised operative rules. - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - Elaboration - Work - Procedure - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). - The process in which an agent works with some entities according to some existing formalised operative rules. - The process in which a control unit of a CPU (the agent) orchestrates some cached binary data according to a list of instructions (e.g. a program). -The process in which a librarian order books alphabetically on a shelf. -The execution of an algorithm. - A procedure can be considered as an intentional process with a plan. - - - - - - - - - - - - - - - Hadron - Particles composed of two or more quarks. - Hadron - Particles composed of two or more quarks. - https://en.wikipedia.org/wiki/Hadron + + + MassChangeRate + Mass increment per time. + MassChangeRate + https://www.wikidata.org/wiki/Q92020547 + 4-30.3 + Mass increment per time. - - - - - - - - - - - - - - - - - - - - Matter - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - A physical object made of fermionic quantum parts. - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - PhysicalSubstance - Matter - The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. -It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. -A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. -Antimatter is a subclass of matter. - A physical object made of fermionic quantum parts. - A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. - Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. + + + + CategorizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. + https://physics.nist.gov/cuu/Constants + CategorizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - + - - Galvanizing - Galvanizing + + WorkpieceManufacturing + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. + DIN 8580:2020 + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. + ISO 8887-1:2017 +manufacturing: production of components + Werkstücke + DiscreteManufacturing + WorkpieceManufacturing + A manufacturing with an output that is an object with a specific function, shape, or intended use, not simply a material. - + - - ArchetypeJoin - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - ArchetypeJoin - Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - - - - - - - MaximumBetaParticleEnergy - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - MaximumBetaParticleEnergy - https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy - https://www.wikidata.org/wiki/Q98148038 - 10-33 - Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - - - - - - EnergyDispersiveXraySpectroscopy - An analytical technique used for the elemental analysis or chemical characterization of a sample. - EDS - EDX - EnergyDispersiveXraySpectroscopy - https://www.wikidata.org/wiki/Q386334 - An analytical technique used for the elemental analysis or chemical characterization of a sample. - https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy - - - - - - - Wavenumber - Reciprocal of the wavelength. - Repetency - Wavenumber - https://qudt.org/vocab/quantitykind/Wavenumber - https://www.wikidata.org/wiki/Q192510 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 - https://dbpedia.org/page/Wavenumber - 3-20 - Reciprocal of the wavelength. - https://en.wikipedia.org/wiki/Wavenumber - https://doi.org/10.1351/goldbook.W06664 - - - - - - PhysicalLaw - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - PhysicalLaw - A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - - - - - - NaturalLaw - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - NaturalLaw - A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - - - - - - + + - - AngularAcceleration - vector quantity giving the rate of change of angular velocity - AngularAcceleration - https://qudt.org/vocab/quantitykind/AngularAcceleration - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 - https://dbpedia.org/page/Angular_acceleration - 3-13 - vector quantity giving the rate of change of angular velocity - https://en.wikipedia.org/wiki/Angular_acceleration - - - - - - - - - T-3 L+1 M+1 I0 Θ-1 N0 J0 - - - ThermalConductivityUnit - ThermalConductivityUnit - - - - - - + + - - - Permeance - Inverse of the reluctance. - Permeance - https://qudt.org/vocab/quantitykind/Permeance - https://www.wikidata.org/wiki/Q77997985 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 - 6-40 - Inverse of the reluctance. - - - - - - DrawForms - DrawForms - - - - - - + + - - - MassieuFunction - Negative quotient of Helmholtz energy and temperature. - MassieuFunction - https://qudt.org/vocab/quantitykind/MassieuFunction - https://www.wikidata.org/wiki/Q3077625 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 - 5-22 - Negative quotient of Helmholtz energy and temperature. + + Manufacturing + Deals with entities that have a defined shape. + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + DIN 8580:2020 + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + Manufacturing + The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes. + Deals with entities that have a defined shape. + https://de.wikipedia.org/wiki/Fertigungsverfahren - - - - LiquidLiquidSuspension - A coarse dispersion of liquid in a liquid continuum phase. - LiquidLiquidSuspension - A coarse dispersion of liquid in a liquid continuum phase. + + + + SpecialUnit + A unit symbol that stands for a derived unit. + Special units are semiotic shortcuts to more complex composed symbolic objects. + SpecialUnit + A unit symbol that stands for a derived unit. + Pa stands for N/m2 +J stands for N m - - - - Liquid - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. - Liquid - A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + + + DerivedUnit + A measurement unit for a derived quantity. +-- VIM + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + DerivedUnit + Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. + derived unit + A measurement unit for a derived quantity. +-- VIM - + - - - ShortRangeOrderParameter - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - ShortRangeOrderParameter - https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter - https://www.wikidata.org/wiki/Q105495979 - 12-5.1 - fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + + + AngularWavenumber + Magnitude of the wave vector. + AngularRepetency + AngularWavenumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q30338487 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 + 3-22 + Magnitude of the wave vector. - + + + DimensionalUnit + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + DimensionalUnit + A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. + The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + +The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + +Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + + + - + - - - Permeability - Measure for how the magnetization of material is affected by the application of an external magnetic field . - ElectromagneticPermeability - Permeability - http://qudt.org/vocab/quantitykind/ElectromagneticPermeability - 6-26.2 - https://doi.org/10.1351/goldbook.P04503 - - - - - - - - - - - - - - - - - - - - - UpQuark - UpQuark - https://en.wikipedia.org/wiki/Up_quark - - - - - - HardeningByForging - HardeningByForging - - - - - - Height - Minimum length of a straight line segment between a point and a reference line or reference surface. - Height - https://qudt.org/vocab/quantitykind/Height - https://www.wikidata.org/wiki/Q208826 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-21 - https://dbpedia.org/page/Height - 3-1.3 - Minimum length of a straight line segment between a point and a reference line or reference surface. - https://en.wikipedia.org/wiki/Height + + Exposure + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. + Exposure + https://qudt.org/vocab/quantitykind/Exposure + https://www.wikidata.org/wiki/Q336938 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 + 10-88 + Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - + - MetallicPowderSintering - MetallicPowderSintering + LiquidPhaseSintering + ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed + LiquidPhaseSintering @@ -6763,878 +6508,1199 @@ sintering: process of heating a powder metal compact to increase density and/or Because the sintering temperature doesn’t reach the materials’ melting point, it is often used for materials with high melting points, such as molybdenum and tungsten. - + - - - StaticFrictionCoefficient - CoefficientOfStaticFriction - StaticFrictionFactor - StaticFrictionCoefficient - https://www.wikidata.org/wiki/Q73695673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-33 - 4-23.1 + + + + + T-2 L0 M+1 I-1 Θ0 N0 J0 + + + MagneticFluxDensityUnit + MagneticFluxDensityUnit - + + + + + + + + + CharacterisationEnvironment + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + CharacterisationEnvironment + Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. + Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + + + - - - CoefficientOfFriction - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - FrictionCoefficient - FrictionFactor - CoefficientOfFriction - https://www.wikidata.org/wiki/Q1932524 - Dimensionless scalar value which describes the ratio of the force of friction between two bodies and the force pressing them together; depends on the materials used, ranges from near zero to greater than one. - https://doi.org/10.1351/goldbook.F02530 + + + + + T-2 L0 M+2 I0 Θ0 N0 J0 + + + SquareMassPerSquareTimeUnit + SquareMassPerSquareTimeUnit - - - - - SourceCode - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - SourceCode - A programming language entity expressing a formal detailed plan of what a software is intended to do. - A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ISQBaseQuantity + Base quantities defined in the International System of Quantities (ISQ). + ISQBaseQuantity + Base quantities defined in the International System of Quantities (ISQ). + https://en.wikipedia.org/wiki/International_System_of_Quantities - - - - Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - Software - All or part of the programs, procedures, rules, and associated documentation of an information processing system. - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + + + BaseQuantity + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + BaseQuantity + "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" +ISO 80000-1 + base quantity - - - - ProgrammingLanguage - A language object that follows syntactic rules of a programming language. - A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. - Code - SoftwareCode - ProgrammingLanguage - A language object that follows syntactic rules of a programming language. - A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. - Entities are not necessarily digital data, but can be code fragments printed on paper. + + + + InternationalSystemOfQuantity + Quantities declared under the ISO 80000. + https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 + InternationalSystemOfQuantity + Quantities declared under the ISO 80000. + https://en.wikipedia.org/wiki/International_System_of_Quantities + + + + + + + + + T+3 L-2 M-1 I+2 Θ0 N0 J0 + + + ElectricConductanceUnit + ElectricConductanceUnit + + + + + + + ManufacturedProduct + An object that has been designed and manufactured for a particular purpose. + Artifact + Engineered + TangibleProduct + ManufacturedProduct + An object that has been designed and manufactured for a particular purpose. + Car, tire, composite material. + + + + + + + Expression + A well-formed finite combination of mathematical symbols according to some specific rules. + Expression + A well-formed finite combination of mathematical symbols according to some specific rules. - + - - + + - - AlgebricEquation - An 'equation' that has parts two 'polynomial'-s - AlgebricEquation - 2 * a - b = c + + SymbolicConstruct + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + SymbolicConstruct + A symbolic entity made of other symbolic entities according to a specific spatial configuration. + This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - - - - SeparateManufacturing - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - DIN 8580:2020 - Trennen - CuttingManufacturing - SeparateManufacturing - A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + + + + LinkedModelsSimulation + A chain of linked physics based model simulations, where equations are solved sequentially. + LinkedModelsSimulation + A chain of linked physics based model simulations, where equations are solved sequentially. - - - - AccessConditions - Describes what is needed to repeat the experiment - AccessConditions - Describes what is needed to repeat the experiment - In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? + + + + MultiSimulation + A physics based simulation with multiple physics based models. + MultiSimulation + A physics based simulation with multiple physics based models. - - - - NominalProperty - "Property of a phenomenon, body, or substance, where the property has no magnitude." + + + + + MagneticSusceptibility + Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + MagneticSusceptibility + https://qudt.org/vocab/unit/SUSCEPTIBILITY_MAG.html + https://www.wikidata.org/wiki/Q691463 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37 + 6-28 + Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + -"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." + + + + TightlyCoupledModelsSimulation + A simulation in which more than one model are solved together with a coupled method. + TightlyCoupledModelsSimulation + A simulation in which more than one model are solved together with a coupled method. + Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. + -International vocabulary of metrology (VIM) - An 'ObjectiveProperty' that cannot be quantified. - NominalProperty - An 'ObjectiveProperty' that cannot be quantified. - CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered + + + + AbrasiveStrippingVoltammetry + + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + AbrasiveStrippingVoltammetry + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + -A color is a nominal property. + + + + + ExchangeIntegral + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + ExchangeIntegral + https://qudt.org/vocab/quantitykind/ExchangeIntegral + https://www.wikidata.org/wiki/Q10882959 + 12-34 + constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + -Sex of a human being. - nominal property + + + + + + + + + + + + + + + StandardModelParticle + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + The union of all classes categorising elementary particles according to the Standard Model. + ElementaryParticle + StandardModelParticle + The union of all classes categorising elementary particles according to the Standard Model. + Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. + Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. + This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). +In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). - + + + Quantum + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + Quantum + A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. +The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. +Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). +Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. + The class of entities without proper parts. + The class of the mereological and causal fundamental entities. + From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. +However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. + A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + + + - - - - - - - - - Entropy - Logarithmic measure of the number of available states of a system. - May also be referred to as a measure of order of a system. - Entropy - http://qudt.org/vocab/quantitykind/Entropy - 5-18 - https://doi.org/10.1351/goldbook.E02149 + + + RelativeLinearStrain + Relative change of length with respect the original length. + RelativeLinearStrain + https://qudt.org/vocab/quantitykind/LinearStrain + https://www.wikidata.org/wiki/Q1990546 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 + 4-17.2 + Relative change of length with respect the original length. + https://doi.org/10.1351/goldbook.L03560 - + - - Annealing - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - Annealing - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + + MaterialsProcessing + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + A material process requires the output to be classified as an individual of a material subclass. + ContinuumManufacturing + MaterialsProcessing + A manufacturing process aimed to modify the precursor objects through a physical process (involving other materials, energy, manipulation) to change its material properties. + Synthesis of materials, quenching, the preparation of a cake, tempering of a steel beam. + A material process requires the output to be classified as an individual of a material subclass. - - - - PotentiometricStrippingAnalysis - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury - the accumulation is similar to that used in stripping voltammetry - the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution - the time between changes in potential in step 2 is related to the concentration of analyte in the solution - PSA - PotentiometricStrippingAnalysis - Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + + + + TechnologyProcess + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + Conversion of materials and assembly of components for the manufacture of products + Technology is the application of knowledge for achieving practical goals in a reproducible way. + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + ProductionEngineeringProcess + TechnologyProcess + Class that includes the application of scientific knowledge, tools and techniques in order to transform a precursor object (ex. conversion of material) following a practic purpose. + + + + + Electron + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + Electron + The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron + + + + + + URL + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + URL + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + + + + Subjective + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The word subjective applies to property intrisically subjective or non-well defined. In general, when an black-box-like procedure is used for the definition of the property. + +This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols. + +A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. + +e.g. you cannot evaluate the beauty of a person on objective basis. + Subjective + A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box. + The beauty of that girl. +The style of your clothing. - + - T-2 L+2 M+1 I0 Θ-1 N0 J0 + T-3 L+3 M+1 I-1 Θ0 N0 J0 - EntropyUnit - EntropyUnit + ElectricFluxUnit + ElectricFluxUnit - + - - SpecificEnthalpy - Enthalpy per unit mass. - SpecificEnthalpy - https://qudt.org/vocab/quantitykind/SpecificEnthalpy - https://www.wikidata.org/wiki/Q21572993 - 5-21.3 - Enthalpy per unit mass. - https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy + + + + + T+2 L0 M-1 I+1 Θ0 N0 J0 + + + ElectricMobilityUnit + ElectricMobilityUnit - - + + + + Drilling + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + Bohren + Drilling + + + + - - + + + + + + - - - TotalMassStoppingPower - Quotient of the total linear stopping power S and the mass density ρ of the material. - MassStoppingPower - TotalMassStoppingPower - https://qudt.org/vocab/quantitykind/TotalMassStoppingPower - https://www.wikidata.org/wiki/Q98642795 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 - 10-55 - Quotient of the total linear stopping power S and the mass density ρ of the material. + Cogniser + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + Cogniser + An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) + The scientist that connects an equation to a physical phenomenon. - - - - - - - - - - - - Replica - An icon that not only resembles the object, but also can express some of the object's functions. - Replica - An icon that not only resembles the object, but also can express some of the object's functions. - A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. - Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). + + + MuonNeutrino + A neutrino belonging to the second generation of leptons. + MuonNeutrino + A neutrino belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon_neutrino - - - - IsochoricHeatCapacity - Heat capacity at constant volume. - HeatCapacityAtConstantVolume - IsochoricHeatCapacity - https://www.wikidata.org/wiki/Q112187521 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 - 5-16.3 - Heat capacity at constant volume. + + + + CommandLanguage + An interpreted computer language for job control in computing. + CommandLanguage + An interpreted computer language for job control in computing. + Unix shell. +Batch programming languages. + https://en.wikipedia.org/wiki/Command_language - - - DataSet - Encoded data made of more than one datum. - DataSet - Encoded data made of more than one datum. + + + + ConstructionLanguage + A computer language by which a human can specify an executable problem solution to a computer. + ConstructionLanguage + A computer language by which a human can specify an executable problem solution to a computer. + https://en.wikipedia.org/wiki/Software_construction#Construction_languages - - - Quantum - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - Quantum - A quantum is the most fundamental item (both mereologically and causally) and is considered causally self-connected by definition. -The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainity principle. -Space and time emerge following the network of causal connections between quantum objects. So quantum objects are adimensional objects, that precede space and time dimensions: they are simple beings (in greek οντα). -Using physics concepts, we can think the quantum as an elementary particle (e.g. an electron) in a specific state between two causal interactions. - The class of entities without proper parts. - The class of the mereological and causal fundamental entities. - From a physics perspective a quantum can be related to smallest identifiable entities, according to the limits imposed by the uncertainty principle in space and time measurements. -However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a quantum can stand for an hour (time) of a worker (space) activity. - A quantum is the EMMO mereological atomistic and causal reductionistic entity. To avoid confusion with the concept of atom coming from physics and to underline the causal reductionistic approach, we will use the expression quantum mereology, instead of atomistic mereology. + + + + DielectricAndImpedanceSpectroscopy + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. + DielectricAndImpedanceSpectroscopy + Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - - - - DrawForming - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. - DrawForming + + + + Spectroscopy + + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. + Spectroscopy + Spectroscopy is a category of characterization techniques which use a range of principles to reveal the chemical composition, composition variation, crystal structure and photoelectric properties of materials. - + - - TensileForming - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - Zugdruckumformen - TensileForming + + ProcessEngineeringProcess + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. + +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + ProcessEngineeringProcess + Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. +In fact, everything has a shape, but in process engineering this is not relevant. + +e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. + https://de.wikipedia.org/wiki/Verfahrenstechnik - - - - - - - - - - - - - - PhysicalObject - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - PhysicalObject - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + + + + NuclearSpinQuantumNumber + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. + NuclearSpinQuantumNumber + https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber + https://www.wikidata.org/wiki/Q97577403 + 10-13.7 + Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - - - - ElectrochemicalTesting - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 - ElectrochemicalTesting - In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + + + + + BeginStep + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. + BeginStep + An initial step of a workflow. + There may be more than one begin task, if they run in parallel. + + + + + + + + BeginTile + BeginTile - - + + - - + + + + + MolarAttenuationCoefficient + Quotient of linear attenuation coefficient µ and the amount c of the medium. + MolarAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592828 + 10-51 + Quotient of linear attenuation coefficient µ and the amount c of the medium. + + + + - - + + + + + TotalLinearStoppingPower + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + LinearStoppingPower + TotalLinearStoppingPower + https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower + https://www.wikidata.org/wiki/Q908474 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 + 10-54 + For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. + https://doi.org/10.1351/goldbook.S06035 + + + + + IonAtom + A standalone atom with an unbalanced number of electrons with respect to its atomic number. + The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, + IonAtom + A standalone atom with an unbalanced number of electrons with respect to its atomic number. + + + + + CeramicMaterial + CeramicMaterial + + + + - - + + + + + Frequency + Number of periods per time interval. + Frequency + http://qudt.org/vocab/quantitykind/Frequency + https://www.wikidata.org/wiki/Q11652 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 + 3-15.1 + Number of periods per time interval. + https://doi.org/10.1351/goldbook.FT07383 + + + + - - + + + + + + - - SamplePreparation - - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. - SamplePreparation - Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement. + + Manufacturer + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + Manufacturer + A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - - - - CharacterisationProcedure - Characterisation procedure may refer to the full characterisation process or just a part of the full process. - The process of performing characterisation by following some existing formalised operative rules. - CharacterisationProcedure - The process of performing characterisation by following some existing formalised operative rules. - Sample preparation -Sample inspection -Calibration -Microscopy -Viscometry -Data sampling - Characterisation procedure may refer to the full characterisation process or just a part of the full process. + + + + + + + + + + + StrictFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + StrictFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - + - - GroupVelocity - Speed with which the envelope of a wave propagates in space. - GroupSpeed - GroupVelocity - https://www.wikidata.org/wiki/Q217361 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 - https://dbpedia.org/page/Group_velocity - 3-23.2 - Speed with which the envelope of a wave propagates in space. - https://en.wikipedia.org/wiki/Group_velocity + + MagneticQuantumNumber + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + MagneticQuantumNumber + https://qudt.org/vocab/quantitykind/MagneticQuantumNumber + https://www.wikidata.org/wiki/Q2009727 + 10-13.4 + Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - + + + + + + - + + + + Minus + Minus + + + - - - LinearIonization - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. - LinearIonization - https://qudt.org/vocab/quantitykind/LinearIonization - https://www.wikidata.org/wiki/Q98690755 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 - 10-58 - Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + + + + + T0 L0 M-1 I0 Θ0 N+1 J0 + + + AmountPerMassUnit + AmountPerMassUnit - - - - - - - - - - - - - - - - - - - TopAntiQuark - TopAntiQuark + + + + CoatingManufacturing + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + DIN 8580:2020 + Beschichten + CoatingManufacturing + A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. - + - - SampleExtraction - - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - SampleExtraction - Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. - The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + + MergingManufacturing + AddingManufacturing + MergingManufacturing - - - - DynamicMechanicalAnalysis - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - DynamicMechanicalAnalysis - Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + + + + + LogarithmicDecrement + Product of damping coefficient and period duration. + LogarithmicDecrement + https://www.wikidata.org/wiki/Q1399446 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 + 3-25 + Product of damping coefficient and period duration. + + + + + + SpecificationLanguage + A language used to describe what a computer system should do. + SpecificationLanguage + A language used to describe what a computer system should do. + ACSL, VDM, LOTUS, MML, ... + https://en.wikipedia.org/wiki/Specification_language - - - - MechanicalTesting - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - MechanicalTesting - Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. - https://en.wikipedia.org/wiki/Mechanical_testing + + + + ComputerLanguage + A formal language used to communicate with a computer. + The categorisation of computer languages is based on + +Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. +https://www.computer.org/education/bodies-of-knowledge/software-engineering + ComputerLanguage + A formal language used to communicate with a computer. + The categorisation of computer languages is based on + +Guide to the Software Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, January 2014. Editors Pierre Bourque, Richard E. Fairley. Publisher: IEEE Computer Society PressWashingtonDCUnited States. ISBN:978-0-7695-5166-1. +https://www.computer.org/education/bodies-of-knowledge/software-engineering + https://en.wikipedia.org/wiki/Computer_language - + - + - ThermalResistance - The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. - Thermodynamic temperature difference divided by heat flow rate. - ThermalResistance - https://qudt.org/vocab/quantitykind/ThermalResistance - https://www.wikidata.org/wiki/Q899628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 - 5-12 - Thermodynamic temperature difference divided by heat flow rate. + SpecificEntropy + SpecificEntropy + https://qudt.org/vocab/quantitykind/SpecificEntropy + https://www.wikidata.org/wiki/Q69423705 + 5-19 - + - - - - - T0 L+3 M-1 I0 Θ0 N0 J0 - - - VolumePerMassUnit - VolumePerMassUnit + + + ThermodynamicEfficiency + ThermalEfficiency + ThermodynamicEfficiency + https://qudt.org/vocab/quantitykind/ThermalEfficiency + https://www.wikidata.org/wiki/Q1452104 + 5-25.1 - + - + - DecayConstant - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - DisintegrationConstant - DecayConstant - https://qudt.org/vocab/quantitykind/DecayConstant - https://www.wikidata.org/wiki/Q11477200 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 - 10-24 - Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. - https://doi.org/10.1351/goldbook.D01538 - - - - - - NonActivePower - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - NonActivePower - https://qudt.org/vocab/quantitykind/NonActivePower - https://www.wikidata.org/wiki/Q79813060 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 - 6-61 - For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + ExposureRate + Time derivative of exposure. + ExposureRate + https://qudt.org/vocab/quantitykind/ExposureRate + https://www.wikidata.org/wiki/Q99720212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-42 + 10-89 + Time derivative of exposure. - - - - - RollingResistanceFactor - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - RollingResistanceFactor - https://www.wikidata.org/wiki/Q91738044 - 4-23.3 - Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + + + + + CharacterisationProperty + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). + CharacterisationProperty + The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - - - - - Lethargy - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - Lethargy - https://qudt.org/vocab/quantitykind/Lethargy - https://www.wikidata.org/wiki/Q25508781 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 - 10-69 - Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + + + RedDownQuark + RedDownQuark - + - + - - - EnergyDensityOfStates - Quantity in condensed matter physics. - EnergyDensityOfStates - https://qudt.org/vocab/quantitykind/EnergyDensityOfStates - https://www.wikidata.org/wiki/Q105687031 - 12-16 - Quantity in condensed matter physics. + FundamentalReciprocalLatticeVector + Fundamental translation vectors for the reciprocal lattice. + FundamentalReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475399 + 12-2.2 + Fundamental translation vectors for the reciprocal lattice. - + + + + SpecificEnthalpy + Enthalpy per unit mass. + SpecificEnthalpy + https://qudt.org/vocab/quantitykind/SpecificEnthalpy + https://www.wikidata.org/wiki/Q21572993 + 5-21.3 + Enthalpy per unit mass. + https://en.wikipedia.org/wiki/Enthalpy#Specific_enthalpy + + + - + - - DensityOfVibrationalStates - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - DensityOfVibrationalStates - https://qudt.org/vocab/quantitykind/DensityOfStates - https://www.wikidata.org/wiki/Q105637294 - 12-12 - quotient of the number of vibrational modes in an infinitesimal interval of angular frequency, and the product of the width of that interval and volume - - - - - - - SerialWorkflow - A workflow whose tasks are tiles of a sequence. - SerialWorkflow - A workflow whose tasks are tiles of a sequence. - - - - - - Sequence - A tessellation of temporal slices. - Sequence - A tessellation of temporal slices. + + + SpecificEnergy + Energy per unit mass + SpecificEnergy + https://qudt.org/vocab/quantitykind/SpecificEnergy + https://www.wikidata.org/wiki/Q3023293 + https://dbpedia.org/page/Specific_energy + 5-21.1 + Energy per unit mass + https://en.wikipedia.org/wiki/Specific_energy - - - HiggsBoson - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - HiggsBoson - An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. - https://en.wikipedia.org/wiki/Higgs_boson + + + + + + + + + + + + + + + + + + + + + Role + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + HolisticPart + Part + Role + An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. + In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). +Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. +This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - - + + - T0 L-1 M0 I0 Θ0 N0 J0 + T0 L-3 M0 I0 Θ0 N-1 J0 - ReciprocalLengthUnit - ReciprocalLengthUnit + ReciprocalAmountPerVolumeUnit + ReciprocalAmountPerVolumeUnit + + + + + + Dielectrometry + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + Dielectrometry + Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. + https://doi.org/10.1515/pac-2018-0109 - - - - ThermalSprayingForming - ThermalSprayingForming + + + + ElectrochemicalTesting + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. + http://dx.doi.org/10.1016/B978-0-323-46140-5.00002-9 + ElectrochemicalTesting + In electrochemical characterization, the measurement of potential, charge, or current is used to determine an analyte's concentration or to characterize an analyte's chemical reactivity. - + - - - RelativeVolumeStrain - Quotient of change of volume and original volume. - BulkStrain - VolumeStrain - RelativeVolumeStrain - https://qudt.org/vocab/quantitykind/VolumeStrain - https://www.wikidata.org/wiki/Q73432507 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 - 4-17.4 - Quotient of change of volume and original volume. - https://doi.org/10.1351/goldbook.V06648 + + + + + + + + + + RelativePressureCoefficient + RelativePressureCoefficient + https://qudt.org/vocab/quantitykind/RelativePressureCoefficient + https://www.wikidata.org/wiki/Q74761852 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 + 5-3.3 - + - + - - HallCoefficient - The relation between electric field strength and current density in an isotropic conductor. - HallCoefficient - https://qudt.org/vocab/quantitykind/HallCoefficient - https://www.wikidata.org/wiki/Q997439 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 - 12-19 - The relation between electric field strength and current density in an isotropic conductor. - - - - - Object - A continuant (here called object) is usually defined as a whole whose all possible temporal parts are always satisfying a specific criterion (wich is the classical definition of continuants). -However that's not possible in general, since we will finally end to temporal parts whose temporal extension is so small that the connectivity relations that define the object will no longer hold. That's the case when the temporal interval is lower than the interval that characterize the causality interactions between the object parts. -In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. -To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental. - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - Continuant - Endurant - Object - A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension. - - - - - - - ConstitutiveProcess - A constitutive process is a process that is holistically relevant for the definition of the whole. - A process which is an holistic spatial part of an object. - ConstitutiveProcess - A process which is an holistic spatial part of an object. - Blood circulation in a human body. - A constitutive process is a process that is holistically relevant for the definition of the whole. + + PressureCoefficient + Change of pressure per change of temperature at constant volume. + PressureCoefficient + https://qudt.org/vocab/quantitykind/PressureCoefficient + https://www.wikidata.org/wiki/Q74762732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 + 5-4 + Change of pressure per change of temperature at constant volume. - + - - + - - T-6 L+4 M+2 I-2 Θ-2 N0 J0 + + - - SquareElectricPotentialPerSquareTemperatureUnit - SquareElectricPotentialPerSquareTemperatureUnit - - - - - RedCharmQuark - RedCharmQuark - - - - - - Polynomial - Polynomial - 2 * x^2 + x + 3 + + + + SpecificGasConstant + SpecificGasConstant + https://www.wikidata.org/wiki/Q94372268 + 5-26 - - - - AlgebricExpression - An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) - AlgebricExpression - 2x+3 + + + + + WaveVector + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + WaveVector + https://www.wikidata.org/wiki/Q657009 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 + 3-21 + Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. + https://en.wikipedia.org/wiki/Wave_vector - + - - XrdGrazingIncidence + + ShearOrTorsionTesting - XrdGrazingIncidence + ShearOrTorsionTesting - + - ScatteringAndDiffraction - - ScatteringAndDiffraction + MechanicalTesting + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + MechanicalTesting + Mechanical testing covers a wide range of tests, which can be divided broadly into two types: 1. those that aim to determine a material's mechanical properties, independent of geometry; 2. those that determine the response of a structure to a given action, e.g. testing of composite beams, aircraft structures to destruction, etc. + https://en.wikipedia.org/wiki/Mechanical_testing - - - - - MassConcentrationOfWaterVapour - Quotient of the mass of water vapour in moist gas by the total gas volume. - The mass concentration of water at saturation is denoted vsat. - MassConcentrationOfWaterVapour - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - Quotient of the mass of water vapour in moist gas by the total gas volume. + + + + UndefinedEdgeCutting + Spanen mit geometrisch unbestimmten Schneiden + UndefinedEdgeCutting - - - - - MassConcentration - Mass of a constituent divided by the volume of the mixture. - MassConcentration - http://qudt.org/vocab/quantitykind/MassConcentration - https://doi.org/10.1351/goldbook.M03713 + + + + SeparateManufacturing + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. + DIN 8580:2020 + Trennen + CuttingManufacturing + SeparateManufacturing + A manufacturing process in which the shape of a workpiece is changed by breaking the material cohesion at the processing point and thus the material cohesion is reduced overall. - + + + BlueDownQuark + BlueDownQuark + + + + + + TransportationDevice + TransportationDevice + + + - - + - - T+2 L-2 M-1 I0 Θ0 N0 J0 + + - - PerEnergyUnit - PerEnergyUnit + + + + ActivityDensity + Activity per unit volume of the sample. + ActivityConcentration + VolumetricActivity + VolumicActivity + ActivityDensity + https://qudt.org/vocab/quantitykind/ActivityConcentration + https://www.wikidata.org/wiki/Q423263 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-09 + 10-29 + Activity per unit volume of the sample. + + + + + + Distance + Distance is the norm of Displacement. + Shortest path length between two points in a metric space. + Distance + https://qudt.org/vocab/quantitykind/Distance + https://www.wikidata.org/wiki/Q126017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 + https://dbpedia.org/page/Distance + 3-1.8 + Shortest path length between two points in a metric space. + https://en.wikipedia.org/wiki/Distance - + - - NuclearRadius - Conventional radius of sphere in which the nuclear matter is included, - NuclearRadius - https://qudt.org/vocab/quantitykind/NuclearRadius - https://www.wikidata.org/wiki/Q3535676 - 10-19.1 - Conventional radius of sphere in which the nuclear matter is included, + + NucleonNumber + number of nucleons in an atomic nucleus + MassNumber + NucleonNumber + https://qudt.org/vocab/quantitykind/NucleonNumber + https://www.wikidata.org/wiki/Q101395 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-32 + https://dbpedia.org/page/Mass_number + 10-1.3 + number of nucleons in an atomic nucleus + https://en.wikipedia.org/wiki/Mass_number + https://doi.org/10.1351/goldbook.M03726 - + - - Radius - Distance from the centre of a circle to the circumference. - Radius - https://qudt.org/vocab/quantitykind/Radius - https://www.wikidata.org/wiki/Q173817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 - https://dbpedia.org/page/Radius - 3-1.6 - Distance from the centre of a circle to the circumference. - https://en.wikipedia.org/wiki/Radius + + PureNumberQuantity + A pure number, typically the number of something. + According to the SI brochure counting does not automatically qualify a quantity as an amount of substance. + +This quantity is used only to describe the outcome of a counting process, without regard of the type of entities. + +There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one. + PureNumberQuantity + A pure number, typically the number of something. + 1, +i, +π, +the number of protons in the nucleus of an atom - + - - MeasurementSystemAdjustment - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - MeasurementSystemAdjustment - From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. - Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. - Adjustment + + CharacterisationSoftware + A software application to process characterisation data + CharacterisationSoftware + A software application to process characterisation data + In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. - + + + + FibDic + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + FIBDICResidualStressAnalysis + FibDic + The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + + + - - - MeanFreePathOfPhonons - average distance that phonons travel between two successive interactions - MeanFreePathOfPhonons - https://qudt.org/vocab/quantitykind/PhononMeanFreePath - https://www.wikidata.org/wiki/Q105672255 - 12-15.1 - average distance that phonons travel between two successive interactions + + + TotalIonization + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. + TotalIonization + https://qudt.org/vocab/quantitykind/TotalIonization + https://www.wikidata.org/wiki/Q98690787 + 10-59 + Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - - - - - - - 1 - - - - - - - 1 - - - PrefixedUnit - A measurement unit that is made of a metric prefix and a unit symbol. - PrefixedUnit - A measurement unit that is made of a metric prefix and a unit symbol. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + FundamentalFermion + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + FundamentalFermion + A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion + + + + + + PositionVector + Vector quantity from the origin of a coordinate system to a point in space. + PositionVector + https://www.wikidata.org/wiki/Q192388 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 + https://dbpedia.org/page/Position_(geometry) + 3-1.10 + Vector quantity from the origin of a coordinate system to a point in space. + https://en.wikipedia.org/wiki/Position_(geometry) @@ -7649,798 +7715,717 @@ To overcome this issue, we can identify an minimum holistic temporal part (a low Dimensionless multiplicative unit prefix. - - - Electron - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - Electron - The class of individuals that stand for electrons elementary particles belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron + + + + Constant + A variable that stand for a numerical constant, even if it is unknown. + Constant + A variable that stand for a numerical constant, even if it is unknown. - - - - CalibrationData - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - CalibrationData - Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + + + + Metrological + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + Metrological + A language entity used in the metrology discipline. + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - + - - - WaveVector - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - WaveVector - https://www.wikidata.org/wiki/Q657009 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-09 - 3-21 - Vector k in the expression ω t−k⋅r+ϑ0 of the phase of a sinusoidal wave. - https://en.wikipedia.org/wiki/Wave_vector + + Symbol + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + AlphabeticEntity + Symbol + The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet). + The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark that can be represented by an individual belonging to "A". + Subclasses of 'Symbol' are alphabets, in formal languages terminology. A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. +e.g. a math symbol is not made of other math symbols +A Symbol may be a String in another language. +e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters. + Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses). + +Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. +(Wikipedia) + The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea. + + + + + + ScanningKelvinProbe + + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + SKB + ScanningKelvinProbe + Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + + + + + + Microscopy + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. + Microscopy + Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales. - - - - FiberboardManufacturing - FiberboardManufacturing + + + + + + + T-2 L+3 M+1 I-1 Θ0 N0 J0 + + + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - - - - FormingFromChip - FormingFromChip + + + + + + + + + + + + ThomsonCoefficient + quotient of Thomson heat power developed, and the electric current and temperature difference + ThomsonCoefficient + https://qudt.org/vocab/quantitykind/ThomsonCoefficient + https://www.wikidata.org/wiki/Q105801233 + 12-23 + quotient of Thomson heat power developed, and the electric current and temperature difference - - + + - - + + - - SymbolicConstruct - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. - SymbolicConstruct - A symbolic entity made of other symbolic entities according to a specific spatial configuration. - This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema. + + + JouleThomsonCoefficient + JouleThomsonCoefficient + https://www.wikidata.org/wiki/Q93946998 + 5-24 - - - - - - - - - - - - Symbolic - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - Symbolic - A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules. - fe780 -emmo -!5*a -cat -for(i=0;i<N;++i) - A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. -In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet. - A symbolic object possesses a reductionistic oriented structure. -For example, text is made of words, spaces and punctuations. Words are made of characters (i.e. atomic symbols). + + + Naming + A declaration that provides a sign for an object that is independent from any assignment rule. + Naming + A declaration that provides a sign for an object that is independent from any assignment rule. + A unique id attached to an entity. - + - T-2 L+1 M+1 I-1 Θ0 N0 J0 + T-1 L-2 M0 I0 Θ0 N0 J0 - MagneticPotentialUnit - MagneticPotentialUnit - - - - - - OpticalTesting - - OpticalTesting - - - - - - Foam - A colloid formed by trapping pockets of gas in a liquid or solid. - Foam - A colloid formed by trapping pockets of gas in a liquid or solid. - - - - - - Colloid - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. - Colloid - A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. - Colloids are characterized by the occurring of the Tyndall effect on light. - - - - - - UTF8 - UTF8 - - - - - - Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) - Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) + PerAreaTimeUnit + PerAreaTimeUnit - - - CrystallineMaterial - Suggestion of Rickard Armiento - CrystallineMaterial + + + + + + + + + + + HallCoefficient + The relation between electric field strength and current density in an isotropic conductor. + HallCoefficient + https://qudt.org/vocab/quantitykind/HallCoefficient + https://www.wikidata.org/wiki/Q997439 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-09-02 + 12-19 + The relation between electric field strength and current density in an isotropic conductor. - - - - - - - - - - - - - - - - - - - StrangeQuark - StrangeQuark - https://en.wikipedia.org/wiki/Strange_quark + + + + + MassFractionOfWater + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + MassFractionOfWater + https://qudt.org/vocab/quantitykind/MassFractionOfWater + https://www.wikidata.org/wiki/Q76379025 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 + 5-31 + Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - + + - SolidAngle - Ratio of area on a sphere to its radius squared. - SolidAngle - http://qudt.org/vocab/quantitykind/SolidAngle - 3-6 - Ratio of area on a sphere to its radius squared. - https://doi.org/10.1351/goldbook.S05732 + MassFraction + Mass of a constituent divided by the total mass of all constituents in the mixture. + MassFraction + http://qudt.org/vocab/quantitykind/MassFraction + 9-11 + https://doi.org/10.1351/goldbook.M03722 - - - - FromNotProperShapeToWorkPiece - From Powder, from liquid, from gas - da una forma non propria ad una forma propria - FromNotProperShapeToWorkPiece - From Powder, from liquid, from gas - Powder: -particles that are usually less than 1 mm in size + + + + Solid + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + Solid + A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + + + + + + TransformationLanguage + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + TransformationLanguage + https://en.wikipedia.org/wiki/Transformation_language + A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. + Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML - - - - - BeginStep - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. - BeginStep - An initial step of a workflow. - There may be more than one begin task, if they run in parallel. + + + + + + + + + + + Permeance + Inverse of the reluctance. + Permeance + https://qudt.org/vocab/quantitykind/Permeance + https://www.wikidata.org/wiki/Q77997985 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-29 + 6-40 + Inverse of the reluctance. - - - - - - - - - - - - - - Step - A step is part of a specific granularity level for the workflow description, as composition of tasks. - A task that is a well formed tile of a workflow, according to a reductionistic description. - Step - A task that is a well formed tile of a workflow, according to a reductionistic description. - A step is part of a specific granularity level for the workflow description, as composition of tasks. + + + + NonActivePower + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. + NonActivePower + https://qudt.org/vocab/quantitykind/NonActivePower + https://www.wikidata.org/wiki/Q79813060 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-43 + 6-61 + For a two-terminal element or a two-terminal circuit under periodic conditions, quantity equal to the square root of the difference of the squares of the apparent power S and the active power P. - - - - - - BeginTile - BeginTile + + + + + + + + + + + + Power + Rate of transfer of energy per unit time. + Power + http://qudt.org/vocab/quantitykind/Power + 4-27 + 6-45 + Rate of transfer of energy per unit time. + https://doi.org/10.1351/goldbook.P04792 - - + + - - + + - - + + + ParticleFluenceRate + Differential quotient of fluence Φ with respect to time. + ParticleFluenceRate + https://qudt.org/vocab/quantitykind/ParticleFluenceRate + https://www.wikidata.org/wiki/Q98497410 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 + 10-44 + Differential quotient of fluence Φ with respect to time. + + + + + - - + + - - Boolean - A boolean number. - Boolean - A boolean number. + + + + ThermalInsulance + Reciprocal of the coefficient of heat transfer. + CoefficientOfThermalInsulance + ThermalInsulance + https://qudt.org/vocab/quantitykind/ThermalInsulance + https://www.wikidata.org/wiki/Q2596212 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 + 5-11 + Reciprocal of the coefficient of heat transfer. - + + + ClassicalData + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + ClassicalData + Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + + + - - - Number - A number individual provides the link between the ontology and the actual data, through the data property hasNumericalValue. - A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object, without decomposit it in digits (i.e. we do not include digits in the EMMO as alphabet for numbers). - A numerical data value. - In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it. -More than one numeral stands for the same number. -In the EMMO abstract entities do not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number). -Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). -The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. -For these reasons, the EMMO will consider numerals and numbers as the same concept. - Numeral - Number - A numerical data value. + + MathematicalFunction + A function defined using functional notation. + A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). + FunctionDefinition + MathematicalFunction + A function defined using functional notation. + y = f(x) - + + + + DefiningEquation + An equation that define a new variable in terms of other mathematical entities. + DefiningEquation + An equation that define a new variable in terms of other mathematical entities. + The definition of velocity as v = dx/dt. + +The definition of density as mass/volume. + +y = f(x) + + + + + + Annealing + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + Annealing + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium + + + - T-1 L0 M0 I0 Θ+1 N0 J0 + T-1 L+2 M-1 I0 Θ+1 N0 J0 - TemperaturePerTimeUnit - TemperaturePerTimeUnit + TemperatureAreaPerMassTimeUnit + TemperatureAreaPerMassTimeUnit - - + + - - + + + + + + - - - MomentOfIntertia - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - MomentOfIntertia - https://qudt.org/vocab/quantitykind/MomentOfInertia - https://www.wikidata.org/wiki/Q165618 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 - 4-7 - Scalar measure of the rotational inertia with respect to a fixed axis of rotation. - https://doi.org/10.1351/goldbook.M04006 + + Task + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. + Job + Task + A procedure that is an hoilistic part of a workflow. + A task is a generic part of a workflow, without taking care of the task granularities. +It means that you can declare that e.g. tightening a bolt is a task of building an airplane, without caring of the coarser tasks to which this tightening belongs. - - - DataQuality - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - DataQuality - Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. - Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) + + + + + + + + + + + + + + + + + + + + + + UnitSymbol + A symbol that stands for a single unit. + UnitSymbol + A symbol that stands for a single unit. + Some examples are "Pa", "m" and "J". - + - T+1 L-3 M0 I+1 Θ0 N0 J0 + T0 L-2 M0 I+1 Θ-2 N0 J0 - ElectricChargeDensityUnit - ElectricChargeDensityUnit + RichardsonConstantUnit + RichardsonConstantUnit - + - T-1 L0 M0 I0 Θ+2 N0 J0 + T+2 L-2 M-1 I+1 Θ0 N0 J0 - SquareTemperaturePerTimeUnit - SquareTemperaturePerTimeUnit + ElectricCurrentPerEnergyUnit + ElectricCurrentPerEnergyUnit - + + + + + ResonanceEnergy + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + ResonanceEnergy + https://qudt.org/vocab/quantitykind/ResonanceEnergy + https://www.wikidata.org/wiki/Q98165187 + 10-37.2 + Resonance in a nuclear reaction, determined by the kinetic energy of an incident particle in the reference frame of the target particle. + + + + + + MassFractionOfDryMatter + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + MassFractionOfDryMatter + https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter + https://www.wikidata.org/wiki/Q76379189 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 + 5-32 + Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + + + + - - + + - - DissociationConstant - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - DissociationConstant - https://www.wikidata.org/wiki/Q898254 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 - ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - - - - - - + + - - CoefficientOfThermalExpansion - Material property which describes how the size of an object changes with a change in temperature. - ThermalExpansionCoefficient - CoefficientOfThermalExpansion - https://www.wikidata.org/wiki/Q45760 - Material property which describes how the size of an object changes with a change in temperature. - - - - - - - ActivityCoefficient - ActivityCoefficient - https://qudt.org/vocab/quantitykind/ActivityCoefficient - https://www.wikidata.org/wiki/Q745224 - 9-25 - https://doi.org/10.1351/goldbook.A00116 - - - - - - - Participant - An object which is an holistic spatial part of a process. - Participant - An object which is an holistic spatial part of a process. - A student during an examination. - - - - - NonTemporalRole - An holistic spatial part of a whole. - HolisticSpatialPart - NonTemporalRole - An holistic spatial part of a whole. - - - - - - FatigueTesting - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - FatigueTesting - Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - - - - - - + + - - - VolumeFlowRate - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - VolumetricFlowRate - VolumeFlowRate - https://qudt.org/vocab/quantitykind/VolumeFlowRate - https://www.wikidata.org/wiki/Q1134348 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 - 4-31 - Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- - https://en.wikipedia.org/wiki/Volumetric_flow_rate - - - - - - + + - - - MagneticReluctance - Magnetic tension divided by magnetic flux. - Reluctance - MagneticReluctance - https://qudt.org/vocab/quantitykind/Reluctance - https://www.wikidata.org/wiki/Q863390 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 - 6-39 - Magnetic tension divided by magnetic flux. - - - - - - + + - - - ScalarMagneticPotential - Scalar potential of an irrotational magnetic field strength. - ScalarMagneticPotential - https://www.wikidata.org/wiki/Q17162107 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-58 - 6-37.1 - Scalar potential of an irrotational magnetic field strength. - - - - - - AnodicStrippingVoltammetry - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - AnodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q939328 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. - https://doi.org/10.1515/pac-2018-0109 - - - - - - StrippingVoltammetry - - Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. - Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. - Often the product of the electrochemical stripping is identical to the analyte before the accumulation. - Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. - Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - StrippingVoltammetry - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. - https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis - https://doi.org/10.1515/pac-2018-0109 - - - - - RedUpAntiQuark - RedUpAntiQuark - + + + CharacterisationMeasurementProcess + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. - - - - - - - - - - - CondensedMatter - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - CondensedMatter - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + CharacterisationMeasurementProcess + Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information +NOTE 1 The quantity mentioned in the definition is an individual quantity. +NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, +such that some may be more representative of the measurand than others. +NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the +process of obtaining values of nominal properties is called “examination”. +NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at +some step of the process and the use of models and calculations that are based on conceptual considerations. +NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the +quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated +measuring system operating according to the specified measurement procedure, including the measurement +conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the +measurement procedure and the measuring system should then be chosen in order not to exceed these measuring +system specifications. + +-- International Vocabulary of Metrology(VIM) + The measurement process associates raw data to the sample through a probe and a detector. + Measurement - + + + + MeasurementTime + The overall time needed to acquire the measurement data. + The overall time needed to acquire the measurement data. + MeasurementTime + The overall time needed to acquire the measurement data. + + + - - - Activity - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - Activity - https://qudt.org/vocab/quantitykind/Activity - https://www.wikidata.org/wiki/Q317949 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 - 10-27 - Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. - https://goldbook.iupac.org/terms/view/A00114 + + + + HeatFlowRate + Amount of heat through a surface during a time interval divided by the duration of this interval. + HeatFlowRate + https://qudt.org/vocab/quantitykind/HeatFlowRate + https://www.wikidata.org/wiki/Q12160631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 + 5-7 + Amount of heat through a surface during a time interval divided by the duration of this interval. - + - - - - - - - - - Frequency - Number of periods per time interval. - Frequency - http://qudt.org/vocab/quantitykind/Frequency - https://www.wikidata.org/wiki/Q11652 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-02 - 3-15.1 - Number of periods per time interval. - https://doi.org/10.1351/goldbook.FT07383 + + + DensityOfHeatFlowRate + At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + AreicHeatFlowRate + DensityOfHeatFlowRate + https://www.wikidata.org/wiki/Q1478382 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 + 5-8 + Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. + https://doi.org/10.1351/goldbook.H02755 - + - - HandlingDevice - HandlingDevice + + DrawForming + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + DrawForming - - - BlueTopAntiQuark - BlueTopAntiQuark + + + + TensileForming + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. + Zugdruckumformen + TensileForming - + - - GalvanostaticIntermittentTitrationTechnique - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - GITT - GalvanostaticIntermittentTitrationTechnique - https://www.wikidata.org/wiki/Q120906986 - Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - - - - - - - - T0 L0 M0 I0 Θ+1 N0 J0 - - - TemperatureUnit - TemperatureUnit + + TensileTesting + + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. + TensionTest + TensileTesting + Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - + - Displacement - vector quantity between any two points in space - Displacement - https://qudt.org/vocab/quantitykind/Displacement - https://www.wikidata.org/wiki/Q190291 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-29 - https://dbpedia.org/page/Displacement_(geometry) - 3-1.11 - vector quantity between any two points in space - https://en.wikipedia.org/wiki/Displacement_(geometry) + + PhaseAngle + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. + PhaseAngle + https://www.wikidata.org/wiki/Q415829 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 + 3-7 + Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - + - - - - - - - - - - SpecificHeatCapacity - Heat capacity divided by mass. - SpecificHeatCapacity - https://qudt.org/vocab/quantitykind/SpecificHeatCapacity - https://www.wikidata.org/wiki/Q487756 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 - https://dbpedia.org/page/Specific_heat_capacity - 5-16.1 - Heat capacity divided by mass. - https://en.wikipedia.org/wiki/Specific_heat_capacity - https://doi.org/10.1351/goldbook.S05800 - - - - - - Array - Array subclasses with a specific shape can be constructed with cardinality restrictions. - -See Shape4x3Matrix as an example. - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - Arrays are ordered objects, since they are a subclasses of Arrangement. - Array - Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays. - A Vector is a 1-dimensional Array with Number as spatial direct parts, -a Matrix is a 2-dimensional Array with Vector as spatial direct parts, -an Array3D is a 3-dimensional Array with Matrix as spatial direct parts, -and so forth... + + Angle + Ratio of circular arc length to radius. + PlaneAngle + Angle + http://qudt.org/vocab/quantitykind/PlaneAngle + Ratio of circular arc length to radius. + 3-5 + https://doi.org/10.1351/goldbook.A00346 - - - - - - - 2 - - - + + + + - - - 1 + + T0 L0 M-2 I0 Θ0 N0 J0 - - Proton - A positive charged subatomic particle found in the atomic nucleus. - Proton - A positive charged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Proton - - - - - Laboratory - The laboratory where the whole characterisation process or some of its stages take place. - Laboratory - The laboratory where the whole characterisation process or some of its stages take place. - - - - - - - LandeFactor - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. - GFactorOfAtom - LandeFactor - https://qudt.org/vocab/quantitykind/LandeGFactor - https://www.wikidata.org/wiki/Q1191684 - 10-14.1 - Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + + InverseSquareMassUnit + InverseSquareMassUnit - + - - - GFactor - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. - GFactor - https://www.wikidata.org/wiki/Q1951266 - Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + + SpecificInternalEnergy + Internal energy per unit mass. + SpecificInternalEnergy + https://qudt.org/vocab/quantitykind/SpecificInternalEnergy + https://www.wikidata.org/wiki/Q76357367 + 5-21.2 + Internal energy per unit mass. - - - - - - - - - - - - - - - - - - + + + - - - - - - + + + T0 L+1 M0 I0 Θ-1 N0 J0 + + LengthPerTemperatureUnit + LengthPerTemperatureUnit + + + + + - - - - - - + + + T+1 L0 M0 I+1 Θ0 N0 J0 + - EncodedData - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - Variations in data are generated by an agent (not necessarily human) and are intended to be decoded by the same or another agent using the same encoding rules. -Data are always generated by an agent but not necessarily possess a semantic meaninig, either because it's lost or unknown or because simply they possess none (e.g. a random generation of symbols). -A data object may be used as the physical basis for a sign, under Semiotics perspective. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - EncodedVariation - EncodedData - A causal object whose properties variation are encoded by an agent and that can be decoded by another agent according to a specific rule. - A Radio Morse Code transmission can be addressed by combination of perspectives. + ElectricChargeUnit + ElectricChargeUnit + -Physicalistic: the electromagnetic pulses can be defined as individual A (of type Field) and the strip of paper coming out a printer receiver can be defined as individual B (of type Matter). -Data: both A and B are also DiscreteData class individuals. In particular they may belong to a MorseData class, subclass of DiscreteData. -Perceptual: B is an individual belonging to the graphical entities expressing symbols. In particular is a formula under the MorseLanguage class, made of a combination of . and - symbols. -Semiotics: A and B can be signs if they refers to something else (e.g. a report about a fact, names). - A signal through a cable. A sound wave. Words on a page. The pattern of excited states within a computer RAM. - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - https://no.wikipedia.org/wiki/Data + + + + + Emulsion + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Emulsion + An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). + Mayonnaise, milk. - + + + + Colloid + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. + Colloid + A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1 μm) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably. + Colloids are characterized by the occurring of the Tyndall effect on light. + + + + + + Liquid + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + Liquid + A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. + + + @@ -8448,780 +8433,439 @@ We call "interpreting" the act of providing semantic meaning to data, which is c - - - PositionVector - In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. - --- IEC - Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. - --- ISO 80000-3 - Vector r characterizing a point P in a point space with a given origin point O. - Position - PositionVector - http://qudt.org/vocab/quantitykind/PositionVector - Vector r characterizing a point P in a point space with a given origin point O. - - - - - - FermiTemperature - in the free electron model, the Fermi energy divided by the Boltzmann constant - FermiTemperature - https://qudt.org/vocab/quantitykind/FermiTemperature - https://www.wikidata.org/wiki/Q105942324 - 12-28 - in the free electron model, the Fermi energy divided by the Boltzmann constant + FundamentalLatticeVector + Fundamental translation vector for the crystal lattice. + FundamentalLatticeVector + https://qudt.org/vocab/quantitykind/FundamentalLatticeVector + https://www.wikidata.org/wiki/Q105451063 + 12-1.2 + Fundamental translation vector for the crystal lattice. - + - T-1 L-2 M0 I0 Θ0 N0 J0 + T-2 L+2 M0 I0 Θ0 N0 J0 - PerAreaTimeUnit - PerAreaTimeUnit - - - - - - - SolidAngularMeasure - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - SolidAngle - SolidAngularMeasure - https://qudt.org/vocab/quantitykind/SolidAngle - https://www.wikidata.org/wiki/Q208476 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 - https://dbpedia.org/page/Solid_angle - 3-8 - Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. - https://en.wikipedia.org/wiki/Solid_angle + AbsorbedDoseUnit + AbsorbedDoseUnit - + - - SampleInspectionInstrument + + PseudoOpenCircuitVoltageMethod - SampleInspectionInstrument + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage + PseudoOCV + PseudoOpenCircuitVoltageMethod + a technique used to measure the voltage of a cell under a low applied current as an estimate for the open-circuit voltage - - - - WorkPiece - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. - A solid is defined as a portion of matter that is in a condensed state characterised by resistance to deformation and volume changes. - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - In physics, a rigid body (also known as a rigid object[2]) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass. - It has a shape, so we conclude that it is solid - Object that is processed with a machine - Seems to have to be processed through mechanical deformation. So it takes part of a manufacturing process. It is a Manufactured Product and it can be a Commercial Product - The raw material or partially finished piece that is shaped by performing various operations. - They are not powders or threads - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - fili e polveri non sono compresi - it seems to be an intermediate product, that has to reach the final shape. - it seems to be solid, so it has a proper shape - powder is not workpiece because it has the shape of the recipient containing them - Werkstück - WorkPiece - A WorkPiece is physical artifact, that has a proper shape and occupyes a proper volume intended for subsequent transformation. It is a condensed state, so it is a compact body that is processed or has to be processed. + + + + Chronopotentiometry + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + Chronopotentiometry + Potentiometry in which the potential is measured with time following a change in applied current. The change in applied current is usually a step, but cyclic current reversals or linearly increasing currents are also used. + https://doi.org/10.1515/pac-2018-0109 - - - - - - / - - - - Division - Division + + + + ComputerSystem + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + Computer + ComputerSystem + Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. + https://en.wikipedia.org/wiki/Computer - - - - ArithmeticOperator - ArithmeticOperator + + + + ElectrochemicalPiezoelectricMicrogravimetry + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + ElectrochemicalPiezoelectricMicrogravimetry + Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + https://doi.org/10.1515/pac-2018-0109 - - - - ElectricReactance - The imaginary part of the impedance. - The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. - Reactance - ElectricReactance - http://qudt.org/vocab/quantitykind/Reactance - https://www.wikidata.org/wiki/Q193972 - 6-51.3 - The imaginary part of the impedance. - https://en.wikipedia.org/wiki/Electrical_reactance - https://doi.org/10.1351/goldbook.R05162 + + + + Electrogravimetry + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + Electrogravimetry + https://www.wikidata.org/wiki/Q902953 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 + Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + https://en.wikipedia.org/wiki/Electrogravimetry - + - T0 L0 M0 I0 Θ-1 N0 J0 + T-1 L-3 M0 I0 Θ0 N0 J0 - PerTemperatureUnit - PerTemperatureUnit - - - - - - - - - - - - - ThermalConductance - Reciprocal of the thermal resistance. - ThermalConductance - https://qudt.org/vocab/quantitykind/ThermalConductance - https://www.wikidata.org/wiki/Q17176562 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 - 5-13 - Reciprocal of the thermal resistance. - https://doi.org/10.1351/goldbook.T06298 + FrequencyPerVolumeUnit + FrequencyPerVolumeUnit - + - - - - - - - - EnergyFluenceRate - In nuclear physics, time derivative of the energy fluence. - EnergyFluenceRate - https://qudt.org/vocab/quantitykind/EnergyFluenceRate - https://www.wikidata.org/wiki/Q98538655 - 10-47 - In nuclear physics, time derivative of the energy fluence. + + TotalAngularMomentum + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. + TotalAngularMomentum + https://qudt.org/vocab/quantitykind/TotalAngularMomentum + https://www.wikidata.org/wiki/Q97496506 + 10-11 + Vector quantity in a quantum system composed of the vectorial sum of angular momentum L and spin s. - + - + - - SlowingDownDensity - Number of slowed-down particles per time and volume. - SlowingDownDensity - https://qudt.org/vocab/quantitykind/Slowing-DownDensity - https://www.wikidata.org/wiki/Q98915830 - 10-67 - Number of slowed-down particles per time and volume. - - - - - - - - - - - - - - - - - - - - - - - - - - - - MeasurementUnit - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - A metrological reference for a physical quantity. - MeasurementUnit - A metrological reference for a physical quantity. - kg -m/s -km - measurement unit (VIM3 1.9) - "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" -ISO 80000-1 - "Unit symbols are mathematical entities and not abbreviations." - -"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra." - -https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf - Measurement units and procedure units are disjoint. - Quantitative value are expressed as a multiple of the 'MeasurementUnit'. - - - - - GluonType7 - GluonType7 - - - - - - HardwareModel - - HardwareModel + + AngularMomentum + Measure of the extent and direction an object rotates about a reference point. + AngularMomentum + http://qudt.org/vocab/quantitykind/AngularMomentum + 4-11 + https://doi.org/10.1351/goldbook.A00353 - + - - CharacterisationHardwareSpecification + + CriticalAndSupercriticalChromatography - CharacterisationHardwareSpecification + CriticalAndSupercriticalChromatography - + - - CyclicVoltammetry - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - CV - CyclicVoltammetry - https://www.wikidata.org/wiki/Q1147647 - https://dbpedia.org/page/Cyclic_voltammetry - Voltammetry in which the electric current is recorded as the electrode potential is varied with time cyclically between two potential limits, normally at a constant scan rate. Cyclic voltammetry is frequently used for the investigation of mechanisms of electrochemical/electrode reactions. The current-potential curve may be modelled to obtain reaction mechanisms and electrochemical parameters. Normally the initial potential is chosen where no electrode reaction occurs and the switching potential is greater (more positive for an oxidation or more negative for a reduction) than the peak potential of the analyte reaction. The initial potential is usually the negative or positive limit of the cycle but can have any value between the two limits, as can the initial scan direction. The limits of the potential are known as the switching potentials. The plot of current against potential is termed a cyclic voltammogram. Usually peak-shaped responses are obtained for scans in both directions. - https://en.wikipedia.org/wiki/Cyclic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + Chromatography + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + Chromatography + In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. + https://en.wikipedia.org/wiki/Chromatography - + - - - - - - - - - MolarVolume - Volume per amount of substance. - MolarVolume - https://qudt.org/vocab/quantitykind/MolarVolume - https://www.wikidata.org/wiki/Q487112 - 9-5 - Volume per amount of substance. - - - - - - Perspective - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. - Perspective - The class of causal objects that stand for world objects according to a specific representational perspective. - This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. -Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass. + + + MeanFreePathOfElectrons + Average distance that electrons travel between two successive interactions. + MeanFreePathOfElectrons + https://qudt.org/vocab/quantitykind/ElectronMeanFreePath + https://www.wikidata.org/wiki/Q105672307 + 12-15.2 + Average distance that electrons travel between two successive interactions. - + - - - BindingFraction - The ratio of the binding energy of a nucleus to the atomic mass number. - BindingFraction - https://qudt.org/vocab/quantitykind/BindingFraction - https://www.wikidata.org/wiki/Q98058362 - 10-23.2 - The ratio of the binding energy of a nucleus to the atomic mass number. + + + MeanFreePath + The mean free path may thus be specified either for all interactions, i.e. total mean free path, or for particular types of interaction such as scattering, capture, or ionization. + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + MeanFreePath + https://qudt.org/vocab/quantitykind/MeanFreePath + https://www.wikidata.org/wiki/Q756307 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-37 + 9-38 + in a given medium, average distance that particles of a specified type travel between successive interactions of a specified type. + https://doi.org/10.1351/goldbook.M03778 - + - T0 L+2 M+1 I0 Θ0 N0 J0 - - - MassAreaUnit - MassAreaUnit - - - - - - UndefinedEdgeCutting - Spanen mit geometrisch unbestimmten Schneiden - UndefinedEdgeCutting - - - - - - - - + T-1 L0 M0 I0 Θ-1 N0 J0 - - - MagneticTension - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - MagneticTension - https://qudt.org/vocab/quantitykind/MagneticTension - https://www.wikidata.org/wiki/Q77993836 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 - 6-37.2 - Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + + PerTemperatureTimeUnit + PerTemperatureTimeUnit - - - - FormingFromGas - FormingFromGas + + + + IterativeCoupledModelsSimulation + A chain of linked physics based model simulations solved iteratively, where equations are segregated. + IterativeCoupledModelsSimulation + A chain of linked physics based model simulations solved iteratively, where equations are segregated. - - - - - - - - - - - - - - FundamentalMatterParticle - FundamentalMatterParticle + + + + + + + + + + + + Coupled + Coupled - - - - KineticEnergy - The energy of an object due to its motion. - KineticEnergy - http://qudt.org/vocab/quantitykind/KineticEnergy - 4-28.2 - The energy of an object due to its motion. - https://doi.org/10.1351/goldbook.K03402 - + + + + MeasuringInstrument + A measuring instrument that can be used alone is a measuring system. + Device used for making measurements, alone or in conjunction with one or more supplementary devices. - - - - - - - - - - - - - - - - - - - - - - - - StateOfMatter - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - StateOfMatter - A superclass made as the disjoint union of all the form under which matter can exist. - In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. - https://en.wikipedia.org/wiki/State_of_matter +-- VIM + MeasuringInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary devices. + +-- VIM + measuring instrument - + - + + - - EnergyFluence - In nuclear physics, incident radiant energy per cross-sectional area. - EnergyFluence - https://qudt.org/vocab/quantitykind/EnergyFluence - https://www.wikidata.org/wiki/Q98538612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-17 - 10-46 - In nuclear physics, incident radiant energy per cross-sectional area. - - - - - - - - - - - - - - - Index - A 'Sign' that stands for an 'Object' due to causal continguity. - Signal - Index - A 'Sign' that stands for an 'Object' due to causal continguity. - Smoke stands for a combustion process (a fire). -My facial expression stands for my emotional status. + + ElectricPotential + The electric potential is not unique, since any constant scalar +field quantity can be added to it without changing its gradient. + Energy required to move a unit charge through an electric field from a reference point. + ElectroStaticPotential + ElectricPotential + http://qudt.org/vocab/quantitykind/ElectricPotential + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 + https://dbpedia.org/page/Electric_potential + 6-11.1 + Energy required to move a unit charge through an electric field from a reference point. + https://en.wikipedia.org/wiki/Electric_potential + https://doi.org/10.1351/goldbook.E01935 - + - - - - - T0 L+1 M+1 I0 Θ0 N0 J0 - - - LengthMassUnit - LengthMassUnit + + DampingCoefficient + Inverse of the time constant of an exponentially varying quantity. + DampingCoefficient + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 + 3-24 + Inverse of the time constant of an exponentially varying quantity. - - - - CentreOfMass - In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - CentreOfMass - The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. - https://en.wikipedia.org/wiki/Center_of_mass + + + + ConventionalProperty + A property that is associated to an object by convention, or assumption. + A quantitative property attributed by agreement to a quantity for a given purpose. + ConventionalProperty + A quantitative property attributed by agreement to a quantity for a given purpose. + The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. + +If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. + +Then I have two different physical quantities that are properties thanks to two different semiotic processes. - + - + - ChemicalPotential - Energy per unit change in amount of substance. - ChemicalPotential - http://qudt.org/vocab/quantitykind/ChemicalPotential - 9-17 - https://doi.org/10.1351/goldbook.C01032 + + ElectromagneticEnergyDensity + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + VolumicElectromagneticEnergy + ElectromagneticEnergyDensity + https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity + https://www.wikidata.org/wiki/Q77989624 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 + 6-33 + Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - + + + + + ThermodynamicGrueneisenParameter + ThermodynamicGrueneisenParameter + https://www.wikidata.org/wiki/Q105658620 + 12-13 + + + - RestEnergy - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - Product of the rest mass and the square of the speed of light in vacuum. - RestEnergy - https://www.wikidata.org/wiki/Q11663629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 - 10-3 - Product of the rest mass and the square of the speed of light in vacuum. - E_0 = m_0 * c_0^2 - -where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. - https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy + AverageEnergyLossPerElementaryChargeProduced + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. + AverageEnergyLossPerElementaryChargeProduced + https://qudt.org/vocab/quantitykind/AverageEnergyLossPerElementaryChargeProduced + https://www.wikidata.org/wiki/Q98793042 + 10-60 + Quotient of the initial kinetic energy Ek of an ionizing charged particle and the total ionization Ni produced by that particle. - - - - - StandardChemicalPotential - StandardChemicalPotential - https://qudt.org/vocab/quantitykind/StandardChemicalPotential - https://www.wikidata.org/wiki/Q89333468 - 9-21 - https://doi.org/10.1351/goldbook.S05908 + + + + + SolidFoam + A foam of trapped gas in a solid. + SolidFoam + A foam of trapped gas in a solid. + Aerogel - - - - - - - - - - MolarEnergy - Energy per amount of substance. - MolarEnergy - https://qudt.org/vocab/quantitykind/MolarEnergy - https://www.wikidata.org/wiki/Q69427512 - Energy per amount of substance. + + + + Foam + A colloid formed by trapping pockets of gas in a liquid or solid. + Foam + A colloid formed by trapping pockets of gas in a liquid or solid. - + - - JosephsonConstant - Inverse of the magnetic flux quantum. - The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. - JosephsonConstant - http://qudt.org/vocab/constant/JosephsonConstant - Inverse of the magnetic flux quantum. - - - - - - ShellScript - A command language designed to be run by a command-line interpreter, like a Unix shell. - ShellScript - A command language designed to be run by a command-line interpreter, like a Unix shell. - https://en.wikipedia.org/wiki/Shell_script + + VolumetricNumberDensity + Count per volume. + VolumetricNumberDensity + Count per volume. - + - + - - IonicStrength - Charge number is a quantity of dimension one defined in ChargeNumber. - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - IonicStrength - https://qudt.org/vocab/quantitykind/IonicStrength - https://www.wikidata.org/wiki/Q898396 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 - 9-42 - For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. - https://doi.org/10.1351/goldbook.I03180 - - - - - - SampleInspectionParameter - - Parameter used for the sample inspection process - SampleInspectionParameter - Parameter used for the sample inspection process - - - - - - Parameter - A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. - Parameter - Viscosity in the Navier-Stokes equation + + DoseEquivalent + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + DoseEquivalent + http://qudt.org/vocab/quantitykind/DoseEquivalent + 10-83.1 + A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. + https://doi.org/10.1351/goldbook.E02101 - - - - - - CubicExpansionCoefficient - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - alpha_V = (1/V) * (dV/dT) - CubicExpansionCoefficient - https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient - https://www.wikidata.org/wiki/Q74761076 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 - 5-3.2 - Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + + + + + + + T-2 L+2 M+1 I0 Θ-1 N0 J0 + + + EntropyUnit + EntropyUnit - - - - - LinearExpansionCoefficient - Relative change of length per change of temperature. - LinearExpansionCoefficient - https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient - https://www.wikidata.org/wiki/Q74760821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 - 5-3.1 - Relative change of length per change of temperature. + + + + + SerialWorkflow + A workflow whose tasks are tiles of a sequence. + SerialWorkflow + A workflow whose tasks are tiles of a sequence. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GreenAntiQuark - GreenAntiQuark + + + + Sequence + A tessellation of temporal slices. + Sequence + A tessellation of temporal slices. - + - - - LatentHeatOfPhaseTransition - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - LatentHeatOfPhaseTransition - https://www.wikidata.org/wiki/Q106553458 - 9-16 - Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + + + ResonanceEscapeProbability + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. + ResonanceEscapeProbability + https://qudt.org/vocab/quantitykind/ResonanceEscapeProbability + https://www.wikidata.org/wiki/Q4108072 + 10-68 + In an infinite medium, the probability that a neutron slowing down will traverse all or some specified portion of the range of resonance energies without being absorbed. - + - - - LatentHeat - LatentHeat - https://www.wikidata.org/wiki/Q207721 - 5-6.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FundamentalFermion - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - FundamentalFermion - A particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion + + Probability + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events. + Probability + Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event. + https://doi.org/10.1351/goldbook.P04855 - - + + + - + - + - + @@ -9229,983 +8873,1031 @@ where m_0 is the rest mass of that particle and c_0 is the speed of light in a v - - - - - - - - - - - - Quark - The class of individuals that stand for quarks elementary particles. - Quark - The class of individuals that stand for quarks elementary particles. - https://en.wikipedia.org/wiki/Quark + Matter + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + A physical object made of fermionic quantum parts. + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + PhysicalSubstance + Matter + The interpretation of the term "matter" is not univocal. Several concepts are labelled with this term, depending on the field of science. The concept mass is sometimes related to the term "matter", even if the former refers to a physical quantity (precisely defined by modern physics) while the latter is a type that qualifies a physical entity. +It is possible to identify more than one concept that can be reasonably labelled with the term "matter". For example, it is possible to label as matter only the entities that are made up of atoms. Or more generally, we can be more fine-grained and call "matter" the entities that are made up of protons, neutrons or electrons, so that we can call matter also a neutron radiation or a cathode ray. +A more fundamental approach, that we embrace for the EMMO, considers matter as entities that are made of fermions (i.e. quarks and leptons). This would exclude particles like the W and Z bosons that possess some mass, but are not fermions. +Antimatter is a subclass of matter. + A physical object made of fermionic quantum parts. + A matter entity exclude the presence of (real) fundamental bosons parts. However, it implies the presence of virtual bosons that are responsible of the interactions between the (real) fundamental fermions. + Matter includes ordinary- and anti-matter. It is possible to have entities that are made of particle and anti-particles (e.g. mesons made of a quark and an anti-quark pair) so that it is possible to have entities that are somewhat heterogeneous with regards to this distinction. - + + + ElectronicModel + A physics-based model based on a physics equation describing the behaviour of electrons. + ElectronicModel + A physics-based model based on a physics equation describing the behaviour of electrons. + Density functional theory. +Hartree-Fock. + + + - - - StandardAbsoluteActivity - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. - StandardAbsoluteActivityInAMixture - StandardAbsoluteActivity - https://qudt.org/vocab/quantitykind/StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89406159 - 9-23 - For a substance in a mixture, the absolute activity of the pure substance at the same temperature but at standard pressure. + + + DiffusionCoefficientForParticleNumberDensity + Proportionality constant between the particle current density J and the gradient of the particle number density n. + DiffusionCoefficientForParticleNumberDensity + https://www.wikidata.org/wiki/Q98875545 + 10-64 + Proportionality constant between the particle current density J and the gradient of the particle number density n. - + + + + + + + + + + + DiffusionCoefficient + Proportionality constant in some physical laws. + DiffusionCoefficient + Proportionality constant in some physical laws. + + + + + + MutualInductance + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + MutualInductance + https://www.wikidata.org/wiki/Q78101401 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 + 6-41.2 + Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. + https://doi.org/10.1351/goldbook.M04076 + + + + + + ProductionSystem + A network of objects that implements a production process through a series of interconnected elements. + ProductionSystem + A network of objects that implements a production process through a series of interconnected elements. + + + + + + Network + A system whose is mainly characterised by the way in which elements are interconnected. + Network + A system whose is mainly characterised by the way in which elements are interconnected. + + + + + + + + + + + + GaugePressure + GaugePressure + https://www.wikidata.org/wiki/Q109594211 + 4-14.2 + + + + + + + + + T+3 L-2 M-1 I0 Θ+1 N0 J0 + + + ThermalResistanceUnit + ThermalResistanceUnit + + + - - CathodicStrippingVoltammetry - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - CSV - CathodicStrippingVoltammetry - https://www.wikidata.org/wiki/Q4016325 - Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. - https://doi.org/10.1515/pac-2018-0109 + + CharacterisationProcedureValidation + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. + CharacterisationProcedureValidation + Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - - - NeutralAtom - A standalone atom that has no net charge. - NeutralAtom - A standalone atom that has no net charge. + + + + RadiusOfCurvature + Radius of the osculating circle of a planar curve at a particular point of the curve. + RadiusOfCurvature + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 + https://dbpedia.org/page/Radius_of_curvature + 3-1.12 + Radius of the osculating circle of a planar curve at a particular point of the curve. + https://en.wikipedia.org/wiki/Radius_of_curvature - - - - Assigner - A estimator that uses its predefined knowledge to declare a property of an object. - Assigner - A estimator that uses its predefined knowledge to declare a property of an object. - I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. + + + + Radius + Distance from the centre of a circle to the circumference. + Radius + https://qudt.org/vocab/quantitykind/Radius + https://www.wikidata.org/wiki/Q173817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-25 + https://dbpedia.org/page/Radius + 3-1.6 + Distance from the centre of a circle to the circumference. + https://en.wikipedia.org/wiki/Radius - - - Estimator - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). - Estimator - A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + + + + PhysicsBasedSimulation + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + PhysicsBasedSimulation + A simulation that relies on physics based models, according to the Review of Materials Modelling and CWA 17284:2018. - - - TemporallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - TemporallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + + Join + A tessellation in wich a tile is next for two or more non spatially connected tiles. + Join + A tessellation in wich a tile is next for two or more non spatially connected tiles. - - - - - - - - - - - - - - Boson - A physical particle with integer spin that follows Bose–Einstein statistics. - Boson - A physical particle with integer spin that follows Bose–Einstein statistics. - https://en.wikipedia.org/wiki/Boson + + + + + + + + + TemporalTiling + A well formed tessellation with tiles that are all temporal. + TemporalTiling + A well formed tessellation with tiles that are all temporal. - - + + + Graviton + The class of individuals that stand for gravitons elementary particles. + While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + +For this reason graviton is an useful concept to homogenize the approach between different fields. + Graviton + The class of individuals that stand for gravitons elementary particles. + While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + +For this reason graviton is an useful concept to homogenize the approach between different fields. + https://en.wikipedia.org/wiki/Graviton + + + + - T+1 L+2 M0 I0 Θ+1 N0 J0 + T-1 L+2 M0 I0 Θ0 N0 J0 - AreaTimeTemperatureUnit - AreaTimeTemperatureUnit + AreaPerTimeUnit + AreaPerTimeUnit - + - T+3 L0 M-1 I0 Θ+1 N0 J0 + T-2 L+1 M+1 I0 Θ0 N0 J0 - PerThermalTransmittanceUnit - PerThermalTransmittanceUnit - - - - - - - - - - - - - - - - - - - - - BottomAntiQuark - BottomAntiQuark - - - - - - - - - - - - IterativeWorkflow - A workflow whose steps (iterative steps) are the repetition of the same workflow type. - IterativeWorkflow - A workflow whose steps (iterative steps) are the repetition of the same workflow type. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Molecule - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - ChemicalSubstance - Molecule - An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. - H₂0, C₆H₁₂O₆, CH₄ - An entity is called essential if removing one direct part will lead to a change in entity class. -An entity is called redundand if removing one direct part will not lead to a change in entity class. - This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. -Removing an atom from the state will result in another type of atom_based state. -e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). + ForceUnit + ForceUnit - + - T-1 L0 M0 I0 Θ0 N0 J0 + T+1 L-1 M0 I+1 Θ0 N0 J0 - FrequencyUnit - FrequencyUnit + ElectricChargePerLengthUnit + ElectricChargePerLengthUnit - - - - - - - - - - - - - - - - - - SpatioTemporalTessellation - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. - WellFormedTessellation - SpatioTemporalTessellation - A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + + + + ShearCutting + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + Scherschneiden + ShearCutting - - - - - - - - - - - - - - - - - - - - - - - SpatioTemporalTile - https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a - WellFormedTile - SpatioTemporalTile + + + + + Cutting + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). + Schneiden + Cutting - - + + + TauNeutrino + A neutrino belonging to the third generation of leptons. + TauNeutrino + A neutrino belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_neutrino + + + + - - + + - - - LinearDensityOfElectricCharge - The derivative of the electric charge of a system with respect to the length. - LinearDensityOfElectricCharge - https://www.wikidata.org/wiki/Q77267838 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-09 - 6-5 - The derivative of the electric charge of a system with respect to the length. + + + + + 1 + + + + CalibrationProcess + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. + CalibrationProcess + Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM) + Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data. + In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data. + Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed. - + - T-1 L+3 M0 I0 Θ0 N0 J0 + T0 L0 M0 I0 Θ+2 N0 J0 - VolumePerTimeUnit - VolumePerTimeUnit + SquareTemperatureUnit + SquareTemperatureUnit - - - - - - - - - - ProbeSampleInteraction - - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal - ProbeSampleInteraction - Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal + + + + ReactionSintering + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + ReactionSintering - - - - CharacterisationProcedureValidation - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - CharacterisationProcedureValidation - Describes why the characterization procedure was chosen and deemed to be the most useful for the sample. - + + + + ObjectiveProperty + A quantity that is obtained from a well-defined procedure. + Subclasses of 'ObjectiveProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling). + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - - - ResourceIdentifier - - ResourceIdentifier - +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. + PhysicalProperty + QuantitativeProperty + ObjectiveProperty + A quantity that is obtained from a well-defined procedure. + The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. - - - - Hazard - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. - Hazard - Set of inherent properties of a substance, mixture of substances, or a process involving substances that, under production, usage, or disposal conditions, make it capable of causing adverse effects to organisms or the environment, depending on the degree of exposure; in other words, it is a source of danger. +This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not. - - - - - - - T0 L0 M+1 I0 Θ0 N0 J0 - - - MassUnit - MassUnit + + + + MetrologicalUncertainty + In general, for a given set of information, it is understood that the measurement uncertainty is associated with a stated quantity value. A modification of this value results in a modification of the associated uncertainty. + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". + Metrological uncertainty includes components arising from systematic effects, such as components associated with corrections and the assigned quantity values of measurement standards, as well as the definitional uncertainty. Sometimes estimated systematic effects are not corrected for but, instead, associated measurement uncertainty components are incorporated. + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + A metrological uncertainty can be assigned to any objective property via the 'hasMetrologicalUncertainty' relation. + MetrologicalUncertainty + The uncertainty of a quantity obtained through a well-defined procedure, characterising of the dispersion of the quantity. + - Standard deviation +- Half-width of an interval with a stated coverage probability + Metrological uncertainty in EMMO is a slight generalisation of the VIM term 'measurement uncertainty', which is defined as "a non-negative parameter characterising the dispersion of the quantity being measured". - + - - - - - - - - - ElectricFlux - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - ElectricFlux - https://qudt.org/vocab/quantitykind/ElectricFlux - https://www.wikidata.org/wiki/Q501267 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 - 6-17 - Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + + SolidAngle + Ratio of area on a sphere to its radius squared. + SolidAngle + http://qudt.org/vocab/quantitykind/SolidAngle + 3-6 + Ratio of area on a sphere to its radius squared. + https://doi.org/10.1351/goldbook.S05732 - - - - - - - T+2 L-1 M-1 I+1 Θ0 N0 J0 - - - MagneticReluctivityUnit - MagneticReluctivityUnit + + + + + Participant + An object which is an holistic spatial part of a process. + Participant + An object which is an holistic spatial part of a process. + A student during an examination. - + - - ConductanceForAlternatingCurrent - Real part of the admittance. - ConductanceForAlternatingCurrent - https://www.wikidata.org/wiki/Q79464628 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 - 6-52.2 - Real part of the admittance. + + + CouplingFactor + InductiveCouplingFactor + CouplingFactor + https://www.wikidata.org/wiki/Q78101715 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 + 6-42.1 - + - + - - ElectricConductance - Inverse of 'ElectricalResistance'. - Measure of the ease for electric current to pass through a material. - Conductance - ElectricConductance - http://qudt.org/vocab/quantitykind/Conductance - https://www.wikidata.org/wiki/Q309017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 - 6-47 - Measure of the ease for electric current to pass through a material. - https://doi.org/10.1351/goldbook.E01925 + LinearElectricCurrentDensity + Surface density of electric charge multiplied by velocity + LinearElectricCurrentDensity + https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity + https://www.wikidata.org/wiki/Q2356741 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 + 6-9 + Surface density of electric charge multiplied by velocity - - - - - ElectrolyticConductivity - ElectrolyticConductivity - https://qudt.org/vocab/quantitykind/ElectrolyticConductivity - https://www.wikidata.org/wiki/Q907564 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 - 9-44 + + + + VaporPressureDepressionOsmometry + + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + VPO + VaporPressureDepressionOsmometry + Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - - + + + + Osmometry + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + Osmometry + Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + + + + - - + + - - - - ElectricConductivity - Measure of a material's ability to conduct an electric current. - -Conductivity is equeal to the resiprocal of resistivity. - Conductivity - ElectricConductivity - http://qudt.org/vocab/quantitykind/ElectricConductivity - https://www.wikidata.org/wiki/Q4593291 - 6-43 - https://doi.org/10.1351/goldbook.C01245 + + + + + + + + + + CharacterisationWorkflow + A characterisation procedure that has at least two characterisation tasks as proper parts. + CharacterisationWorkflow + A characterisation procedure that has at least two characterisation tasks as proper parts. - + - - SamplePreparationParameter + + + + + + + + + + + + + + + + + + + + CharacterisationTask - Parameter used for the sample preparation process - SamplePreparationParameter - Parameter used for the sample preparation process + CharacterisationTask - + - - - LondonPenetrationDepth - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - LondonPenetrationDepth - https://qudt.org/vocab/quantitykind/LondonPenetrationDepth - https://www.wikidata.org/wiki/Q3277853 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 - 12-38.1 - Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - - - - - - ArchetypeManufacturing - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. - DIN 8580:2020 - Urformen - PrimitiveForming - ArchetypeManufacturing - A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + + + + + T0 L+3 M0 I0 Θ0 N-1 J0 + + + VolumePerAmountUnit + VolumePerAmountUnit - + - - - DisplacementVector - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - DisplacementVector - https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon - https://www.wikidata.org/wiki/Q105533558 - 12-7.3 - In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + + + MassDefect + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. + MassDefect + https://qudt.org/vocab/quantitykind/MassDefect + https://www.wikidata.org/wiki/Q26897126 + 10-21.2 + Sum of the product of the proton number and the hydrogen atomic mass, and the neutron rest mass, minus the rest mass of the atom. - + - + + + + + + + + + + + + + + + + + - DragForce - Retarding force on a body moving in a fluid. - DragForce - https://www.wikidata.org/wiki/Q206621 - 4-9.6 - Retarding force on a body moving in a fluid. + Mass + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + Mass + http://qudt.org/vocab/quantitykind/Mass + 4-1 + Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied. + https://doi.org/10.1351/goldbook.M03709 - + - + - Force - Any interaction that, when unopposed, will change the motion of an object - Force - http://qudt.org/vocab/quantitykind/Force - 4-9.1 - Any interaction that, when unopposed, will change the motion of an object - https://doi.org/10.1351/goldbook.F02480 - - - - - - RadialDistance - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - RadialDistance - https://qudt.org/vocab/quantitykind/RadialDistance - https://www.wikidata.org/wiki/Q1578234 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 - 3-1.9 - Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + + Volume + Extent of an object in space. + Volume + http://qudt.org/vocab/quantitykind/Volume + https://www.wikidata.org/wiki/Q39297 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-40 + https://dbpedia.org/page/Volume + 3-4 - + - - - - - T-2 L-2 M+1 I0 Θ0 N0 J0 - - - MassPerSquareLengthSquareTimeUnit - MassPerSquareLengthSquareTimeUnit + + GroupVelocity + Speed with which the envelope of a wave propagates in space. + GroupSpeed + GroupVelocity + https://www.wikidata.org/wiki/Q217361 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-15 + https://dbpedia.org/page/Group_velocity + 3-23.2 + Speed with which the envelope of a wave propagates in space. + https://en.wikipedia.org/wiki/Group_velocity - + - TauNeutrino - A neutrino belonging to the third generation of leptons. - TauNeutrino - A neutrino belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_neutrino + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedAntiQuark + RedAntiQuark - - + + - - + + - CharacterisationEnvironment - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - CharacterisationEnvironment - Medium of the characterisation experiment defined by the set of environmental conditions that are controlled and measured over time during the experiment. - Characterisation can either be made in air (ambient conditions, without specific controls on environmental parameters), or at different temperatures, different pressures (or in vacuum), or using different types of working gases (inert or reactive with respect to sample), different levels of humidity, etc. + + + VolumicCrossSection + In nuclear physics, product of the number density of atoms of a given type and the cross section. + MacroscopicCrossSection + VolumicCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicCrossSection + https://www.wikidata.org/wiki/Q98280520 + 10-42.1 + In nuclear physics, product of the number density of atoms of a given type and the cross section. + https://doi.org/10.1351/goldbook.M03674 - - - - - - - - - - PhaseHeterogeneousMixture - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. - -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - PhaseHeterogeneousMixture - A mixture in which more than one phases of matter cohexists. - Phase heterogenous mixture may share the same state of matter. + + + + + SimulationApplication + An application aimed to functionally reproduce an object. + SimulationApplication + An application aimed to functionally reproduce an object. + An application that predicts the pressure drop of a fluid in a pipe segment is aimed to functionally reproduce the outcome of a measurement of pressure before and after the segment. + -For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + + + + HolisticArrangement + A system which is mainly characterised by the spatial configuration of its elements. + HolisticArrangement + A system which is mainly characterised by the spatial configuration of its elements. - - - + + + - - + + - Holistic - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. - -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - Wholistic - Holistic - An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. - -This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. - -The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. - The union of classes whole and part. - A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. - A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. - A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. - - - - - - - DonorDensity - Number of donor levels per volume. - DonorDensity - https://qudt.org/vocab/quantitykind/DonorDensity - https://www.wikidata.org/wiki/Q105979886 - 12-29.4 - Number of donor levels per volume. + Nucleon + Either a proton or a neutron. + Nucleon + Either a proton or a neutron. + https://en.wikipedia.org/wiki/Nucleon - - + + - - + + - - ReciprocalVolume - ReciprocalVolume - - - - - - IsobaricHeatCapacity - Heat capacity at constant pressure. - HeatCapacityAtConstantPressure - IsobaricHeatCapacity - https://www.wikidata.org/wiki/Q112187490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 - 5-16.2 - Heat capacity at constant pressure. + + Baryon + Subatomic particle which contains an odd number of valence quarks, at least 3. + Baryon + Subatomic particle which contains an odd number of valence quarks, at least 3. + https://en.wikipedia.org/wiki/Baryon - + - - + - - T+1 L0 M0 I+1 Θ0 N0 J0 + + - - ElectricChargeUnit - ElectricChargeUnit - - - - - - PhysicalPhenomenon - A 'process' that is recognized by physical sciences and is categorized accordingly. - While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist - PhysicalPhenomenon - A 'process' that is recognized by physical sciences and is categorized accordingly. + + + Intensity + Power transferred per unit area. + Intensity + Power transferred per unit area. + https://en.wikipedia.org/wiki/Intensity_(physics) - - - - RadiusOfCurvature - Radius of the osculating circle of a planar curve at a particular point of the curve. - RadiusOfCurvature - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-30 - https://dbpedia.org/page/Radius_of_curvature - 3-1.12 - Radius of the osculating circle of a planar curve at a particular point of the curve. - https://en.wikipedia.org/wiki/Radius_of_curvature + + + + DirectCoulometryAtControlledCurrent + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. + DirectCoulometryAtControlledCurrent + Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - - - MuonNeutrino - A neutrino belonging to the second generation of leptons. - MuonNeutrino - A neutrino belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon_neutrino + + + + Coulometry + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + Coulometry + https://www.wikidata.org/wiki/Q1136979 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-13 + Electrochemical measurement principle in which the electric charge required to carry out a known electrochemical reaction is measured. By Faraday’s laws of electrolysis, the amount of substance is proportional to the charge. Coulometry used to measure the amount of substance is a primary reference measurement procedure [VIM 2.8] not requiring calibration with a standard for a quantity of the same kind (i.e. amount of substance). The coulometric experiment can be carried out at controlled (constant) potential (see direct coulometry at controlled potential) or controlled (constant) current (see direct coulometry at controlled current). + https://en.wikipedia.org/wiki/Coulometry + https://doi.org/10.1515/pac-2018-0109 - + - T0 L0 M-1 I0 Θ0 N+1 J0 + T-3 L+2 M+1 I0 Θ-1 N0 J0 - AmountPerMassUnit - AmountPerMassUnit - - - - - - ElectricCurrentAssistedSintering - ElectricCurrentAssistedSintering - - - - - PseudoscalarMeson - A meson with spin zero and odd parity. - PseudoscalarMeson - A meson with spin zero and odd parity. - https://en.wikipedia.org/wiki/Pseudoscalar_meson - - - - - - - RelaxationTime - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - RelaxationTime - https://www.wikidata.org/wiki/Q106041085 - 12-32.1 - time constant for scattering, trapping or annihilation of charge carriers, phonons or other quasiparticles - - - - - - TimeConstant - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system - TimeConstant - https://www.wikidata.org/wiki/Q1335249 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-26 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=351-45-32 - 3-15 - parameter characterizing the response to a step input of a first‑order, linear time‑invariant system + ThermalConductanceUnit + ThermalConductanceUnit - + - - GFactorOfNucleusOrNuclearParticle - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - NuclearGFactor - GFactorOfNucleusOrNuclearParticle - https://qudt.org/vocab/quantitykind/GFactorOfNucleus - https://www.wikidata.org/wiki/Q97591250 - 10-14.2 - Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + + InfiniteMultiplicationFactor + In nuclear physics, the multiplication factor for an infinite medium. + InfiniteMultiplicationFactor + https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor + https://www.wikidata.org/wiki/Q99440487 + 10-78.2 + In nuclear physics, the multiplication factor for an infinite medium. - + - - - NumberOfEntities - Discrete quantity; number of entities of a given kind in a system. - NumberOfEntities - https://www.wikidata.org/wiki/Q614112 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 - 9-1 - Discrete quantity; number of entities of a given kind in a system. - https://doi.org/10.1351/goldbook.N04266 + + + UpperCriticalMagneticFluxDensity + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + UpperCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127634 + 12-36.3 + For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - + - - - IsentropicExponent - For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. - IsentropicExponent - https://qudt.org/vocab/quantitykind/IsentropicExponent - https://www.wikidata.org/wiki/Q75775739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 - 5-17.2 + + + + + + + + + MagneticFluxDensity + Often denoted B. + Strength of the magnetic field. + MagneticInduction + MagneticFluxDensity + http://qudt.org/vocab/quantitykind/MagneticFluxDensity + https://www.wikidata.org/wiki/Q30204 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-19 + 6-21 + Strength of the magnetic field. + https://doi.org/10.1351/goldbook.M03686 - - - - - - - - - - - - - - + + - - + + + 1 - - + + + 1 + PrefixedUnit + A measurement unit that is made of a metric prefix and a unit symbol. + PrefixedUnit + A measurement unit that is made of a metric prefix and a unit symbol. + + + + + + + RelativeVolumeStrain + Quotient of change of volume and original volume. + BulkStrain + VolumeStrain + RelativeVolumeStrain + https://qudt.org/vocab/quantitykind/VolumeStrain + https://www.wikidata.org/wiki/Q73432507 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-60 + 4-17.4 + Quotient of change of volume and original volume. + https://doi.org/10.1351/goldbook.V06648 + + + + - - + + + + + + - - - CharacterisationMeasurementProcess - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. + Tile + A causal object that is direct part of a tessellation. + Tile + A causal object that is direct part of a tessellation. + --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - CharacterisationMeasurementProcess - Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information -NOTE 1 The quantity mentioned in the definition is an individual quantity. -NOTE 2 The relevant information mentioned in the definition may be about the values obtained by the measurement, -such that some may be more representative of the measurand than others. -NOTE 3 Measurement is sometimes considered to apply to nominal properties, but not in this Vocabulary, where the -process of obtaining values of nominal properties is called “examination”. -NOTE 4 Measurement requires both experimental comparison of quantities or experimental counting of entities at -some step of the process and the use of models and calculations that are based on conceptual considerations. -NOTE 5 The conditions of reasonable attribution mentioned in the definition take into account a description of the -quantity commensurate with the intended use of a measurement result, a measurement procedure, and a calibrated -measuring system operating according to the specified measurement procedure, including the measurement -conditions. Moreover, a maximum permissible error and/or a target uncertainty may be specified, and the -measurement procedure and the measuring system should then be chosen in order not to exceed these measuring -system specifications. + + + + RefractiveIndex + Factor by which the phase velocity of light is reduced in a medium. + RefractiveIndex + http://qudt.org/vocab/quantitykind/RefractiveIndex + https://doi.org/10.1351/goldbook.R05240 + --- International Vocabulary of Metrology(VIM) - The measurement process associates raw data to the sample through a probe and a detector. - Measurement + + + + + + Hypothesis + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + Hypothesis + A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - - - - Welding - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. - Schweißen - Welding + + + + Theory + A 'conventional' that stand for a 'physical'. + The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'. + +It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'. + +In Peirce semiotics: legisign-symbol-argument + Theory + A 'conventional' that stand for a 'physical'. - - - - Viscometry - - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. - Viscosity - Viscometry - Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + + Estimated + Estimated + The biography of a person that the author have not met. - + - + + - SurfaceTension - 4-26 - SurfaceTension - https://qudt.org/vocab/quantitykind/SurfaceTension - https://www.wikidata.org/wiki/Q170749 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-42 - https://doi.org/10.1351/goldbook.S06192 + SpecificVolume + inverse of the mass density ρ, thus v = 1/ρ. + MassicVolume + SpecificVolume + https://qudt.org/vocab/quantitykind/SpecificVolume + https://www.wikidata.org/wiki/Q683556 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 + 4-3 + inverse of the mass density ρ, thus v = 1/ρ. + https://doi.org/10.1351/goldbook.S05807 - + + + + + + + T+10 L-2 M-3 I+4 Θ0 N0 J0 + + + QuarticElectricDipoleMomentPerCubicEnergyUnit + QuarticElectricDipoleMomentPerCubicEnergyUnit + + + - - SupplyChain - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - SupplyChain - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + + FromWorkPIecetoWorkPiece + FromWorkPIecetoWorkPiece - - - - Network - A system whose is mainly characterised by the way in which elements are interconnected. - Network - A system whose is mainly characterised by the way in which elements are interconnected. + + + + Enthalpy + Measurement of energy in a thermodynamic system. + Enthalpy + http://qudt.org/vocab/quantitykind/Enthalpy + 5.20-3 + https://doi.org/10.1351/goldbook.E02141 + + + + + + + GapEnergy + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + BandgapEnergy + GapEnergy + https://www.wikidata.org/wiki/Q103982939 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 + 12-27.2 + Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. + https://doi.org/10.1351/goldbook.B00593 + + + + + + GravityCasting + GravityCasting + + + + + + EnergyDispersiveXraySpectroscopy + An analytical technique used for the elemental analysis or chemical characterization of a sample. + EDS + EDX + EnergyDispersiveXraySpectroscopy + https://www.wikidata.org/wiki/Q386334 + An analytical technique used for the elemental analysis or chemical characterization of a sample. + https://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy + + + + + + + DegreeOfDissociation + Dissociation may occur stepwise. + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + DissociationFraction + DegreeOfDissociation + https://qudt.org/vocab/quantitykind/DegreeOfDissociation + https://www.wikidata.org/wiki/Q907334 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 + 9-43 + ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. + https://doi.org/10.1351/goldbook.D01566 - - - - - - - T-1 L0 M0 I0 Θ-1 N0 J0 - - - PerTemperatureTimeUnit - PerTemperatureTimeUnit + + + RedBottomQuark + RedBottomQuark - - - - - CyclotronAngularFrequency - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. - CyclotronAngularFrequency - https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency - https://www.wikidata.org/wiki/Q97708211 - 10-16 - Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + + + + Assignment + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + Assignment + A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. + The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. - + @@ -10222,424 +9914,315 @@ system specifications. A determination of an object without any actual interaction. - - - - Computation - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - Computation - A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). - A matematician that calculates 2+2. -A computation machine that calculate the average value of a dataset. - - - - - NumericalData - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - NumericalData - Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - - - - - - Electrogravimetry - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - Electrogravimetry - https://www.wikidata.org/wiki/Q902953 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-14 - Method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - https://en.wikipedia.org/wiki/Electrogravimetry - - - - - - - - - T-2 L+1 M0 I0 Θ0 N0 J0 - - - AccelerationUnit - AccelerationUnit - - - - - - - BohrRadius - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - BohrRadius - https://qudt.org/vocab/constant/BohrRadius - https://www.wikidata.org/wiki/Q652571 - 10-6 - Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. - https://doi.org/10.1351/goldbook.B00693 - - - - - - TransformationLanguage - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - TransformationLanguage - https://en.wikipedia.org/wiki/Transformation_language - A construction language designed to transform some input text in a certain formal language into a modified output text that meets some specific goal. - Tritium, XSLT, XQuery, STX, FXT, XDuce, CDuce, HaXml, XMLambda, FleXML - - - + - - - - - T-2 L+2 M+1 I-2 Θ0 N0 J0 - - - InductanceUnit - InductanceUnit - + + + BoltzmannConstant + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - - - - - - - T+10 L-2 M-3 I+4 Θ0 N0 J0 - - - QuarticElectricDipoleMomentPerCubicEnergyUnit - QuarticElectricDipoleMomentPerCubicEnergyUnit - +It defines the Kelvin unit in the SI system. + The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. + BoltzmannConstant + http://qudt.org/vocab/constant/BoltzmannConstant + A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - - - - Probe - - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - Probe - Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. - In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. - In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. - In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) - In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). - In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry +It defines the Kelvin unit in the SI system. + https://doi.org/10.1351/goldbook.B00695 - + - + + - - ModulusOfElasticity - Mechanical property of linear elastic solid materials. - YoungsModulus - ModulusOfElasticity - https://www.wikidata.org/wiki/Q2091584 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 - 4-19.1 - Mechanical property of linear elastic solid materials. - https://doi.org/10.1351/goldbook.M03966 + Entropy + Logarithmic measure of the number of available states of a system. + May also be referred to as a measure of order of a system. + Entropy + http://qudt.org/vocab/quantitykind/Entropy + 5-18 + https://doi.org/10.1351/goldbook.E02149 - - - - - RelativeLinearStrain - Relative change of length with respect the original length. - RelativeLinearStrain - https://qudt.org/vocab/quantitykind/LinearStrain - https://www.wikidata.org/wiki/Q1990546 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-58 - 4-17.2 - Relative change of length with respect the original length. - https://doi.org/10.1351/goldbook.L03560 + + + + + Simulation + A estimation of a property using a functional icon. + Modelling + Simulation + A estimation of a property using a functional icon. + I calculate the electrical conductivity of an Ar-He plasma with the Chapman-Enskog method and use the value as property for it. - - - - - - - - - - - - Persistence - The interest is on the 4D object as it extends in time (process) or as it persists in time (object): -- object (focus on spatial configuration) -- process (focus on temporal evolution) + + + + DataAcquisitionRate + Quantifies the raw data acquisition rate, if applicable. + DataAcquisitionRate + Quantifies the raw data acquisition rate, if applicable. + -The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. + + + + + LiquidSolution + A liquid solution made of two or more component substances. + LiquidSolution + A liquid solution made of two or more component substances. + -For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. + + + + Solution + A solution is a homogeneous mixture composed of two or more substances. + Solutions are characterized by the occurrence of Rayleigh scattering on light, + Solution + A solution is a homogeneous mixture composed of two or more substances. + -Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. + + + + + AngularWaveNumber + In condensed matter physics, quotient of momentum and the reduced Planck constant. + AngularRepetency + AngularWaveNumber + https://qudt.org/vocab/quantitykind/AngularWavenumber + https://www.wikidata.org/wiki/Q105542089 + 12-9.1 + In condensed matter physics, quotient of momentum and the reduced Planck constant. + -This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). + + + + Python + Python + -The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. - The union of the object or process classes. - Persistence - The union of the object or process classes. + + + + ScriptingLanguage + A programming language that is executed through runtime interpretation. + ScriptingLanguage + A programming language that is executed through runtime interpretation. - - - - SpecialUnit - A unit symbol that stands for a derived unit. - Special units are semiotic shortcuts to more complex composed symbolic objects. - SpecialUnit - A unit symbol that stands for a derived unit. - Pa stands for N/m2 -J stands for N m + + + + DataBasedSimulationSoftware + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + DataBasedSimulationSoftware + A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - - - DerivedUnit - A measurement unit for a derived quantity. --- VIM - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - DerivedUnit - Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities. - derived unit - A measurement unit for a derived quantity. --- VIM + + + + + ProtonMass + The rest mass of a proton. + ProtonMass + http://qudt.org/vocab/constant/ProtonMass + https://doi.org/10.1351/goldbook.P04914 - - - - - Expression - A well-formed finite combination of mathematical symbols according to some specific rules. - Expression - A well-formed finite combination of mathematical symbols according to some specific rules. + + + + Admittance + Inverse of the impendance. + ComplexAdmittance + Admittance + https://qudt.org/vocab/quantitykind/Admittance + https://www.wikidata.org/wiki/Q214518 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 + https://dbpedia.org/page/Admittance + 6-52.1 + Inverse of the impendance. - - + + - - - - - - + + - - - - - - - - - Determiner - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. - Determiner - An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception. + + + + ElectricConductance + Inverse of 'ElectricalResistance'. + Measure of the ease for electric current to pass through a material. + Conductance + ElectricConductance + http://qudt.org/vocab/quantitykind/Conductance + https://www.wikidata.org/wiki/Q309017 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-06 + 6-47 + Measure of the ease for electric current to pass through a material. + https://doi.org/10.1351/goldbook.E01925 - - - - - - - T-2 L+3 M+1 I-1 Θ0 N0 J0 - - - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit + + + + + CarrierLifetime + Time constant for recombination or trapping of minority charge carriers in semiconductors + CarrierLifetime + https://qudt.org/vocab/quantitykind/CarrierLifetime + https://www.wikidata.org/wiki/Q5046374 + 12-32.2 + Time constant for recombination or trapping of minority charge carriers in semiconductors - + - T+1 L0 M-1 I+1 Θ0 N0 J0 + T-2 L0 M+1 I0 Θ0 N0 J0 - ElectricChargePerMassUnit - ElectricChargePerMassUnit - - - - - - - RelativeMassExcess - Quotient of mass excess and the unified atomic mass constant. - RelativeMassExcess - https://qudt.org/vocab/quantitykind/RelativeMassExcess - https://www.wikidata.org/wiki/Q98038610 - 10-22.1 - Quotient of mass excess and the unified atomic mass constant. + ForcePerLengthUnit + ForcePerLengthUnit - - - - - - - - - - - - - - - - - ThirdGenerationFermion - ThirdGenerationFermion + + + + DifferentialStaircasePulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + DifferentialStaircasePulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. - - - - SolidLiquidSuspension - A coarse dispersion of liquid in a solid continuum phase. - SolidLiquidSuspension - A coarse dispersion of liquid in a solid continuum phase. + + + + DifferentialPulseVoltammetry + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + DPV + DifferentialPulseVoltammetry + https://www.wikidata.org/wiki/Q5275361 + Voltammetry in which small potential pulses (constant height 10 to 100 mV, constant width 10 to 100 ms) are superimposed onto a linearly varying potential or onto a staircase potential ramp. The current is sampled just before the onset of the pulse (e.g. 10 to 20 ms) and for the same sampling time just before the end of the pulse. The difference between the two sampled currents is plotted versus the potential applied before the pulse. Thus, a differential pulse voltammogram is peak-shaped. Differential pulse polarography is differential pulse voltammetry in which a dropping mercury electrode is used as the working electrode. A pulse is applied before the mechani- cally enforced end of the drop and the current is sampled twice: just before the onset of the pulse and just before its end. The pulse width is usually 10 to 20 % of the drop life. The drop dislodgement is synchronized with current sampling, which is carried out as in DPV. The ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated in the same way as in normal pulse voltammetry (NPV). Moreover, subtraction of the charging current sampled before the application of the pulse further decreases its negative influence. Due to the more enhanced signal (faradaic current) to noise (charging current) ratio, the limit of detection is lower than with NPV. The sensitivity of DPV depends on the reversibility of the electrode reaction of the analyte. + https://en.wikipedia.org/wiki/Differential_pulse_voltammetry + https://doi.org/10.1515/pac-2018-0109 - + - - - MeanEnergyImparted - Expectation value of the energy imparted. - MeanEnergyImparted - https://qudt.org/vocab/quantitykind/MeanEnergyImparted - https://www.wikidata.org/wiki/Q99526969 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 - 10-80.2 - Expectation value of the energy imparted. - - - - - - HolisticArrangement - A system which is mainly characterised by the spatial configuration of its elements. - HolisticArrangement - A system which is mainly characterised by the spatial configuration of its elements. - - - - - - + + - HolisticSystem - A system is conceived as an aggregate of things that 'work' (or interact) together. While a system extends in time through distinct temporal parts (like every other 4D object), this elucdation focuses on a timescale in which the obejct shows a persistence in time. - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. - HolisticSystem - An object that is made of a set of sub objects working together as parts of a mechanism or an interconnecting network (natural or artificial); a complex whole. + + PoyntingVector + Electric field strength multiplied by magnetic field strength. + PoyntingVector + https://qudt.org/vocab/quantitykind/PoyntingVector + https://www.wikidata.org/wiki/Q504186 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 + 6-34 + Electric field strength multiplied by magnetic field strength. + + + + + SpatialTile + A direct part that is obtained by partitioning a whole purely in spatial parts. + SpatialTile + A direct part that is obtained by partitioning a whole purely in spatial parts. - + - + + - - + + T+1 L0 M0 I0 Θ0 N0 J0 - - - - PlanckFunction - Ngative quotient of Gibbs energy and temperature. - PlanckFunction - https://qudt.org/vocab/quantitykind/PlanckFunction - https://www.wikidata.org/wiki/Q76364998 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 - 5-23 - Ngative quotient of Gibbs energy and temperature. - - - - - TemporalTile - A direct part that is obtained by partitioning a whole purely in temporal parts. - TemporalTile - A direct part that is obtained by partitioning a whole purely in temporal parts. + + TimeUnit + TimeUnit - - - FunctionalIcon - An icon that focusing WHAT the object does. - An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. - This subclass of icon inspired by Peirceian category (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else. - FunctionalIcon - An icon that imitates one representative character of the object. It share external similarities with the object, but not necessarily the same internal logical structure. - A data based model is only a functional icon, since it provide the same relations between the properties of the object (e.g., it can predict some properties as function of others) but is not considering the internal mechanisms (i.e., it can ignore the physics). - A guinea pig. - An icon that focusing WHAT the object does. + + + + Holder + An object which supports the specimen in the correct position for the characterisation process. + Holder + An object which supports the specimen in the correct position for the characterisation process. - - + + - - + + - - - ElectricInductance - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - Inductance - ElectricInductance - http://qudt.org/vocab/quantitykind/Inductance - https://www.wikidata.org/wiki/Q177897 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-19 - 6-41.1 - A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance. - https://doi.org/10.1351/goldbook.M04076 + + PhaseHeterogeneousMixture + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. + PhaseHeterogeneousMixture + A mixture in which more than one phases of matter cohexists. + Phase heterogenous mixture may share the same state of matter. + +For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter. - + + + + InternalEnergy + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + ThermodynamicEnergy + InternalEnergy + http://qudt.org/vocab/quantitykind/InternalEnergy + 5.20-2 + A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. + https://doi.org/10.1351/goldbook.I03103 + + + + - + - + - + @@ -10647,1057 +10230,1002 @@ J stands for N m - GaugeBoson - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - GaugeBoson - A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. - All known gauge bosons have a spin of 1 and are hence also vector bosons. - Gauge bosons can carry any of the four fundamental interactions of nature. - https://en.wikipedia.org/wiki/Gauge_boson - - - - - - - LogarithmicDecrement - Product of damping coefficient and period duration. - LogarithmicDecrement - https://www.wikidata.org/wiki/Q1399446 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-25 - 3-25 - Product of damping coefficient and period duration. - - - - - - GravityCasting - GravityCasting + NeutrinoType + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + NeutrinoType + An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. + https://en.wikipedia.org/wiki/Neutrino - - - - Casting - Casting + + + LeftHandedParticle + LeftHandedParticle - + - - - - - - - - - - - AtomicNumber - Number of protons in an atomic nucleus. - AtomicNumber - http://qudt.org/vocab/quantitykind/AtomicNumber - Number of protons in an atomic nucleus. - 10-1.1 - https://doi.org/10.1351/goldbook.A00499 - - - - - - - - - - - - - - - 1 + + - - - - - - - - Integer - An integer number. - Integer - An integer number. - - - - - - - CurieTemperature - Critical thermodynamic temperature of a ferromagnet. - CurieTemperature - https://qudt.org/vocab/quantitykind/CurieTemperature - https://www.wikidata.org/wiki/Q191073 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 - 12-35.1 - Critical thermodynamic temperature of a ferromagnet. + + + + ElectricCharge + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + Charge + ElectricCharge + http://qudt.org/vocab/quantitykind/ElectricCharge + https://www.wikidata.org/wiki/Q1111 + 6-2 + The physical property of matter that causes it to experience a force when placed in an electromagnetic field. + https://doi.org/10.1351/goldbook.E01923 - - + + - - - 2 + + - Collection - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - Collection - A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. -A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. -The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be. - The class of not direct causally self-connected world entities. - The collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule. - - - - - ElementaryBoson - ElementaryBoson + + + + + + + + + + + + + + + + + + + + + + + MaterialsModel + A solvable set of one Physics Equation and one or more Materials Relations. + https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 + MaterialsModel + A solvable set of one Physics Equation and one or more Materials Relations. - - + + - - + + - - Mounting - The sample is mounted on a holder. - The sample is mounted on a holder. - Mounting - The sample is mounted on a holder. - - - - - - - SubProcess - A process which is an holistic spatial part of a process. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - SubProcess - A process which is an holistic spatial part of a process. - Breathing is a subprocess of living for a human being. - In the EMMO the relation of participation to a process falls under mereotopology. - -Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + + + ParticleNumberDensity + Mean number of particles per volume. + ParticleNumberDensity + https://qudt.org/vocab/quantitykind/ParticleNumberDensity + https://www.wikidata.org/wiki/Q98601569 + 10-62.1 + Mean number of particles per volume. + https://doi.org/10.1351/goldbook.N04262 - - + + - T-1 L+1 M+1 I0 Θ0 N0 J0 + T0 L-1 M0 I0 Θ-1 N0 J0 - MomentumUnit - MomentumUnit + PerLengthTemperatureUnit + PerLengthTemperatureUnit - - + + - T+1 L0 M0 I+1 Θ-1 N0 J0 + T0 L-2 M+1 I0 Θ0 N0 J0 - ElectricChargePerTemperatureUnit - ElectricChargePerTemperatureUnit - - - - - - Solid - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. - Solid - A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined. + AreaDensityUnit + AreaDensityUnit - - - - - EndStep - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. - EndStep - The final step of a workflow. - There may be more than one end task, if they run in parallel leading to more than one output. + + + CausallHairedSystem + CausallHairedSystem - - - - - - EndTile - EndTile - + + + ContinuumSubstance + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + ContinuumSubstance + A state that is a collection of sufficiently large number of other parts such that: +- it is the bearer of qualities that can exists only by the fact that it is a sum of parts +- the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent: n [#/m3] x dV [m3] >> 1 + A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant. + A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition). - - - - - Constituent - An object which is an holistic spatial part of a object. - ObjectPart - Constituent - An object which is an holistic spatial part of a object. - A tire is a constituent of a car. +A single continuum individual can be the whole fluid in a pipe. + A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity. - - - - Nexafs - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - Nexafs - Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + + + + ElectricPolarization + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + ElectricPolarization + https://qudt.org/vocab/quantitykind/ElectricPolarization + https://www.wikidata.org/wiki/Q1050425 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 + 6-7 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - + - + - - AcceptorDensity - quotient of number of acceptor levels and volume. - AcceptorDensity - https://qudt.org/vocab/quantitykind/AcceptorDensity - https://www.wikidata.org/wiki/Q105979968 - 12-29.5 - quotient of number of acceptor levels and volume. + + ElectricFluxDensity + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. + ElectricDisplacement + ElectricFluxDensity + https://qudt.org/vocab/quantitykind/ElectricDisplacementField + https://www.wikidata.org/wiki/Q371907 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-40 + 6-12 + Vector quantity obtained at a given point by adding the electric polarization P to the product of the electric field strength E and the electric constant ε0. - + + + + + CyclotronAngularFrequency + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + CyclotronAngularFrequency + https://qudt.org/vocab/quantitykind/CyclotronAngularFrequency + https://www.wikidata.org/wiki/Q97708211 + 10-16 + Quotient of the product of the electric charge of a particle and the magnitude of the magnetic flux density of the magnetic field, and the particle mass. + + + + + GasSolidSuspension + A coarse dispersion of solid in a gas continuum phase. + GasSolidSuspension + A coarse dispersion of solid in a gas continuum phase. + Dust, sand storm. + + + + + + + AverageLogarithmicEnergyDecrement + Average value of the increment of the lethargy per collision. + AverageLogarithmicEnergyDecrement + https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html + https://www.wikidata.org/wiki/Q1940739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 + 10-70 + Average value of the increment of the lethargy per collision. + + + + + + + OsmoticPressure + Measure of the tendency of a solution to take in pure solvent by osmosis. + OsmoticPressure + https://qudt.org/vocab/quantitykind/OsmoticPressure + https://www.wikidata.org/wiki/Q193135 + 9-28 + Measure of the tendency of a solution to take in pure solvent by osmosis. + https://doi.org/10.1351/goldbook.O04344 + + + + - - - - - - - - - - - - - - - - + + - - Hyperon - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - Hyperon - A baryon containing one or more strange quarks, but no charm, bottom, or top quark. - This form of matter may exist in a stable form within the core of some neutron stars. - https://en.wikipedia.org/wiki/Hyperon + + + Pressure + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + Pressure + http://qudt.org/vocab/quantitykind/Pressure + 4-14.1 + The force applied perpendicular to the surface of an object per unit area over which that force is distributed. + https://doi.org/10.1351/goldbook.P04819 - + + + + Soldering + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + Löten + Soldering + + + - Rationale - A set of reasons or a logical basis for a decision or belief - Rationale - A set of reasons or a logical basis for a decision or belief + UserCase + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. + UserCase + High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - - - - String - A physical made of more than one symbol sequentially arranged. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - String - A physical made of more than one symbol sequentially arranged. - The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language. + + + + PhysicalBasedSimulationSoftware + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + PhysicalBasedSimulationSoftware + A computational application that uses a physical model to predict the behaviour of a system, providing a identifiable analogy with the original object. + -In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word). + + + + ArchetypeManufacturing + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + DIN 8580:2020 + Urformen + PrimitiveForming + ArchetypeManufacturing + A manufacturing in which the product is a solid body with a well defined geometrical shape made from shapeless original material parts, whose cohesion is created during the process. + -If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat. - A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list). - A string is not requested to respect any syntactic rule: it's simply directly made of symbols. + + + + + + + + + + + CondensedMatter + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + CondensedMatter + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - - - - Admittance - Inverse of the impendance. - ComplexAdmittance - Admittance - https://qudt.org/vocab/quantitykind/Admittance - https://www.wikidata.org/wiki/Q214518 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-51 - https://dbpedia.org/page/Admittance - 6-52.1 - Inverse of the impendance. + + + + + + + + + + Array3D + 3-dimensional array who's spatial direct parts are matrices. + 3DArray + Array3D + 3-dimensional array who's spatial direct parts are matrices. - - - - ReactivePower - Imaginary part of the complex power. - ReactivePower - https://qudt.org/vocab/quantitykind/ReactivePower - https://www.wikidata.org/wiki/Q2144613 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 - 6-60 - Imaginary part of the complex power. + + + + ACVoltammetry + + The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + ACV + ACVoltammetry + https://www.wikidata.org/wiki/Q120895154 + voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp + https://doi.org/10.1515/pac-2018-0109 - + - + + - - + + T0 L+1 M0 I0 Θ+1 N0 J0 - - - - - ElectricCurrentDensity - Electric current divided by the cross-sectional area it is passing through. - AreicElectricCurrent - CurrentDensity - ElectricCurrentDensity - http://qudt.org/vocab/quantitykind/ElectricCurrentDensity - https://www.wikidata.org/wiki/Q234072 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-11 - 6-8 - https://en.wikipedia.org/wiki/Current_density - https://doi.org/10.1351/goldbook.E01928 + + LengthTemperatureUnit + LengthTemperatureUnit - + - - - PoissonNumber - Ratio of transverse strain to axial strain. - PoissonsRatio - PoissonNumber - https://www.wikidata.org/wiki/Q190453 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 - 4-18 - Ratio of transverse strain to axial strain. + + + MassRatioOfWaterToDryMatter + The mass concentration of water at saturation is denoted usat. + Ratio of the mass of water to the mass of dry matter in a given volume of matter. + MassRatioOfWaterToDryMatter + https://www.wikidata.org/wiki/Q76378860 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 + 5-29 + Ratio of the mass of water to the mass of dry matter in a given volume of matter. - - - Datum - A self-consistent encoded data entity. - Datum - A self-consistent encoded data entity. - A character, a bit, a song in a CD. + + + + Organisation + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + Organisation + An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - - - - SystemUnit - SystemUnit + + + + PhysicalLaw + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. + PhysicalLaw + A law that provides a connection between a property of the object and other properties, capturing a fundamental physical phenomena. - - - - - LiquidSolution - A liquid solution made of two or more component substances. - LiquidSolution - A liquid solution made of two or more component substances. + + + + NaturalLaw + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. + NaturalLaw + A scientific theory that focuses on a specific phenomena, for which a single statement (not necessariliy in mathematical form) can be expressed. - - - - Variable - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - Variable - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - x -k + + + + + LinearExpansionCoefficient + Relative change of length per change of temperature. + LinearExpansionCoefficient + https://qudt.org/vocab/quantitykind/LinearExpansionCoefficient + https://www.wikidata.org/wiki/Q74760821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-27 + 5-3.1 + Relative change of length per change of temperature. - + - - - VacuumMagneticPermeability - The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. - The value of magnetic permeability in a classical vacuum. - PermeabilityOfVacuum - VacuumMagneticPermeability - http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum - 6-26.1 + + + + + + + + CoefficientOfThermalExpansion + Material property which describes how the size of an object changes with a change in temperature. + ThermalExpansionCoefficient + CoefficientOfThermalExpansion + https://www.wikidata.org/wiki/Q45760 + Material property which describes how the size of an object changes with a change in temperature. - + - - - - - - - - - - Nucleon - Either a proton or a neutron. - Nucleon - Either a proton or a neutron. - https://en.wikipedia.org/wiki/Nucleon + + Mixture + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. + Mixture + A Miixture is a material made up of two or more different substances which are physically (not chemically) combined. - - - - Planing - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - Hobeln - Planing + + + ElectronNeutrino + A neutrino belonging to the first generation of leptons. + ElectronNeutrino + A neutrino belonging to the first generation of leptons. + https://en.wikipedia.org/wiki/Electron_neutrino - + - T-2 L0 M+1 I0 Θ0 N0 J0 + T+4 L-4 M-2 I0 Θ0 N0 J0 - ForcePerLengthUnit - ForcePerLengthUnit + ReciprocalSquareEnergyUnit + ReciprocalSquareEnergyUnit - + - - - AlphaDisintegrationEnergy - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - AlphaDisintegrationEnergy - http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98146025 - 10-32 - Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - - - - - - UnitOne - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Represents the number 1, used as an explicit unit to say something has no units. - Unitless - UnitOne - http://qudt.org/vocab/unit/UNITLESS - Represents the number 1, used as an explicit unit to say something has no units. - "The unit one is the neutral element of any system of units – necessary and present automatically." - --- SI Brochure - Refractive index or volume fraction. - Typically used for ratios of two units whos dimensions cancels out. + + + + + T+2 L+1 M-1 I0 Θ+1 N0 J0 + + + TemperaturePerPressureUnit + TemperaturePerPressureUnit - + - - TotalCurrent - Sum of electric current and displacement current - TotalCurrent - https://qudt.org/vocab/quantitykind/TotalCurrent - https://www.wikidata.org/wiki/Q77679732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 - 6-19.2 - Sum of electric current and displacement current + + + + + + + + + + SpecificHeatCapacity + Heat capacity divided by mass. + SpecificHeatCapacity + https://qudt.org/vocab/quantitykind/SpecificHeatCapacity + https://www.wikidata.org/wiki/Q487756 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-48 + https://dbpedia.org/page/Specific_heat_capacity + 5-16.1 + Heat capacity divided by mass. + https://en.wikipedia.org/wiki/Specific_heat_capacity + https://doi.org/10.1351/goldbook.S05800 - + - - + - - T-3 L+2 M+1 I-1 Θ-1 N0 J0 + + + + + + ThermalResistance + The name “thermal resistance” and the symbol R are used in building technology to designate thermal insulance. + Thermodynamic temperature difference divided by heat flow rate. + ThermalResistance + https://qudt.org/vocab/quantitykind/ThermalResistance + https://www.wikidata.org/wiki/Q899628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-45 + 5-12 + Thermodynamic temperature difference divided by heat flow rate. + + + + + + + + + + + + - ElectricPotentialPerTemperatureUnit - ElectricPotentialPerTemperatureUnit + Holistic + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + Wholistic + Holistic + An holistic perspective considers each part of the whole as equally important, without the need to position the parts within a hierarchy (in time or space). The interest is on the whole object and on its parts (how they contribute to the whole, i.e. their roles), without going further into specifying the spatial hierarchy or the temporal position of each part. + +This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body -> organ -> cell -> molecule) or temporal composition. This is inline with the transitive nature of parthood, as it is usually defined in literature. + +The holistic perspective is not excluding the reductionistic perspective, on the contrary it can be considered its complement. + The union of classes whole and part. + A perspective characterized by the belief that some mereological parts of a whole (holistic parts) are intimately interconnected and explicable only by reference to the whole and vice versa. + A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred. + A product is a role that can be fulfilled by many objects, but always requires a process to which the product participates and from which it is generated. - + - - - QualityFactor - Dimensionless quantity in electromagnetism. - QualityFactor - https://qudt.org/vocab/quantitykind/QualityFactor - https://www.wikidata.org/wiki/Q79467569 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 - 6-53 - Dimensionless quantity in electromagnetism. + + + SlowingDownLength + Square root of the slowing down area. + SlowingDownLength + https://qudt.org/vocab/quantitykind/Slowing-DownLength + https://www.wikidata.org/wiki/Q98996963 + 10-73.1 + Square root of the slowing down area. - + - - - MolarGibbsEnergy - Gibbs energy per amount of substance. - MolarGibbsEnergy - https://www.wikidata.org/wiki/Q88863324 - 9-6.4 - Gibbs energy per amount of substance. + + + + + + + + + MagnetomotiveForce + Scalar line integral of the magnetic field strength along a closed path. + MagnetomotiveForce + https://qudt.org/vocab/quantitykind/MagnetomotiveForce + https://www.wikidata.org/wiki/Q1266982 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 + 6-37.3 + Scalar line integral of the magnetic field strength along a closed path. - - - - - - - - - - - - - - Lepton - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - Lepton - An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. - https://en.wikipedia.org/wiki/Lepton + + + + + + + 1 + + + + + + + 2 + + + Neutron + An uncharged subatomic particle found in the atomic nucleus. + Neutron + An uncharged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Neutron - - - - - LatticePlaneSpacing - distance between successive lattice planes - LatticePlaneSpacing - https://qudt.org/vocab/quantitykind/LatticePlaneSpacing - https://www.wikidata.org/wiki/Q105488046 - 12-3 - distance between successive lattice planes + + + GreenBottomQuark + GreenBottomQuark - + - - Distance - Distance is the norm of Displacement. - Shortest path length between two points in a metric space. - Distance - https://qudt.org/vocab/quantitykind/Distance - https://www.wikidata.org/wiki/Q126017 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-24 - https://dbpedia.org/page/Distance - 3-1.8 - Shortest path length between two points in a metric space. - https://en.wikipedia.org/wiki/Distance + + + + + + + + + + + + AtomicMass + Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number. + The atomic mass is often expressed as an average of the commonly found isotopes. + The mass of an atom in the ground state. + AtomicMass + The mass of an atom in the ground state. + 10-4.1 + https://en.wikipedia.org/wiki/Atomic_mass + https://doi.org/10.1351/goldbook.A00496 - - + + - - + + - - - - - - - - - - Semiosis - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Semiosis - A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. - Me looking a cat and saying loud: "Cat!" -> the semiosis process - -me -> interpreter -cat -> object (in Peirce semiotics) -the cat perceived by my mind -> interpretant -"Cat!" -> sign, the produced sign + Whole + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. + A whole is categorized as fundamental (or maximal) or redundant (non-maximal). + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + Whole + The superclass of entities which are defined by requiring the existence of some parts (at least one) of specifically given types, where the specified types are different with respect to the type of the whole. + A whole is always defined using a criterion expressed through the classical transitive parthood relation. +This class is expected to host the definition of world objects as they appear in its wholeness, dependently on some of their parts and independently on the surroundings. - - - - VaporPressureDepressionOsmometry - - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. - VPO - VaporPressureDepressionOsmometry - Vapor pressure osmometry measures vapor pressure indirectly by measuring the change in temperature of a polymer solution on dilution by solvent vapor and is generally useful for polymers with Mn below 10,000–40,000 g/mol. When molecular weight is more than that limit, the quantity being measured becomes very small to detect. + + + + + QualityFactor + Factor taking into account health effects in the determination of the dose equivalent. + QualityFactor + https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor + https://www.wikidata.org/wiki/Q2122099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 + 10-82 + Factor taking into account health effects in the determination of the dose equivalent. - - - - Osmometry - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). - Osmometry - Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg). + + + + + ThermalDiffusionRatio + ThermalDiffusionRatio + https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio + https://www.wikidata.org/wiki/Q96249433 + 9-40.1 - - - - Thermogravimetry - - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). - TGA - Thermogravimetry - Thermogravimetric analysis or thermal gravimetric analysis (TGA) is a method of thermal analysis in which the mass of a sample is measured over time as the temperature changes. This measurement provides information about physical phenomena, such as phase transitions, absorption, adsorption and desorption; as well as chemical phenomena including chemisorptions, thermal decomposition, and solid-gas reactions (e.g., oxidation or reduction). + + + TauAntiNeutrino + TauAntiNeutrino - + - - ThermochemicalTesting - - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - TMA - ThermochemicalTesting - Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature. - - - - - NonNumericalData - Data that are non-quantitatively interpreted (e.g., qualitative data, types). - NonNumericalData - Data that are non-quantitatively interpreted (e.g., qualitative data, types). + + FatigueTesting + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. + FatigueTesting + Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. - + - + - - AbsorbedDoseRate - Differential quotient of the absorbed dose with respect to time. - AbsorbedDoseRate - https://qudt.org/vocab/quantitykind/AbsorbedDoseRate - https://www.wikidata.org/wiki/Q69428958 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 - 10-84 - Differential quotient of the absorbed dose with respect to time. - - - - - - JoinManufacturing - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - A manufacturing involving the creation of long-term connection of several workpieces. - DIN 8580:2020 - Fügen - JoinManufacturing - A manufacturing involving the creation of long-term connection of several workpieces. + + ModulusOfCompression + Measure of how resistant to compressibility a substance is. + BulkModulus + ModulusOfCompression + https://qudt.org/vocab/quantitykind/BulkModulus + https://www.wikidata.org/wiki/Q900371 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 + 4-19.3 + Measure of how resistant to compressibility a substance is. - - - QuantumData - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. - QuantumData - Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + + + + + + + + + + + Fugacity + Measure of the tendency of a substance to leave a phase. + Fugacity + https://qudt.org/vocab/quantitykind/Fugacity + https://www.wikidata.org/wiki/Q898412 + 9-20 + Measure of the tendency of a substance to leave a phase. + https://doi.org/10.1351/goldbook.F02543 - - - - - - - - - - - - - - - - - - - UpQuarkType - UpQuarkType + + + + + ThermalUtilizationFactor + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + ThermalUtilizationFactor + https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor + https://www.wikidata.org/wiki/Q99197650 + 10-76 + In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. - - - PhysicallyNonInteracting - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - PhysicallyNonInteracting - A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. - A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + + + + + SerialStep + SerialStep - - - - - ActiveEnergy - The integral over a time interval of the instantaneous power. - ActiveEnergy - https://qudt.org/vocab/quantitykind/ActiveEnergy - https://www.wikidata.org/wiki/Q79813678 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 - 6-62 - The integral over a time interval of the instantaneous power. + + + TemporalTile + A direct part that is obtained by partitioning a whole purely in temporal parts. + TemporalTile + A direct part that is obtained by partitioning a whole purely in temporal parts. - + + + + Spacing + Spacing + + + - T0 L-1 M0 I0 Θ-1 N0 J0 + T0 L0 M0 I+1 Θ0 N0 J0 - PerLengthTemperatureUnit - PerLengthTemperatureUnit + ElectricCurrentUnit + ElectricCurrentUnit - - - - NaturalProcess - A process occurring by natural (non-intentional) laws. - NonIntentionalProcess - NaturalProcess - A process occurring by natural (non-intentional) laws. + + + + + ReactionEnergy + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + ReactionEnergy + https://qudt.org/vocab/quantitykind/ReactionEnergy + https://www.wikidata.org/wiki/Q98164745 + 10-37.1 + In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - - - - - - - - - - Theorisation - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - Theorization - Theorisation - The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + + + + + TotalCrossSection + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + TotalCrossSection + https://qudt.org/vocab/quantitykind/TotalCrossSection + https://www.wikidata.org/wiki/Q98206553 + 10-38.2 + Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - - - - - - - - + + - - + + - - - - - - - - - Determination - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Characterisation - Determination - A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception according to a well defined conventional procedure. - Assigning the word "red" as sign for an object provides an information to all other interpreters about the outcome of a specific observation procedure according to the determiner. + + AtomicPhysicsCrossSection + Measure of probability that a specific process will take place in a collision of two particles. + AtomicPhysicsCrossSection + https://qudt.org/vocab/quantitykind/Cross-Section.html + https://www.wikidata.org/wiki/Q17128025 + 10-38.1 + Measure of probability that a specific process will take place in a collision of two particles. - + - + - - NuclearQuadrupoleMoment - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - NuclearQuadrupoleMoment - https://qudt.org/vocab/quantitykind/NuclearQuadrupoleMoment - https://www.wikidata.org/wiki/Q97921226 - 10-18 - z component of the diagonalized tensor of nuclear quadrupole moment, in the quantum state with the nuclear spin in the field direction (z). - - - - - - Holder - An object which supports the specimen in the correct position for the characterisation process. - Holder - An object which supports the specimen in the correct position for the characterisation process. - - - - - - HardeningByRolling - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - VerfestigendurchWalzen - HardeningByRolling - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - - - - - - NeutronSpinEchoSpectroscopy - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - NSE - NeutronSpinEchoSpectroscopy - Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + + IonicStrength + Charge number is a quantity of dimension one defined in ChargeNumber. + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + IonicStrength + https://qudt.org/vocab/quantitykind/IonicStrength + https://www.wikidata.org/wiki/Q898396 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-24 + 9-42 + For all types of ions in a solution, half the sum of the products of their molality b_i and the square of their charge number z_i. + https://doi.org/10.1351/goldbook.I03180 - + - T-1 L+2 M0 I0 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ0 N0 J0 - AreicSpeedUnit - AreicSpeedUnit + EnergyUnit + EnergyUnit - - + + + + + + + + + + Vergence + In geometrical optics, vergence describes the curvature of optical wavefronts. + Vergence + http://qudt.org/vocab/quantitykind/Curvature + + + + - + - + - - - - - - - - - UnitSymbol - A symbol that stands for a single unit. - UnitSymbol - A symbol that stands for a single unit. - Some examples are "Pa", "m" and "J". + ElementaryParticle + A chausal chain whose quantum parts are of the same standard model fundamental type. + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + SingleParticleChain + ElementaryParticle + An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. + A chausal chain whose quantum parts are of the same standard model fundamental type. + + + + + + LightAndRadiationQuantity + Quantities categorised according to ISO 80000-7. + LightAndRadiationQuantity + Quantities categorised according to ISO 80000-7. + + + + + + ReferenceSample + + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. + +-- International Vocabulary of Metrology(VIM) + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + ReferenceSpecimen + Certified Reference Material + Reference material + ReferenceSample + Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination +NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property +value. +NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. +NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. +EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. +NOTE 4 Properties of reference materials can be quantities or nominal properties. +NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. +EXAMPLE Spheres of uniform size mounted on a microscope slide. +NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to +which International Units (IU) have been assigned by the World Health Organization. +NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality +control, but not both. +NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference +materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. + +-- International Vocabulary of Metrology(VIM) + Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] + Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. + Reference material - - - - - - - - - - - CatalyticActivity - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - CatalyticActivity - http://qudt.org/vocab/quantitykind/CatalyticActivity - Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. - https://doi.org/10.1351/goldbook.C00881 + + + + QuantumAnnihilation + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + QuantumAnnihilation + A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - - - - ElectricPolarization - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. - ElectricPolarization - https://qudt.org/vocab/quantitykind/ElectricPolarization - https://www.wikidata.org/wiki/Q1050425 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-37 - 6-7 - At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the electric dipole moment p of the substance contained within the domain divided by the volume V. + + + CausalCollapse + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + CausalCollapse + A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. - + - + - Luminance - Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). - a photometric measure of the luminous intensity per unit area of light travelling in a given direction. - Luminance - http://qudt.org/vocab/quantitykind/Luminance - https://doi.org/10.1351/goldbook.L03640 - - - - - - GravitySintering - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder - Loose-powderSintering - PressurelessSintering - GravitySintering - - - - - - SquareWaveVoltammetry - - Most instruments show plots of the current at the end of the forward-going pulse and of the backward-going pulse vs. the potential, as well as their difference. This can give valuable information on the kinetics of the electrode reaction and the electrode process. - The current is sampled just before the end of the forward- going pulse and of the backward-going pulse and the difference of the two sampled currents is plotted versus the applied potential of the potential or staircase ramp. The square-wave voltammogram is peak-shaped - The sensitivity of SWV depends on the reversibility of the electrode reaction of the analyte. - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - OSWV - OsteryoungSquareWaveVoltammetry - SWV - SquareWaveVoltammetry - https://www.wikidata.org/wiki/Q4016323 - voltammetry in which a square-wave potential waveform is superimposed on an underlying linearly varying potential ramp or staircase ramp - https://en.wikipedia.org/wiki/Squarewave_voltammetry - https://doi.org/10.1515/pac-2018-0109 - - - - - - SecondaryData - - Data resulting from the application of post-processing or model generation to other data. - Elaborated data - SecondaryData - Data resulting from the application of post-processing or model generation to other data. - Deconvoluted curves - Intensity maps - - - - - - - MolecularPartitionFunction - Partition function of a molecule. - MolecularPartitionFunction - https://www.wikidata.org/wiki/Q96192064 - 9-35.4 - Partition function of a molecule. - - - - - - TransientLiquidPhaseSintering - TransientLiquidPhaseSintering + + RichardsonConstant + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + RichardsonConstant + https://qudt.org/vocab/quantitykind/RichardsonConstant + https://www.wikidata.org/wiki/Q105883079 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 + 12-26 + Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - + - + - + - + @@ -11705,4651 +11233,5181 @@ loose-powder sintering, gravity sintering: sintering of uncompacted powder - DownQuark - DownQuark - https://en.wikipedia.org/wiki/Down_quark - - - - - - - ActivityOfSolute - RelativeActivityOfSolute - ActivityOfSolute - https://www.wikidata.org/wiki/Q89408862 - 9-24 - - - - - - Namer - An interpreter who assigns a name to an object without any motivations related to the object characters. - Namer - An interpreter who assigns a name to an object without any motivations related to the object characters. - - - - - - - PackingFraction - Quotient of relative mass excess and the nucleon number. - PackingFraction - https://qudt.org/vocab/quantitykind/PackingFraction - https://www.wikidata.org/wiki/Q98058276 - 10-23.1 - Quotient of relative mass excess and the nucleon number. + StrangeAntiQuark + StrangeAntiQuark - + - - MutualInductance - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - MutualInductance - https://www.wikidata.org/wiki/Q78101401 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-36 - 6-41.2 - Given an electric current in a thin conducting loop and the linked flux caused by that electric current in another loop, the mutual inductance of the two loops is the linked flux divided by the electric current. - https://doi.org/10.1351/goldbook.M04076 - - - - - T-1 L+1 M0 I0 Θ0 N0 J0 + T+1 L-3 M0 I0 Θ0 N0 J0 - SpeedUnit - SpeedUnit - - - - - - - POH - Written as pOH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) - POH - number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- -pH = −10 log(a_OH-) - - - - - - IonActivity - Normally a standard solution is a solution of the ion at a molality of 1 mol/kg (exactly). Standardized conditions are normally 1013,25 hPa and 25 °C. - The correction factor is called activity coefficient and it is determined experimentally. See ActivityCoefficient - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. - IonActivity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-20 - ratio of the product of ion molality b and a correction factor γ to the molality b° of the same ion in a standard solution under standardized conditions: a = bγ / b°. + TimePerVolumeUnit + TimePerVolumeUnit - - - - PH - At about 25 °C aqueous solutions with: -pH < 7 are acidic; -pH = 7 are neutral; -pH > 7 are alkaline. -At temperatures far from 25 °C the pH of a neutral solution differs significantly from 7. - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - Written as pH - PH - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-21 - For more details, see ISO 80000-9:2009, Annex C - Number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aH+ of the hydrogen cation H+ -pH = −10 log(a_H+). - https://doi.org/10.1351/goldbook.P04524 + + + MuonAntiNeutrino + MuonAntiNeutrino - + - CompressiveForming - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - lasciano tensioni residue di compressione - Druckumformen - CompressiveForming + ShearForming + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. + Schubumformen + ShearForming - - - - - Moulding - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - Gesenkformen - Moulding + + + + + RawData + + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + RawData + Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. + The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. + In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. + In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. + In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - + - + - - MolarEntropy - Entropy per amount of substance. - MolarEntropy - https://qudt.org/vocab/quantitykind/MolarEntropy - https://www.wikidata.org/wiki/Q68972876 - 9-8 - Entropy per amount of substance. - - - - - - PhaseOfMatter - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - Phase - PhaseOfMatter - A matter object throughout which all physical properties of a material are essentially uniform. - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + + Compressibility + Measure of the relative volume change of a fluid or solid as a response to a pressure change. + Compressibility + https://qudt.org/vocab/quantitykind/Compressibility + https://www.wikidata.org/wiki/Q8067817 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 + 4-20 + Measure of the relative volume change of a fluid or solid as a response to a pressure change. - - - - Rolling - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - Walzen - Rolling + + + + SubjectiveProperty + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + SubjectiveProperty + A quantity whos value that cannot be univocally determined and depends on an agent (e.g. a human individual, a community). + The measure of beauty on a scale from 1 to 10. - + - - CoulometricTitration - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - CoulometricTitration - Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + + PotentiometricStrippingAnalysis + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + the accumulation is similar to that used in stripping voltammetry + the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + PSA + PotentiometricStrippingAnalysis + Two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential. Historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury. The accumulation is similar to that used in stripping voltammetry. The stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution. The time between changes in potential in step 2 is related to the concentration of analyte in the solution. + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential - + - - UserCase - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - UserCase - High level description of the user case. It can include the properties of the material, the conditions of the environment and possibly mentioning which are the industrial sectors of reference. - - - - - - Spray - A suspension of liquid droplets dispersed in a gas through an atomization process. - Spray - A suspension of liquid droplets dispersed in a gas through an atomization process. - - - - - - GasLiquidSuspension - A coarse dispersion of liquid in a gas continuum phase. - GasLiquidSuspension - A coarse dispersion of liquid in a gas continuum phase. - Rain, spray. + + AtomicForceMicroscopy + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. + AtomicForceMicroscopy + Atomic force microscopy (AFM) is an influential surface analysis technique used for micro/nanostructured coatings. This flexible technique can be used to obtain high-resolution nanoscale images and study local sites in air (conventional AFM) or liquid (electrochemical AFM) surroundings. - + - T-3 L+2 M+1 I-2 Θ0 N0 J0 + T0 L0 M0 I0 Θ0 N0 J+1 - ElectricResistanceUnit - ElectricResistanceUnit + LuminousIntensityUnit + LuminousIntensityUnit - + + + + ChargeDistribution + + ChargeDistribution + + + + + PhysicsEquationSolution + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + This must be a mathematical function v(t), x(t). +A dataset as solution is a conventional sign. + PhysicsEquationSolution + A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. + A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. + + + + - - + + - - PhysicsBasedModel - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - PhysicsBasedModel - A mathematical entity based on a fundamental physics theory which defines the relations between physics quantities of an entity. + + MagneticTension + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. + MagneticTension + https://qudt.org/vocab/quantitykind/MagneticTension + https://www.wikidata.org/wiki/Q77993836 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-57 + 6-37.2 + Scalar quantity equal to the line integral of the magnetic field strength H along a specified path linking two points a and b. - - + + - - + + - - + + - + - + - CausalParticle - The class of entities that have no spatial structure. - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - CausalParticle - The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. - The union of Elementary and Quantum classes. - The class of entities that have no spatial structure. + PhysicallyInteracting + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + PhysicallyInteracting + A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + + + + + + Chronocoulometry + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + Chronocoulometry + Direct coulometry at controlled potential in which the electric charge passed after the application of a potential step perturbation is measured as a function of time (Q-t curve). Chronocoulometry provides the same information that is provided by chronoamperometry, since it is based on the integration of the I-t curve. Nevertheless, chronocoulometry offers important experimental advantages, such as (i) the measured signal usually increases with time and hence the later parts of the transient can be detected more accurately, (ii) a better signal-to-noise ratio can be achieved, and (iii) other contributions to overall charge passed as a function of time can be discriminated from those due to the diffusion of electroactive substances. + https://doi.org/10.1515/pac-2018-0109 + + + + + + + GFactor + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + GFactor + https://www.wikidata.org/wiki/Q1951266 + Relation between observed magnetic moment of a particle and the related unit of magnetic moment. + + + + + + Presses + Presses + + + + + + MeasurementDataPostProcessing + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. + MeasurementDataPostProcessing + Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. + Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. + + + + + DataQuality + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + DataQuality + Evaluation of quality indicators to determine how well suited a data set is to be used for the characterisation of a material. + Example evaluation of S/N ratio, or other quality indicators (limits of detection/quantification, statistical analysis of data, data robustness analysis) - - - - - - - T0 L0 M0 I0 Θ+1 N+1 J0 - - - AmountTemperatureUnit - AmountTemperatureUnit + + + + Fork + A tessellation in wich a tile has next two or more non spatially connected tiles. + Fork + A tessellation in wich a tile has next two or more non spatially connected tiles. - + - + - - - ModulusOfCompression - Measure of how resistant to compressibility a substance is. - BulkModulus - ModulusOfCompression - https://qudt.org/vocab/quantitykind/BulkModulus - https://www.wikidata.org/wiki/Q900371 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-69 - 4-19.3 - Measure of how resistant to compressibility a substance is. + + + AmountOfSubstance + "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." + +-- SI Brochure + The number of elementary entities present. + AmountOfSubstance + http://qudt.org/vocab/quantitykind/AmountOfSubstance + 9-2 + The number of elementary entities present. + https://doi.org/10.1351/goldbook.A00297 - - - - - - - - - - - NuclearMagneton - Absolute value of the magnetic moment of a nucleus. - NuclearMagneton - https://www.wikidata.org/wiki/Q1166093 - 10-9.3 - Absolute value of the magnetic moment of a nucleus. - https://doi.org/10.1351/goldbook.N04236 + + + + + + + + + + + MathematicalModel + A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour. + +Abramowitz and Stegun, 1968 + An analogical icon expressed in mathematical language. + MathematicalModel + An analogical icon expressed in mathematical language. - - + + - - - - - - + + + 1 + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - + + - Coded - A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. -A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. -A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. - -For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. -An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) -Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). -This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. -This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. - Coded - A conventional that stands for an object according to a code of interpretation to which the interpreter refers. - A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. - The name "red" that stands for the color of an object. - - - - - - ReferenceSample - - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - ReferenceSpecimen - Certified Reference Material - Reference material - ReferenceSample - Material, sufficiently homogeneous and stable with reference to one or more specified properties, which has been established to be fit for its intended use in measurement or in examination -NOTE 1 Reference materials can be certified reference materials or reference materials without a certified property -value. -NOTE 2 For a reference material to be used as a measurement standard for calibration purposes it needs to be a certified reference material. -NOTE 3 Reference materials can be used for measurement precision evaluation and quality control. -EXAMPLE Human serum without an assigned quantity value for the amount-of-substance concentration of the inherent cholesterol, used for quality control. -NOTE 4 Properties of reference materials can be quantities or nominal properties. -NOTE 5 A reference material is sometimes incorporated into a specially fabricated device. -EXAMPLE Spheres of uniform size mounted on a microscope slide. -NOTE 6 Some reference materials have assigned values in a unit outside the SI. Such materials include vaccines to -which International Units (IU) have been assigned by the World Health Organization. -NOTE 7 A given reference material can only be used for one purpose in a measurement, either calibration or quality -control, but not both. -NOTE 8 ISO/REMCO has an analogous definition but uses the term “measurement process” (ISO Guide 30, Reference -materials – Selected terms and definitions, definition 2.1.1) for both measurement and examination. - --- International Vocabulary of Metrology(VIM) - Quality control sample used to determine accuracy and precision of method. [ISO 17858:2007] - Material, sufficiently homogeneous and stable with respect to one or more specified properties, which has been established to be fit for its intended use in a measurement process”. - Reference material - - - - - - ModulusOfImpedance - ModulusOfImpedance - https://qudt.org/vocab/quantitykind/ModulusOfImpedance - https://www.wikidata.org/wiki/Q25457909 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-44 - 6-51.4 - - - - - - - ReactorTimeConstant - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - ReactorTimeConstant - https://qudt.org/vocab/quantitykind/ReactorTimeConstant - https://www.wikidata.org/wiki/Q99518950 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-04 - 10-79 - Duration required for the neutron fluence rate in a reactor to change by the factor e when the fluence rate is rising or falling exponentially. - + Quantity + A quantifiable property of a phenomenon, body, or substance. + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - - - - Duration - Physical quantity for describing the temporal distance between events. - Duration - https://www.wikidata.org/wiki/Q2199864 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-13 - 3-9 - Physical quantity for describing the temporal distance between events. - +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + Measurand + Quantity + https://qudt.org/schema/qudt/Quantity + A quantifiable property of a phenomenon, body, or substance. + length +Rockwell C hardness +electric resistance + measurand + quantity + VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - - - - ModellingLanguage - An artificial computer language used to express information or knowledge, often for use in computer system design. - ModellingLanguage - An artificial computer language used to express information or knowledge, often for use in computer system design. - Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. - Hardware description language – used to model integrated circuits. +A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + -Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + + + + + SlowingDownArea + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + SlowingDownArea + https://qudt.org/vocab/quantitykind/Slowing-DownArea + https://www.wikidata.org/wiki/Q98950918 + 10-72.1 + In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + -Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. - https://en.wikipedia.org/wiki/Modeling_language + + + + + + + + + + + + Area + Extent of a surface. + Area + http://qudt.org/vocab/quantitykind/Area + 3-3 + https://doi.org/10.1351/goldbook.A00429 - - + + - - + + - - - File - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - File - In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + + + Nucleus + The small, dense region at the centre of an atom consisting of protons and neutrons. + Nucleus + The small, dense region at the centre of an atom consisting of protons and neutrons. - - - - DigitalData - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. - BinaryData - DigitalData - Discrete data that are decoded as a sequence of 1/0, or true/false, or on/off. + + + + + + + + + + + + + + + CompositePhysicalParticle + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. + CompositePhysicalParticle + A composite particle is a bound state of elementary particles for which it is still possible to define its bosonic or fermionic behaviour. - - + + + + OrdinaryMatter + Matter composed of only matter particles, excluding anti-matter particles. + OrdinaryMatter + Matter composed of only matter particles, excluding anti-matter particles. + + + + + + + + + + + + + + + + + + + + + AntiMatter + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. + AntiMatter + Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. + This branch is not expanded due to the limited use of such entities. + + + + - - - - - - + + - - SystemResource - Any physical or virtual component of limited availability within a computer system. - Resource - SystemResource - Any physical or virtual component of limited availability within a computer system. + + + + + + + + + + + + + + + + + + + + + Declaration + ConventionalSemiosis + Declaration - + - - Profilometry - - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. - Profilometry - Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + + CharacterisationData + Represents every type of data that is produced during a characterisation process + CharacterisationData + Represents every type of data that is produced during a characterisation process - + - - - MixingRatio - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - The mixing ratio at saturation is denoted xsat. - MassRatioOfWaterVapourToDryGas - MixingRatio - https://www.wikidata.org/wiki/Q76378940 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 - 5-30 - Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - - - - - + + - - + + T0 L-3 M0 I0 Θ0 N0 J0 - - Tessellation - A causal object that is tessellated in direct parts. - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - Tiling - Tessellation - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - A causal object that is tessellated in direct parts. + + PerVolumeUnit + PerVolumeUnit - - + + - - - - - - + + - Tile - A causal object that is direct part of a tessellation. - Tile - A causal object that is direct part of a tessellation. - - - - - - - - Hypothesis - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. - Hypothesis - A hypothesis is a theory, estimated and objective, since its estimated premises are objective. + + + + AmountConcentration + The amount of a constituent divided by the volume of the mixture. + Concentration + MolarConcentration + Molarity + AmountConcentration + http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB + https://doi.org/10.1351/goldbook.A00295 - - - Estimated - Estimated - The biography of a person that the author have not met. + + + + Concentration + the abundance of a constituent divided by the total volume of a mixture. + Concentration + https://qudt.org/vocab/quantitykind/Concentration + https://www.wikidata.org/wiki/Q3686031 + https://dbpedia.org/page/Concentration + the abundance of a constituent divided by the total volume of a mixture. + https://en.wikipedia.org/wiki/Concentration + https://goldbook.iupac.org/terms/view/C01222 - + - - NuclearSpinQuantumNumber - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. - NuclearSpinQuantumNumber - https://qudt.org/vocab/quantitykind/NuclearSpinQuantumNumber - https://www.wikidata.org/wiki/Q97577403 - 10-13.7 - Quantum number related to the total angular momentum, J, of a nucleus in any specified state, normally called nuclear spin. + + + SolidAngularMeasure + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + SolidAngle + SolidAngularMeasure + https://qudt.org/vocab/quantitykind/SolidAngle + https://www.wikidata.org/wiki/Q208476 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-46 + https://dbpedia.org/page/Solid_angle + 3-8 + Measure of a conical geometric figure, called solid angle, formed by all rays, originating from a common point, called the vertex of the solid angle, and passing through the points of a closed, non-self-intersecting curve in space considered as the border of a surface. + https://en.wikipedia.org/wiki/Solid_angle - - - - ConfigurationLanguage - A construction language used to write configuration files. - ConfigurationLanguage - A construction language used to write configuration files. - .ini files - Files in the standard .config directory on Unix systems. - https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages + + + + DirectCoulometryAtControlledPotential + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + DirectCoulometryAtControlledPotential + Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. + In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. + https://doi.org/10.1515/pac-2018-0109 - - - - VolumeFractionUnit - Unit for quantities of dimension one that are the fraction of two volumes. - VolumeFractionUnit - Unit for quantities of dimension one that are the fraction of two volumes. - Unit for volume fraction. + + + + Width + Length in a given direction regarded as horizontal. + The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. + Breadth + Width + https://qudt.org/vocab/quantitykind/Width + https://www.wikidata.org/wiki/Q35059 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 + 3-1.2 + Length in a given direction regarded as horizontal. - + + + + + KineticFrictionForce + Force opposing the motion of a body sliding on a surface. + DynamicFrictionForce + KineticFrictionForce + https://www.wikidata.org/wiki/Q91005629 + 4-9.4 + Force opposing the motion of a body sliding on a surface. + + + - + - + - PhysicalParticle - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. - The union of hadron and lepton, or fermion and bosons. - Particle - PhysicalParticle - The union of hadron and lepton, or fermion and bosons. - A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). - The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + PhysicalObject + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. + PhysicalObject + A CausalSystem whose quantum parts are all bonded to the rest of the system. + It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. +In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). +So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - + - - - AngularWaveNumber - In condensed matter physics, quotient of momentum and the reduced Planck constant. - AngularRepetency - AngularWaveNumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q105542089 - 12-9.1 - In condensed matter physics, quotient of momentum and the reduced Planck constant. + + + + + T-3 L+1 M+1 I-1 Θ0 N0 J0 + + + ElectricFieldStrengthUnit + ElectricFieldStrengthUnit - - - - IntentionalAgent - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - IntentionalAgent - An agent that is driven by the intention to reach a defined objective in driving a process. - Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + + + + + MeanEnergyImparted + Expectation value of the energy imparted. + MeanEnergyImparted + https://qudt.org/vocab/quantitykind/MeanEnergyImparted + https://www.wikidata.org/wiki/Q99526969 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-44 + 10-80.2 + Expectation value of the energy imparted. - - - - Agent - A participant that is the driver of the process. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. - Agent - A participant that is the driver of the process. - A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. - An agent is not necessarily human. -An agent plays an active role within the process. -An agent is a participant of a process that would not occur without it. + + + + + LongRangeOrderParameter + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + LongRangeOrderParameter + https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter + https://www.wikidata.org/wiki/Q105496124 + 12-5.2 + Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - - - - - - - - - - - - - - - - - - - - AntiNeutrinoType - AntiNeutrinoType + + + + + + + + + + Time + One-dimensional subspace of space-time, which is locally orthogonal to space. + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + Time can be seen as the duration of an event or, more operationally, as "what clocks read". + Time + http://qudt.org/vocab/quantitykind/Time + One-dimensional subspace of space-time, which is locally orthogonal to space. + 3-7 + The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. + https://doi.org/10.1351/goldbook.T06375 - + - - Heat - Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter. - AmountOfHeat - Heat - http://qudt.org/vocab/quantitykind/Heat - 5-6.1 - https://doi.org/10.1351/goldbook.H02752 + + + Attenuation + Decrease in magnitude of any kind of flux through a medium. + Extinction + Attenuation + 3-26.1 + Decrease in magnitude of any kind of flux through a medium. + https://en.wikipedia.org/wiki/Attenuation + https://doi.org/10.1351/goldbook.A00515 - - - AnalogicalIcon - An icon that focus on HOW the object works. - An icon that represents the internal logical structure of the object. - AnalogicalIcon - An icon that represents the internal logical structure of the object. - A physics equation is replicating the mechanisms internal to the object. - Electrical diagram is diagrammatic and resemblance - MODA and CHADA are diagrammatic representation of a simulation or a characterisation workflow. - An icon that focus on HOW the object works. - The subclass of icon inspired by Peirceian category (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy (with the same logic) the relations in something (e.g. math formula, geometric flowchart). + + + + + + + 1 + + + + + + + 2 + + + Proton + A positive charged subatomic particle found in the atomic nucleus. + Proton + A positive charged subatomic particle found in the atomic nucleus. + https://en.wikipedia.org/wiki/Proton - + + + + + + + + + + + + + + + + + + SpatioTemporalTessellation + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + WellFormedTessellation + SpatioTemporalTessellation + A tessellation in which all tiles are connected through spatiotemporal relations hasNext or contacts. + + + - - - MolarGasConstant - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - MolarGasConstant - http://qudt.org/vocab/constant/MolarGasConstant - 9-37.1 - Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). - https://doi.org/10.1351/goldbook.G02579 + + RadialDistance + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. + RadialDistance + https://qudt.org/vocab/quantitykind/RadialDistance + https://www.wikidata.org/wiki/Q1578234 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-26 + 3-1.9 + Distance, where one point is located on an axis or within a closed non self-intersecting curve or surface. - + - + - - SpecificGasConstant - SpecificGasConstant - https://www.wikidata.org/wiki/Q94372268 - 5-26 + + SurfaceMassDensity + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + AreicMass + SurfaceDensity + SurfaceMassDensity + https://www.wikidata.org/wiki/Q1907514 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-10 + 4-5 + at a given point on a two-dimensional domain of quasi-infinitesimal area dA, scalar quantity equal to the mass dm within the domain divided by the area dA, thus ρA = dm/dA. + https://doi.org/10.1351/goldbook.S06167 - + + + + + MobilityRatio + Quotient of electron and hole mobility. + MobilityRatio + https://qudt.org/vocab/quantitykind/MobilityRatio + https://www.wikidata.org/wiki/Q106010255 + 12-31 + Quotient of electron and hole mobility. + + + + + + + RelativeMassDensity + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + RelativeDensity + RelativeMassDensity + https://www.wikidata.org/wiki/Q11027905 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 + 4-4 + Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. + https://doi.org/10.1351/goldbook.R05262 + + + - + - - LorenzCoefficient - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - LorenzNumber - LorenzCoefficient - https://qudt.org/vocab/quantitykind/LorenzCoefficient - https://www.wikidata.org/wiki/Q105728754 - 12-18 - Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + + NuclearMagneton + Absolute value of the magnetic moment of a nucleus. + NuclearMagneton + https://www.wikidata.org/wiki/Q1166093 + 10-9.3 + Absolute value of the magnetic moment of a nucleus. + https://doi.org/10.1351/goldbook.N04236 - - - - DataProcessingApplication - DataProcessingApplication + + + + MeasurementParameter + Describes the main input parameters that are needed to acquire the signal. + Describes the main input parameters that are needed to acquire the signal. + MeasurementParameter + Describes the main input parameters that are needed to acquire the signal. - - - - ApplicationProgram - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - App - Application - ApplicationProgram - A program aimed to provide a specific high level function to the user, usually hiding lower level procedures. - Word processors, graphic image processing programs, database management systems, numerical simulation software and games. + + + + Parameter + A variable whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation. + Parameter + Viscosity in the Navier-Stokes equation - - - - ComputerSystem - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - Computer - ComputerSystem - Electronic device capable of processing data, typically in binary form, according to instructions given to it in a variable program. - https://en.wikipedia.org/wiki/Computer + + + + CharacterisedSample + The sample after having been subjected to a characterization process + CharacterisedSample + The sample after having been subjected to a characterization process - + - - MeasurementTime - The overall time needed to acquire the measurement data. - The overall time needed to acquire the measurement data. - MeasurementTime - The overall time needed to acquire the measurement data. + + ICI + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + IntermittentCurrentInterruptionMethod + ICI + Electrochemical method that measures the voltage response of an electrochemical cell under galvanostatic conditions to short interruptions in the current. + + + + + + + MaterialSynthesis + Deals with undefined shapes both input and output. + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + MaterialSynthesis + The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). + Deals with undefined shapes both input and output. + + + + + + ProductionEngineering + ProductionEngineering + + + + + + ModelledProperty + A quantity obtained from a well-defined modelling procedure. + ModelledProperty + A quantity obtained from a well-defined modelling procedure. + + + + + + + + + + + + + + + Index + A 'Sign' that stands for an 'Object' due to causal continguity. + Signal + Index + A 'Sign' that stands for an 'Object' due to causal continguity. + Smoke stands for a combustion process (a fire). +My facial expression stands for my emotional status. + + + + + BlueDownAntiQuark + BlueDownAntiQuark + + + + + + + SuperconductionTransitionTemperature + Critical thermodynamic temperature of a superconductor. + SuperconductionTransitionTemperature + https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature + https://www.wikidata.org/wiki/Q106103037 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 + 12-35.3 + Critical thermodynamic temperature of a superconductor. + + + + + + Dust + A suspension of fine particles in the atmosphere. + Dust + A suspension of fine particles in the atmosphere. - - - - ComputerScience - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - A well-formed formula that follows the syntactic rules of computer science. - ComputerScience - A well-formed formula that follows the syntactic rules of computer science. - A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + + + GluonType6 + GluonType6 - + - Attenuation - Decrease in magnitude of any kind of flux through a medium. - Extinction - Attenuation - 3-26.1 - Decrease in magnitude of any kind of flux through a medium. - https://en.wikipedia.org/wiki/Attenuation - https://doi.org/10.1351/goldbook.A00515 + PhaseCoefficient + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + PhaseChangeCoefficient + PhaseCoefficient + https://qudt.org/vocab/quantitykind/PhaseCoefficient + https://www.wikidata.org/wiki/Q32745742 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 + 3-26.2 + Change of phase angle with the length along the path travelled by a plane wave. + The imaginary part of the propagation coefficient. + https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant - + + + + + + + T0 L-3 M0 I0 Θ0 N+1 J0 + + + AmountConcentrationUnit + AmountConcentrationUnit + + + - + - - - MagneticVectorPotential - Vector potential of the magnetic flux density. - MagneticVectorPotential - https://qudt.org/vocab/quantitykind/MagneticVectorPotential - https://www.wikidata.org/wiki/Q2299100 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 - 6-32 - Vector potential of the magnetic flux density. + + LuminousIntensity + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. + LuminousIntensity + http://qudt.org/vocab/quantitykind/LuminousIntensity + 7-14 + A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - + + + + + + + + + + CoefficientOfHeatTransfer + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + ThermalTransmittance + CoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q634340 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 + 5-10.1 + At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + + + + - T0 L-2 M0 I0 Θ0 N0 J+1 + T0 L-1 M0 I+1 Θ0 N0 J0 - LuminanceUnit - LuminanceUnit + MagneticFieldStrengthUnit + MagneticFieldStrengthUnit - - - - - RawData - - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. - RawData - Direct output of the equipment with the manufacturer’s software including automatic pre-processing that is not modified by the user once the acquisition method is defined and the equipment calibrated. - The raw data is a set of (unprocessed) data that is given directly as output from the detector, usually expressed as a function of time or position, or photon energy. - In mechanical testing, examples of raw data are raw-force, raw-displacement, coordinates as function of time. - In spectroscopic testing, the raw data are light intensity, or refractive index, or optical absorption as a function of the energy (or wavelength) of the incident light beam. - In some cases, raw data can be considered to have already some level of data processing, e.g., in electron microscopy a “raw image” that is formed on the screen is already result from multiple processing after the signal is acquired by the detector. + + + + + IonizationEnergy + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + IonizationEnergy + https://qudt.org/vocab/quantitykind/IonizationEnergy + https://www.wikidata.org/wiki/Q483769 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-39 + 12-24.2 + Difference between energy of an electron at rest at infinity and a certain energy level which is the energy of an electron in the interior of a substance. + https://doi.org/10.1351/goldbook.I03199 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AntiQuark - AntiQuark + + + + + HoleDensity + Number of holes in valence band per volume. + HoleDensity + https://qudt.org/vocab/quantitykind/HoleDensity + https://www.wikidata.org/wiki/Q105971101 + 12-29.2 + Number of holes in valence band per volume. - - - - IterativeCoupledModelsSimulation - A chain of linked physics based model simulations solved iteratively, where equations are segregated. - IterativeCoupledModelsSimulation - A chain of linked physics based model simulations solved iteratively, where equations are segregated. + + + + + PropagationCoefficient + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + PropagationCoefficient + https://qudt.org/vocab/quantitykind/PropagationCoefficient.html + https://www.wikidata.org/wiki/Q1434913 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 + 3-26.3 + Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - - - - - - - - - - - - Coupled - Coupled + + + + + Wavenumber + Reciprocal of the wavelength. + Repetency + Wavenumber + https://qudt.org/vocab/quantitykind/Wavenumber + https://www.wikidata.org/wiki/Q192510 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-11 + https://dbpedia.org/page/Wavenumber + 3-20 + Reciprocal of the wavelength. + https://en.wikipedia.org/wiki/Wavenumber + https://doi.org/10.1351/goldbook.W06664 - - - - - - - T-2 L-2 M0 I0 Θ0 N0 J0 - - - FrequencyPerAreaTimeUnit - FrequencyPerAreaTimeUnit + + + + UTF8 + UTF8 - - - - URN - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - URN - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + + + Painting + Painting - - - - URI - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] - URI - https://en.wikipedia.org/wiki/File:URI_syntax_diagram.svg - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - URI = scheme ":" ["//" authority] path ["?" query] ["#" fragment] + + + + Chronoamperometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + AmperiometricDetection + AmperometricCurrentTimeCurve + Chronoamperometry + Amperometry in which the current is measured as a function of time after a change in the applied potential. If the potential step is from a potential at which no current flows (i.e., at which the oxidation or reduction of the electrochemically active species does not take place) to one at which the current is limited by diffusion (see diffusion-limited current), the current obeys the Cottrell equation. + https://doi.org/10.1515/pac-2018-0109 - + - Impedimetry - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. - Impedimetry - Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Amperometry + Amperometry can be distinguished from voltammetry by the parameter being controlled (electrode potential E) and the parameter being measured (electrode current I which is usually a function of time – see chronoamperometry). In a non-stirred solution, a diffusion-limited current is usually measured, which is propor-tional to the concentration of an electroactive analyte. The current is usually faradaic and the applied potential is usually constant. The integral of current with time is the electric charge, which may be related to the amount of substance reacted by Faraday’s laws of electrolysis. + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. + Amperometry + The amperometric method provides the ability to distinguish selectively between a number of electroactive species in solution by judicious selection of the applied potential and/or choice of electrode material. https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - + + + + + QualityFactor + Dimensionless quantity in electromagnetism. + QualityFactor + https://qudt.org/vocab/quantitykind/QualityFactor + https://www.wikidata.org/wiki/Q79467569 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=151-15-45 + 6-53 + Dimensionless quantity in electromagnetism. + + + + - - + + - - - - - - - - - - - - EMMO - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The class of all the OWL individuals declared by EMMO as standing for world entities. - The disjoint union of the Item and Collection classes. - EMMO - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - The disjoint union of the Item and Collection classes. - The class of all the OWL individuals declared by EMMO as standing for world entities. - EMMO entities dimensionality is related to their mereocausal structures. From the no-dimensional quantum entity, we introduce time dimension with the elementary concept, and the spacetime with the causal system concept. -The EMMO conceptualisation does not allow the existence of space without a temporal dimension, the latter coming from a causal relation between entities. -For this reason, the EMMO entities that are not quantum or elementaries, may be considered to be always spatiotemporal. The EMMO poses no constraints to the number of spatial dimensions for a causal system (except being higher than one). - + + + MagneticDipoleMoment + For an atom or nucleus, this energy is quantized and can be written as: - - - - Diameter - The diameter of a circle or a sphere is twice its radius. - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - Diameter - https://qudt.org/vocab/quantitykind/Diameter - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-27 - https://dbpedia.org/page/Diameter - 3-1.5 - maximal distance of two points of an object, in a given direction or along a straight line passing through the centre. - https://en.wikipedia.org/wiki/Diameter - + W = g μ M B - - - - - PhaseSpeedOfElectromagneticWaves - Angular frequency divided by angular wavenumber. - PhaseSpeedOfElectromagneticWaves - https://qudt.org/vocab/quantitykind/ElectromagneticWavePhaseSpeed - https://www.wikidata.org/wiki/Q77990619 - 6-35.1 - Angular frequency divided by angular wavenumber. - +where g is the appropriate g factor, μ is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density. - - - - - DeepDrawing - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - Tiefziehen - DeepDrawing - +-- ISO 80000 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: - - - - RadiantFlux - The radiant energy emitted, reflected, transmitted or received, per unit time. - RadiantFlux - http://qudt.org/vocab/quantitykind/RadiantFlux - https://doi.org/10.1351/goldbook.R05046 + ΔW = −μ · B + MagneticDipoleMoment + http://qudt.org/vocab/quantitykind/MagneticDipoleMoment + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55 + 10-9.1 + 6-30 + Vector quantity μ causing a change to its energy ΔW in an external magnetic field of field flux density B: + + ΔW = −μ · B + http://goldbook.iupac.org/terms/view/M03688 - + - - LinkedFlux - Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - LinkedFlux - https://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q4374882 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-77 - 6-22.2 - Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. + + + IntrinsicCarrierDensity + Square root of the product of electron and hole density in a semiconductor. + IntrinsicCarrierDensity + https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity + https://www.wikidata.org/wiki/Q1303188 + 12-29.3 + Square root of the product of electron and hole density in a semiconductor. - + - + - - MagneticFlux - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - MagneticFlux - http://qudt.org/vocab/quantitykind/MagneticFlux - https://www.wikidata.org/wiki/Q177831 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 - https://dbpedia.org/page/Magnetic_flux - 6-22.1 - Measure of magnetism, taking account of the strength and the extent of a magnetic field. - https://en.wikipedia.org/wiki/Magnetic_flux - https://doi.org/10.1351/goldbook.M03684 + + BohrMagneton + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. + BohrMagneton + https://www.wikidata.org/wiki/Q737120 + 10-9.2 + Magnitude of the magnetic moment of an electron in a state with orbital angular momentum quantum number l=1 due to its orbital motion. - - + + - T+7 L-3 M-2 I+3 Θ0 N0 J0 + T0 L+3 M0 I0 Θ0 N0 J0 - CubicElectricChargeLengthPerSquareEnergyUnit - CubicElectricChargeLengthPerSquareEnergyUnit + VolumeUnit + VolumeUnit - + + + + Profilometry + + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + Profilometry + Profilometry is a technique used to extract topographical data from a surface. This can be a single point, a line scan or even a full three dimensional scan. The purpose of profilometry is to get surface morphology, step heights and surface roughness. + + + + + + BondedAtom + A real bond between atoms is always something hybrid between covalent, metallic and ionic. + +In general, metallic and ionic bonds have atoms sharing electrons. + An bonded atom that shares at least one electron to the atom-based entity of which is part of. + The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. + This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. + BondedAtom + An bonded atom that shares at least one electron to the atom-based entity of which is part of. + + + + + + PostProcessingModel + Mathematical model used to process data. + Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. + PostProcessingModel + Mathematical model used to process data. + The PostProcessingModel use is mainly intended to get secondary data from primary data. + + + + + + LaserCutting + LaserCutting + + + - - - NeutronYieldPerFission - Average number of fission neutrons, both prompt and delayed, emitted per fission event. - NeutronYieldPerFission - https://qudt.org/vocab/quantitykind/NeutronYieldPerFission - https://www.wikidata.org/wiki/Q99157909 - 10-74.1 - Average number of fission neutrons, both prompt and delayed, emitted per fission event. + + + NuclearRadius + Conventional radius of sphere in which the nuclear matter is included, + NuclearRadius + https://qudt.org/vocab/quantitykind/NuclearRadius + https://www.wikidata.org/wiki/Q3535676 + 10-19.1 + Conventional radius of sphere in which the nuclear matter is included, - + - - - - RollingResistance - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - RollingDrag - RollingFrictionForce - RollingResistance - https://www.wikidata.org/wiki/Q914921 - 4-9.5 - Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. + + + ElectronCharge + The charge of an electron. + The negative of ElementaryCharge. + ElectronCharge + The charge of an electron. + https://doi.org/10.1351/goldbook.E01982 - + - - + + + - - - - - - + + + + - MathematicalConstruct - MathematicalConstruct + Boolean + A boolean number. + Boolean + A boolean number. - + - - - Curvature - Inverse of the radius of curvature. - Curvature - https://qudt.org/vocab/quantitykind/CurvatureFromRadius - https://www.wikidata.org/wiki/Q214881 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 - https://dbpedia.org/page/Curvature - 3-2 - Inverse of the radius of curvature. + + + EnergyImparted + Sum of energies deposited by ionizing radiation in a given volume. + EnergyImparted + https://qudt.org/vocab/quantitykind/EnergyImparted + https://www.wikidata.org/wiki/Q99526944 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 + 10-80.1 + Sum of energies deposited by ionizing radiation in a given volume. - - - - InteractionVolume - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - InteractionVolume - The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). - In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). - In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + + + + LiquidSolidSuspension + A coarse dispersion of solids in a liquid continuum phase. + LiquidSolidSuspension + A coarse dispersion of solids in a liquid continuum phase. + Mud - + - - ApparentPower - RMS value voltage multiplied by rms value of electric current. - ApparentPower - https://qudt.org/vocab/quantitykind/ApparentPower - https://www.wikidata.org/wiki/Q1930258 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 - 6-57 - RMS value voltage multiplied by rms value of electric current. + + + ParticlePositionVector + Position vector of a particle. + ParticlePositionVector + https://qudt.org/vocab/quantitykind/ParticlePositionVector + https://www.wikidata.org/wiki/Q105533324 + 12-7.1 + Position vector of a particle. - + - + + - - DoseEquivalent - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - DoseEquivalent - http://qudt.org/vocab/quantitykind/DoseEquivalent - 10-83.1 - A dose quantity used in the International Commission on Radiological Protection (ICRP) system of radiological protection. - https://doi.org/10.1351/goldbook.E02101 + PositionVector + In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length. + +-- IEC + Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used. + +-- ISO 80000-3 + Vector r characterizing a point P in a point space with a given origin point O. + Position + PositionVector + http://qudt.org/vocab/quantitykind/PositionVector + Vector r characterizing a point P in a point space with a given origin point O. - - - - - - - - - - Array3D - 3-dimensional array who's spatial direct parts are matrices. - 3DArray - Array3D - 3-dimensional array who's spatial direct parts are matrices. + + + + + CurieTemperature + Critical thermodynamic temperature of a ferromagnet. + CurieTemperature + https://qudt.org/vocab/quantitykind/CurieTemperature + https://www.wikidata.org/wiki/Q191073 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-51 + 12-35.1 + Critical thermodynamic temperature of a ferromagnet. - + - - CouplingFactor - InductiveCouplingFactor - CouplingFactor - https://www.wikidata.org/wiki/Q78101715 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-41 - 6-42.1 + + NumberOfTurnsInAWinding + NumberOfTurnsInAWinding + https://www.wikidata.org/wiki/Q77995997 + 6-38 - - - + + + + - - + + T0 L-2 M0 I+1 Θ0 N0 J0 - - - - Fugacity - Measure of the tendency of a substance to leave a phase. - Fugacity - https://qudt.org/vocab/quantitykind/Fugacity - https://www.wikidata.org/wiki/Q898412 - 9-20 - Measure of the tendency of a substance to leave a phase. - https://doi.org/10.1351/goldbook.F02543 + + ElectricCurrentDensityUnit + ElectricCurrentDensityUnit + + + + + + + RatioOfSpecificHeatCapacities + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + RatioOfSpecificHeatCapacities + https://qudt.org/vocab/quantitykind/HeatCapacityRatio + https://www.wikidata.org/wiki/Q503869 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 + 5-17.1 + Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + + + + + + Susceptance + imaginary part of the admittance + Susceptance + https://qudt.org/vocab/quantitykind/Susceptance + https://www.wikidata.org/wiki/Q509598 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 + 6-52.3 + imaginary part of the admittance + + + + + + + LossAngle + Arctan of the loss factor + LossAngle + https://www.qudt.org/vocab/quantitykind/LossAngle + https://www.wikidata.org/wiki/Q20820438 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-49 + 6-55 + Arctan of the loss factor + + + + + + + PreparedSample + The sample after a preparation process. + PreparedSample + The sample after a preparation process. + + + + + + + Stage + A process which is an holistic temporal part of a process. + Stage + A process which is an holistic temporal part of a process. + Moving a leg is a stage of the process of running. - - - - Factory - A building or group of buildings where goods are manufactured or assembled. - IndustrialPlant - Factory - A building or group of buildings where goods are manufactured or assembled. + + + TemporalRole + An holistic temporal part of a whole. + HolisticTemporalPart + TemporalRole + An holistic temporal part of a whole. - - - GreenTopAntiQuark - GreenTopAntiQuark + + + + MercuryPorosimetry + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. + MercuryPorosimetry + A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - + - - Exafs - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - Exafs - Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + + Porosimetry + + Porosimetry - - - - - SerialStep - SerialStep + + + + + + + T+3 L-3 M-1 I+2 Θ0 N0 J0 + + + ElectricConductivityUnit + ElectricConductivityUnit - + - ElectronAntiNeutrino - ElectronAntiNeutrino + GreenBottomAntiQuark + GreenBottomAntiQuark - - - - ShearOrTorsionTesting - - ShearOrTorsionTesting + + + + PaperManufacturing + PaperManufacturing - + - - ElectrolyticDeposition - ElectrolyticDeposition + + FormingFromChip + FormingFromChip - + + + + OpticalMicroscopy + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + OpticalMicroscopy + Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. + + + + + + ProgrammingLanguage + A language object that follows syntactic rules of a programming language. + A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. + Code + SoftwareCode + ProgrammingLanguage + A language object that follows syntactic rules of a programming language. + A programming language object can also be a fragment (e.g. a C function) not suitable for exectution. + Entities are not necessarily digital data, but can be code fragments printed on paper. + + + - - FormingFromIonised - FormingFromIonised + + Welding + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + Schweißen + Welding - - + + - - - 1 + + - - - - - - - - - - - - - - - - - - - - - Quantity - A quantifiable property of a phenomenon, body, or substance. - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". - -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. - Measurand - Quantity - https://qudt.org/schema/qudt/Quantity - A quantifiable property of a phenomenon, body, or substance. - length -Rockwell C hardness -electric resistance - measurand - quantity - VIM defines a quantity as a "property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed as a number and a reference". + + + MassEnergyTransferCoefficient + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + MassEnergyTransferCoefficient + https://qudt.org/vocab/quantitykind/MassEnergyTransferCoefficient + https://www.wikidata.org/wiki/Q99714619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-32 + 10-87 + For ionizing uncharged particles of a given type and energy, the differential quotient of Rtr with respect to l. Where Rtr is the mean energy that is transferred to kinetic energy of charged particles by interactions of the uncharged particles of incident radiant energy R in traversing a distance l in the material of density rho, divided by rho and R + -A quantity in EMMO is a property and therefore only addresses the first part of the VIM definition (that is a property of a phenomenon, body, or substance). The second part (that it can be expressed as a number and a reference) is syntactic and addressed by emmo:QuantityValue. + + + + + SolidSolution + A solid solution made of two or more component substances. + SolidSolution + A solid solution made of two or more component substances. - + - + - - CoefficientOfHeatTransfer - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. - ThermalTransmittance - CoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/CoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q634340 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-39 - 5-10.1 - At a point on the surface separating two media with different thermodynamic temperatures, magnitude of the density of heat flow rate φ divided by the absolute value of temperature difference ΔT. + + LinearMassDensity + Mass per length. + LinearDensity + LineicMass + LinearMassDensity + https://qudt.org/vocab/quantitykind/LinearDensity + https://www.wikidata.org/wiki/Q56298294 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 + 4-6 + Mass per length. - - - - PeriodDuration - duration of one cycle of a periodic event - Period - PeriodDuration - https://qudt.org/vocab/quantitykind/Period - https://www.wikidata.org/wiki/Q2642727 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 - 3-14 - duration of one cycle of a periodic event - https://doi.org/10.1351/goldbook.P04493 - + + + + Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. - - - - - - - - - - - NonPrefixedUnit - A measurement unit symbol that do not have a metric prefix as a direct spatial part. - NonPrefixedUnit - A measurement unit symbol that do not have a metric prefix as a direct spatial part. +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) + Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. + +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by + + +H=∑ni=1hia∗i (n≥3) - + + + CrystallineMaterial + Suggestion of Rickard Armiento + CrystallineMaterial + + + - - MagneticSusceptibility - Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. - MagneticSusceptibility - https://qudt.org/vocab/unit/SUSCEPTIBILITY_MAG.html - https://www.wikidata.org/wiki/Q691463 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-37 - 6-28 - Scalar or tensor quantity the product of which by the magnetic constant μ0 and by the magnetic field strength H is equal to the magnetic polarization J. + + RelativePermittivity + Permittivity divided by electric constant. + RelativePermittivity + https://qudt.org/vocab/unit/PERMITTIVITY_REL + https://www.wikidata.org/wiki/Q4027242 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-13 + 6-15 + Permittivity divided by electric constant. - + + - - Degenerency - Multiplicity - Degenerency - https://www.wikidata.org/wiki/Q902301 - 9-36.2 - https://doi.org/10.1351/goldbook.D01556 + StandardAbsoluteActivityOfSolvent + StandardAbsoluteActivityOfSolvent + https://www.wikidata.org/wiki/Q89556185 + 9-27.3 - + - - - RatioOfSpecificHeatCapacities - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. - RatioOfSpecificHeatCapacities - https://qudt.org/vocab/quantitykind/HeatCapacityRatio - https://www.wikidata.org/wiki/Q503869 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-51 - 5-17.1 - Ratio of specific heat capacity at constant pressure cp to specific heat capacity at constant volume cV, thus γ = cp/cV. + + + ElectronMass + The rest mass of an electron. + ElectronMass + http://qudt.org/vocab/constant/ElectronMass + https://doi.org/10.1351/goldbook.E02008 - + - - Solubility - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. - Solubility - https://www.wikidata.org/wiki/Q170731 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 - The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. - https://doi.org/10.1351/goldbook.S05740 + + + + + + + + + + + + MassNumber + Number of nucleons in an atomic nucleus. + AtomicMassNumber + NucleonNumber + MassNumber + http://qudt.org/vocab/quantitykind/MassNumber + Number of nucleons in an atomic nucleus. - + - - NuclearPrecessionAngularFrequency - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - NuclearPrecessionAngularFrequency - https://www.wikidata.org/wiki/Q97641779 - 10-15.3 - Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + + RelativeMassDefect + Quotient of mass defect and the unified atomic mass constant. + RelativeMassDefect + https://qudt.org/vocab/quantitykind/RelativeMassDefect + https://www.wikidata.org/wiki/Q98038718 + 10-22.2 + Quotient of mass defect and the unified atomic mass constant. - + - - SourceVoltage - Voltage between the two terminals of a voltage source when there is no electric current through the source. - SourceTension - SourceVoltage - https://qudt.org/vocab/quantitykind/SourceVoltage - https://www.wikidata.org/wiki/Q185329 - 6-36 - Voltage between the two terminals of a voltage source when there is no electric current through the source. + + + + + + + + + SeebeckCoefficient + Measure of voltage induced by change of temperature. + SeebeckCoefficient + https://qudt.org/vocab/quantitykind/SeebeckCoefficient + https://www.wikidata.org/wiki/Q1091448 + 12-21 + Measure of voltage induced by change of temperature. - + - - Voltage - Correspond to the work needed per unit of charge to move a test charge between two points in a static electric field. - The difference in electric potential between two points. - ElectricPotentialDifference - ElectricTension - Voltage - http://qudt.org/vocab/quantitykind/Voltage - 6-11.3 - The difference in electric potential between two points. - https://doi.org/10.1351/goldbook.A00424 - https://doi.org/10.1351/goldbook.V06635 + + + RestEnergy + E_0 = m_0 * c_0^2 + +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + Product of the rest mass and the square of the speed of light in vacuum. + RestEnergy + https://www.wikidata.org/wiki/Q11663629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-05 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-17 + 10-3 + Product of the rest mass and the square of the speed of light in vacuum. + E_0 = m_0 * c_0^2 + +where m_0 is the rest mass of that particle and c_0 is the speed of light in a vacuum. + https://en.wikipedia.org/wiki/Invariant_mass#Rest_energy - + - T-6 L-2 M+2 I0 Θ0 N0 J0 + T-2 L+2 M0 I0 Θ-1 N0 J0 - SquarePressurePerSquareTimeUnit - SquarePressurePerSquareTimeUnit - - - - - - ParallelWorkflow - ParallelWorkflow + EntropyPerMassUnit + EntropyPerMassUnit - + - - - - - - - - - - - - ResourceIdentifier - A formal computer-interpretable identifier of a system resource. - ResourceIdentifier - A formal computer-interpretable identifier of a system resource. - - - - - - - - - - - - - - - 1 - - - - - - - - - - Real - A real number. - Real - A real number. + + ConfigurationLanguage + A construction language used to write configuration files. + ConfigurationLanguage + A construction language used to write configuration files. + .ini files + Files in the standard .config directory on Unix systems. + https://en.wikipedia.org/wiki/Configuration_file#Configuration_languages - + - - - MigrationLength - Square root of the migration area, M^2. - MigrationLength - https://qudt.org/vocab/quantitykind/MigrationLength - https://www.wikidata.org/wiki/Q98998318 - 10-73.3 - Square root of the migration area, M^2. - - - - - - PhaseHomogeneousMixture - A single phase mixture. - PhaseHomogeneousMixture - A single phase mixture. + + + AmountFraction + The amount of a constituent divided by the total amount of all constituents in a mixture. + MoleFraction + AmountFraction + http://qudt.org/vocab/quantitykind/MoleFraction + The amount of a constituent divided by the total amount of all constituents in a mixture. + https://doi.org/10.1351/goldbook.A00296 - + - - - HalfValueThickness - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. - HalfValueThickness - https://qudt.org/vocab/quantitykind/Half-ValueThickness - https://www.wikidata.org/wiki/Q127526 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-34 - 10-53 - Thickness of the attenuating layer that reduces the quantity of interest of a unidirectional beam of infinitesimal width to half of its initial value. + + + DonorDensity + Number of donor levels per volume. + DonorDensity + https://qudt.org/vocab/quantitykind/DonorDensity + https://www.wikidata.org/wiki/Q105979886 + 12-29.4 + Number of donor levels per volume. - + - - Thickness - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. - Thickness - https://www.wikidata.org/wiki/Q3589038 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-24 - 3-1.4 - Shortest distance between two surfaces limiting a layer, when this distance can be considered to be constant over a region of a finite size. + + SpecificHeatCapacityAtSaturatedVaporPressure + Specific heat capacity at saturated vaport pressure. + SpecificHeatCapacityAtSaturatedVaporPressure + https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation + https://www.wikidata.org/wiki/Q75775005 + 5-16.4 + Specific heat capacity at saturated vaport pressure. - - + + + - - - - - - - - + + + - FirstGenerationFermion - FirstGenerationFermion - - - - - - - - - - - - - LatticeVector - translation vector that maps the crystal lattice on itself - LatticeVector - https://qudt.org/vocab/quantitykind/LatticeVector - https://www.wikidata.org/wiki/Q105435234 - 12-1.1 - translation vector that maps the crystal lattice on itself - - - - - - RotationalFrequency - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - RotationalFrequency - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 - 3-17.2 - Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + + + + + + + + + + + SpatioTemporalTile + https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a + WellFormedTile + SpatioTemporalTile - - - - - ComptonWavelength - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - ComptonWavelength - https://qudt.org/vocab/constant/ComptonWavelength - https://www.wikidata.org/wiki/Q1145377 - 10-20 - Quotient of the Planck constant and the product of the mass of the particle and the speed of light in vacuum. - https://en.wikipedia.org/wiki/Compton_wavelength + + + + Riveting + Riveting - - - GluonType2 - GluonType2 + + + + FormingJoin + FormingJoin - + - - SolidSolidSuspension - A coarse dispersion of solid in a solid continuum phase. - SolidSolidSuspension - A coarse dispersion of solid in a solid continuum phase. - Granite, sand, dried concrete. + + Heteronuclear + A molecule composed of more than one element type. + Heteronuclear + A molecule composed of more than one element type. + Nitric oxide (NO) or carbon dioxide (CO₂). - - + + + + + + + + + + + + + + + - + - - - - - - - + + - CharmAntiQuark - CharmAntiQuark + Molecule + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + ChemicalSubstance + Molecule + An atom_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons. + H₂0, C₆H₁₂O₆, CH₄ + An entity is called essential if removing one direct part will lead to a change in entity class. +An entity is called redundand if removing one direct part will not lead to a change in entity class. + This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity. +Removing an atom from the state will result in another type of atom_based state. +e.g. you cannot remove H from H₂0 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant). - - - - + + + - - T+1 L0 M0 I+1 Θ0 N-1 J0 + + - - ElectricChargePerAmountUnit - ElectricChargePerAmountUnit - - - - - - - - ThermalDiffusionFactor - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. - ThermalDiffusionFactor - https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor - https://www.wikidata.org/wiki/Q96249629 - 9-40.2 - Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + + + Theorisation + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. + Theorization + Theorisation + The 'semiosis' process of interpreting a 'physical' and provide a complec sign, 'theory' that stands for it and explain it to another interpreter. - + - - - ThermalDiffusionRatio - ThermalDiffusionRatio - https://qudt.org/vocab/quantitykind/ThermalDiffusionRatio - https://www.wikidata.org/wiki/Q96249433 - 9-40.1 + + + AngularReciprocalLatticeVector + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + AngularReciprocalLatticeVector + https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector + https://www.wikidata.org/wiki/Q105475278 + 12-2.1 + Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - - - - Metrological - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - Metrological - A language entity used in the metrology discipline. - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + + + + Inequality + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + Inequality + A relation which makes a non-equal comparison between two numbers or other mathematical expressions. + f(x) > 0 - + + + + + MathematicalFormula + A mathematical string that express a relation between the elements in one set X to elements in another set Y. + The set X is called domain and the set Y range or codomain. + MathematicalFormula + A mathematical string that express a relation between the elements in one set X to elements in another set Y. + + + - + + + + + + - MeanDurationOfLife - Reciprocal of the decay constant λ. - MeanLifeTime - MeanDurationOfLife - https://qudt.org/vocab/quantitykind/MeanLifetime - https://www.wikidata.org/wiki/Q1758559 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-13 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-47 - 10-25 - Reciprocal of the decay constant λ. + + UnifiedAtomicMassConstant + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + UnifiedAtomicMassConstant + https://www.wikidata.org/wiki/Q4817337 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 + 10-4.3 + 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. + https://doi.org/10.1351/goldbook.A00497 - - + + + - + - - - - - - - + + - UpAntiQuark - UpAntiQuark - + PhysicalConstant + Physical constants are categorised into "exact" and measured constants. - - - - LaserCutting - LaserCutting +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + PhysicalConstant + Physical constants are categorised into "exact" and measured constants. + +With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforsed May 2019. + https://en.wikipedia.org/wiki/List_of_physical_constants - - - - ThermalCutting - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN - Thermisches Abtragen - ThermalCutting - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + + + + CharacterisationProtocol + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + CharacterisationProtocol + A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - - - + + - + - + - StandardModelParticle - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - The union of all classes categorising elementary particles according to the Standard Model. - ElementaryParticle - StandardModelParticle - The union of all classes categorising elementary particles according to the Standard Model. - Disjointness comes from the fact that standard model elementary particles are entities that possess objectively distinct and singular characters. - Graviton is included, even if it is an hypothetical particle, to enable causality for gravitational interactions. - This class represents only real particles that are the input and output of a Feynman diagram, and hence respect the E²-p²c²=m²c⁴ energy-momentum equality (on the mass shell). -In the EMMO the virtual particles (off the mass shell), the internal propagators of the interaction within a Feynman diagram, are not represented as mereological entities but as object relations (binary predicates). + PhysicalParticle + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. + The union of hadron and lepton, or fermion and bosons. + Particle + PhysicalParticle + The union of hadron and lepton, or fermion and bosons. + A well defined physical entity, elementary or composite, usually treated as a singular unit, that is found at scales spanning from the elementary particles to molecules, as fundamental constituents of larger scale substances (as the etymology of "particle" suggests). + The scope of the physical particle definition goes from the elementary particles to molecules, as fundamental constituents of substances. - + - - C - C + + StyleSheetLanguage + A computer language that expresses the presentation of structured documents. + StyleSheetLanguage + A computer language that expresses the presentation of structured documents. + CSS + https://en.wikipedia.org/wiki/Style_sheet_language - - - - CompiledLanguage - CompiledLanguage + + + + ScanningTunnelingMicroscopy + + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + STM + ScanningTunnelingMicroscopy + Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - - - - - - - - - - - - - - + + + + FormingFromIonised + FormingFromIonised + + + + - - + + - - - Measurement - A measurement always implies a causal interaction between the object and the observer. - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - Measurement - An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure. - measurement + + + + + + + + + + Semiosis + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Semiosis + A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'. + Me looking a cat and saying loud: "Cat!" -> the semiosis process + +me -> interpreter +cat -> object (in Peirce semiotics) +the cat perceived by my mind -> interpretant +"Cat!" -> sign, the produced sign - - - - - - - - - - - - - - - - - - - FundamentalBoson - A boson that is a single elementary particle. - A particle with integer spin that follows Bose–Einstein statistics. - FundamentalBoson - A particle with integer spin that follows Bose–Einstein statistics. - A boson that is a single elementary particle. - https://en.wikipedia.org/wiki/Boson#Elementary_bosons + + + + AnalyticalElectronMicroscopy + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + AnalyticalElectronMicroscopy + Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + + + + + StandardUnit + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + ReferenceMaterial + StandardUnit + A reference unit provided by a reference material. +International vocabulary of metrology (VIM) + Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + + + + + SubProcess + A process which is an holistic spatial part of a process. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. + SubProcess + A process which is an holistic spatial part of a process. + Breathing is a subprocess of living for a human being. + In the EMMO the relation of participation to a process falls under mereotopology. + +Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it. - - - - - - - T0 L-1 M0 I+1 Θ0 N0 J0 - - - MagneticFieldStrengthUnit - MagneticFieldStrengthUnit + + + + + Lethargy + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. + Lethargy + https://qudt.org/vocab/quantitykind/Lethargy + https://www.wikidata.org/wiki/Q25508781 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-01 + 10-69 + Natural logarithm of the quotient of a reference energy and the kinetic energy of a neutron. - - + + - T-3 L+3 M+1 I-1 Θ0 N0 J0 + T0 L-2 M0 I0 Θ0 N0 J+1 - ElectricFluxUnit - ElectricFluxUnit + LuminanceUnit + LuminanceUnit - - - - - TotalIonization - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. - TotalIonization - https://qudt.org/vocab/quantitykind/TotalIonization - https://www.wikidata.org/wiki/Q98690787 - 10-59 - Quotient of the total mean charge of all positive ions produced by an ionizing charged particle along its entire path and along the paths of any secondary charged particles, and the elementary charge. + + + + CharacterisationExperiment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + CharacterisationExperiment + A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - - - - - - - - - - - - Structural - Structural + + + + + + + + + + Experiment + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. + Experiment + An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - + - DimensionalUnit - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + + + StandardChemicalPotential + StandardChemicalPotential + https://qudt.org/vocab/quantitykind/StandardChemicalPotential + https://www.wikidata.org/wiki/Q89333468 + 9-21 + https://doi.org/10.1351/goldbook.S05908 + -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + + + + MeasurementSystemAdjustment + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + MeasurementParameterAdjustment + MeasurementSystemAdjustment + From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated. + Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process. + Adjustment + -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). - DimensionalUnit - A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit. - The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. + + + + InteractionVolume + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + InteractionVolume + The volume of material, and the surrounding environment, that interacts with the probe and generate a detectable (measurable) signal (information). + In Scanning Electron Microscopy (SEM), the interaction volume is the volume of material that interacts directly with the incident electron beam, is usually much smaller than the entire specimen’s volume, and can be computed by using proper models. The interaction between the scanning probe and the sample generates a series of detectable signals (back scattered electrons, secondary electrons, x-rays, specimen current, etc.) which contain information on sample morphology, microstructure, composition, etc. In x-ray diffraction, the interaction volume is the volume of material that interacts directly with the x-ray beam and is usually smaller than the volume of the entire specimen. Depending on sample’s structure and microstructure, the interaction between the sample and the x-ray incident beam generates a secondary (reflected) beam that is measured by a detector and contains information on certain sample’s properties (e.g., crystallographic structure, phase composition, grain size, residual stress...). + In some cases, (like tribological characterisations) the “sample” can also be the “probe”. When analysing a system of samples that interact each other, finding a clear definition can become a complex problem. It is important to note that, in some cases, the volume of interaction could be different from the volume of detectable signal emission. Example: in Scanning Electron Microscopy (SEM), the volume of interaction between the electron probe and the material is different from the volumes that generate the captured signal. + -The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. + + + + + WorkFunction + Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. + least energy required for the emission of a conduction electron. + ElectronWorkFunction + WorkFunction + https://www.wikidata.org/wiki/Q783800 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 + 12-24.1 + least energy required for the emission of a conduction electron. + https://doi.org/10.1351/goldbook.E02015 + -Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units). + + + + CurrentLinkage + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + CurrentLinkage + https://qudt.org/vocab/quantitykind/CurrentLinkage + https://www.wikidata.org/wiki/Q77995703 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 + 6-37.4 + For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - - - - Assignment - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - Assignment - A estimation of a property by a criteria based on the pre-existing knowledge of the estimator. - The Argon gas in my bottle has ionisation energy of 15.7596 eV. This is not measured but assigned to this material by previous knowledge. + + + Muon + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + Muon + The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. + https://en.wikipedia.org/wiki/Muon - - - - - - - T-3 L0 M+1 I0 Θ-1 N0 J0 - - - ThermalTransmittanceUnit - ThermalTransmittanceUnit + + + PseudovectorMeson + A meson with total spin 1 and even parit. + PseudovectorMeson + A meson with total spin 1 and even parit. + https://en.wikipedia.org/wiki/Pseudovector_meson - - - - ProductionSystem - A network of objects that implements a production process through a series of interconnected elements. - ProductionSystem - A network of objects that implements a production process through a series of interconnected elements. + + + + NewtonianConstantOfGravity + Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. + NewtonianConstantOfGravity + http://qudt.org/vocab/constant/NewtonianConstantOfGravitation + https://doi.org/10.1351/goldbook.G02695 - - - - Measurer - An observer that makes use of a measurement tool and provides a quantitative property. - Measurer - An observer that makes use of a measurement tool and provides a quantitative property. + + + + + NuclidicMass + Rest mass of a nuclide X in the ground state. + NuclidicMass + https://www.wikidata.org/wiki/Q97010809 + 10-4.2 + Rest mass of a nuclide X in the ground state. + https://doi.org/10.1351/goldbook.N04258 - + - - - - - - - - AtomicAttenuationCoefficient - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - AtomicAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592911 - 10-52 - Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. + + RestMass + For particle X, mass of that particle at rest in an inertial frame. + InvariantMass + ProperMass + RestMass + https://qudt.org/vocab/quantitykind/RestMass + https://www.wikidata.org/wiki/Q96941619 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-03 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-16 + https://dbpedia.org/page/Mass_in_special_relativity + 10-2 + For particle X, mass of that particle at rest in an inertial frame. + https://en.wikipedia.org/wiki/Invariant_mass + + + + + + LinearChronopotentiometry + Chronopotentiometry where the applied current is changed linearly. + LinearChronopotentiometry + Chronopotentiometry where the applied current is changed linearly. + chronopotentiometry where the applied current is changed linearly - - + + - T+2 L+2 M-1 I+2 Θ0 N0 J0 + T-1 L+1 M+1 I0 Θ0 N0 J0 - EnergyPerSquareMagneticFluxDensityUnit - EnergyPerSquareMagneticFluxDensityUnit + MomentumUnit + MomentumUnit - - - - - + + + + + + - + + + + + + + - - - - - Uncoded - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - Uncoded - A conventional that provides no possibility to infer the characteristics of the object to which it refers. - A random generated id for a product. - - - - - - ProcessEngineeringProcess - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. - -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - ProcessEngineeringProcess - Deals with entities that have a undefined shape. Undefined means that the actual shape of the entity that is produced is not relevant for the definition of the process. -In fact, everything has a shape, but in process engineering this is not relevant. - -e.g. the fact that steel comes in sheets is not relevant for the definition of steel material generated in a steel-making process. - https://de.wikipedia.org/wiki/Verfahrenstechnik - - - - - - HardeningByDrawing - HardeningByDrawing + + + + StrangeQuark + StrangeQuark + https://en.wikipedia.org/wiki/Strange_quark - + - + - - SectionModulus - SectionModulus - https://qudt.org/vocab/quantitykind/SectionModulus - https://www.wikidata.org/wiki/Q1930808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 - 4-22 + LuminousFlux + Perceived power of light. + LuminousFlux + http://qudt.org/vocab/quantitykind/LuminousFlux + 7-13 + Perceived power of light. + https://doi.org/10.1351/goldbook.L03646 - - - - Dielectrometry - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - Dielectrometry - Electrochemical measurement principle based on the measurement of the dielectric constant of a sample resulting from the orientation of particles (molecules or ions) that have a dipole moment in an electric field. Dielectrometric titrations use dielectrometry for the end-point detection. The method is used to monitor the purity of dielectrics, for example to detect small amounts of moisture. - https://doi.org/10.1515/pac-2018-0109 + + + + URN + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + URN + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - - - - HydrodynamicVoltammetry - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - HydrodynamicVoltammetry - https://www.wikidata.org/wiki/Q17028237 - Voltammetry with forced flow of the solution towards the electrode surface. A linear potential scan, at sufficiently slow scan rates so as to ensure a steady state response, is usually applied. Mass transport of a redox species enhanced by convection in this way results in a greater electric current. Convective mass transfer occurs up to the diffusion-limiting layer, within which the mass transfer is controlled by diffusion. Electroactive substance depletion outside the diffusion layer is annulled by convective mass transfer, which results in steady- state sigmoidal wave-shaped current-potential curves. The forced flow can be accomplished by movement either of the solution (solution stirring, or channel flow), or of the electrode (electrode rotation or vibration). - https://en.wikipedia.org/wiki/Hydrodynamic_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + LiquidGasSuspension + A coarse dispersion of gas in a liquid continuum phase. + LiquidGasSuspension + A coarse dispersion of gas in a liquid continuum phase. + Sparkling water - - - - - - - - - - Illuminance - The total luminous flux incident on a surface, per unit area. - Illuminance - http://qudt.org/vocab/quantitykind/Illuminance - The total luminous flux incident on a surface, per unit area. - https://doi.org/10.1351/goldbook.I02941 + + + + + + + + + + + + + + + + + + + FundamentalBoson + A boson that is a single elementary particle. + A particle with integer spin that follows Bose–Einstein statistics. + FundamentalBoson + A particle with integer spin that follows Bose–Einstein statistics. + A boson that is a single elementary particle. + https://en.wikipedia.org/wiki/Boson#Elementary_bosons - + + + + Punctuation + Punctuation + + + - - - UpperCriticalMagneticFluxDensity - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. - UpperCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/UpperCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106127634 - 12-36.3 - For type II superconductors, the threshold magnetic flux density for disappearance of bulk superconductivity. + + + MeanLinearRange + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + MeanLinearRange + https://qudt.org/vocab/quantitykind/MeanLinearRange + https://www.wikidata.org/wiki/Q98681589 + 10-56 + Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. + https://doi.org/10.1351/goldbook.M03782 - - - - - Bending - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - Bending + + + + AccessConditions + Describes what is needed to repeat the experiment + AccessConditions + Describes what is needed to repeat the experiment + In case of national or international facilities such as synchrotrons describe the programme that enabled you to access these. Was the access to your characterisation tool an inhouse routine or required a 3rd party service? Was the access to your sample preparation an inhouse routine or required a 3rd party service? - - - - Exponent - Exponent + + + + NominalProperty + "Property of a phenomenon, body, or substance, where the property has no magnitude." + +"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means." + +International vocabulary of metrology (VIM) + An 'ObjectiveProperty' that cannot be quantified. + NominalProperty + An 'ObjectiveProperty' that cannot be quantified. + CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered + +A color is a nominal property. + +Sex of a human being. + nominal property - - - - AlgebricOperator - AlgebricOperator + + + AntiTau + AntiTau + + + + + + + LandeFactor + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + GFactorOfAtom + LandeFactor + https://qudt.org/vocab/quantitykind/LandeGFactor + https://www.wikidata.org/wiki/Q1191684 + 10-14.1 + Quotient of the magnetic dipole moment of an atom, and the product of the total angular momentum quantum number and the Bohr magneton. + + + + + + + DiffusionLength + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. + DiffusionLength + https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength + https://www.wikidata.org/wiki/Q106097176 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 + 12-33 + In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - - - - - - + - - - - Plus - Plus + + + + + FermiEnergy + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + FermiEnergy + https://qudt.org/vocab/quantitykind/FermiEnergy + https://www.wikidata.org/wiki/Q431335 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 + 12-27.1 + in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance + https://doi.org/10.1351/goldbook.F02340 - - - - - CanonicalPartitionFunction - CanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96142389 - 9-35.2 + + + + FormingFromLiquid + FormingFromLiquid - + - T0 L0 M0 I+1 Θ0 N0 J0 + T+4 L-2 M-1 I+2 Θ0 N0 J0 - ElectricCurrentUnit - ElectricCurrentUnit + CapacitanceUnit + CapacitanceUnit - - - - PlasticSintering - PlasticSintering + + + + + + + + + + + CompositeFermion + CompositeFermion + Examples of composite particles with half-integer spin: +spin 1/2: He3 in ground state, proton, neutron +spin 3/2: He5 in ground state, Delta baryons (excitations of the proton and neutron) - + + + + + + + + + + + Operator + The human operator who takes care of the whole characterisation method or sub-processes/stages. + Operator + The human operator who takes care of the whole characterisation method or sub-processes/stages. + + + - - FreeForming - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. - Non la metterei - Printing forms with tools that do not or only partially contain the shape of the workpiece and move against each other. The workpiece shape is created by free or fixed relative movement between the tool and the workpiece (kinematic shape generation). - FreeForming + + Cleaning + Process for removing unwanted residual or waste material from a given product or material + Cleaning - + - + - CarrierLifetime - Time constant for recombination or trapping of minority charge carriers in semiconductors - CarrierLifetime - https://qudt.org/vocab/quantitykind/CarrierLifetime - https://www.wikidata.org/wiki/Q5046374 - 12-32.2 - Time constant for recombination or trapping of minority charge carriers in semiconductors + DebyeWallerFactor + Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. + DebyeWallerFactor + https://qudt.org/vocab/quantitykind/Debye-WallerFactor + https://www.wikidata.org/wiki/Q902587 + 12-8 + Factor by which the intensity of a diffraction line is reduced because of the lattice vibrations. - - - - PositionVector - Vector quantity from the origin of a coordinate system to a point in space. - PositionVector - https://www.wikidata.org/wiki/Q192388 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-15 - https://dbpedia.org/page/Position_(geometry) - 3-1.10 - Vector quantity from the origin of a coordinate system to a point in space. - https://en.wikipedia.org/wiki/Position_(geometry) + + + + + + + 1 + + + + IRI + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + IRI + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + https://en.wiktionary.org/wiki/Ῥόδος + IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. + https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier - - - - - ExchangeIntegral - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions - ExchangeIntegral - https://qudt.org/vocab/quantitykind/ExchangeIntegral - https://www.wikidata.org/wiki/Q10882959 - 12-34 - constituent of the interaction energy between the spins of adjacent electrons in matter arising from the overlap of electron state functions + + + + ElectronProbeMicroanalysis + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + ElectronProbeMicroanalysis + Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - + - - PrincipalQuantumNumber - Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - PrincipalQuantumNumber - https://qudt.org/vocab/quantitykind/PrincipalQuantumNumber - https://www.wikidata.org/wiki/Q867448 - 10-13.2 - Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. + + + ElectrolyticConductivity + ElectrolyticConductivity + https://qudt.org/vocab/quantitykind/ElectrolyticConductivity + https://www.wikidata.org/wiki/Q907564 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-03 + 9-44 - + - - - MassRatioOfWaterToDryMatter - The mass concentration of water at saturation is denoted usat. - Ratio of the mass of water to the mass of dry matter in a given volume of matter. - MassRatioOfWaterToDryMatter - https://www.wikidata.org/wiki/Q76378860 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-61 - 5-29 - Ratio of the mass of water to the mass of dry matter in a given volume of matter. + + + + + + + + + + ElectricConductivity + Measure of a material's ability to conduct an electric current. + +Conductivity is equeal to the resiprocal of resistivity. + Conductivity + ElectricConductivity + http://qudt.org/vocab/quantitykind/ElectricConductivity + https://www.wikidata.org/wiki/Q4593291 + 6-43 + https://doi.org/10.1351/goldbook.C01245 - - - - ThreePointBendingTesting - - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - ThreePointFlexuralTest - ThreePointBendingTesting - https://www.wikidata.org/wiki/Q2300905 - Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample - https://en.wikipedia.org/wiki/Three-point_flexural_test + + + + + + + + + + + SolidMixture + SolidMixture - + - - HyperfineStructureQuantumNumber - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. - HyperfineStructureQuantumNumber - https://qudt.org/vocab/quantitykind/HyperfineStructureQuantumNumber - https://www.wikidata.org/wiki/Q97577449 - 10-13.8 - Quantum number of an atom describing the inclination of the nuclear spin with respect to a quantization axis given by the magnetic field produced by the orbital electrons. + + + + + T0 L+2 M0 I0 Θ-1 N0 J0 + + + AreaPerTemperatureUnit + AreaPerTemperatureUnit - - - - Detector - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Detector - Physical device (or the chain of devices) that is used to measure, quantify and store the signal after its interaction with the sample. - Back Scattered Electrons (BSE) and Secondary Electrons (SE) detectors for SEM - Displacement and force sensors for mechanical testing + + + Photon + The class of individuals that stand for photons elementary particles. + Photon + The class of individuals that stand for photons elementary particles. + https://en.wikipedia.org/wiki/Photon - - + + + + Hardening + Heat treatment process that generally produces martensite in the matrix. + Hardening + Heat treatment process that generally produces martensite in the matrix. + + + + - - + + + + + + - - - BurgersVector - Vector characterising a dislocation in a crystal lattice. - BurgersVector - https://qudt.org/vocab/quantitykind/BurgersVector - https://www.wikidata.org/wiki/Q623093 - 12-6 - Vector characterising a dislocation in a crystal lattice. - - - - - ElectronicModel - A physics-based model based on a physics equation describing the behaviour of electrons. - ElectronicModel - A physics-based model based on a physics equation describing the behaviour of electrons. - Density functional theory. -Hartree-Fock. + Deducer + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Deducer + An interpreter who establish the connection between an index sign and an object according to a causal contiguity. + Someone who deduces an emotional status of a persona according to facial expression. + Someone who deduces the occurring of a physical phenomenon through other phenomena. - + - - + - - T+2 L+2 M0 I0 Θ0 N0 J0 + + - - AreaSquareTimeUnit - AreaSquareTimeUnit + + + + ElectricDipoleMoment + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + ElectricDipoleMoment + http://qudt.org/vocab/quantitykind/ElectricDipoleMoment + https://www.wikidata.org/wiki/Q735135 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 + 6-6 + An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. + https://doi.org/10.1351/goldbook.E01929 - + - + + + + ElectricResistivity + Electric field strength divided by the current density. + Resistivity + ElectricResistivity + http://qudt.org/vocab/quantitykind/Resistivity + https://www.wikidata.org/wiki/Q108193 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 + 6-44 + https://doi.org/10.1351/goldbook.R05316 + + + + + - Exposure - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. - Exposure - https://qudt.org/vocab/quantitykind/Exposure - https://www.wikidata.org/wiki/Q336938 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-32 - 10-88 - Absolute value of the electric charge of ions produced in dry air by X- or gamma radiation per mass of air. + HartreeEnergy + Energy of the electron in a hydrogen atom in its ground state + HartreeEnergy + https://qudt.org/vocab/unit/E_h.html + https://www.wikidata.org/wiki/Q476572 + https://dbpedia.org/page/Hartree + 10-8 + Energy of the electron in a hydrogen atom in its ground state + https://en.wikipedia.org/wiki/Hartree + https://doi.org/10.1351/goldbook.H02748 - + + + + + SurfaceCoefficientOfHeatTransfer + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + SurfaceCoefficientOfHeatTransfer + https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer + https://www.wikidata.org/wiki/Q74770365 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 + 5-10.2 + Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. + + + + + + ActivePower + Average power over a period. + ActivePower + https://qudt.org/vocab/quantitykind/ActivePower + https://www.wikidata.org/wiki/Q20820042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 + 6-56 + Average power over a period. + + + + + RedCharmAntiQuark + RedCharmAntiQuark + + + - - XpsVariableKinetic - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - Electron spectroscopy for chemical analysis (ESCA) - X-ray photoelectron spectroscopy (XPS) - XpsVariableKinetic - X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + + XrayDiffraction + + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + XRD + XrayDiffraction + https://www.wikidata.org/wiki/Q12101244 + a technique used to analyze the atomic and molecular structure of crystalline materials by observing the diffraction patterns produced when X-rays interact with the regular array of atoms in the crystal lattice + https://en.wikipedia.org/wiki/X-ray_crystallography - - - - DropForging - DropForging + + + + ScatteringAndDiffraction + + ScatteringAndDiffraction + + + + + + + + + + + + + + + + CausalStructure + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + A self-connected composition of more than one quantum entities. + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + CausalObject + CausalStructure + The most fundamental unity criterion for the definition of an structure is that: +- is made of at least two quantums (a structure is not a simple entity) +- all quantum parts form a causally connected graph + The union of CausalPath and CausalSystem classes. + A self-connected composition of more than one quantum entities. + A causal structure expresses itself in time and space thanks to the underlying causality relations between its constituent quantum entities. It must at least provide two temporal parts. +The unity criterion beyond the definition of a causal structure (the most general concept of structure) is the existence of an undirected causal path between each of its parts. + + + + + HybridMatter + Matter composed of both matter and antimatter fundamental particles. + HybridMatter + Matter composed of both matter and antimatter fundamental particles. + + + + + + + InternalConversionFactor + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. + InternalConversionCoefficient + InternalConversionFactor + https://qudt.org/vocab/quantitykind/InternalConversionFactor + https://www.wikidata.org/wiki/Q6047819 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-02-57 + 10-35 + Quotient of the number of internal conversion electrons and the number of gamma quanta emitted by the radioactive atom in a given transition, where a conversion electron represents an orbital electron emitted through the radioactive decay. + + + + + + + IonTransportNumber + Faction of electrical current carried by given ionic species. + CurrentFraction + TransferrenceNumber + IonTransportNumber + https://qudt.org/vocab/quantitykind/IonTransportNumber + https://www.wikidata.org/wiki/Q331854 + 9-46 + Faction of electrical current carried by given ionic species. + https://doi.org/10.1351/goldbook.I03181 + https://doi.org/10.1351/goldbook.T06489 - + - GreenBottomQuark - GreenBottomQuark + + + + + + + + + + + + + + + + + DownAntiQuark + DownAntiQuark - - - - - BoltzmannConstant - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - -It defines the Kelvin unit in the SI system. - The DBpedia definition (http://dbpedia.org/page/Boltzmann_constant) is outdated as May 20, 2019. It is now an exact quantity. - BoltzmannConstant - http://qudt.org/vocab/constant/BoltzmannConstant - A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant. - -It defines the Kelvin unit in the SI system. - https://doi.org/10.1351/goldbook.B00695 + + + Laboratory + The laboratory where the whole characterisation process or some of its stages take place. + Laboratory + The laboratory where the whole characterisation process or some of its stages take place. - - - - CharacterisationSoftware - A software application to process characterisation data - CharacterisationSoftware - A software application to process characterisation data - In Nanoindentation post-processing the software used to apply the Oliver-Pharr to calculate the characterisation properties (i.e. elastic modulus, hardness) from load and depth data. + + + + + + + + + + + + + MetrologicalReference + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + MetrologicalReference + A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). + A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). +For this reason we can't declare the axiom: +MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity +because there exist reference units without being part of a quantity. +This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - + - T-2 L+3 M+1 I-1 Θ+1 N0 J0 + T+1 L+1 M0 I+1 Θ0 N0 J0 - NewtonSquareMetrePerAmpereUnit - NewtonSquareMetrePerAmpereUnit + ElectricDipoleMomentUnit + ElectricDipoleMomentUnit - - - - AdsorptiveStrippingVoltammetry - A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - AdSV - AdsorptiveStrippingVoltammetry - Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). - https://doi.org/10.1515/pac-2018-0109 + + + Cognised + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + Cognised + A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. + A physical phenomenon that is connected to an equation by a scientist. - + + + + + VacuumMagneticPermeability + The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant. + The value of magnetic permeability in a classical vacuum. + PermeabilityOfVacuum + VacuumMagneticPermeability + http://qudt.org/vocab/constant/ElectromagneticPermeabilityOfVacuum + 6-26.1 + + + - + - + - ElectricCharge - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - Charge - ElectricCharge - http://qudt.org/vocab/quantitykind/ElectricCharge - https://www.wikidata.org/wiki/Q1111 - 6-2 - The physical property of matter that causes it to experience a force when placed in an electromagnetic field. - https://doi.org/10.1351/goldbook.E01923 - - - - - - CPlusPlus - A language object respecting the syntactic rules of C++. - C++ - CPlusPlus - A language object respecting the syntactic rules of C++. - - - - - - - - - T+1 L0 M0 I0 Θ+1 N0 J0 - - - TemperatureTimeUnit - TemperatureTimeUnit - - - - - - Heteronuclear - A molecule composed of more than one element type. - Heteronuclear - A molecule composed of more than one element type. - Nitric oxide (NO) or carbon dioxide (CO₂). + Permeability + Measure for how the magnetization of material is affected by the application of an external magnetic field . + ElectromagneticPermeability + Permeability + http://qudt.org/vocab/quantitykind/ElectromagneticPermeability + 6-26.2 + https://doi.org/10.1351/goldbook.P04503 - - - - - ElectronMass - The rest mass of an electron. - ElectronMass - http://qudt.org/vocab/constant/ElectronMass - https://doi.org/10.1351/goldbook.E02008 + + + + MicrowaveSintering + MicrowaveSintering - - - SpatiallyRedundant - A whole with spatial parts of its same type. - SpatiallyRedundant - A whole with spatial parts of its same type. + + + + DirectCurrentInternalResistance + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + DirectCurrentInternalResistance + Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - + - - - - - T+2 L0 M-1 I0 Θ0 N0 J0 - - - SquareTimePerMassUnit - SquareTimePerMassUnit + + + PoissonNumber + Ratio of transverse strain to axial strain. + PoissonsRatio + PoissonNumber + https://www.wikidata.org/wiki/Q190453 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-61 + 4-18 + Ratio of transverse strain to axial strain. - - + + - T-2 L+2 M0 I0 Θ0 N0 J0 + T+4 L-2 M-1 I+1 Θ0 N0 J0 - AbsorbedDoseUnit - AbsorbedDoseUnit - - - - - - - AbsoluteHumidity - Mass of the contained water vapour per volume. - MassConcentrationOfWaterVapour - AbsoluteHumidity - https://qudt.org/vocab/quantitykind/AbsoluteHumidity - https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour - https://www.wikidata.org/wiki/Q76378808 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 - 5-28 - Mass of the contained water vapour per volume. + JosephsonConstantUnit + JosephsonConstantUnit - - - - Nanoindentation - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - Nanoindentation - Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. - By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + + + + + + + + + + + + + + + + + + + + + Declarer + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + Declarer + An interpreter who establish the connection between an conventional sign and an object according to a specific convention. + A scientist that assigns a quantity to a physical objects without actually measuring it but taking it for granted due to its previous experience (e.g. considering an electron charge as 1.6027663e-19 C, assigning a molecular mass to a gas only by the fact of a name on the bottle). + Someone who assigns a name to an object. - + - + - - - AbsorbedDose - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - AbsorbedDose - http://qudt.org/vocab/quantitykind/AbsorbedDose - Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. - 10-81.1 - https://doi.org/10.1351/goldbook.A00031 + + Coercivity + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. + Coercivity + https://qudt.org/vocab/quantitykind/Coercivity + https://www.wikidata.org/wiki/Q432635 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 + 6-31 + Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - - - - - SpecificEnergyImparted - In nuclear physics, energy imparted per mass. - SpecificEnergyImparted - https://qudt.org/vocab/quantitykind/SpecificEnergyImparted - https://www.wikidata.org/wiki/Q99566195 - 10-81.2 - In nuclear physics, energy imparted per mass. + + + + + + + + + + + + + + + + + + + ElectronType + ElectronType - + - - DCPolarography - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - DCPolarography - Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. - https://doi.org/10.1515/pac-2018-0109 + + Calorimetry + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. + Calorimetry + In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - + - - - - - - - - - VolumicCrossSection - In nuclear physics, product of the number density of atoms of a given type and the cross section. - MacroscopicCrossSection - VolumicCrossSection - https://qudt.org/vocab/quantitykind/MacroscopicCrossSection - https://www.wikidata.org/wiki/Q98280520 - 10-42.1 - In nuclear physics, product of the number density of atoms of a given type and the cross section. - https://doi.org/10.1351/goldbook.M03674 + + + GrueneisenParamter + Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + GrueneisenParamter + https://www.wikidata.org/wiki/Q444656 + 12-14 + Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. - - - - URL - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - URL - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + + + + CountingUnit + Unit for dimensionless quantities that have the nature of count. + CountingUnit + http://qudt.org/vocab/unit/NUM + 1 + Unit for dimensionless quantities that have the nature of count. + Unit of atomic number +Unit of number of cellular +Unit of degeneracy in quantum mechanics - - - - - RadiantEnergy - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - RadiantEnergy - https://www.wikidata.org/wiki/Q1259526 - 10-45 - Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + + + + FractionUnit + Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this +is desirable (μm/m, nmol/mol). +-- SI Brochure + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. + RatioUnit + FractionUnit + Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed. - + + + RedBottomAntiQuark + RedBottomAntiQuark + + + + + + MassFractionUnit + Unit for quantities of dimension one that are the fraction of two masses. + MassFractionUnit + Unit for quantities of dimension one that are the fraction of two masses. + Unit for mass fraction. + + + - - + - - T+1 L0 M0 I0 Θ0 N0 J0 + + - - TimeUnit - TimeUnit + + + + + ThermalConductivity + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. + In an anisotropic medium, thermal conductivity is a tensor quantity. + ThermalConductivity + https://qudt.org/vocab/quantitykind/ThermalConductivity + https://www.wikidata.org/wiki/Q487005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 + https://dbpedia.org/page/Thermal_conductivity + 5-9 + At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - + - - - HartreeEnergy - Energy of the electron in a hydrogen atom in its ground state - HartreeEnergy - https://qudt.org/vocab/unit/E_h.html - https://www.wikidata.org/wiki/Q476572 - https://dbpedia.org/page/Hartree - 10-8 - Energy of the electron in a hydrogen atom in its ground state - https://en.wikipedia.org/wiki/Hartree - https://doi.org/10.1351/goldbook.H02748 + + + + + + + + + ElectricFlux + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. + ElectricFlux + https://qudt.org/vocab/quantitykind/ElectricFlux + https://www.wikidata.org/wiki/Q501267 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-41 + 6-17 + Scalar quantity equal to the flux of the electric flux density D through a given directed surface S. - - - - Filling - Filling + + + + Ellipsometry + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + Ellipsometry + Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - + - - - MolarInternalEnergy - Internal energy per amount of substance. - MolarInternalEnergy - https://www.wikidata.org/wiki/Q88523106 - 9-6.1 - Internal energy per amount of substance. + + Strain + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + Strain + http://qudt.org/vocab/quantitykind/Strain + 4-17.1 + Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - + - + + - - UnifiedAtomicMassConstant - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - UnifiedAtomicMassConstant - https://www.wikidata.org/wiki/Q4817337 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-23 - 10-4.3 - 1/12 of the mass of an atom of the nuclide 12C in the ground state at rest. - https://doi.org/10.1351/goldbook.A00497 - - - - - - - Aerosol - A colloid composed of fine solid particles or liquid droplets in air or another gas. - Aerosol - A colloid composed of fine solid particles or liquid droplets in air or another gas. - - - - - GreenUpQuark - GreenUpQuark + AtomicAttenuationCoefficient + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. + AtomicAttenuationCoefficient + https://www.wikidata.org/wiki/Q98592911 + 10-52 + Quotient of the linear attenuation coefficient µ and the number density, n, of atoms in the substance. - + - - - ElectronBackscatterDiffraction - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - EBSD - ElectronBackscatterDiffraction - Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + + GasAdsorptionPorosimetry + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + GasAdsorptionPorosimetry + GasAdsorptionPorosimetry + Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - - - - ScanningElectronMicroscopy - - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - SEM - ScanningElectronMicroscopy - The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + + + + + + + + + + + + + + + + + + + + + Cognition + IconSemiosis + Cognition - + - - - MassFractionOfDryMatter - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. - MassFractionOfDryMatter - https://qudt.org/vocab/quantitykind/MassFractionOfDryMatter - https://www.wikidata.org/wiki/Q76379189 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-64 - 5-32 - Quantity wd = 1 − wH2O, where wH2O is mass fraction of water. + + + BindingFraction + The ratio of the binding energy of a nucleus to the atomic mass number. + BindingFraction + https://qudt.org/vocab/quantitykind/BindingFraction + https://www.wikidata.org/wiki/Q98058362 + 10-23.2 + The ratio of the binding energy of a nucleus to the atomic mass number. - + - - - MassFraction - Mass of a constituent divided by the total mass of all constituents in the mixture. - MassFraction - http://qudt.org/vocab/quantitykind/MassFraction - 9-11 - https://doi.org/10.1351/goldbook.M03722 - - - - - - NaturalMaterial - A Material occurring in nature, without the need of human intervention. - NaturalMaterial - A Material occurring in nature, without the need of human intervention. + + + NumberOfEntities + Discrete quantity; number of entities of a given kind in a system. + NumberOfEntities + https://www.wikidata.org/wiki/Q614112 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=112-01-09 + 9-1 + Discrete quantity; number of entities of a given kind in a system. + https://doi.org/10.1351/goldbook.N04266 - + - + - - - AmountConcentration - The amount of a constituent divided by the volume of the mixture. - Concentration - MolarConcentration - Molarity - AmountConcentration - http://qudt.org/vocab/quantitykind/AmountOfSubstanceConcentrationOfB - https://doi.org/10.1351/goldbook.A00295 - - - - - - - Behaviour - A process which is an holistic temporal part of an object. - Behaviour - A process which is an holistic temporal part of an object. - Accelerating is a behaviour of a car. - - - - - TemporalRole - An holistic temporal part of a whole. - HolisticTemporalPart - TemporalRole - An holistic temporal part of a whole. - - - - - - GasSolidSuspension - A coarse dispersion of solid in a gas continuum phase. - GasSolidSuspension - A coarse dispersion of solid in a gas continuum phase. - Dust, sand storm. + + MomentOfIntertia + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + MomentOfIntertia + https://qudt.org/vocab/quantitykind/MomentOfInertia + https://www.wikidata.org/wiki/Q165618 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-21 + 4-7 + Scalar measure of the rotational inertia with respect to a fixed axis of rotation. + https://doi.org/10.1351/goldbook.M04006 - + - - + - - T-1 L+4 M0 I0 Θ0 N0 J0 + + - - QuarticLengthPerTimeUnit - QuarticLengthPerTimeUnit + + + + MeanMassRange + Product of the mean linear range R and the mass density ρ of the material. + MeanMassRange + https://qudt.org/vocab/quantitykind/MeanMassRange + https://www.wikidata.org/wiki/Q98681670 + 10-57 + Product of the mean linear range R and the mass density ρ of the material. + https://doi.org/10.1351/goldbook.M03783 - - - - + + + - - T+4 L-3 M-1 I+2 Θ0 N0 J0 + + + + + + - - PermittivityUnit - PermittivityUnit + + + CalibrationTask + Used to break-down a CalibrationProcess into his specific tasks. + CalibrationTask + Used to break-down a CalibrationProcess into his specific tasks. + + + + + + Interpretant + The interpreter's internal representation of the object in a semiosis process. + Interpretant + The interpreter's internal representation of the object in a semiosis process. + + + + + + MaterialRelation + A material_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics_quantities. + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + MaterialRelation + An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics_quantity' (the dependent variable) as function of other variables, physics_quantity or data (independent variables). + The Lennard-Jones potential. +A force field. +An Hamiltonian. - - + + - - - - - - + + - Cogniser - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - Cogniser - An interpreter who establish the connection between an icon an an object recognizing their resemblance (e.g. logical, pictorial) - The scientist that connects an equation to a physical phenomenon. + + + Equation + An equation with variables can always be represented as: + +f(v0, v1, ..., vn) = g(v0, v1, ..., vn) + +where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables. + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + Equation + The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions. + 2+3 = 5 +x^2 +3x = 5x +dv/dt = a +sin(x) = y - - - Cognised - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - Cognised - A semiotic object that is recognised by an interpreter (a cogniser) when establishing a connection between the object and an icon. - A physical phenomenon that is connected to an equation by a scientist. + + + + ScanningAugerElectronMicroscopy + + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. + AES + ScanningAugerElectronMicroscopy + Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - - - - - Gel - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. - Gel - A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + + + + + DeepDrawing + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + Tiefziehen + DeepDrawing - + - - - HalfLife - Mean duration required for the decay of one half of the atoms or nuclei. - HalfLife - https://qudt.org/vocab/quantitykind/Half-Life - https://www.wikidata.org/wiki/Q98118544 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 - 10-31 - Mean duration required for the decay of one half of the atoms or nuclei. + DerivedQuantity + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + DerivedQuantity + "Quantity, in a system of quantities, defined in terms of the base quantities of that system". + derived quantity - + - - - FermiAnglularWaveNumber - angular wavenumber of electrons in states on the Fermi sphere - FermiAnglularRepetency - FermiAnglularWaveNumber - https://qudt.org/vocab/quantitykind/FermiAngularWavenumber - https://www.wikidata.org/wiki/Q105554303 - 12-9.2 - angular wavenumber of electrons in states on the Fermi sphere + + + + + T0 L-3 M+1 I0 Θ0 N0 J0 + + + DensityUnit + DensityUnit - - - - - AngularWavenumber - Magnitude of the wave vector. - AngularRepetency - AngularWavenumber - https://qudt.org/vocab/quantitykind/AngularWavenumber - https://www.wikidata.org/wiki/Q30338487 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-12 - 3-22 - Magnitude of the wave vector. + + + + Gluing + Process for joining two (base) materials by means of an adhesive polymer material + Kleben + Gluing - + - - - - - - - - - - - + - - Density - Quantity representing the spatial distribution of mass in a continuous material. - MassConcentration - MassDensity - Density - http://qudt.org/vocab/quantitykind/Density - 4-2 - 9-10 - Mass per volume. - https://doi.org/10.1351/goldbook.D01590 + + PeltierCoefficient + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + PeltierCoefficient + https://qudt.org/vocab/quantitykind/PeltierCoefficient + https://www.wikidata.org/wiki/Q105801003 + 12-22 + Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - - - - Interpretant - The interpreter's internal representation of the object in a semiosis process. - Interpretant - The interpreter's internal representation of the object in a semiosis process. + + + + + BetaDisintegrationEnergy + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + BetaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98148340 + 10-34 + Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - + + + + Nailing + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + Nageln + Nailing + + + + + + Pressing + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + Anpressen + Pressing + + + - + - - - ElectricResistivity - Electric field strength divided by the current density. - Resistivity - ElectricResistivity - http://qudt.org/vocab/quantitykind/Resistivity - https://www.wikidata.org/wiki/Q108193 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-04 - 6-44 - https://doi.org/10.1351/goldbook.R05316 - - - - - - KineticFrictionForce - Force opposing the motion of a body sliding on a surface. - DynamicFrictionForce - KineticFrictionForce - https://www.wikidata.org/wiki/Q91005629 - 4-9.4 - Force opposing the motion of a body sliding on a surface. + Action + Physical quantity of dimension energy × time. + Action + https://qudt.org/vocab/quantitykind/Action + https://www.wikidata.org/wiki/Q846785 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 + 4-32 + Physical quantity of dimension energy × time. - - - - AssemblyLine - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. - Is not collection, since the connection between the elements of an assembly line occurs through the flow of objects that are processed. - AssemblyLine - A manufacturing process in which interchangeable parts are added to a product in a sequential manner to create an end product. + + + BlueCharmAntiQuark + BlueCharmAntiQuark - + - - ManufacturingSystem - A system arranged to setup a specific manufacturing process. - ManufacturingSystem - A system arranged to setup a specific manufacturing process. + + + MaterialTreatment + esce workpiece + Has shaped bodies as input and output. + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + DIN 8580:2020 + Stoffeigenschaft ändern + WorkPieceTreatment + MaterialTreatment + The processing of a material aimed to transform its structure by means of any type of treatment, without involving relevant synthesis phenomena. + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. + Has shaped bodies as input and output. - + - T0 L-2 M0 I+1 Θ0 N0 J0 + T0 L+2 M0 I+1 Θ0 N0 J0 - ElectricCurrentDensityUnit - ElectricCurrentDensityUnit + MagneticDipoleMomentUnit + MagneticDipoleMomentUnit - - - BlueDownQuark - BlueDownQuark + + + SpatiallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + SpatiallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - - - - - T-2 L0 M+1 I-1 Θ0 N0 J0 - - - MagneticFluxDensityUnit - MagneticFluxDensityUnit + + + + CalibrationData + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. + CalibrationData + Calibration data are used to provide correction of measured data or perform uncertainty calculations. They are generally the result of a measuerement on a reference specimen. - - + + - - + + - - - MagneticFieldStrength - Strength of a magnetic field. Commonly denoted H. - MagnetizingFieldStrength - MagneticFieldStrength - http://qudt.org/vocab/quantitykind/MagneticFieldStrength - https://www.wikidata.org/wiki/Q28123 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 - 6-25 - https://doi.org/10.1351/goldbook.M03683 + + + CharacterisationSystem + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + CharacterisationSystem + Set of one or more measuring instruments and often other components, assembled and +adapted to give information used to generate measured values within specified intervals for +quantities of specified kinds +NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. +NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, +Measurement management systems – Requirements for measurement processes and measuring equipment and ISO +17025, General requirements for the competence of testing and calibration laboratories. +NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the +latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, +including the object under measurement and the person(s) performing the measurement. +NOTE 4 A measuring system can be used as a measurement standard. + A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. + Measuring system - - - - + + + - - T-3 L+2 M0 I0 Θ0 N0 J0 + + - - AbsorbedDoseRateUnit - AbsorbedDoseRateUnit - - - - - - - HoleDensity - Number of holes in valence band per volume. - HoleDensity - https://qudt.org/vocab/quantitykind/HoleDensity - https://www.wikidata.org/wiki/Q105971101 - 12-29.2 - Number of holes in valence band per volume. - + + + MeasuringSystem + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - - - - VolumetricNumberDensity - Count per volume. - VolumetricNumberDensity - Count per volume. - +-- VIM + MeasuringSystem + A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - - - - Smoke - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - Smoke - Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. +-- VIM + measuring system - - - - SolidAerosol - An aerosol composed of fine solid particles in air or another gas. - SolidAerosol - An aerosol composed of fine solid particles in air or another gas. + + + + NumericalVariable + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + NumericalVariable + A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - + - - Enthalpy - Measurement of energy in a thermodynamic system. - Enthalpy - http://qudt.org/vocab/quantitykind/Enthalpy - 5.20-3 - https://doi.org/10.1351/goldbook.E02141 + + + Kerma + Kinetic energy released per mass. + Kerma + https://qudt.org/vocab/quantitykind/Kerma + https://www.wikidata.org/wiki/Q1739288 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-36 + 10-86.1 + Kinetic energy released per mass. - + - T-2 L+2 M0 I0 Θ-1 N0 J0 + T0 L+6 M0 I0 Θ0 N0 J0 - EntropyPerMassUnit - EntropyPerMassUnit + SexticLengthUnit + SexticLengthUnit - + - + + - - + + T-2 L0 M0 I0 Θ0 N0 J0 - - - - SpecificVolume - inverse of the mass density ρ, thus v = 1/ρ. - MassicVolume - SpecificVolume - https://qudt.org/vocab/quantitykind/SpecificVolume - https://www.wikidata.org/wiki/Q683556 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-09 - 4-3 - inverse of the mass density ρ, thus v = 1/ρ. - https://doi.org/10.1351/goldbook.S05807 + + AngularFrequencyUnit + AngularFrequencyUnit - + - - - - - - - - GyromagneticRatio - Ratio of magnetic dipole moment to total angular momentum. - GyromagneticCoefficient - MagnetogyricRatio - GyromagneticRatio - https://qudt.org/vocab/quantitykind/GyromagneticRatio - https://www.wikidata.org/wiki/Q634552 - 10-12.1 - Ratio of magnetic dipole moment to total angular momentum. - https://doi.org/10.1351/goldbook.M03693 + + NeutronNumber + Atomic number (proton number) plus neutron number equals mass number. + Number of neutrons in an atomic nucleus. + NeutronNumber + https://www.wikidata.org/wiki/Q970319 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 + 10-1.2 + Number of neutrons in an atomic nucleus. + Atomic number (proton number) plus neutron number equals mass number. + https://en.wikipedia.org/wiki/Neutron_number + https://doi.org/10.1351/goldbook.N04119 - + - - TotalCurrentDensity - Sum of electric current density and displacement current density. - TotalCurrentDensity - https://qudt.org/vocab/quantitykind/TotalCurrentDensity - https://www.wikidata.org/wiki/Q77680811 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-44 - 6-20 - Sum of electric current density and displacement current density. + + + + + T-3 L0 M+1 I0 Θ0 N0 J0 + + + PowerDensityUnit + PowerDensityUnit - + - - ACVoltammetry - - The resulting alternating current is plotted versus imposed DC potential. The obtained AC voltammogram is peak-shaped. - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - ACV - ACVoltammetry - https://www.wikidata.org/wiki/Q120895154 - voltammetry in which a sinusoidal alternating potential of small amplitude (10 to 50 mV) of constant frequency (10 Hz to 100 kHz) is superimposed on a slowly and linearly varying potential ramp - https://doi.org/10.1515/pac-2018-0109 + + LevelOfExpertise + Describes the level of expertise required to carry out a process (the entire test or the data processing). + LevelOfExpertise + Describes the level of expertise required to carry out a process (the entire test or the data processing). - - - - - VolumeFraction - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - VolumeFraction - http://qudt.org/vocab/quantitykind/VolumeFraction - 9-14 - Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to mixing. - https://doi.org/10.1351/goldbook.V06643 + + + + PlasticSintering + PlasticSintering - - - ExactConstant - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - ExactConstant - Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + + + + DataPostProcessing + Analysis, that allows one to calculate the final material property from the calibrated primary data. + DataPostProcessing + Analysis, that allows one to calculate the final material property from the calibrated primary data. - - + + - - + + - - - PeltierCoefficient - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. - PeltierCoefficient - https://qudt.org/vocab/quantitykind/PeltierCoefficient - https://www.wikidata.org/wiki/Q105801003 - 12-22 - Quotient of Peltier heat power developed at a junction, and the electric current flowing from substance a to substance b. + + + + + + + + + + + + + + DataProcessing + A computation that provides a data output following the elaboration of some input data, using a data processing application. + DataProcessing + A computation that provides a data output following the elaboration of some input data, using a data processing application. - + - - NuclidicMass - Rest mass of a nuclide X in the ground state. - NuclidicMass - https://www.wikidata.org/wiki/Q97010809 - 10-4.2 - Rest mass of a nuclide X in the ground state. - https://doi.org/10.1351/goldbook.N04258 + + RelativeMassExcess + Quotient of mass excess and the unified atomic mass constant. + RelativeMassExcess + https://qudt.org/vocab/quantitykind/RelativeMassExcess + https://www.wikidata.org/wiki/Q98038610 + 10-22.1 + Quotient of mass excess and the unified atomic mass constant. - - - - + + - + - + - - - - - - - - - - - - - - - - - - - - - - + + - ISQBaseQuantity - Base quantities defined in the International System of Quantities (ISQ). - ISQBaseQuantity - Base quantities defined in the International System of Quantities (ISQ). - https://en.wikipedia.org/wiki/International_System_of_Quantities - - - - - - InternationalSystemOfQuantity - Quantities declared under the ISO 80000. - https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1 - InternationalSystemOfQuantity - Quantities declared under the ISO 80000. - https://en.wikipedia.org/wiki/International_System_of_Quantities - - - - - - - RotationalDisplacement - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - AngularDisplacement - RotationalDisplacement - https://www.wikidata.org/wiki/Q3305038 - 3-6 - Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. - https://en.wikipedia.org/wiki/Angular_displacement - - - - - TensorMeson - A meson with spin two. - TensorMeson - A meson with spin two. - - - - - GluonType8 - GluonType8 - - - - - - CategorizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - https://physics.nist.gov/cuu/Constants - CategorizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to some domain of interests (e.g. metallurgy, chemistry), property (intensive/extensive) or application. - - - - - - - - - T-3 L+1 M+1 I-1 Θ0 N0 J0 - - - ElectricFieldStrengthUnit - ElectricFieldStrengthUnit - - - - - - + - - - - - - - + + - NeutrinoType - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - NeutrinoType - An elementary particle with spin 1/2 that interacts only via the weak interaction and gravity. - https://en.wikipedia.org/wiki/Neutrino + Quark + The class of individuals that stand for quarks elementary particles. + Quark + The class of individuals that stand for quarks elementary particles. + https://en.wikipedia.org/wiki/Quark + + + + + + PathLength + Length of a rectifiable curve between two of its points. + ArcLength + PathLength + https://www.wikidata.org/wiki/Q7144654 + https://dbpedia.org/page/Arc_length + 3-1.7 + Length of a rectifiable curve between two of its points. + https://en.wikipedia.org/wiki/Arc_length + + + + + + + MaximumEfficiency + Efficiency of an ideal heat engine operating according to the Carnot process. + CarnotEfficiency + MaximumEfficiency + https://www.wikidata.org/wiki/Q93949862 + 5-25.2 + Efficiency of an ideal heat engine operating according to the Carnot process. + + + + + GluonType3 + GluonType3 - + - - LarmonFrequency - Quotient of Larmor angular frequency and 2π. - LarmonFrequency - 10-15.2 - Quotient of Larmor angular frequency and 2π. + RotationalFrequency + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. + RotationalFrequency + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-42 + 3-17.2 + Magnitude of the angular velocity ω divided by the angle 2π, thus n = |ω|/2π. - - - - - - - - - - - - - - - - - - - - - Role - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). - HolisticPart - Part - Role - An entity that is categorized according to its relation with a whole through a parthood relation and that contributes to it according to an holistic criterion, where the type of the whole is not the type of the part. - In this class the concept of role and part are superimposed (the term part is also used to define the role played by an actor). -Here entities are categorized according to their relation with the whole, i.e. how they contribute to make a specific whole, and not what they are as separate entities. -This class is expected to host the definition of world objects as they appear in its relation with the surrounding whole (being a part implies being surrounded by something bigger to which it contributes). + + + + OxidationNumber + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + OxidationState + OxidationNumber + https://www.wikidata.org/wiki/Q484152 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 + https://dbpedia.org/page/Oxidation_state + Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. + https://en.wikipedia.org/wiki/Oxidation_state + https://doi.org/10.1351/goldbook.O04363 - - - - MergingManufacturing - AddingManufacturing - MergingManufacturing + + + + + ChargeNumber + For a particle, electric charge q divided by elementary charge e. + The charge number of a particle may be presented as a superscript to the symbol of that particle, e.g. H+, He++, Al3+, Cl−, S=, N3−. + The charge number of an electrically charged particle can be positive or negative. The charge number of an electrically neutral particle is zero. + IonizationNumber + ChargeNumber + https://qudt.org/vocab/quantitykind/ChargeNumber + https://www.wikidata.org/wiki/Q1800063 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-17 + https://dbpedia.org/page/Charge_number + 10-5.2 + For a particle, electric charge q divided by elementary charge e. + https://en.wikipedia.org/wiki/Charge_number + https://doi.org/10.1351/goldbook.C00993 - - + + + + FunctionallyDefinedMaterial + FunctionallyDefinedMaterial + + + + - - + + - - AngularVelocity - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - AngularVelocity - https://qudt.org/vocab/quantitykind/AngularVelocity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 - https://dbpedia.org/page/Angular_velocity - 3-12 - Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. - https://en.wikipedia.org/wiki/Angular_velocity - - - - - DerivedQuantity - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - DerivedQuantity - "Quantity, in a system of quantities, defined in terms of the base quantities of that system". - derived quantity - - - - - - + + - - SolubilityProduct - For the dissociation of a salt AmBn → mA + nB, the solubility product is KSP = am(A) ⋅ an(B), where a is ionic activity and m and n are the stoichiometric numbers. - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - SolubilityProductConstant - SolubilityProduct - https://www.wikidata.org/wiki/Q11229788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-23 - product of the ion activities of the ions resulting from the dissociation of a solute in a saturated solution, raised to powers equal to their stoichiometric numbers. - https://doi.org/10.1351/goldbook.S05742 - - - - - - CompressionTesting - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - CompressionTesting - Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - - - - - - - CharacterisationProperty - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - CharacterisationProperty - The characterisation property is the investigate property or behaviour of a sample. It is derived from the secondary data, usually after classification or quantification (manually or by a model). - - - - - - - - - - + + - Component - A constituent of a system. - Component - A constituent of a system. - - - - - - RapidPrototyping - Application of additive manufacturing intended for reducing the time needed for producing prototypes. - RapidPrototyping - Application of additive manufacturing intended for reducing the time needed for producing prototypes. - - - - - - AdditiveManufacturing - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - GenerativeManufacturing - AdditiveManufacturing - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + Deduction + IndexSemiosis + Deduction - + - - - StoichiometricNumberOfSubstance - StoichiometricNumberOfSubstance - https://qudt.org/vocab/quantitykind/StoichiometricNumber - https://www.wikidata.org/wiki/Q95443720 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 - 9-29 - https://doi.org/10.1351/goldbook.S06025 - - - - - + + - - + + T-1 L+2 M0 I0 Θ0 N0 J0 - - - MeasurementResult - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - Result of a measurement. - -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. - --- VIM - MeasurementResult - Result of a measurement. + + AreicSpeedUnit + AreicSpeedUnit + -A set of quantites being attributed to a measurand (measured quantitative property) together with any other available relevant information, like measurement uncertainty. + + + + DisplacementCurrentDensity + Vector quantity equal to the time derivative of the electric flux density. + DisplacementCurrentDensity + https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity + https://www.wikidata.org/wiki/Q77614612 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 + 6-18 + Vector quantity equal to the time derivative of the electric flux density. + --- VIM - measurement result - A measurement result generally contains “relevant information” about the set of measured quantity properties, such that some may be more representative of the measured quantity than others. This may be expressed in the form of a probability density function (pdf). - A measurement result has the measured quantity, measurement uncertainty and other relevant attributes as holistic parts. + + + + LevelOfAutomation + Describes the level of automation of the test. + LevelOfAutomation + Describes the level of automation of the test. - - - - TightlyCoupledModelsSimulation - A simulation in which more than one model are solved together with a coupled method. - TightlyCoupledModelsSimulation - A simulation in which more than one model are solved together with a coupled method. - Solving within the same linear system the discretised form of the pressure and momentum equation for a fluid, using the ideal gas law as material relation for connecting pressure to density. + + + + Widening + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + Weiten + Widening - + - - - - - - - - - MassExcess - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - MassExcess - https://qudt.org/vocab/quantitykind/MassExcess - https://www.wikidata.org/wiki/Q1571163 - 10-21.1 - Difference between the mass of an atom, and the product of its mass number and the unified mass constant. - https://doi.org/10.1351/goldbook.M03719 + + SpinQuantumNumber + Characteristic quantum number s of a particle, related to its spin. + SpinQuantumNumber + https://qudt.org/vocab/quantitykind/SpinQuantumNumber + https://www.wikidata.org/wiki/Q3879445 + 10-13.5 + Characteristic quantum number s of a particle, related to its spin. - + - - - - - - - - - ElectronDensity - Number of electrons in conduction band per volume. - ElectronDensity - https://qudt.org/vocab/quantitykind/ElectronDensity - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 - 12-29.1 - Number of electrons in conduction band per volume. + + + IsentropicCompressibility + IsentropicCompressibility + https://qudt.org/vocab/quantitykind/IsentropicCompressibility + https://www.wikidata.org/wiki/Q2990695 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 + 5-5.2 - - - - DifferentialScanningCalorimetry - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - DSC - DifferentialScanningCalorimetry - Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + + + + + ActiveEnergy + The integral over a time interval of the instantaneous power. + ActiveEnergy + https://qudt.org/vocab/quantitykind/ActiveEnergy + https://www.wikidata.org/wiki/Q79813678 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=601-01-19 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-57 + 6-62 + The integral over a time interval of the instantaneous power. - - - - - IterativeStep - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - IterativeStep - A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. - Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. + + + + DrawForms + DrawForms - - - - QuantumAnnihilation - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). - QuantumAnnihilation - A quantum annihilation is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,1). + + + + + MassConcentrationOfWaterVapour + Quotient of the mass of water vapour in moist gas by the total gas volume. + The mass concentration of water at saturation is denoted vsat. + MassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/MassConcentrationOfWaterVapour + https://www.wikidata.org/wiki/Q76378808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-60 + Quotient of the mass of water vapour in moist gas by the total gas volume. - + + + + + MolecularEntity + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + https://goldbook.iupac.org/terms/view/M03986 + ChemicalEntity + MolecularEntity + Any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity that can undergo a chemical reaction. + Hydrogen molecule is an adequate definition of a certain molecular entity for some purposes, whereas for others it is necessary to distinguish the electronic state and/or vibrational state and/or nuclear spin, etc. of the hydrogen molecule. + Methane, may mean a single molecule of CH4 (molecular entity) or a molar amount, specified or not (chemical species), participating in a reaction. The degree of precision necessary to describe a molecular entity depends on the context. + Molecular entity is used as a general term for singular entities, irrespective of their nature, while chemical species stands for sets or ensembles of molecular entities. +Note that the name of a compound may refer to the respective molecular entity or to the chemical species, + This concept is strictly related to chemistry. For this reason an atom can be considered the smallest entity that can be considered "molecular", including nucleus when they are seen as ions (e.g. H⁺, He⁺⁺). + + + + + + + PartialPressure + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + PartialPressure + https://qudt.org/vocab/quantitykind/PartialPressure + https://www.wikidata.org/wiki/Q27165 + 9-19 + Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. + https://doi.org/10.1351/goldbook.P04420 + + + - CausalCollapse - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. - CausalCollapse - A causal collapse is a fundamental interaction that is expressed as a complete bipartite directed graph K(m,n), when m>n. + RedStrangeQuark + RedStrangeQuark - + - - - - - - - + - Mobility - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - Mobility - https://qudt.org/vocab/quantitykind/Mobility - https://www.wikidata.org/wiki/Q900648 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 - 10-61 - Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. - https://doi.org/10.1351/goldbook.M03955 + BohrRadius + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + BohrRadius + https://qudt.org/vocab/constant/BohrRadius + https://www.wikidata.org/wiki/Q652571 + 10-6 + Radius of the electron orbital in the hydrogen atom in its ground state in the Bohr model of the atom. + https://doi.org/10.1351/goldbook.B00693 - - - + + + + DCPolarography + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + DCPolarography + Linear scan voltammetry with slow scan rate in which a dropping mercury electrode is used as the working electrode. If the whole scan is performed on a single growing drop, the technique should be called single drop scan voltammetry. The term polarography in this context is discouraged. This is the oldest variant of polarographic techniques, introduced by Jaroslav Heyrovský (1890 – 1967). Usually the drop time is between 1 and 5 s and the pseudo-steady-state wave-shaped dependence on potential is called a polarogram. If the limiting current is controlled by diffusion, it is expressed by the Ilkovich equation. + https://doi.org/10.1515/pac-2018-0109 + + + + + + - - - - - - + + T+3 L0 M-1 I+2 Θ0 N-1 J0 - - Observation - A characterisation of an object with an actual interaction. - Observation - A characterisation of an object with an actual interaction. + + AmountConductivityUnit + AmountConductivityUnit - - - IonAtom - A standalone atom with an unbalanced number of electrons with respect to its atomic number. - The ion_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing, - IonAtom - A standalone atom with an unbalanced number of electrons with respect to its atomic number. + + + + + StatisticalWeightOfSubsystem + StatisticalWeightOfSubsystem + https://www.wikidata.org/wiki/Q96207431 + 9-36.1 - - - - MeasurementDataPostProcessing - Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. - Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. - MeasurementDataPostProcessing - Application of a post-processing model to signals through a software, in order to calculate the final characterisation property. - Analysis of SEM (or optical) images to gain additional information (image filtering/integration/averaging, microstructural analysis, grain size evaluation, Digital Image Correlation procedures, etc.). In nanoindentation testing, this is the Oliver-Pharr method, which allows calculating the elastic modulus and hardness of the sample by using the load and depth measured signals. + + + + + + + + + + + + + + + Fermion + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + Fermion + A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. + https://en.wikipedia.org/wiki/Fermion - - - - DataPostProcessing - Analysis, that allows one to calculate the final material property from the calibrated primary data. - DataPostProcessing - Analysis, that allows one to calculate the final material property from the calibrated primary data. + + + + + + + + + + + + + + Boson + A physical particle with integer spin that follows Bose–Einstein statistics. + Boson + A physical particle with integer spin that follows Bose–Einstein statistics. + https://en.wikipedia.org/wiki/Boson - + - - - OsmoticCoefficientOfSolvent - Quantity characterizing the deviation of a solvent from ideal behavior. - OsmoticFactorOfSolvent - OsmoticCoefficientOfSolvent - https://qudt.org/vocab/quantitykind/OsmoticCoefficient - https://www.wikidata.org/wiki/Q5776102 - 9-27.2 - Quantity characterizing the deviation of a solvent from ideal behavior. - https://doi.org/10.1351/goldbook.O04342 - - - - - + - - - - - - + + + T-3 L0 M+1 I-1 Θ0 N0 J0 + - Fundamental - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - Lifetime - Maximal - Fundamental - A whole that represent the overall lifetime of the world object that represents according to some holistic criteria. - A marathon is an example of class whose individuals are always maximal since the criteria satisfied by a marathon 4D entity poses some constraints on its temporal and spatial extent. - -On the contrary, the class for a generic running process does not necessarily impose maximality to its individuals. A running individual is maximal only when it extends in time for the minimum amount required to identify a running act, so every possible temporal part is always a non-running. - -Following the two examples, a marathon individual is a maximal that can be decomposed into running intervals. The marathon class is a subclass of running. + ElectricPotentialPerAreaUnit + ElectricPotentialPerAreaUnit - - - - - - - - - - - - Semiotics - Semiotics + + + PseudoscalarMeson + A meson with spin zero and odd parity. + PseudoscalarMeson + A meson with spin zero and odd parity. + https://en.wikipedia.org/wiki/Pseudoscalar_meson - + - T-1 L-1 M0 I0 Θ0 N0 J0 + T-2 L+3 M+1 I0 Θ0 N0 J0 - PerLengthTimeUnit - PerLengthTimeUnit + ForceAreaUnit + ForceAreaUnit - - - - InspectionDevice - InspectionDevice + + + TemporallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). + TemporallyFundamental + The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole). - - - DataProcessingThroughCalibration - Describes how raw data are corrected and/or modified through calibrations. - DataProcessingThroughCalibration - Describes how raw data are corrected and/or modified through calibrations. + + + + + MassConcentrationOfWater + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. + The mass concentration of water at saturation is denoted wsat. + MassConcentrationOfWater + https://qudt.org/vocab/quantitykind/MassConcentrationOfWater + https://www.wikidata.org/wiki/Q76378758 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 + 5-27 + Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - + - + - - ParticleFluenceRate - Differential quotient of fluence Φ with respect to time. - ParticleFluenceRate - https://qudt.org/vocab/quantitykind/ParticleFluenceRate - https://www.wikidata.org/wiki/Q98497410 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-16 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-19 - 10-44 - Differential quotient of fluence Φ with respect to time. + + MagneticReluctance + Magnetic tension divided by magnetic flux. + Reluctance + MagneticReluctance + https://qudt.org/vocab/quantitykind/Reluctance + https://www.wikidata.org/wiki/Q863390 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-28 + 6-39 + Magnetic tension divided by magnetic flux. - + + + + + + + T-3 L+3 M+1 I-2 Θ0 N0 J0 + + + ElectricResistivityUnit + ElectricResistivityUnit + + + + + + Planing + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + Hobeln + Planing + + + + + + Machining + A manufacturing in which material is removed from the workpiece in the form of chips. + RemovingChipsFromWorkpiece + Machining + A manufacturing in which material is removed from the workpiece in the form of chips. + + + - - Ellipsometry - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. - Ellipsometry - Ellipsometry is an optical technique that uses polarised light to probe the dielectric properties of a sample (optical system). The common application of ellipsometry is the analysis of thin films. Through the analysis of the state of polarisation of the light that is reflected from the sample, ellipsometry yields information on the layers that are thinner than the wavelength of the light itself, down to a single atomic layer or less. Depending on what is already known about the sample, the technique can probe a range of properties including layer thickness, morphology, and chemical composition. + + IonChromatography + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + IonChromatography + Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. + https://en.wikipedia.org/wiki/Ion_chromatography - - - - - - - - - - - - - - - - - SecondGenerationFermion - SecondGenerationFermion + + + + DeepFreezing + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + Cryogenic treatment, Deep-freeze + Tieftemperaturbehandeln + DeepFreezing + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - + + + + ElectricCurrentAssistedSintering + ElectricCurrentAssistedSintering + + + - - - StaticFrictionForce - StaticFriction - StaticFrictionForce - https://qudt.org/vocab/quantitykind/StaticFriction - https://www.wikidata.org/wiki/Q90862568 - 4-9.3 + + + + + + + + + ElectricChargeDensity + Electric charge per volume. + VolumeElectricCharge + ElectricChargeDensity + https://qudt.org/vocab/quantitykind/ElectricChargeDensity + https://www.wikidata.org/wiki/Q69425629 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 + 6-3 + Electric charge per volume. + https://doi.org/10.1351/goldbook.C00988 - + - T0 L0 M+1 I0 Θ0 N-1 J0 + T-3 L-2 M+2 I0 Θ0 N0 J0 - MassPerAmountUnit - MassPerAmountUnit + SquarePressureTimeUnit + SquarePressureTimeUnit - - + + - - + + + + + + - - - - - - - - - - - - - - Meson - Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. - Most mesons are composed of one quark and one antiquark. - Meson - Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. - Most mesons are composed of one quark and one antiquark. - https://en.wikipedia.org/wiki/Meson - - - - - HybridMatter - Matter composed of both matter and antimatter fundamental particles. - HybridMatter - Matter composed of both matter and antimatter fundamental particles. + + + AtomicNumber + Number of protons in an atomic nucleus. + AtomicNumber + http://qudt.org/vocab/quantitykind/AtomicNumber + Number of protons in an atomic nucleus. + 10-1.1 + https://doi.org/10.1351/goldbook.A00499 - - + + + + + + + + + + + + + 1 + + + - - - - - - + + + + - CompositeBoson - CompositeBoson - Examples of composite particles with integer spin: -spin 0: H1 and He4 in ground state, pion -spin 1: H1 and He4 in first excited state, meson -spin 2: O15 in ground state. + Integer + An integer number. + Integer + An integer number. - - + + - - + + * - - - MassAttenuationCoefficient - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - MassAttenuationCoefficient - https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient - https://www.wikidata.org/wiki/Q98591983 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 - 10-50 - Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + + Multiplication + Multiplication - - - ResemblanceIcon - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. - An icon that mimics the spatial or temporal shape of the object. - The subclass of icon inspired by Peirceian category a) the image, which depends on a simple quality (e.g. picture). - ResemblanceIcon - An icon that mimics the spatial or temporal shape of the object. - A geographical map that imitates the shape of the landscape and its properties at a specific historical time. - An icon that focus on WHERE/WHEN the object is, in the sense of spatial or temporal shape. + + + + + + + 1 + + + + + + + 1 + + + + QuantityValue + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). + +So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. + +While the string "1 kg" is a 'QuantityValue'. + QuantityValue + A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). + 6.8 m +0.9 km +8 K +6 MeV +43.5 HRC(150 kg) + quantity value + A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + + + + + + + Degenerency + Multiplicity + Degenerency + https://www.wikidata.org/wiki/Q902301 + 9-36.2 + https://doi.org/10.1351/goldbook.D01556 + + + + + GreenDownAntiQuark + GreenDownAntiQuark + + + + + + Assembled + A system of independent elements that are assembled together to perform a function. + Assembled + A system of independent elements that are assembled together to perform a function. + + + + + + + + + + + + + + + + + + + + + GaugeBoson + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + GaugeBoson + A bosonic elementary particle that mediates interactions among elementary fermions, and thus acts as a force carrier. + All known gauge bosons have a spin of 1 and are hence also vector bosons. + Gauge bosons can carry any of the four fundamental interactions of nature. + https://en.wikipedia.org/wiki/Gauge_boson + + + + + + Agent + A participant that is the driver of the process. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. + Agent + A participant that is the driver of the process. + A catalyst. A bus driver. A substance that is initiating a reaction that would not occur without its presence. + An agent is not necessarily human. +An agent plays an active role within the process. +An agent is a participant of a process that would not occur without it. + + + + + RedCharmQuark + RedCharmQuark + + + + + + Dilatometry + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. + Dilatometry + Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - + - - ActivePower - Average power over a period. - ActivePower - https://qudt.org/vocab/quantitykind/ActivePower - https://www.wikidata.org/wiki/Q20820042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-42 - 6-56 - Average power over a period. + + + + + + + + + ThermalConductance + Reciprocal of the thermal resistance. + ThermalConductance + https://qudt.org/vocab/quantitykind/ThermalConductance + https://www.wikidata.org/wiki/Q17176562 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-46 + 5-13 + Reciprocal of the thermal resistance. + https://doi.org/10.1351/goldbook.T06298 - - + + - - + + + + + + + + + - - + + + + + + + + + + + + + + + + + + + + + CausalPath + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + CausalChain + Elementary + CausalPath + A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. + The class of entities that possess a temporal structure but no spatial structure. + An electron with at least one causal interaction with another particle. + hasTemporalPart min 2 (Elementary or Quantum) + + + + + RedUpQuark + RedUpQuark + + + + - - + + - - DataProcessing - A computation that provides a data output following the elaboration of some input data, using a data processing application. - DataProcessing - A computation that provides a data output following the elaboration of some input data, using a data processing application. + + + TotalMassStoppingPower + Quotient of the total linear stopping power S and the mass density ρ of the material. + MassStoppingPower + TotalMassStoppingPower + https://qudt.org/vocab/quantitykind/TotalMassStoppingPower + https://www.wikidata.org/wiki/Q98642795 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-52 + 10-55 + Quotient of the total linear stopping power S and the mass density ρ of the material. - - + + - - - + + - - Minus - Minus + + + ModulusOfElasticity + Mechanical property of linear elastic solid materials. + YoungsModulus + ModulusOfElasticity + https://www.wikidata.org/wiki/Q2091584 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-67 + 4-19.1 + Mechanical property of linear elastic solid materials. + https://doi.org/10.1351/goldbook.M03966 - - - + + + + + + + + + + + + Hadron + Particles composed of two or more quarks. + Hadron + Particles composed of two or more quarks. + https://en.wikipedia.org/wiki/Hadron + + + + + + Gathering + Gathering + + + + + - - T0 L-3 M0 I0 Θ0 N0 J0 + + + + MixedTiling + A well formed tessellation with at least a junction tile. + MixedTiling + A well formed tessellation with at least a junction tile. + + + + + + + + + + + + - PerVolumeUnit - PerVolumeUnit + Persistence + The interest is on the 4D object as it extends in time (process) or as it persists in time (object): +- object (focus on spatial configuration) +- process (focus on temporal evolution) + +The concepts of endurant and perdurant implicitly rely on the concept of instantaneous 3D snapshot of the world object, that in the EMMO is not allowed since everything extends in 4D and there are no abstract objects. Moreover, time is a measured property in the EMMO and not an objective characteristic of an object, and cannot be used as temporal index to identify endurant position in time. + +For this reason an individual in the EMMO can always be classified both endurant and perdurant, due to its nature of 4D entity (e.g. an individual may belong both to the class of runners and the class of running process), and the distinction is purely semantic. In fact, the object/process distinction is simply a matter of convenience in a 4D approach since a temporal extension is always the case, and stationarity depends upon observer time scale. For this reason, the same individual (4D object) may play the role of a process or of an object class depending on the object to which it relates. + +Nevertheless, it is useful to introduce categorizations that characterize persistency through continuant and occurrent concepts, even if not ontologically but only cognitively defined. This is also due to the fact that our language distinguish between nouns and verbs to address things, forcing the separation between things that happens and things that persist. + +This perspective provides classes conceptually similar to the concepts of endurant and perdurant (a.k.a. continuant and occurrent). We claim that this distinction is motivated by our cognitive bias, and we do not commit to the fact that both these kinds of entity “do really exist”. For this reason, a whole instance can be both process and object, according to different cognitive approaches (see Wonderweb D17). + +The distinction between endurant and perdurant as usually introduced in literature (see BFO SPAN/SNAP approach) is then no more ontological, but can still be expressed through the introduction of ad hoc primitive definitions that follow the interpreter endurantist or perdurantist attitude. + The union of the object or process classes. + Persistence + The union of the object or process classes. - - - + + + - - - T+4 L-2 M-1 I+1 Θ0 N0 J0 - + + + + + + - JosephsonConstantUnit - JosephsonConstantUnit + Structural + Structural - + + + + + Gel + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + Gel + A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity. + + + - AntiTau - AntiTau + ElementaryFermion + ElementaryFermion - - - - Polishing - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - Polishing - Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + + + + Dismantling + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + Demontage + Dismantling + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + + + + + + Ablation + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + Abtragen + Ablation - - - - - LongRangeOrderParameter - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. - LongRangeOrderParameter - https://qudt.org/vocab/quantitykind/Long-RangeOrderParameter - https://www.wikidata.org/wiki/Q105496124 - 12-5.2 - Fraction of atoms in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction. + + + TensorMeson + A meson with spin two. + TensorMeson + A meson with spin two. - + - - + - - T-2 L+3 M+1 I0 Θ0 N0 J0 + + - - ForceAreaUnit - ForceAreaUnit - - - - - - - BetaDisintegrationEnergy - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. - BetaDisintegrationEnergy - https://www.wikidata.org/wiki/Q98148340 - 10-34 - Sum of the maximum beta-particle kinetic energy and the recoil energy of the atom produced in a reference frame in which the emitting nucleus is at rest before its disintegration. + + + + Acceleration + Derivative of velocity with respect to time. + Acceleration + http://qudt.org/vocab/quantitykind/Acceleration + 3-9.1 + https://doi.org/10.1351/goldbook.A00051 - - - - - SolidSol - A type of sol in the form of one solid dispersed in another continuous solid. - SolidSol - A type of sol in the form of one solid dispersed in another continuous solid. + + + GreenDownQuark + GreenDownQuark - - - - Sol - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - Sol - A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + + + + + + + + + + Luminance + Measured in cd/m². Not to confuse with Illuminance, which is measured in lux (cd sr/m²). + a photometric measure of the luminous intensity per unit area of light travelling in a given direction. + Luminance + http://qudt.org/vocab/quantitykind/Luminance + https://doi.org/10.1351/goldbook.L03640 - + - - SpecificInternalEnergy - Internal energy per unit mass. - SpecificInternalEnergy - https://qudt.org/vocab/quantitykind/SpecificInternalEnergy - https://www.wikidata.org/wiki/Q76357367 - 5-21.2 - Internal energy per unit mass. + + ElectricReactance + The imaginary part of the impedance. + The opposition of a circuit element to a change in current or voltage, due to that element's inductance or capacitance. + Reactance + ElectricReactance + http://qudt.org/vocab/quantitykind/Reactance + https://www.wikidata.org/wiki/Q193972 + 6-51.3 + The imaginary part of the impedance. + https://en.wikipedia.org/wiki/Electrical_reactance + https://doi.org/10.1351/goldbook.R05162 - - - - Work - Product of force and displacement. - Work - http://qudt.org/vocab/quantitykind/Work - Product of force and displacement. - 4-28.4 - https://doi.org/10.1351/goldbook.W06684 + + + + + + + + + + Matrix + 2-dimensional array who's spatial direct parts are vectors. + 2DArray + Matrix + 2-dimensional array who's spatial direct parts are vectors. - + - + - - ElectricFieldStrength - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - ElectricFieldStrength - https://qudt.org/vocab/quantitykind/ElectricFieldStrength - https://www.wikidata.org/wiki/Q20989 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 - 6-10 - Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + + ParticleCurrentDensity + Number of particles per time and area crossing a surface. + ParticleCurrentDensity + https://qudt.org/vocab/quantitykind/ParticleCurrent + https://www.wikidata.org/wiki/Q2400689 + 10-48 + Number of particles per time and area crossing a surface. - - - - - - - - - - - - - - - - - - - AntiMatter - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. - AntiMatter - Antimatter is matter that is composed only of the antiparticles of those that constitute ordinary matter. - This branch is not expanded due to the limited use of such entities. + + + + + LevelWidth + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + LevelWidth + https://qudt.org/vocab/quantitykind/LevelWidth + https://www.wikidata.org/wiki/Q98082340 + 10-26 + In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. + https://doi.org/10.1351/goldbook.L03507 - + - - - - - T+1 L-2 M0 I+1 Θ0 N0 J0 - - - ElectricDisplacementFieldUnit - ElectricDisplacementFieldUnit + + LuminousEfficacyOf540THzRadiation + Defines the Candela base unit in the SI system. + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + LuminousEfficacyOf540THzRadiation + The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - - - - CurrentLinkage - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. - CurrentLinkage - https://qudt.org/vocab/quantitykind/CurrentLinkage - https://www.wikidata.org/wiki/Q77995703 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-46 - 6-37.4 - For a closed path, scalar quantity equal to the electric current through any surface bounded by the path. + + + + Computation + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + Computation + A procedure that deals with quantitative symbols (i.e. symbols associated with a quantitative oriented language). + A matematician that calculates 2+2. +A computation machine that calculate the average value of a dataset. - - - - LogarithmicUnit - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + + + + + StandardEquilibriumConstant + ThermodynamicEquilibriumConstant + StandardEquilibriumConstant + https://www.wikidata.org/wiki/Q95993378 + 9-32 + https://doi.org/10.1351/goldbook.S05915 + -It is advisory to create a uniquely defined subclass these units for concrete usage. - LogarithmicUnit - http://qudt.org/schema/qudt/LogarithmicUnit - A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. - Decibel - Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + + + + CreepTesting + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + CreepTesting + The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + -It is advisory to create a uniquely defined subclass these units for concrete usage. - https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units + + + + SampleExtraction + + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. + SampleExtraction + Act of extracting a portion (amount) of material from a larger quantity of material. This operation results in obtaining a sample representative of the batch with respect to the property or properties being investigated. + The term can be used to cover either a unit of supply or a portion for analysis. The portion taken may consist of one or more sub-samples and the batch may be the population from which the sample is taken. - + - + + - - + + T+4 L0 M-1 I+2 Θ0 N0 J0 - - - - - Area - Extent of a surface. - Area - http://qudt.org/vocab/quantitykind/Area - 3-3 - https://doi.org/10.1351/goldbook.A00429 + + SquareCurrentQuarticTimePerMassUnit + SquareCurrentQuarticTimePerMassUnit - - + + + + + StandardAmountConcentration + Chosen value of amount concentration, usually equal to 1 mol dm−3. + StandardConcentration + StandardMolarConcentration + StandardAmountConcentration + https://www.wikidata.org/wiki/Q88871689 + Chosen value of amount concentration, usually equal to 1 mol dm−3. + 9-12.2 + https://doi.org/10.1351/goldbook.S05909 + + + + - - - - - - - - - + + - - - - - - - - - + + - - - - - - - - - - - - CausalPath - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - CausalChain - Elementary - CausalPath - A causal chain is an ordered causal sequence of entities that does not host any bifurcation within itself (a chain). A chain can only be partitioned in time. - The class of entities that possess a temporal structure but no spatial structure. - An electron with at least one causal interaction with another particle. - hasTemporalPart min 2 (Elementary or Quantum) + + + CharacterisationMeasurementInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + CharacterisationMeasurementInstrument + Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure. + The instrument used for characterising a material, which usually has a probe and a detector as parts. + In nanoindentation is the nanoindenter + Measuring instrument - - - Deduced - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. - Deduced - A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + + + + SampleInspection + + Analysis of the sample in order to determine information that are relevant for the characterisation method. + SampleInspection + Analysis of the sample in order to determine information that are relevant for the characterisation method. + In the Nanoindentation method the Scanning Electron Microscope to determine the indentation area. - - + + + + NormalPulseVoltammetry + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + NPV + NormalPulseVoltammetry + Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. + https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + T-1 L+1 M0 I0 Θ+1 N0 J0 + + + TemperatureLengthPerTimeUnit + TemperatureLengthPerTimeUnit + + + + - - - - - - + + - - Manufacturer - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. - Manufacturer - A strict fundamental object overcrossing a manufacturing process, the intersection being the agent that participates and drives the manufacturing process. + + + MassFlow + At a point in a fluid, the product of mass density and velocity. + MassFlow + https://www.wikidata.org/wiki/Q3265048 + 4-30.1 + At a point in a fluid, the product of mass density and velocity. - + - - - - - - - - - StrictFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). - StrictFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole). + + Folding + Folding - + - - - AngularReciprocalLatticeVector - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. - AngularReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/AngularReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475278 - 12-2.1 - Vector whose scalar products with all fundamental lattice vectors are integral multiples of 2pi. + + + LeakageFactor + One minus the square of the coupling factor + LeakageFactor + https://www.wikidata.org/wiki/Q78102042 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 + 6-42.2 + One minus the square of the coupling factor - + + + + + RotationalDisplacement + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + AngularDisplacement + RotationalDisplacement + https://www.wikidata.org/wiki/Q3305038 + 3-6 + Quotient of the traversed circular path length of a point in space during a rotation and its distance from the axis or centre of rotation. + https://en.wikipedia.org/wiki/Angular_displacement + + + - BlueCharmQuark - BlueCharmQuark + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + GreenQuark + GreenQuark - + - - - MassConcentrationOfWater - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - The mass concentration of water at saturation is denoted wsat. - MassConcentrationOfWater - https://qudt.org/vocab/quantitykind/MassConcentrationOfWater - https://www.wikidata.org/wiki/Q76378758 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-59 - 5-27 - Quotient of the mass of water in a three-dimensional domain, irrespective of the form of aggregation, by the volume of the domain. - - - - - - - - - - - - MeasuringSystem - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - MeasuringSystem - A set of one or more 'MeasuringInstruments' and often other devices, including any reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - --- VIM - measuring system + + JosephsonConstant + Inverse of the magnetic flux quantum. + The DBpedia definition (http://dbpedia.org/page/Magnetic_flux_quantum) is outdated as May 20, 2019. It is now an exact quantity. + JosephsonConstant + http://qudt.org/vocab/constant/JosephsonConstant + Inverse of the magnetic flux quantum. - + - T0 L+1 M0 I0 Θ0 N0 J0 + T0 L+2 M0 I0 Θ+1 N0 J0 - LengthUnit - LengthUnit - - - - - RedDownAntiQuark - RedDownAntiQuark + AreaTemperatureUnit + AreaTemperatureUnit - + - - - PhaseCoefficient - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - PhaseChangeCoefficient - PhaseCoefficient - https://qudt.org/vocab/quantitykind/PhaseCoefficient - https://www.wikidata.org/wiki/Q32745742 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-20 - 3-26.2 - Change of phase angle with the length along the path travelled by a plane wave. - The imaginary part of the propagation coefficient. - https://en.wikipedia.org/wiki/Propagation_constant#Phase_constant - - - - - - Organisation - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - Organisation - An holistic system of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives. + + + OsmoticCoefficientOfSolvent + Quantity characterizing the deviation of a solvent from ideal behavior. + OsmoticFactorOfSolvent + OsmoticCoefficientOfSolvent + https://qudt.org/vocab/quantitykind/OsmoticCoefficient + https://www.wikidata.org/wiki/Q5776102 + 9-27.2 + Quantity characterizing the deviation of a solvent from ideal behavior. + https://doi.org/10.1351/goldbook.O04342 - + - + - + - + @@ -16357,762 +16415,566 @@ organization: person or group of people that has its own functions with responsi - TopQuark - TopQuark - https://en.wikipedia.org/wiki/Top_quark + DownAntiQuarkType + DownAntiQuarkType - + - - - - - - - - - SurfaceActivityDensity - Quotient of the activity A of a sample and the total area S of the surface of that sample. - SurfaceActivityDensity - https://qudt.org/vocab/quantitykind/SurfaceActivityDensity - https://www.wikidata.org/wiki/Q98103005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 - 10-30 - Quotient of the activity A of a sample and the total area S of the surface of that sample. - - - - - - - - - - - - - Nucleus - The small, dense region at the centre of an atom consisting of protons and neutrons. - Nucleus - The small, dense region at the centre of an atom consisting of protons and neutrons. + + + PowerFactor + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + PowerFactor + https://qudt.org/vocab/quantitykind/PowerFactor + https://www.wikidata.org/wiki/Q750454 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 + 6-58 + Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - - - - SpecificGibbsEnergy - Gibbs energy per unit mass. - SpecificGibbsEnergy - https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy - https://www.wikidata.org/wiki/Q76360636 - 5-21.5 - Gibbs energy per unit mass. + + + + HotDipGalvanizing + Hot-dipGalvanizing + HotDipGalvanizing - + - - - - - - - - - CharacterisationSystem - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - CharacterisationSystem - Set of one or more measuring instruments and often other components, assembled and -adapted to give information used to generate measured values within specified intervals for -quantities of specified kinds -NOTE 1 The components mentioned in the definition may be devices, reagents, and supplies. -NOTE 2 A measuring system is sometimes referred to as “measuring equipment” or “device”, for example in ISO 10012, -Measurement management systems – Requirements for measurement processes and measuring equipment and ISO -17025, General requirements for the competence of testing and calibration laboratories. -NOTE 3 Although the terms “measuring system” and “measurement system” are frequently used synonymously, the -latter is instead sometimes used to refer to a measuring system plus all other entities involved in a measurement, -including the object under measurement and the person(s) performing the measurement. -NOTE 4 A measuring system can be used as a measurement standard. - A set of one or more 'CharacterisationInstruments' and often other devices, including any sample holder, reagent and supply, assembled and adapted to give information used to generate 'MeasuredQuantityProperty' within specified intervals for quantities of specified kinds. - Measuring system + + CathodicStrippingVoltammetry + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + CSV + CathodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q4016325 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically reduced in the stripping step. A peak-shaped cathodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. + https://doi.org/10.1515/pac-2018-0109 - - - - SpinQuantumNumber - Characteristic quantum number s of a particle, related to its spin. - SpinQuantumNumber - https://qudt.org/vocab/quantitykind/SpinQuantumNumber - https://www.wikidata.org/wiki/Q3879445 - 10-13.5 - Characteristic quantum number s of a particle, related to its spin. + + + + StrippingVoltammetry + + Anodic stripping voltammetry (ASV) was historically used to measure concentrations of metal ions in solution using cathodic accumulation with mercury to form an amalgam. Due to the toxicity of mercury and its compounds, inductively coupled plasma optical emission spectrometry and inductively coupled plasma mass spectrometry have frequently replaced ASV at mercury electrodes in the laboratory, often sacrificing the probing of speciation and lability in complex matrices. Mercury has now been replaced by non-toxic bismuth or anti- mony as films on a solid electrode support (such as glassy carbon) with equally good sensi- tivity and detection limits. + Because the accumulation (pre-concentration) step can be prolonged, increasing the amount of material at the electrode, stripping voltammetry is able to measure very small concentrations of analyte. + Often the product of the electrochemical stripping is identical to the analyte before the accumulation. + Stripping voltammetry is a calibrated method to establish the relation between amount accumulated in a given time and the concentration of the analyte in solution. + Types of stripping voltammetry refer to the kind of accumulation (e.g. adsorptive stripping voltammetry) or the polarity of the stripping electrochemistry (anodic, cathodic stripping voltammetry). + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + StrippingVoltammetry + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the amount of an accumulated species is measured by voltammetry. The measured electric current in step 2 is related to the concentration of analyte in the solution by calibration. + https://en.wikipedia.org/wiki/Electrochemical_stripping_analysis + https://doi.org/10.1515/pac-2018-0109 - - - - - SuperconductionTransitionTemperature - Critical thermodynamic temperature of a superconductor. - SuperconductionTransitionTemperature - https://qudt.org/vocab/quantitykind/SuperconductionTransitionTemperature - https://www.wikidata.org/wiki/Q106103037 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-09 - 12-35.3 - Critical thermodynamic temperature of a superconductor. + + + + PhotochemicalProcesses + PhotochemicalProcesses - - - - - - - T-2 L+2 M+1 I0 Θ0 N0 J0 - - - EnergyUnit - EnergyUnit + + + + + + + + + + + + + + + + + + + UpAntiQuark + UpAntiQuark - - + + - T+4 L-2 M-1 I+2 Θ0 N0 J0 - - - CapacitanceUnit - CapacitanceUnit - - - - - - - DensityOfHeatFlowRate - At a fixed point in a medium, the direction of propagation of heat is opposite to the temperature gradient. At a point on the surface separating two media with different temperatures, the direction of propagation of heat is normal to the surface, from higher to lower temperatures. - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - AreicHeatFlowRate - DensityOfHeatFlowRate - https://www.wikidata.org/wiki/Q1478382 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-37 - 5-8 - Vector quantity with magnitude equal to the heat flow rate dΦ through a surface element divided by the area dA of the element, and direction eφ in the direction of propagation of heat. - https://doi.org/10.1351/goldbook.H02755 - - - - - - - - + T-2 L+3 M-1 I0 Θ0 N0 J0 - - - Intensity - Power transferred per unit area. - Intensity - Power transferred per unit area. - https://en.wikipedia.org/wiki/Intensity_(physics) - - - - - - - - - - - - SolidMixture - SolidMixture + NewtonianConstantOfGravityUnit + NewtonianConstantOfGravityUnit - + - + + - Stress - Force per unit oriented surface area . - Measure of the internal forces that neighboring particles of a continuous material exert on each other. - Stress - http://qudt.org/vocab/quantitykind/Stress - 4-15 + Momentum + Product of mass and velocity. + Momentum + http://qudt.org/vocab/quantitykind/Momentum + 4-8 + https://doi.org/10.1351/goldbook.M04007 - + - - IonChromatography - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - IonChromatography - Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. - https://en.wikipedia.org/wiki/Ion_chromatography - - - - - - - - - - - - - TotalLinearStoppingPower - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - LinearStoppingPower - TotalLinearStoppingPower - https://qudt.org/vocab/quantitykind/TotalLinearStoppingPower - https://www.wikidata.org/wiki/Q908474 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-27 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-49 - 10-54 - For charged particles of a given type and energy E0 the differential quotient of E with respect to x, where E is the mean energy lost by the charged particles in traversing a distance x in the given material. - https://doi.org/10.1351/goldbook.S06035 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Declaration - ConventionalSemiosis - Declaration - - - - - - InternalEnergy - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - ThermodynamicEnergy - InternalEnergy - http://qudt.org/vocab/quantitykind/InternalEnergy - 5.20-2 - A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system. - https://doi.org/10.1351/goldbook.I03103 + + MassSpectrometry + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. + MassSpectrometry + Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - + - - ShearCutting - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - Scherschneiden - ShearCutting - - - - - - - LiquidSol - A type of sol in the form of one solid dispersed in liquid. - LiquidSol - A type of sol in the form of one solid dispersed in liquid. - - - - - - - Gyroradius - Radius of the circular movement of an electrically charged particle in a magnetic field. - LarmorRadius - Gyroradius - https://www.wikidata.org/wiki/Q1194458 - 10-17 - Radius of the circular movement of an electrically charged particle in a magnetic field. + + + Moulding + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). + Gesenkformen + Moulding - - - - - - - T+1 L0 M-1 I0 Θ0 N0 J0 - - - MechanicalMobilityUnit - MechanicalMobilityUnit + + + + SystemUnit + SystemUnit - - - - MathematicalFunction - A function defined using functional notation. - A mathematical relation that relates each element in the domain (X) to exactly one element in the range (Y). - FunctionDefinition - MathematicalFunction - A function defined using functional notation. - y = f(x) + + + ProcessingReproducibility + + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) + ProcessingReproducibility + Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - - - DefiningEquation - An equation that define a new variable in terms of other mathematical entities. - DefiningEquation - An equation that define a new variable in terms of other mathematical entities. - The definition of velocity as v = dx/dt. - -The definition of density as mass/volume. + + + + Tortuosity + Parameter for diffusion and fluid flow in porous media. + Tortuosity + https://www.wikidata.org/wiki/Q2301683 + Parameter for diffusion and fluid flow in porous media. + -y = f(x) + + + + + MathematicalOperator + A mapping that acts on elements of one space and produces elements of another space. + MathematicalOperator + A mapping that acts on elements of one space and produces elements of another space. + The algebraic operator '+' that acts on two real numbers and produces one real number. + The differential operator that acts on a C1 real function and produces another real function. - - - - - - - - - + + - + - + - - - - - - - + + - MaterialsModel - A solvable set of one Physics Equation and one or more Materials Relations. - https://op.europa.eu/en/publication-detail/-/publication/ec1455c3-d7ca-11e6-ad7c-01aa75ed71a1 - MaterialsModel - A solvable set of one Physics Equation and one or more Materials Relations. + DownQuark + DownQuark + https://en.wikipedia.org/wiki/Down_quark - - - - - GapEnergy - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - BandgapEnergy - GapEnergy - https://www.wikidata.org/wiki/Q103982939 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-16 - 12-27.2 - Smallest energy difference between the lowest level of conduction band and the highest level of valence band at zero thermodynamic temperature. - https://doi.org/10.1351/goldbook.B00593 + + + + LiquidLiquidSuspension + A coarse dispersion of liquid in a liquid continuum phase. + LiquidLiquidSuspension + A coarse dispersion of liquid in a liquid continuum phase. - - - - - - - - - - AtomicPhysicsCrossSection - Measure of probability that a specific process will take place in a collision of two particles. - AtomicPhysicsCrossSection - https://qudt.org/vocab/quantitykind/Cross-Section.html - https://www.wikidata.org/wiki/Q17128025 - 10-38.1 - Measure of probability that a specific process will take place in a collision of two particles. + + + + + + + + + + + + + + CausalParticle + The class of entities that have no spatial structure. + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + CausalParticle + The concept is based on the common usage of the word "particle", that is used to identify both a specific state of an elementary particle (a quantum) and both the chain of quantums that expresses the evolution of the particle in time. + The union of Elementary and Quantum classes. + The class of entities that have no spatial structure. - + - - ThermochemicalTreatment - ThermochemicalTreatment - - - - - - Language - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - Language - A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + + Grinding + Removal of material by means of rigid or flexible discs or belts containing abrasives. + Schleifen + Grinding - + - - - KineticFrictionFactor - DynamicFrictionFactor - KineticFrictionFactor - https://www.wikidata.org/wiki/Q73695445 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 - 4-23.2 + + Numerical + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). + Numerical + A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations). - - - - SparkErosion - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - elektrochemisches Abtragen - SparkErosion + + + + PhaseHomogeneousMixture + A single phase mixture. + PhaseHomogeneousMixture + A single phase mixture. - + - - Ablation - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - Abtragen - Ablation + + Sawing + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. + Sägen + Sawing + Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - - - - - EffectiveMass - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - EffectiveMass - https://qudt.org/vocab/quantitykind/EffectiveMass - https://www.wikidata.org/wiki/Q1064434 - 12-30 - The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + + + + ReactiveMaterial + A material that takes active part in a chemical reaction. + ReactiveMaterial + A material that takes active part in a chemical reaction. - - - - - - HeatFlowRate - Amount of heat through a surface during a time interval divided by the duration of this interval. - HeatFlowRate - https://qudt.org/vocab/quantitykind/HeatFlowRate - https://www.wikidata.org/wiki/Q12160631 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-36 - 5-7 - Amount of heat through a surface during a time interval divided by the duration of this interval. + + + + ChemicallyDefinedMaterial + ChemicallyDefinedMaterial - + - + + - - + + T-2 L+4 M0 I0 Θ0 N0 J0 - - - - ParticleCurrentDensity - Number of particles per time and area crossing a surface. - ParticleCurrentDensity - https://qudt.org/vocab/quantitykind/ParticleCurrent - https://www.wikidata.org/wiki/Q2400689 - 10-48 - Number of particles per time and area crossing a surface. + + MassStoppingPowerUnit + MassStoppingPowerUnit + + + + + + PrimaryData + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + PrimaryData + Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. + Baseline subtraction, noise reduction , X and Y axes correction. + + + + + + + MolarInternalEnergy + Internal energy per amount of substance. + MolarInternalEnergy + https://www.wikidata.org/wiki/Q88523106 + 9-6.1 + Internal energy per amount of substance. - - - - - SolidFoam - A foam of trapped gas in a solid. - SolidFoam - A foam of trapped gas in a solid. - Aerogel + + + + + AtomicScatteringFactor + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + AtomicScatteringFactor + https://qudt.org/vocab/quantitykind/AtomScatteringFactor + https://www.wikidata.org/wiki/Q837866 + 12-5.3 + Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. + https://en.wikipedia.org/wiki/Atomic_form_factor - - - - SampledDCPolarography - - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. - TASTPolarography - SampledDCPolarography - DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. - https://doi.org/10.1515/pac-2018-0109 + + + + Factory + A building or group of buildings where goods are manufactured or assembled. + IndustrialPlant + Factory + A building or group of buildings where goods are manufactured or assembled. - + - LeftHandedParticle - LeftHandedParticle + GluonType8 + GluonType8 - - + + - T-3 L-1 M+1 I0 Θ+1 N0 J0 + T-2 L+1 M0 I0 Θ0 N0 J0 - TemperaturePressurePerTimeUnit - TemperaturePressurePerTimeUnit + AccelerationUnit + AccelerationUnit - - - - ReactionSintering - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - ReactionSintering + + + + + + + + + + Existent + 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). + +'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. + +This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. + +e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. + A 'Physical' which is a tessellation of 'State' temporal direct parts. + An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. + +By definition, the tiles are represented by 'State'-s individual. + +Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. + Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. + +Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. + true + Existent + A 'Physical' which is a tessellation of 'State' temporal direct parts. - - - Muon - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - Muon - The class of individuals that stand for muon elementary particles belonging to the second generation of leptons. - https://en.wikipedia.org/wiki/Muon + + + + + + + + + + + File + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. + File + In computing, a computer file is a resource for recording data on a computer storage device, primarily identified by its file path. - - - - TransportationDevice - TransportationDevice + + + + + CanonicalPartitionFunction + CanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/CanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96142389 + 9-35.2 - - - - Milling - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. - Fräsen - Milling + + + + + + + + + + + + Program + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + A set of instructions that tell a computer what to do. + Executable + Program + A set of instructions that tell a computer what to do. + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - + + + + + DewPointTemperature + The corresponding Celsius temperature is denoted td and is also called dew point. + Thermodynamic temperature at which vapour in air reaches saturation. + DewPointTemperature + https://www.wikidata.org/wiki/Q178828 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 + 5-36 + Thermodynamic temperature at which vapour in air reaches saturation. + https://doi.org/10.1351/goldbook.D01652 + + + - - - Tool - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. - Tool - An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + + Magnetizing + Magnetizing - + - - DirectCurrentInternalResistance - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. - DirectCurrentInternalResistance - Method of determining the internal resistance of an electrochemical cell by applying a low current followed by higher current within a short period, and then record the changes of battery voltage and current. + + NuclearMagneticResonance + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + Magnetic resonance spectroscopy (MRS) + NMR + NuclearMagneticResonance + Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - - - - MagneticPolarisation - Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - MagneticPolarisation - https://qudt.org/vocab/quantitykind/MagneticPolarization - https://www.wikidata.org/wiki/Q856711 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54 - 6-29 - Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. + + + + Potentiometry + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + Potentiometry + https://www.wikidata.org/wiki/Q900632 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 + Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. + https://doi.org/10.1515/pac-2018-0109 - - - - ScanningTunnelingMicroscopy - - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. - STM - ScanningTunnelingMicroscopy - Scanning Tunneling Microscopy, or STM, is an imaging technique used to obtain ultra-high resolution images at the atomic scale, without using light or electron beams. + + + RedTopAntiQuark + RedTopAntiQuark + + + + + + + + + T0 L+5 M0 I0 Θ0 N0 J0 + + + SectionAreaIntegralUnit + SectionAreaIntegralUnit + + + + + + HardeningByRolling + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + VerfestigendurchWalzen + HardeningByRolling + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. - + - - Susceptance - imaginary part of the admittance - Susceptance - https://qudt.org/vocab/quantitykind/Susceptance - https://www.wikidata.org/wiki/Q509598 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-54 - 6-52.3 - imaginary part of the admittance - - - - - - - - - - + + - - CalibrationTask - Used to break-down a CalibrationProcess into his specific tasks. - CalibrationTask - Used to break-down a CalibrationProcess into his specific tasks. + + + SurfaceActivityDensity + Quotient of the activity A of a sample and the total area S of the surface of that sample. + SurfaceActivityDensity + https://qudt.org/vocab/quantitykind/SurfaceActivityDensity + https://www.wikidata.org/wiki/Q98103005 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-10 + 10-30 + Quotient of the activity A of a sample and the total area S of the surface of that sample. - + + - - ResidualResistivity - for metals, the resistivity extrapolated to zero thermodynamic temperature - ResidualResistivity - https://qudt.org/vocab/quantitykind/ResidualResistivity - https://www.wikidata.org/wiki/Q25098876 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 - 12-17 - for metals, the resistivity extrapolated to zero thermodynamic temperature - - - - - - - ReactionEnergy - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. - ReactionEnergy - https://qudt.org/vocab/quantitykind/ReactionEnergy - https://www.wikidata.org/wiki/Q98164745 - 10-37.1 - In a nuclear reaction, sum of the kinetic energies and photon energies of the reaction products minus the sum of the kinetic and photon energies of the reactants. + NeelTemperature + Critical thermodynamic temperature of an antiferromagnet. + NeelTemperature + https://www.wikidata.org/wiki/Q830311 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 + 12-35.2 + Critical thermodynamic temperature of an antiferromagnet. - - + + - + - + - - CharacterisationMeasurementTask - Used to break-down a CharacterisationMeasurementProcess into his specific tasks. - CharacterisationMeasurementTask - Used to break-down a CharacterisationMeasurementProcess into his specific tasks. - - - - - - Widening - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - Weiten - Widening - - - - - - - - - T0 L-3 M0 I+1 Θ0 N-1 J0 - - - ElectricCurrentPerAmountVolumeUnit - ElectricCurrentPerAmountVolumeUnit - - - - - - Screwing - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - Schrauben - Screwing - - - - - - Pressing - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - Anpressen - Pressing + Component + A constituent of a system. + Component + A constituent of a system. @@ -17132,2476 +16994,2386 @@ reaction sintering: process wherein at least two constituents of a powder mixtur WeakBoson - - - - IntermediateSample - - IntermediateSample + + + AnalogData + Data that are decoded retaining its continuous variations characteristic. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + AnalogData + Data that are decoded retaining its continuous variations characteristic. + A vynil contain continuous information about the recorded sound. + The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - - + + - T-3 L+2 M+1 I-1 Θ0 N0 J0 + T+3 L-1 M-1 I0 Θ0 N0 J+1 - ElectricPotentialUnit - ElectricPotentialUnit + LuminousEfficacyUnit + LuminousEfficacyUnit - + - - - - - - - - - - - - - - - - - CharmQuark - CharmQuark - https://en.wikipedia.org/wiki/Charm_quark - - - - - - - - - - - - - - ThermalConductivity - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - In an anisotropic medium, thermal conductivity is a tensor quantity. - ThermalConductivity - https://qudt.org/vocab/quantitykind/ThermalConductivity - https://www.wikidata.org/wiki/Q487005 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-38 - https://dbpedia.org/page/Thermal_conductivity - 5-9 - At a point fixed in a medium with a temperature field, scalar quantity λ characterizing the ability of the medium to transmit heat through a surface element containing that point: φ = −λ grad T, where φ is the density of heat flow rate and T is thermodynamic temperature. - - - - - - - PartialPressure - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - PartialPressure - https://qudt.org/vocab/quantitykind/PartialPressure - https://www.wikidata.org/wiki/Q27165 - 9-19 - Hypothetical pressure of gas if it alone occupied the volume of the mixture at the same temperature. - https://doi.org/10.1351/goldbook.P04420 - - - - - - - - - - - - - Pressure - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - Pressure - http://qudt.org/vocab/quantitykind/Pressure - 4-14.1 - The force applied perpendicular to the surface of an object per unit area over which that force is distributed. - https://doi.org/10.1351/goldbook.P04819 - - - - - - TotalAngularMomentumQuantumNumber - Quantum number in an atom describing the magnitude of total angular momentum J. - TotalAngularMomentumQuantumNumber - https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber - https://www.wikidata.org/wiki/Q1141095 - 10-13.6 - Quantum number in an atom describing the magnitude of total angular momentum J. + + + + + + + + + + + + + + + ThirdGenerationFermion + ThirdGenerationFermion - + + + + + KineticFrictionFactor + DynamicFrictionFactor + KineticFrictionFactor + https://www.wikidata.org/wiki/Q73695445 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-32 + 4-23.2 + + + - T0 L0 M0 I+1 Θ-1 N0 J0 + T0 L0 M0 I0 Θ-1 N0 J0 - ElectricCurrentPerTemperatureUnit - ElectricCurrentPerTemperatureUnit - - - - - - - QualityFactor - Factor taking into account health effects in the determination of the dose equivalent. - QualityFactor - https://qudt.org/vocab/quantitykind/DoseEquivalentQualityFactor - https://www.wikidata.org/wiki/Q2122099 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-03 - 10-82 - Factor taking into account health effects in the determination of the dose equivalent. + PerTemperatureUnit + PerTemperatureUnit - + - - - ShearStrain - Displacement of one surface with respect to another divided by the distance between them. - ShearStrain - https://qudt.org/vocab/quantitykind/ShearStrain - https://www.wikidata.org/wiki/Q7561704 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 - 4-17.3 - Displacement of one surface with respect to another divided by the distance between them. - https://doi.org/10.1351/goldbook.S05637 + + + RelativePermeability + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + RelativePermeability + https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio + https://www.wikidata.org/wiki/Q77785645 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 + 6-27 + Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. + https://doi.org/10.1351/goldbook.R05272 - + - T0 L0 M0 I0 Θ0 N+1 J0 + T0 L-2 M0 I0 Θ0 N+1 J0 - AmountUnit - AmountUnit - - - - - ProcessingReproducibility - - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - ProcessingReproducibility - Description of performed statistical analysis to check for data reproducibility (e.g. easily reproducible for everyone, reproducible for a domain expert, reproducible only for Data processing Expert) - - - - - - - MathematicalFormula - A mathematical string that express a relation between the elements in one set X to elements in another set Y. - The set X is called domain and the set Y range or codomain. - MathematicalFormula - A mathematical string that express a relation between the elements in one set X to elements in another set Y. - - - - - - DataNormalisation - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - DataNormalisation - Data normalization involves adjusting raw data to a notionally common scale. - It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + AmountPerAreaUnit + AmountPerAreaUnit - - - - DataPreparation - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. - DataPreparation - Data preparation is the process of manipulating (or pre-processing) data (which may come from disparate data sources) to improve their quality or reduce bias in subsequent analysis. + + + + + StandardAbsoluteActivity + Property of a solute in a solution. + StandardAbsoluteActivityInASolution + StandardAbsoluteActivity + https://www.wikidata.org/wiki/Q89485936 + 9-26 + Property of a solute in a solution. - - - AtomisticModel - A physics-based model based on a physics equation describing the behaviour of atoms. - AtomisticModel - A physics-based model based on a physics equation describing the behaviour of atoms. + + + + PlasticModeling + PlasticModeling - - - - LinearScanVoltammetry - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - LSV - LinearPolarization - LinearSweepVoltammetry - LinearScanVoltammetry - https://www.wikidata.org/wiki/Q620700 - Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. - https://en.wikipedia.org/wiki/Linear_sweep_voltammetry - https://doi.org/10.1515/pac-2018-0109 + + + + + SolidSol + A type of sol in the form of one solid dispersed in another continuous solid. + SolidSol + A type of sol in the form of one solid dispersed in another continuous solid. - - - - LinearChronopotentiometry - Chronopotentiometry where the applied current is changed linearly. - LinearChronopotentiometry - Chronopotentiometry where the applied current is changed linearly. - chronopotentiometry where the applied current is changed linearly + + + + Sol + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. + Sol + A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase. - + - - - - - - - - - ElectricDipoleMoment - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - ElectricDipoleMoment - http://qudt.org/vocab/quantitykind/ElectricDipoleMoment - https://www.wikidata.org/wiki/Q735135 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 - 6-6 - An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge. - https://doi.org/10.1351/goldbook.E01929 + + + LondonPenetrationDepth + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. + LondonPenetrationDepth + https://qudt.org/vocab/quantitykind/LondonPenetrationDepth + https://www.wikidata.org/wiki/Q3277853 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-33 + 12-38.1 + Distance a magnetic field penetrates the plane surface of a semi-finite superconductor. - + - - Tomography - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - Tomography - Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + + StepChronopotentiometry + + chronopotentiometry where the applied current is changed in steps + StepChronopotentiometry + chronopotentiometry where the applied current is changed in steps - - - CausalConvexSystem - A CausalSystem whose quantum parts are all bonded to the rest of the system. - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - CausalConvexSystem - It is natural to define entities made or more than one smaller parts according to some unity criteria. One of the most general one applicable to causal systems is to ask that all the quantum parts of the system are bonded to the rest. -In other words, causal convexity excludes all quantums that leave the system (no more interacting), or that are not yet part of it (not yet interacting). -So, a photon leaving a body is not part of the body as convex system, while a photon the is carrier of electromagnetic interaction between two molecular parts of the body, is part of the convex body. - A CausalSystem whose quantum parts are all bonded to the rest of the system. + + + + NaturalMaterial + A Material occurring in nature, without the need of human intervention. + NaturalMaterial + A Material occurring in nature, without the need of human intervention. - - - Naming - A declaration that provides a sign for an object that is independent from any assignment rule. - Naming - A declaration that provides a sign for an object that is independent from any assignment rule. - A unique id attached to an entity. + + + + + + + + + + + + Data + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + A perspective in which entities are represented according to the variation of their properties. + Luciano Floridi, "Information - A very Short Introduction", Oxford University Press., (2010) ISBN 978-0199551378 + Contrast + Dedomena + Pattern + Data + A perspective in which entities are represented according to the variation of their properties. + A data is a causal object whose variations (non-uniformity) can be recognised and eventually interpreted. +A data can be of different physical types (e.g., matter, wave, atomic excited states). +How the variations are recognised and eventually decoded depends on the interpreting rules that characterise that type of data. +Variations are pure physical variations and do not necessarily possess semantic meaning. + The covering axiom that defines the data class discriminates within all the possible causal objects between encoded or non encoded. - - - - CharacterisationComponent - - CharacterisationComponent + + + + SparkErosion + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). + elektrochemisches Abtragen + SparkErosion - + - - - WorkFunction - Work function is the energy difference between an electron at rest at infinity and an electron at the Fermi level in the interior of a substance. - least energy required for the emission of a conduction electron. - ElectronWorkFunction - WorkFunction - https://www.wikidata.org/wiki/Q783800 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-35 - 12-24.1 - least energy required for the emission of a conduction electron. - https://doi.org/10.1351/goldbook.E02015 - - - - - GreenCharmQuark - GreenCharmQuark + + + + + T0 L+1 M0 I0 Θ0 N0 J0 + + + LengthUnit + LengthUnit - + - CompositePhysicalObject - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. - CompositePhysicalObject - The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + PhysicalyUnbonded + PhysicalyUnbonded - - - - - DegreeOfDissociation - Dissociation may occur stepwise. - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - DissociationFraction - DegreeOfDissociation - https://qudt.org/vocab/quantitykind/DegreeOfDissociation - https://www.wikidata.org/wiki/Q907334 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-09 - 9-43 - ratio of the number of dissociation events to the maximum number of theoretically possible dissociation events. - https://doi.org/10.1351/goldbook.D01566 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Coded + A conventional referring to an object according to a specific code that reflects the results of a specific interaction mechanism and is shared between other interpreters. +A coded is always a partial representation of an object since it reflects the object capability to be part of a specific determination. +A coded is a sort of name or label that we put upon objects that interact with an determiner in the same specific way. + +For example, "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source. The code is made of terms such as "hot", "warm", "cold", that commonly refer to the perception of heat. + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + Let's define the class Colour as the subclass of the coded signs that involve photon emission and electromagnetic radiation sensible observers. +An individual C of this class Colour can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes) +Stating that an entity E hasCoded C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight). +This definition can be specialised for human eye perception, so that the observer can be a generic human, or to camera perception so that the observer can be a device. +This can be used in material characterization, to define exactly the type of measurement done, including the instrument type. + Coded + A conventional that stands for an object according to a code of interpretation to which the interpreter refers. + A biography that makes use of a code that is provided by the meaning of the element of the language used by the author. + The name "red" that stands for the color of an object. - - - Tau - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - Tau - The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. - https://en.wikipedia.org/wiki/Tau_(particle) + + + + SampleInspectionParameter + + Parameter used for the sample inspection process + SampleInspectionParameter + Parameter used for the sample inspection process - - - - SpeedFractionUnit - Unit for quantities of dimension one that are the fraction of two speeds. - SpeedFractionUnit - Unit for quantities of dimension one that are the fraction of two speeds. - Unit for refractive index. + + + + + + + + + + + NonPrefixedUnit + A measurement unit symbol that do not have a metric prefix as a direct spatial part. + NonPrefixedUnit + A measurement unit symbol that do not have a metric prefix as a direct spatial part. - - - - CSharp - C# - CSharp + + + + LinkedFlux + Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. + LinkedFlux + https://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q4374882 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-77 + 6-22.2 + Magnetic flux the integration area of which is such that magnetic field lines cross it in the same orientation more than once. - - - GluonType1 - GluonType1 + + + + + + + + + + + MagneticFlux + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + MagneticFlux + http://qudt.org/vocab/quantitykind/MagneticFlux + https://www.wikidata.org/wiki/Q177831 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-21 + https://dbpedia.org/page/Magnetic_flux + 6-22.1 + Measure of magnetism, taking account of the strength and the extent of a magnetic field. + https://en.wikipedia.org/wiki/Magnetic_flux + https://doi.org/10.1351/goldbook.M03684 - - - - CharacterisationProtocol - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. - CharacterisationProtocol - A characterisation protocol is defined whenever it is desirable to standardize a laboratory method to ensure successful replication of results by others in the same laboratory or by other laboratories. + + + Observed + Observed + The biography of a person met by the author. - + - - CalibrationDataPostProcessing - Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. - CalibrationDataPostProcessing - Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. + Person + Person - - + + - - - - - - + + + + - PhysicsOfInteraction - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - PhysicsOfInteraction - Set of physics principles (and associated governing equations) that describes the interaction between the sample and the probe. - In x-ray diffraction, this is represented by the set of physics equations that describe the relation between the incident x-ray beam and the diffracted beam (the most simple form for this being the Bragg’s law). - - - - - - LiquidPhaseSintering - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - LiquidPhaseSintering + + DynamicViscosity + The measure of the resistance of a fluid to flow when an external force is applied. + Viscosity + DynamicViscosity + https://qudt.org/vocab/quantitykind/DynamicViscosity + https://www.wikidata.org/wiki/Q15152757 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 + 4-24 + The measure of the resistance of a fluid to flow when an external force is applied. + https://doi.org/10.1351/goldbook.D01877 - + - - StandardizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - StandardizedPhysicalQuantity - The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + + + LatticePlaneSpacing + distance between successive lattice planes + LatticePlaneSpacing + https://qudt.org/vocab/quantitykind/LatticePlaneSpacing + https://www.wikidata.org/wiki/Q105488046 + 12-3 + distance between successive lattice planes - - - - - DragCoefficient - Dimensionless parameter to quantify fluid resistance. - DragFactor - DragCoefficient - https://qudt.org/vocab/quantitykind/DragCoefficient - https://www.wikidata.org/wiki/Q1778961 - 4-23.4 - Dimensionless parameter to quantify fluid resistance. + + + + Nexafs + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. + Nexafs + Near edge X-ray absorption fine structure (NEXAFS), also known as X-ray absorption near edge structure (XANES), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra (XAS) of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected atomic core level ionization energy, where the wavelength of the photoelectron is larger than the interatomic distance between the absorbing atom and its first neighbour atoms. - - - - - FastFissionFactor - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. - FastFissionFactor - https://qudt.org/vocab/quantitykind/FastFissionFactor - https://www.wikidata.org/wiki/Q99197493 - 10-75 - In an infinite medium, the ratio of the mean number of neutrons produced by fission due to neutrons of all energies to the mean number of neutrons produced by fissions due to thermal neutrons only. + + + PhysicallyNonInteracting + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. + PhysicallyNonInteracting + A causal multipath system is a system made of causal paths that are not interacting between each others, or possibly merge and fork. + A physically unbounded system is a combination of decays and/or annihilations, without any space-like interaction between elementary particles. - - - - - - - 1 - - - - - - - 1 - - - - QuantityValue - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - Following the International Vocabulary of Metrology (VIM), EMMO distinguishes between a quantity (a property) and the quantity value (a numerical and a reference). + + + RedTopQuark + RedTopQuark + -So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'. + + + + + + + + + + + + + + + + + + + DownQuarkType + DownQuarkType + -While the string "1 kg" is a 'QuantityValue'. - QuantityValue - A symbolic that has parts a numerical object and a reference expressing the value of a quantity (expressed as the product of the numerical and the unit). - 6.8 m -0.9 km -8 K -6 MeV -43.5 HRC(150 kg) - quantity value - A quantity value is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object. + + + + CompressionTesting + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. + CompressionTesting + Compression tests characterize material and product strength and stiffness under applied crushing loads. These tests are typically conducted by applying compressive pressure to a test specimen using platens or specialized fixtures with a testing machine that produces compressive loads. - - - + + + - - - - - - - + + + T-1 L+2 M0 I0 Θ0 N-1 J0 + - MetrologicalReference - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). - MetrologicalReference - A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such (VIM3 1.1 NOTE 2). - A symbolic is recognized as reference unit also if it is not part of a quantity (e.g. as in the sentence "the Bq is the reference unit of Becquerel"). -For this reason we can't declare the axiom: -MetrologicalReference SubClassOf: inverse(hasMetrologicalReference) some Quantity -because there exist reference units without being part of a quantity. -This is peculiar to EMMO, where quantities as syntatic entities (explicit quantities) are distinct with quantities as semantic entities (properties). + DiffusivityUnit + DiffusivityUnit - + - + - + - ElementaryParticle - A chausal chain whose quantum parts are of the same standard model fundamental type. - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - SingleParticleChain - ElementaryParticle - An elementary particle is a causal chain of quantum entities of the same type. For example, an elementary electron is a sequence of fundamental electrons only. - A chausal chain whose quantum parts are of the same standard model fundamental type. + + + + + + + + + + + + CausalSystem + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + CausalSystem + A causal system provides the most general concept of system, being a union of causal structures interacting together. In its most simple form, a causal system is an interlacement of causal paths (the most simple structure type). + A non-path causal structure + A electron binded by a nucleus. - + + + + Milling + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + Milling + Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + + + + + + NanoMaterial + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + NanoMaterial + Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm + + + + + + SizeDefinedMaterial + SizeDefinedMaterial + + + + + + ShellScript + A command language designed to be run by a command-line interpreter, like a Unix shell. + ShellScript + A command language designed to be run by a command-line interpreter, like a Unix shell. + https://en.wikipedia.org/wiki/Shell_script + + + - - - IntrinsicCarrierDensity - Square root of the product of electron and hole density in a semiconductor. - IntrinsicCarrierDensity - https://qudt.org/vocab/quantitykind/IntinsicCarrierDensity - https://www.wikidata.org/wiki/Q1303188 - 12-29.3 - Square root of the product of electron and hole density in a semiconductor. + + + GFactorOfNucleusOrNuclearParticle + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. + NuclearGFactor + GFactorOfNucleusOrNuclearParticle + https://qudt.org/vocab/quantitykind/GFactorOfNucleus + https://www.wikidata.org/wiki/Q97591250 + 10-14.2 + Quotient of the magnetic dipole moment of an atom, and the product of the nuclear spin quantum number and the nuclear magneton. - + + + + Rolling + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + Walzen + Rolling + + + - + - DynamicViscosity - The measure of the resistance of a fluid to flow when an external force is applied. - Viscosity - DynamicViscosity - https://qudt.org/vocab/quantitykind/DynamicViscosity - https://www.wikidata.org/wiki/Q15152757 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-34 - 4-24 - The measure of the resistance of a fluid to flow when an external force is applied. - https://doi.org/10.1351/goldbook.D01877 + KinematicViscosity + Quotient of dynamic viscosity and mass density of a fluid. + KinematicViscosity + https://qudt.org/vocab/quantitykind/KinematicViscosity + https://www.wikidata.org/wiki/Q15106259 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 + 4-25 + Quotient of dynamic viscosity and mass density of a fluid. + https://doi.org/10.1351/goldbook.K03395 - + - - + - - T-1 L-2 M+1 I0 Θ0 N0 J0 + + - - MassFluxUnit - MassFluxUnit + + + MagneticMoment + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + MagneticAreaMoment + MagneticMoment + https://qudt.org/vocab/quantitykind/MagneticMoment + https://www.wikidata.org/wiki/Q242657 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 + 6-23 + A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation + https://doi.org/10.1351/goldbook.M03688 - - - - Arrangement - A causal object which is tessellated with only spatial direct parts. - The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. -This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself. - The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole. - MereologicalState - Arrangement - A causal object which is tessellated with only spatial direct parts. - e.g. the existent in my glass is declared at t = t_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t_end. The new state will be completely made of water. Between t_start and t_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states. - -If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin. + + + + + + + + + + Stress + Force per unit oriented surface area . + Measure of the internal forces that neighboring particles of a continuous material exert on each other. + Stress + http://qudt.org/vocab/quantitykind/Stress + 4-15 - + - - - VonKlitzingConstant - Resistance quantum. - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. - VonKlitzingConstant - http://qudt.org/vocab/constant/VonKlitzingConstant - The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + + IsochoricHeatCapacity + Heat capacity at constant volume. + HeatCapacityAtConstantVolume + IsochoricHeatCapacity + https://www.wikidata.org/wiki/Q112187521 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-50 + 5-16.3 + Heat capacity at constant volume. - - - - Painting - Painting + + + + + + + + + + + CelsiusTemperature + An objective comparative measure of hot or cold. + +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + CelsiusTemperature + http://qudt.org/vocab/quantitykind/CelciusTemperature + 5-2 + An objective comparative measure of hot or cold. + +Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. + https://doi.org/10.1351/goldbook.T06261 - - - - CoatingManufacturing - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. - DIN 8580:2020 - Beschichten - CoatingManufacturing - A manufacturing in which an adherent layer of amorphous material is applied to a workpiece. + + + WPositiveBoson + WPositiveBoson - + - - - - - T-2 L+1 M+1 I0 Θ0 N0 J0 - - - ForceUnit - ForceUnit + + + NuclearPrecessionAngularFrequency + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. + NuclearPrecessionAngularFrequency + https://www.wikidata.org/wiki/Q97641779 + 10-15.3 + Frequency by which the nucleus angular momentum vector precesses about the axis of an external magnetic field. - - - - Grinding - Removal of material by means of rigid or flexible discs or belts containing abrasives. - Schleifen - Grinding + + + + OpenCircuitHold + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + OCVHold + OpenCircuitHold + A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - - - - - - - T0 L-2 M+1 I0 Θ0 N0 J0 - - - AreaDensityUnit - AreaDensityUnit + + + + + ShearStrain + Displacement of one surface with respect to another divided by the distance between them. + ShearStrain + https://qudt.org/vocab/quantitykind/ShearStrain + https://www.wikidata.org/wiki/Q7561704 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-59 + 4-17.3 + Displacement of one surface with respect to another divided by the distance between them. + https://doi.org/10.1351/goldbook.S05637 - - - - SolidGasSuspension - A coarse dispersion of gas in a solid continuum phase. - SolidGasSuspension - A coarse dispersion of gas in a solid continuum phase. + + + + ElectroSinterForging + ElectroSinterForging - - - - Dilatometry - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. - https://www.lboro.ac.uk/research/lmcc/facilities/dilatometry/#:~:text=Dilatometry%20is%20a%20method%20for,to%20mimic%20an%20industrial%20process. - Dilatometry - Dilatometry is a method for characterising the dimensional changes of materials with variation of temperature conditions. + + + + + ConstitutiveProcess + A constitutive process is a process that is holistically relevant for the definition of the whole. + A process which is an holistic spatial part of an object. + ConstitutiveProcess + A process which is an holistic spatial part of an object. + Blood circulation in a human body. + A constitutive process is a process that is holistically relevant for the definition of the whole. - + - RedBottomQuark - RedBottomQuark - - - - - - - - - - - - - ParticleFluence - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. - ParticleFluence - https://qudt.org/vocab/quantitykind/ParticleFluence - https://www.wikidata.org/wiki/Q82965908 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-15 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-18 - 10-43 - Differential quotient of N with respect to a, where N is the number of particles incident on a sphere of cross-sectional area a. + CausalExpansion + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. + CausalExpansion + A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - - - SpatiallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). - SpatiallyFundamental - The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no spatial parts that satisfy that same criteria (no parts that are of the same type of the whole). + + + + NeutronSpinEchoSpectroscopy + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. + NSE + NeutronSpinEchoSpectroscopy + Neutron spin echo spectroscopy is a high resolution inelastic neutron scattering method probing nanosecond dynamics. Neutron spin echo (NSE) spectroscopy uses the precession of neutron spins in a magnetic field to measure the energy transfer at the sample and decouples the energy resolution from beam characteristics like monochromatisation and collimation. - + - T0 L+2 M-1 I0 Θ0 N0 J0 + T-1 L0 M+1 I0 Θ0 N0 J0 - AreaPerMassUnit - AreaPerMassUnit + MassPerTimeUnit + MassPerTimeUnit - - - - ConventionalProperty - A property that is associated to an object by convention, or assumption. - A quantitative property attributed by agreement to a quantity for a given purpose. - ConventionalProperty - A quantitative property attributed by agreement to a quantity for a given purpose. - The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory. - -If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process. - -Then I have two different physical quantities that are properties thanks to two different semiotic processes. + + + + PlasmaCutting + PlasmaCutting - - - - FibDic - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). - FIBDICResidualStressAnalysis - FibDic - The FIB-DIC (Focused Ion Beam - Digital Image Correlation) ring-core technique is a powerful method for measuring residual stresses in materials. It is based on milling a ring-shaped sample, or core, from the material of interest using a focused ion beam (FIB). + + + + + + + + + + + + + + WBoson + A charged vector boson that mediate the weak interaction. + ChargedWeakBoson + IntermediateVectorBoson + WBoson + A charged vector boson that mediate the weak interaction. + https://en.wikipedia.org/wiki/W_and_Z_bosons - - - - - - - - - - - Operator - The human operator who takes care of the whole characterisation method or sub-processes/stages. - Operator - The human operator who takes care of the whole characterisation method or sub-processes/stages. + + + + DataExchangeLanguage + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + DataExchangeLanguage + A computer language that is domain-independent and can be used for expressing data from any kind of discipline. + JSON, YAML, XML + https://en.wikipedia.org/wiki/Data_exchange#Data_exchange_languages - - - - - - - - - - - ThermalDiffusivity - ThermalDiffusionCoefficient - ThermalDiffusivity - https://qudt.org/vocab/quantitykind/ThermalDiffusivity - https://www.wikidata.org/wiki/Q3381809 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-53 - 5-14 + + + + ManufacturingDevice + A device that is designed to participate to a manufacturing process. + ManufacturingDevice + A device that is designed to participate to a manufacturing process. - + - - - CoherenceLength - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature - CoherenceLength - https://www.wikidata.org/wiki/Q1778793 - 12-38.2 - Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + + + NeutronYieldPerAbsorption + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. + NeutronYieldPerAbsorption + https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption + https://www.wikidata.org/wiki/Q99159075 + 10-74.2 + Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - - + + - - - - - - + + / - - - - - - - - - - SemioticEntity - Semiotic subclasse are defined using Peirce's semiotic theory. - -"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). - -The triadic elements: -- 'sign': the sign A (e.g. a name) -- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) -- 'object': the object C (e.g. the entity to which the sign A and B refer to) - -This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - SemioticEntity - The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + + Division + Division - + - - - - - - - - - EquilibriumPositionVector - In condensed matter physics, position vector of an atom or ion in equilibrium. - EquilibriumPositionVector - https://qudt.org/vocab/quantitykind/EquilibriumPositionVectorOfIon - https://www.wikidata.org/wiki/Q105533477 - 12-7.2 - In condensed matter physics, position vector of an atom or ion in equilibrium. + + StandardizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). + StandardizedPhysicalQuantity + The superclass for all physical quantities classes that are categorized according to a standard (e.g. ISQ). - - - NonEncodedData - Data that occurs naturally without an encoding agent producing it. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - EnvironmentalData - NonEncodedData - Data that occurs naturally without an encoding agent producing it. - A cloud in the sky. The radiative spectrum of a star. - This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + + + + + MeanFreePathOfPhonons + average distance that phonons travel between two successive interactions + MeanFreePathOfPhonons + https://qudt.org/vocab/quantitykind/PhononMeanFreePath + https://www.wikidata.org/wiki/Q105672255 + 12-15.1 + average distance that phonons travel between two successive interactions - + - - - MassFractionOfWater - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. - MassFractionOfWater - https://qudt.org/vocab/quantitykind/MassFractionOfWater - https://www.wikidata.org/wiki/Q76379025 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-63 - 5-31 - Quantity of dimension 1 equal to u/(1 + u), where u is mass ratio of water to dry matter. + + + + + T-1 L0 M0 I0 Θ0 N+1 J0 + + + CatalyticActivityUnit + CatalyticActivityUnit - - - - Inequality - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - Inequality - A relation which makes a non-equal comparison between two numbers or other mathematical expressions. - f(x) > 0 + + + + ChipboardManufacturing + ChipboardManufacturing - - - CeramicMaterial - CeramicMaterial + + + + + + + T-1 L0 M0 I0 Θ+2 N0 J0 + + + SquareTemperaturePerTimeUnit + SquareTemperaturePerTimeUnit - + - - - PropagationCoefficient - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. - PropagationCoefficient - https://qudt.org/vocab/quantitykind/PropagationCoefficient.html - https://www.wikidata.org/wiki/Q1434913 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-10-18 - 3-26.3 - Measure of the change of amplitude and phase angle of a plane wave propagating in a given direction. + ExactConstant + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. + ExactConstant + Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty. - - - - - SlowingDownArea - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. - SlowingDownArea - https://qudt.org/vocab/quantitykind/Slowing-DownArea - https://www.wikidata.org/wiki/Q98950918 - 10-72.1 - In an infinite homogenous medium, one-sixth of the mean square of the distance between the neutron source and the point where a neutron reaches a given energy. + + + + LinearScanVoltammetry + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + LSV + LinearPolarization + LinearSweepVoltammetry + LinearScanVoltammetry + https://www.wikidata.org/wiki/Q620700 + Voltammetry in which the current is recorded as the electrode potential is varied linearly with time. LSV corresponds to the first half cycle of cyclic voltammetry. The peak current is expressed by the Randles-Ševčík equation. The scan is usually started at a potential where no electrode reaction occurs. + https://en.wikipedia.org/wiki/Linear_sweep_voltammetry + https://doi.org/10.1515/pac-2018-0109 - - - - - - - - - - - - - - + + - - + + - Cognition - IconSemiosis - Cognition + + + MassExcess + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + MassExcess + https://qudt.org/vocab/quantitykind/MassExcess + https://www.wikidata.org/wiki/Q1571163 + 10-21.1 + Difference between the mass of an atom, and the product of its mass number and the unified mass constant. + https://doi.org/10.1351/goldbook.M03719 - + - - DoseEquivalentRate - Time derivative of the dose equivalent. - DoseEquivalentRate - https://www.wikidata.org/wiki/Q99604810 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-02 - 10-83.2 - Time derivative of the dose equivalent. + + + NonLeakageProbability + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + NonLeakageProbability + https://qudt.org/vocab/quantitykind/Non-LeakageProbability + https://www.wikidata.org/wiki/Q99415566 + 10-77 + Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - - - - - ThermodynamicEfficiency - ThermalEfficiency - ThermodynamicEfficiency - https://qudt.org/vocab/quantitykind/ThermalEfficiency - https://www.wikidata.org/wiki/Q1452104 - 5-25.1 + + + + ArchetypeJoin + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). + ArchetypeJoin + Archetype join attaches two workpiece with geometrically defined shape together, using supplementary workpiece made of amorphous material (e.g. powder). - + - + + - - + + T+2 L0 M+1 I0 Θ0 N0 J0 - - - - DiffusionArea - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - DiffusionArea - https://qudt.org/vocab/quantitykind/DiffusionArea - https://www.wikidata.org/wiki/Q98966292 - 10-72.2 - One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. + + MassSquareTimeUnit + MassSquareTimeUnit - + - - UltrasonicTesting - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - UltrasonicTesting - Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + + CharacterisationHardwareSpecification + + CharacterisationHardwareSpecification - - - - FunctionallyDefinedMaterial - FunctionallyDefinedMaterial + + + + CeramicSintering + CeramicSintering - + - + - - ParticleSourceDensity - Quotient of the mean rate of production of particles in a volume, and that volume. - ParticleSourceDensity - https://qudt.org/vocab/quantitykind/ParticleSourceDensity - https://www.wikidata.org/wiki/Q98915762 - 10-66 - Quotient of the mean rate of production of particles in a volume, and that volume. + + Magnetization + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. + Magnetization + https://qudt.org/vocab/quantitykind/Magnetization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-52 + 6-24 + At a given point within a domain of quasi-infinitesimal volume V, vector quantity equal to the magnetic area moment m of the substance contained within the domain divided by the volume V. - + + + + + Status + An object which is an holistic temporal part of a process. + State + Status + An object which is an holistic temporal part of a process. + A semi-naked man is a status in the process of a man's dressing. + + + + + + ThermomechanicalTreatment + ThermomechanicalTreatment + + + - - Tortuosity - Parameter for diffusion and fluid flow in porous media. - Tortuosity - https://www.wikidata.org/wiki/Q2301683 - Parameter for diffusion and fluid flow in porous media. + + DisplacementCurrent + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. + DisplacementCurrent + https://qudt.org/vocab/quantitykind/DisplacementCurrent + https://www.wikidata.org/wiki/Q853178 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-43 + 6-19.1 + Scalar quantity equal to the flux of the displacement current density JD through a given directed surface S. - + + + + HardwareModel + + HardwareModel + + + - + - ReciprocalDuration - InverseDuration - InverseTime - ReciprocalTime - ReciprocalDuration - https://qudt.org/vocab/quantitykind/InverseTime - https://www.wikidata.org/wiki/Q98690850 - - - - - - - - - - - - - - - - - Fermion - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - Fermion - A physical particle with half odd integer spin (1/2, 3/2, etc...) that follows Fermi-Dirac statistics. - https://en.wikipedia.org/wiki/Fermion + + RecombinationCoefficient + Coefficient in the law of recombination, + RecombinationCoefficient + https://qudt.org/vocab/quantitykind/RecombinationCoefficient + https://www.wikidata.org/wiki/Q98842099 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-47 + 10-63 + Coefficient in the law of recombination, - + - + - - Radioactivity - Decays per unit time. - RadioactiveActivity - Radioactivity - http://qudt.org/vocab/quantitykind/SpecificActivity - Decays per unit time. - https://doi.org/10.1351/goldbook.A00114 + + AreaDensity + Mass per unit area. + AreaDensity + http://qudt.org/vocab/quantitykind/SurfaceDensity + https://doi.org/10.1351/goldbook.S06167 - + - - VoltagePhasor - Complex representation of an oscillating voltage. - VoltagePhasor - https://qudt.org/vocab/quantitykind/VoltagePhasor - https://www.wikidata.org/wiki/Q78514605 - 6-50 - Complex representation of an oscillating voltage. + + + VonKlitzingConstant + Resistance quantum. + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. + VonKlitzingConstant + http://qudt.org/vocab/constant/VonKlitzingConstant + The von Klitzing constant is defined as Planck constant divided by the square of the elementary charge. - + + + + HardeningByForging + HardeningByForging + + + - + + - - + + T-3 L-1 M+1 I0 Θ+1 N0 J0 - - - - - ElectricPotential - The electric potential is not unique, since any constant scalar -field quantity can be added to it without changing its gradient. - Energy required to move a unit charge through an electric field from a reference point. - ElectroStaticPotential - ElectricPotential - http://qudt.org/vocab/quantitykind/ElectricPotential - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-25 - https://dbpedia.org/page/Electric_potential - 6-11.1 - Energy required to move a unit charge through an electric field from a reference point. - https://en.wikipedia.org/wiki/Electric_potential - https://doi.org/10.1351/goldbook.E01935 + + TemperaturePressurePerTimeUnit + TemperaturePressurePerTimeUnit - + - + + - MagneticMoment - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - MagneticAreaMoment - MagneticMoment - https://qudt.org/vocab/quantitykind/MagneticMoment - https://www.wikidata.org/wiki/Q242657 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-49 - 6-23 - A vector quantity equal to the product of the current, the loop area, and the unit vector normal to the loop plane, the direction of which corresponds to the loop orientation - https://doi.org/10.1351/goldbook.M03688 - - - - - - Homonuclear - A molecule composed of only one element type. - ElementalMolecule - Homonuclear - A molecule composed of only one element type. - Hydrogen molecule (H₂). - - - - - - PostProcessingModel - Mathematical model used to process data. - Mathematical model used to process data. The PostProcessingModel use is mainly intended to get secondary data from primary data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. - PostProcessingModel - Mathematical model used to process data. - The PostProcessingModel use is mainly intended to get secondary data from primary data. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Gluon - The class of individuals that stand for gluons elementary particles. - Gluon - The class of individuals that stand for gluons elementary particles. - https://en.wikipedia.org/wiki/Gluon + Capacitance + The derivative of the electric charge of a system with respect to the electric potential. + ElectricCapacitance + Capacitance + http://qudt.org/vocab/quantitykind/Capacitance + 6-13 + The derivative of the electric charge of a system with respect to the electric potential. + https://doi.org/10.1351/goldbook.C00791 - - - - ThroughTile - A tile that has next and is next of other tiles within the same tessellation. - ThroughTile - A tile that has next and is next of other tiles within the same tessellation. + + + NonEncodedData + Data that occurs naturally without an encoding agent producing it. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. + EnvironmentalData + NonEncodedData + Data that occurs naturally without an encoding agent producing it. + A cloud in the sky. The radiative spectrum of a star. + This is a really broad class that gathers all physical phenomena in which a variation occurs naturally. - - - - - Stage - A process which is an holistic temporal part of a process. - Stage - A process which is an holistic temporal part of a process. - Moving a leg is a stage of the process of running. + + + + + + + + + + + AcceptorDensity + quotient of number of acceptor levels and volume. + AcceptorDensity + https://qudt.org/vocab/quantitykind/AcceptorDensity + https://www.wikidata.org/wiki/Q105979968 + 12-29.5 + quotient of number of acceptor levels and volume. - - + + - T-1 L+1 M0 I0 Θ+1 N0 J0 + T0 L-1 M0 I0 Θ0 N0 J0 - TemperatureLengthPerTimeUnit - TemperatureLengthPerTimeUnit + ReciprocalLengthUnit + ReciprocalLengthUnit - - - - StandaloneModelSimulation - A standalone simulation, where a single physics equation is solved. - StandaloneModelSimulation - A standalone simulation, where a single physics equation is solved. + + + + Electroplating + Electroplating - - - - - StandardAmountConcentration - Chosen value of amount concentration, usually equal to 1 mol dm−3. - StandardConcentration - StandardMolarConcentration - StandardAmountConcentration - https://www.wikidata.org/wiki/Q88871689 - Chosen value of amount concentration, usually equal to 1 mol dm−3. - 9-12.2 - https://doi.org/10.1351/goldbook.S05909 + + + + ConfocalMicroscopy + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + ConfocalMicroscopy + Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - + - - Width - Length in a given direction regarded as horizontal. - The terms breadth and width are often used by convention, as distinguished from length and from height or thickness. - Breadth - Width - https://qudt.org/vocab/quantitykind/Width - https://www.wikidata.org/wiki/Q35059 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-20 - 3-1.2 - Length in a given direction regarded as horizontal. + + ComplexPower + Voltage phasor multiplied by complex conjugate of the current phasor. + ComplexApparentPower + ComplexPower + https://qudt.org/vocab/quantitykind/ComplexPower + https://www.wikidata.org/wiki/Q65239736 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-39 + 6-59 + Voltage phasor multiplied by complex conjugate of the current phasor. - - - - - ParticlePositionVector - Position vector of a particle. - ParticlePositionVector - https://qudt.org/vocab/quantitykind/ParticlePositionVector - https://www.wikidata.org/wiki/Q105533324 - 12-7.1 - Position vector of a particle. + + + NonNumericalData + Data that are non-quantitatively interpreted (e.g., qualitative data, types). + NonNumericalData + Data that are non-quantitatively interpreted (e.g., qualitative data, types). - + - + - - - RelativePressureCoefficient - RelativePressureCoefficient - https://qudt.org/vocab/quantitykind/RelativePressureCoefficient - https://www.wikidata.org/wiki/Q74761852 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-30 - 5-3.3 + AngularAcceleration + vector quantity giving the rate of change of angular velocity + AngularAcceleration + https://qudt.org/vocab/quantitykind/AngularAcceleration + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-46 + https://dbpedia.org/page/Angular_acceleration + 3-13 + vector quantity giving the rate of change of angular velocity + https://en.wikipedia.org/wiki/Angular_acceleration - + - + + - - + + T+1 L+2 M0 I0 Θ0 N0 J0 - - - - PressureCoefficient - Change of pressure per change of temperature at constant volume. - PressureCoefficient - https://qudt.org/vocab/quantitykind/PressureCoefficient - https://www.wikidata.org/wiki/Q74762732 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-29 - 5-4 - Change of pressure per change of temperature at constant volume. + + AreaTimeUnit + AreaTimeUnit - - - - - - - - - SpatialTiling - A well formed tessellation with tiles that all spatial. - SpatialTiling - A well formed tessellation with tiles that all spatial. + + + + SamplePreparationParameter + + Parameter used for the sample preparation process + SamplePreparationParameter + Parameter used for the sample preparation process - + - - - DewPointTemperature - The corresponding Celsius temperature is denoted td and is also called dew point. - Thermodynamic temperature at which vapour in air reaches saturation. - DewPointTemperature - https://www.wikidata.org/wiki/Q178828 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-67 - 5-36 - Thermodynamic temperature at which vapour in air reaches saturation. - https://doi.org/10.1351/goldbook.D01652 + + + ActivityOfSolvent + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + ActivityOfSolvent + https://www.wikidata.org/wiki/Q89486193 + 9-27.1 + For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - + - T-3 L-1 M+1 I0 Θ0 N0 J0 + T-1 L+4 M0 I0 Θ0 N0 J0 - PressurePerTimeUnit - PressurePerTimeUnit + QuarticLengthPerTimeUnit + QuarticLengthPerTimeUnit - - - - - - - - - - - - - - FundamentalAntiMatterParticle - FundamentalAntiMatterParticle + + + + + + + + + + + + Sign + A 'Sign' can have temporal-direct-parts which are 'Sign' themselves. + +A 'Sign' usually havs 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting). + +Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part. + According to Peirce, 'Sign' includes three subcategories: +- symbols: that stand for an object through convention +- indeces: that stand for an object due to causal continguity +- icons: that stand for an object due to similitudes e.g. in shape or composition + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + Sign + An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process. + A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy). + +Each of them are 'sign'-s. + +A character can be the a-tomistic 'sign' for the class of texts. + +The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself. + +For plain text we can propose the ASCII symbols, for math the fundamental math symbols. - - + + - - + + - - Time - One-dimensional subspace of space-time, which is locally orthogonal to space. - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - Time can be seen as the duration of an event or, more operationally, as "what clocks read". - Time - http://qudt.org/vocab/quantitykind/Time - One-dimensional subspace of space-time, which is locally orthogonal to space. - 3-7 - The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future. - https://doi.org/10.1351/goldbook.T06375 - - - - - - + - - T-1 L-1 M+1 I0 Θ0 N0 J0 + + + + + + + + + + + + + + + - MassPerLengthTimeUnit - MassPerLengthTimeUnit + Interpreter + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + The interpreter is not the ontologist, being the ontologist acting outside the ontology at the meta-ontology level. + +On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity. + Interpreter + The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'. + For example, the ontologist may be interest in cataloguing in the EMMO how the same object (e.g. a cat) is addressed using different signs (e.g. cat, gatto, chat) by different interpreters (e.g. english, italian or french people). + +The same applies for the results of measurements: the ontologist may be interest to represent in the EMMO how different measurement processes (i.e. semiosis) lead to different quantitative results (i.e. signs) according to different measurement devices (i.e. interpreters). - - - StandardUnit - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - ReferenceMaterial - StandardUnit - A reference unit provided by a reference material. -International vocabulary of metrology (VIM) - Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l + + + + + StoichiometricNumberOfSubstance + StoichiometricNumberOfSubstance + https://qudt.org/vocab/quantitykind/StoichiometricNumber + https://www.wikidata.org/wiki/Q95443720 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-22 + 9-29 + https://doi.org/10.1351/goldbook.S06025 - + - T-4 L+2 M0 I0 Θ0 N0 J0 + T-1 L+3 M0 I0 Θ0 N0 J0 - AreaPerQuarticTimeUnit - AreaPerQuarticTimeUnit - - - - - - MachineCell - A group of machineries used to process a group of similar parts. - Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. - MachineCell - A group of machineries used to process a group of similar parts. - - - - - - Cleaning - Process for removing unwanted residual or waste material from a given product or material - Cleaning - - - - - - Sawing - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - Sägen - Sawing - Process of cutting a workpiece into smaller parts that are either doughter parts, samples (e.g. for testing) or scrap. - - - - - - Machining - A manufacturing in which material is removed from the workpiece in the form of chips. - RemovingChipsFromWorkpiece - Machining - A manufacturing in which material is removed from the workpiece in the form of chips. - - - - - - - NeutronNumber - Atomic number (proton number) plus neutron number equals mass number. - Number of neutrons in an atomic nucleus. - NeutronNumber - https://www.wikidata.org/wiki/Q970319 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-34 - 10-1.2 - Number of neutrons in an atomic nucleus. - Atomic number (proton number) plus neutron number equals mass number. - https://en.wikipedia.org/wiki/Neutron_number - https://doi.org/10.1351/goldbook.N04119 - - - - - - ElectronProbeMicroanalysis - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. - ElectronProbeMicroanalysis - Electron probe microanalysis (EPMA) is used for quantitative analysis of the elemental composition of solid specimens at a micrometer scale. The method uses bombardment of the specimen by keV electrons to excite characteristic X-rays from the sample, which are then detected by using wavelength-dispersive (WD) spectrometers. + VolumePerTimeUnit + VolumePerTimeUnit - + - T-3 L+1 M+1 I0 Θ0 N0 J0 + T-3 L-3 M+1 I0 Θ0 N0 J0 - MassLengthPerCubicTimeUnit - MassLengthPerCubicTimeUnit + PowerPerAreaVolumeUnit + PowerPerAreaVolumeUnit - - - - - ActivityOfSolvent - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. - ActivityOfSolvent - https://www.wikidata.org/wiki/Q89486193 - 9-27.1 - For a solvent in a solution, quotient of the absolute activity and that of the pure substance at the same temperature and pressure. + + + + DynamicLightScattering + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + DLS + DynamicLightScattering + Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - - - - - - - - - - - LinearMassDensity - Mass per length. - LinearDensity - LineicMass - LinearMassDensity - https://qudt.org/vocab/quantitykind/LinearDensity - https://www.wikidata.org/wiki/Q56298294 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-11 - 4-6 - Mass per length. + + + + BlowMolding + BlowMolding - - - + + + - - - T-2 L+2 M+1 I0 Θ0 N-1 J0 - + + + + + + - EnergyPerAmountUnit - EnergyPerAmountUnit + Reductionistic + A class devoted to categorize causal objects by specifying their granularity levels. + A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: + - are proper parts of y + - covers the entire whole (y = x1 +x2 + ... + xn) + - do not overlap + - are part of one, and one only, whole (inverse functional) + Reductionistic + A class devoted to categorize causal objects by specifying their granularity levels. + A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: + - are proper parts of y + - covers the entire whole (y = x1 +x2 + ... + xn) + - do not overlap + - are part of one, and one only, whole (inverse functional) + Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. - + - - - - - - - - - DirectionDistributionOfCrossSection - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - DirectionDistributionOfCrossSection - https://qudt.org/vocab/quantitykind/AngularCrossSection - https://www.wikidata.org/wiki/Q98266630 - 10-39 - Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + + + LowerCriticalMagneticFluxDensity + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. + LowerCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/LowerCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106127355 + 12-36.2 + For type II superconductors, the threshold magnetic flux density for magnetic flux entering the superconductor. - + - Graviton - The class of individuals that stand for gravitons elementary particles. - While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + + + + + + + + + + + + + + + + + TopAntiQuark + TopAntiQuark + -For this reason graviton is an useful concept to homogenize the approach between different fields. - Graviton - The class of individuals that stand for gravitons elementary particles. - While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles. + + + + SolidGasSuspension + A coarse dispersion of gas in a solid continuum phase. + SolidGasSuspension + A coarse dispersion of gas in a solid continuum phase. + -For this reason graviton is an useful concept to homogenize the approach between different fields. - https://en.wikipedia.org/wiki/Graviton + + + + + + + + + + + + + + + + + + + Dispersion + A material in which distributed particles of one phase are dispersed in a different continuous phase. + Dispersion + A material in which distributed particles of one phase are dispersed in a different continuous phase. + + + + + + PulsedElectroacousticMethod + + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + PulsedElectroacousticMethod + The pulsed electroacoustic (PEA) method is an established method for space charge measurements in polymeric dielectrics. + https://doi.org/10.1007/s10832-023-00332-y - - - - - RelativeMassDefect - Quotient of mass defect and the unified atomic mass constant. - RelativeMassDefect - https://qudt.org/vocab/quantitykind/RelativeMassDefect - https://www.wikidata.org/wiki/Q98038718 - 10-22.2 - Quotient of mass defect and the unified atomic mass constant. + + + + Smoke + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. + Smoke + Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis. - - - - - MechanicalEfficiency - Quotient of mechanical output and input power. - MechanicalEfficiency - https://www.wikidata.org/wiki/Q2628085 - 4-29 - Quotient of mechanical output and input power. + + + + DifferentialRefractiveIndex + + DifferentialRefractiveIndex - + - - - - - T0 L-2 M0 I+1 Θ-2 N0 J0 - - - RichardsonConstantUnit - RichardsonConstantUnit + + PrincipalQuantumNumber + Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. + PrincipalQuantumNumber + https://qudt.org/vocab/quantitykind/PrincipalQuantumNumber + https://www.wikidata.org/wiki/Q867448 + 10-13.2 + Atomic quantum number related to the number n−1 of radial nodes of one-electron wave functions. - + - GreenStrangeAntiQuark - GreenStrangeAntiQuark + + + + + + + + + + + + + + + + + + AntiNeutrinoType + AntiNeutrinoType - + + + + XrdGrazingIncidence + + XrdGrazingIncidence + + + - + - - Coercivity - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - Coercivity - https://qudt.org/vocab/quantitykind/Coercivity - https://www.wikidata.org/wiki/Q432635 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-69 - 6-31 - Coercive field strength in a substance when either the magnetic flux density or the magnetic polarization and magnetization is brought from its value at magnetic saturation to zero by monotonic reduction of the applied magnetic field strength. - - - - - - - - - T+1 L+1 M0 I+1 Θ0 N0 J0 - - - ElectricDipoleMomentUnit - ElectricDipoleMomentUnit - - - - - - NeutronYieldPerAbsorption - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - NeutronYieldPerAbsorption - https://qudt.org/vocab/quantitykind/NeutronYieldPerAbsorption - https://www.wikidata.org/wiki/Q99159075 - 10-74.2 - Average number of fission neutrons, both prompt and delayed, emitted per neutron absorbed in a fissionable nuclide or in a nuclear fuel, as specified. - - - - - BlueStrangeQuark - BlueStrangeQuark - - - - - - - - - - - - Existent - 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space). - -'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation. - -This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels. - -e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron. - A 'Physical' which is a tessellation of 'State' temporal direct parts. - An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time. - -By definition, the tiles are represented by 'State'-s individual. - -Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality. - Being hasTemporalDirectPart a proper parthood relation, there cannot be 'Existent' made of a single 'State'. - -Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s. - true - Existent - A 'Physical' which is a tessellation of 'State' temporal direct parts. - - - - - - NumericalVariable - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. - NumericalVariable - A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers. + DirectionAndEnergyDistributionOfCrossSection + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. + DirectionAndEnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralAngularCrossSection + https://www.wikidata.org/wiki/Q98269571 + 10-41 + Partial differential quotient of the cross section of a process with respect to the solid angle around a given direction and the energy of a particle scattered in that direction. - - - - ApplicationSpecificScript - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - ApplicationSpecificScript - A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. - Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. + + + + + DebyeAngularWaveNumber + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + DebyeAngluarRepetency + DebyeAngularWaveNumber + https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber + https://www.wikidata.org/wiki/Q105554370 + 12-9.3 + Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - - - - ScriptingLanguage - A programming language that is executed through runtime interpretation. - ScriptingLanguage - A programming language that is executed through runtime interpretation. + + + + + DisplacementVector + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. + DisplacementVector + https://qudt.org/vocab/quantitykind/DisplacementVectorOfIon + https://www.wikidata.org/wiki/Q105533558 + 12-7.3 + In condensed matter physics, position vector of an atom or ion relative to its equilibrium position. - + - - - - - T+2 L-2 M-1 I+2 Θ0 N0 J0 - - - MagneticReluctanceUnit - MagneticReluctanceUnit + + PeriodDuration + duration of one cycle of a periodic event + Period + PeriodDuration + https://qudt.org/vocab/quantitykind/Period + https://www.wikidata.org/wiki/Q2642727 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-06-01 + 3-14 + duration of one cycle of a periodic event + https://doi.org/10.1351/goldbook.P04493 - + - - MassSpectrometry - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - MassSpectrometry - Mass spectrometry is a powerful analytical technique used to quantify known materials, to identify unknown compounds within a sample, and to elucidate the structure and chemical properties of different molecules. - - - - - - Unknown - The dependent variable for which an equation has been written. - Unknown - The dependent variable for which an equation has been written. - Velocity, for the Navier-Stokes equation. + + DynamicMechanicalSpectroscopy + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. + DMA + DynamicMechanicalSpectroscopy + Dynamic Mechanical Analysis (DMA) is a material characterization technique where a small deformation is applied to a sample in a cyclic manner. This allows measurement of the materials response to stress, temperature, frequency or time. The term is also used to refer to the analyzer that performs the test. - - - - - MolarHelmholtzEnergy - Helmholtz energy per amount of substance. - MolarHelmholtzEnergy - https://www.wikidata.org/wiki/Q88862986 - 9-6.3 - Helmholtz energy per amount of substance. + + + + FiberReinforcePlasticManufacturing + FiberReinforcePlasticManufacturing - - - - VaporDeposition - VaporDeposition + + + + ThreePointBendingTesting + + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + ThreePointFlexuralTest + ThreePointBendingTesting + https://www.wikidata.org/wiki/Q2300905 + Method of mechanical testing that provides values for the modulus of elasticity in bending, flexural stress, flexural strain, and the flexural stress–strain response of a material sample + https://en.wikipedia.org/wiki/Three-point_flexural_test - - - + + - + - + - - - - - - - - - - - - - - - - - - - - - - - - - - - + + - Suspension - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - Suspensions show no significant effect on light. - Suspension - An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + BottomAntiQuark + BottomAntiQuark - - - - - TotalCrossSection - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. - TotalCrossSection - https://qudt.org/vocab/quantitykind/TotalCrossSection - https://www.wikidata.org/wiki/Q98206553 - 10-38.2 - Sum of all cross sections corresponding to the various reactions or processes between an incident particle of specified type and energy and a target entity. + + + + + LiquidSol + A type of sol in the form of one solid dispersed in liquid. + LiquidSol + A type of sol in the form of one solid dispersed in liquid. - - - - - MobilityRatio - Quotient of electron and hole mobility. - MobilityRatio - https://qudt.org/vocab/quantitykind/MobilityRatio - https://www.wikidata.org/wiki/Q106010255 - 12-31 - Quotient of electron and hole mobility. + + + + HardnessTesting + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. + HardnessTesting + A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - + - Positron - Positron + GreenCharmAntiQuark + GreenCharmAntiQuark - - - - - PowerFactor - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. - PowerFactor - https://qudt.org/vocab/quantitykind/PowerFactor - https://www.wikidata.org/wiki/Q750454 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-46 - 6-58 - Under periodic conditions, ratio of the absolute value of the active power P to the apparent power S. + + + AntiMuon + AntiMuon - - - - - - - - - - - - - BaseUnit - A set of units that correspond to the base quantities in a system of units. - BaseUnit - A set of units that correspond to the base quantities in a system of units. - base unit + + + + Impedimetry + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + Impedimetry + Measurement principle in which the complex electric impedance of a system is measured, usually as a function of a small amplitude sinusoidal electrode potential. + https://doi.org/10.1515/pac-2018-0109 - - - - - - - T0 L+6 M0 I0 Θ0 N0 J0 - - - SexticLengthUnit - SexticLengthUnit + + + + + Behaviour + A process which is an holistic temporal part of an object. + Behaviour + A process which is an holistic temporal part of an object. + Accelerating is a behaviour of a car. - + - DielectricAndImpedanceSpectroscopy - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - DielectricAndImpedanceSpectroscopy - Dielectric spectroscopy (DS) or impedance spectroscopy, also known as electrochemical impedance spectroscopy, is frequently used to study the response of a sample subjected to an applied electric field of fixed or changing frequency. DS describes the dielectric properties of a material as a function of frequency. In DS, the radio and microwave frequency regions of the electromagnetic spectrum have been successfully made to interact with materials, so as to study the behavior of molecules. The interaction of applied alternating electric fields with dipoles possessing reorientation mobility in materials is also dealt by DS. - + RamanSpectroscopy + + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - - - - HotDipGalvanizing - Hot-dipGalvanizing - HotDipGalvanizing - +Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - - - - PhotochemicalProcesses - PhotochemicalProcesses - +Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + RamanSpectroscopy + Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - - - - - ElectronCharge - The charge of an electron. - The negative of ElementaryCharge. - ElectronCharge - The charge of an electron. - https://doi.org/10.1351/goldbook.E01982 +Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. + +Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - + - - DefinedEdgeCutting - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - Spanen mit geometrisch bestimmten Schneiden - DefinedEdgeCutting + + Cementing + Cementing - - - - Drilling - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - Bohren - Drilling + + + ScalarMeson + A meson with spin zero and even parity. + ScalarMeson + A meson with spin zero and even parity. + https://en.wikipedia.org/wiki/Scalar_meson - - - - - PreparedSample - The sample after a preparation process. - PreparedSample - The sample after a preparation process. + + + + Vapor + A liquid aerosol composed of water droplets in air or another gas. + Vapor + A liquid aerosol composed of water droplets in air or another gas. - + + + + LiquidAerosol + An aerosol composed of liquid droplets in air or another gas. + LiquidAerosol + An aerosol composed of liquid droplets in air or another gas. + + + - T0 L0 M-1 I0 Θ0 N0 J0 + T+2 L0 M-1 I0 Θ0 N0 J0 - ReciprocalMassUnit - ReciprocalMassUnit + SquareTimePerMassUnit + SquareTimePerMassUnit - - - - ModelledProperty - A quantity obtained from a well-defined modelling procedure. - ModelledProperty - A quantity obtained from a well-defined modelling procedure. + + + + Polishing + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. + Polishing + Polishing is a machining process to achieve a smooth surface of the Sample, which uses abrasive compounds with smal particles that are embedded in a pad or wheel. - + - - WearTesting - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - WearTesting - A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + + DifferentialThermalAnalysis + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + DTA + DifferentialThermalAnalysis + Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - - - - Soldering - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - Löten - Soldering + + + + MeasuredProperty + A quantity that is the result of a well-defined measurement procedure. + The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. + +-- VIM + MeasuredProperty + A quantity that is the result of a well-defined measurement procedure. - - - - LiquidAerosol - An aerosol composed of liquid droplets in air or another gas. - LiquidAerosol - An aerosol composed of liquid droplets in air or another gas. + + + + AdditiveManufacturing + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + GenerativeManufacturing + AdditiveManufacturing + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - + - T0 L-2 M0 I+1 Θ-1 N0 J0 + T-2 L-2 M+1 I0 Θ0 N0 J0 - ElectricCurrentDensityPerTemperatureUnit - ElectricCurrentDensityPerTemperatureUnit + MassPerSquareLengthSquareTimeUnit + MassPerSquareLengthSquareTimeUnit - - - - - - - - - - - - Reductionistic - A class devoted to categorize causal objects by specifying their granularity levels. - A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: - - are proper parts of y - - covers the entire whole (y = x1 +x2 + ... + xn) - - do not overlap - - are part of one, and one only, whole (inverse functional) - Reductionistic - A class devoted to categorize causal objects by specifying their granularity levels. - A granularity level is specified by a tiling decomposition of the whole y. A tiling is identified as a set of items {x1, x2, ... xn} called tiles that: - - are proper parts of y - - covers the entire whole (y = x1 +x2 + ... + xn) - - do not overlap - - are part of one, and one only, whole (inverse functional) - Direct parthood is the antitransitive parthood relation used to build the class hierarchy (and the granularity hierarchy) for this perspective. + + + + + + + + + + AffinityOfAChemicalReaction + Describes elements' or compounds' readiness to form bonds. + ChemicalAffinity + AffinityOfAChemicalReaction + https://qudt.org/vocab/quantitykind/ChemicalAffinity + https://www.wikidata.org/wiki/Q382783 + 9-30 + Describes elements' or compounds' readiness to form bonds. + https://doi.org/10.1351/goldbook.A00178 - - - - - Cutting - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - Schneiden - Cutting + + + + + + AngularMeasure + The abstract notion of angle. + AngularMeasure + https://qudt.org/vocab/quantitykind/Angle + https://www.wikidata.org/wiki/Q1357788 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 + 3-5 + The abstract notion of angle. + https://doi.org/10.1351/goldbook.A00346 - - - - BondedAtom - A real bond between atoms is always something hybrid between covalent, metallic and ionic. + + + + + + + T-6 L-2 M+2 I0 Θ0 N0 J0 + + + SquarePressurePerSquareTimeUnit + SquarePressurePerSquareTimeUnit + -In general, metallic and ionic bonds have atoms sharing electrons. - An bonded atom that shares at least one electron to the atom-based entity of which is part of. - The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic. - This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule. - BondedAtom - An bonded atom that shares at least one electron to the atom-based entity of which is part of. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Gluon + The class of individuals that stand for gluons elementary particles. + Gluon + The class of individuals that stand for gluons elementary particles. + https://en.wikipedia.org/wiki/Gluon - - + + + - - - - - - + + + T-1 L-2 M+1 I0 Θ0 N0 J0 + - GasSolution - A gaseous solution made of more than one component type. - GasMixture - GasSolution - A gaseous solution made of more than one component type. + MassFluxUnit + MassFluxUnit + + + + + + + + RelativeHumidity + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + The relative humidity is often expressed in per cent. + RelativeHumidity + https://qudt.org/vocab/quantitykind/RelativeHumidity + https://www.wikidata.org/wiki/Q2499617 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-65 + 5-33 + Ratio of the partial pressure p of water vapour in moist air to its partial pressure psat at saturation, at the same temperature φ = p/psat. + https://en.wikipedia.org/wiki/Humidity#Relative_humidity - - - ElementaryFermion - ElementaryFermion + + + + + RelativeMassConcentrationOfWaterVapour + For normal cases, the relative humidity may be assumed to be equal to relative mass concentration of vapour. + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. + RelativeMassConcentrationOfWaterVapour + https://qudt.org/vocab/quantitykind/RelativeMassConcentrationOfVapour + https://www.wikidata.org/wiki/Q76379357 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-66 + ratio of the mass concentration of water vapour v to its mass concentration at saturation vsat, at the same temperature, thus ψ = v/vsat. - + - - - MolarEnthalpy - MolarEnthalpy - https://www.wikidata.org/wiki/Q88769977 - Enthalpy per amount of substance. - 9-6.2 + + + DiffusionCoefficientForFluenceRate + Proportionality constant between the particle current density J and the gradient of the particle fluence rate. + DiffusionCoefficientForFluenceRate + https://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate + https://www.wikidata.org/wiki/Q98876254 + 10-65 + Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - + - + - + - - - - - - - - - - - - - - - - - + + - RedAntiQuark - RedAntiQuark + AntiElectronType + AntiElectronType - + + + AtomisticModel + A physics-based model based on a physics equation describing the behaviour of atoms. + AtomisticModel + A physics-based model based on a physics equation describing the behaviour of atoms. + + + - + - - LinearElectricCurrentDensity - Surface density of electric charge multiplied by velocity - LinearElectricCurrentDensity - https://qudt.org/vocab/quantitykind/LinearElectricCurrentDensity - https://www.wikidata.org/wiki/Q2356741 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-12 - 6-9 - Surface density of electric charge multiplied by velocity + + DirectionDistributionOfCrossSection + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. + DirectionDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/AngularCrossSection + https://www.wikidata.org/wiki/Q98266630 + 10-39 + Differential quotient of the cross section for scattering a particle in a given direction and the solid angle around that direction. - + + + QuantumData + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + QuantumData + Data that are expressed through quantum mechanical principles, and that can have several values ​​/ be in several states in the same place at the same time (quantum superposition), each of them with a certain probability. + + + - - + - - T-2 L+3 M+1 I0 Θ0 N-1 J0 + + - - EnergyLengthPerAmountUnit - EnergyLengthPerAmountUnit + + + AvogadroConstant + The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + +It defines the base unit mole in the SI system. + AvogadroConstant + http://qudt.org/vocab/constant/AvogadroConstant + The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + +It defines the base unit mole in the SI system. + https://doi.org/10.1351/goldbook.A00543 - - - Photon - The class of individuals that stand for photons elementary particles. - Photon - The class of individuals that stand for photons elementary particles. - https://en.wikipedia.org/wiki/Photon + + + + + + Δ + + + + Laplacian + Laplacian - + + + + DifferentialOperator + DifferentialOperator + + + - - ModulusOfAdmittance - ModulusOfAdmittance - https://qudt.org/vocab/quantitykind/ModulusOfAdmittance - https://www.wikidata.org/wiki/Q79466359 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 - 6-52.4 + + + LinearIonization + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + LinearIonization + https://qudt.org/vocab/quantitykind/LinearIonization + https://www.wikidata.org/wiki/Q98690755 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-03-115 + 10-58 + Differential quotient of q with respect to l, where q is the average total charge of all positive ions produced by an ionizing charged particle over a path l, divided by the elementary charge. + + + + + + GravitySintering + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder + Loose-powderSintering + PressurelessSintering + GravitySintering + + + + + + + + + + + + + MolarConductivity + Conductivity per molar concentration of electrolyte. + MolarConductivity + https://qudt.org/vocab/quantitykind/MolarConductivity + https://www.wikidata.org/wiki/Q1943278 + 9-45 + Conductivity per molar concentration of electrolyte. + https://doi.org/10.1351/goldbook.M03976 + + + + + + + MigrationLength + Square root of the migration area, M^2. + MigrationLength + https://qudt.org/vocab/quantitykind/MigrationLength + https://www.wikidata.org/wiki/Q98998318 + 10-73.3 + Square root of the migration area, M^2. + + + + + + ConductometricTitration + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + ConductometricTitration + https://www.wikidata.org/wiki/Q11778221 + Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. + https://doi.org/10.1515/pac-2018-0109 + + + + + + Conductometry + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Conductometry + https://www.wikidata.org/wiki/Q901180 + Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. + Monitoring of the purity of deionized water. + https://en.wikipedia.org/wiki/Conductometry + https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + + + + + + + + + FundamentalInteraction + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + FundamentalInteraction + A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. +Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. +This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). + A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. + A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - + - T0 L-2 M0 I0 Θ0 N+1 J0 + T0 L+3 M0 I0 Θ-1 N0 J0 - AmountPerAreaUnit - AmountPerAreaUnit - - - - - - SamplePreparationInstrument - - SamplePreparationInstrument + VolumePerTemperatureUnit + VolumePerTemperatureUnit - - - - Potentiometry - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - Potentiometry - https://www.wikidata.org/wiki/Q900632 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-04-12 - Method of electroanalytical chemistry based on measurement of an electrode potential. Potentiometric methods are used to measure the electrochemical potentials of a metallic structure in a given environment. For measurements using ion-selective electrodes, the measurement is made under equilibrium conditions what means that the macroscopic electric current is zero and the concentrations of all species are uniform throughout the solution. The indicator electrode is in direct contact with the analyte solution, whereas the reference electrode is usually separated from the analyte solution by a salt bridge. The potential difference between the indicator and reference electrodes is normally directly proportional to the logarithm of the activity (concentration) of the analyte in the solution (Nernst equation). See also ion selective electrode. - https://doi.org/10.1515/pac-2018-0109 + + + + GyromagneticRatioOfTheElectron + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + GyromagneticCoefficientOfTheElectron + MagnetogyricRatioOfTheElectron + GyromagneticRatioOfTheElectron + https://www.wikidata.org/wiki/Q97543076 + 10-12.2 + Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - + - + - - SeebeckCoefficient - Measure of voltage induced by change of temperature. - SeebeckCoefficient - https://qudt.org/vocab/quantitykind/SeebeckCoefficient - https://www.wikidata.org/wiki/Q1091448 - 12-21 - Measure of voltage induced by change of temperature. + + GyromagneticRatio + Ratio of magnetic dipole moment to total angular momentum. + GyromagneticCoefficient + MagnetogyricRatio + GyromagneticRatio + https://qudt.org/vocab/quantitykind/GyromagneticRatio + https://www.wikidata.org/wiki/Q634552 + 10-12.1 + Ratio of magnetic dipole moment to total angular momentum. + https://doi.org/10.1351/goldbook.M03693 - + - - - HyperfineTransitionFrequencyOfCs - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. - -It defines the base unit second in the SI system. - HyperfineTransitionFrequencyOfCs - The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. - -It defines the base unit second in the SI system. + + ResistanceToAlternativeCurrent + Real part of the impedance. + ResistanceToAlternativeCurrent + https://www.wikidata.org/wiki/Q1048490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 + 6-51.2 + Real part of the impedance. - - - - LengthFractionUnit - Unit for quantities of dimension one that are the fraction of two lengths. - LengthFractionUnit - Unit for quantities of dimension one that are the fraction of two lengths. - Unit for plane angle. + + + + Probe + + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + Probe + Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties. + In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics. + In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm. + In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…) + In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence). + In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry - + - - - Emulsion - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Emulsion - An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture). - Mayonnaise, milk. - - - - - - + + - - FundamentalLatticeVector - Fundamental translation vector for the crystal lattice. - FundamentalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalLatticeVector - https://www.wikidata.org/wiki/Q105451063 - 12-1.2 - Fundamental translation vector for the crystal lattice. + + + + + + + + + + + + + + Meson + Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. + Most mesons are composed of one quark and one antiquark. + Meson + Hadronic subatomic particles composed of an equal number of quarks and antiquarks bound together by strong interactions. + Most mesons are composed of one quark and one antiquark. + https://en.wikipedia.org/wiki/Meson - + - - - NonLeakageProbability - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. - NonLeakageProbability - https://qudt.org/vocab/quantitykind/Non-LeakageProbability - https://www.wikidata.org/wiki/Q99415566 - 10-77 - Probability that a neutron will not escape from the reactor during the slowing-down process or while it diffuses as a thermal neutron. + + RadiantFlux + The radiant energy emitted, reflected, transmitted or received, per unit time. + RadiantFlux + http://qudt.org/vocab/quantitykind/RadiantFlux + https://doi.org/10.1351/goldbook.R05046 - - - - Java - Java + + + + + Bending + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + Bending - + + + + FlexuralForming + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + Biegeumformen + FlexuralForming + + + - T0 L0 M0 I0 Θ+2 N0 J0 + T0 L+1 M+1 I0 Θ0 N0 J0 - SquareTemperatureUnit - SquareTemperatureUnit - - - - - - - SubObject - An object which is an holistic temporal part of another object. - Here we consider a temporal interval that is lower than the characteristic time of the physical process that provides the causality connection between the object parts. - SubObject - An object which is an holistic temporal part of another object. - If an inhabited house is considered as an house that is occupied by some people in its majority of time, then an interval of inhabited house in which occasionally nobody is in there is no more an inhabited house, but an unhinabited house, since this temporal part does not satisfy the criteria of the whole. - - - - - - OxidationNumber - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - OxidationState - OxidationNumber - https://www.wikidata.org/wiki/Q484152 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-25 - https://dbpedia.org/page/Oxidation_state - Charge number that an atom within a molecule would have if all the ligands were removed along with the electron pairs that were shared. - https://en.wikipedia.org/wiki/Oxidation_state - https://doi.org/10.1351/goldbook.O04363 + LengthMassUnit + LengthMassUnit - - - - - MultiplicationFactor - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. - MultiplicationFactor - https://qudt.org/vocab/quantitykind/MultiplicationFactor - https://www.wikidata.org/wiki/Q99440471 - 10-78.1 - Quotient of the total number of fission or fission-dependent neutrons produced in the duration of a time interval and the total number of neutrons lost by absorption and leakage in that duration. + + + + XpsVariableKinetic + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. + Electron spectroscopy for chemical analysis (ESCA) + X-ray photoelectron spectroscopy (XPS) + XpsVariableKinetic + X-ray photoelectron spectroscopy (XPS), also known as ESCA (electron spectroscopy for chemical analysis) is a surface analysis technique which provides both elemental and chemical state information virtually without restriction on the type of material which can be analysed. It is a relatively simple technique where the sample is illuminated with X-rays which have enough energy to eject an electron from the atom. These ejected electrons are known as photoelectrons. The kinetic energy of these emitted electrons is characteristic of the element from which the photoelectron originated. The position and intensity of the peaks in an energy spectrum provide the desired chemical state and quantitative information. The surface sensitivity of XPS is determined by the distance that that photoelectron can travel through the material without losing any kinteic energy. These elastiaclly scattered photoelectrons contribute to the photoelectron peak, whilst photoelectrons that have been inelastically scattered, losing some kinetic energy before leaving the material, will contribute to the spectral background. - + + - + - + - + @@ -19609,1416 +19381,1537 @@ It defines the base unit second in the SI system. - Dispersion - A material in which distributed particles of one phase are dispersed in a different continuous phase. - Dispersion - A material in which distributed particles of one phase are dispersed in a different continuous phase. + Fluid + A continuum that has no fixed shape and yields easily to external pressure. + Fluid + A continuum that has no fixed shape and yields easily to external pressure. + Gas, liquid, plasma, - + + + + SecondaryData + + Data resulting from the application of post-processing or model generation to other data. + Elaborated data + SecondaryData + Data resulting from the application of post-processing or model generation to other data. + Deconvoluted curves + Intensity maps + + + + + RedStrangeAntiQuark + RedStrangeAntiQuark + + + - + - MeanMassRange - Product of the mean linear range R and the mass density ρ of the material. - MeanMassRange - https://qudt.org/vocab/quantitykind/MeanMassRange - https://www.wikidata.org/wiki/Q98681670 - 10-57 - Product of the mean linear range R and the mass density ρ of the material. - https://doi.org/10.1351/goldbook.M03783 + EnergyDistributionOfCrossSection + Differential quotient of the cross section for a process and the energy of the scattered particle. + EnergyDistributionOfCrossSection + https://qudt.org/vocab/quantitykind/SpectralCrossSection + https://www.wikidata.org/wiki/Q98267245 + 10-40 + Differential quotient of the cross section for a process and the energy of the scattered particle. - - + + + + MaterialRelationComputation + MaterialRelationComputation + + + + + + + PhysicsMathematicalComputation + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + PhysicsMathematicalComputation + A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. + The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + + + + + + LengthFractionUnit + Unit for quantities of dimension one that are the fraction of two lengths. + LengthFractionUnit + Unit for quantities of dimension one that are the fraction of two lengths. + Unit for plane angle. + + + + - T-1 L-2 M0 I0 Θ0 N+1 J0 + T+4 L-3 M-1 I+2 Θ0 N0 J0 - AmountPerAreaTimeUnit - AmountPerAreaTimeUnit + PermittivityUnit + PermittivityUnit - - + + - T0 L0 M+1 I0 Θ0 N+1 J0 + T0 L0 M0 I0 Θ0 N+1 J0 - MassAmountOfSubstanceUnit - MassAmountOfSubstanceUnit - - - - - - QuantumDecay - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - QuantumDecay - A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - - - - - CausalExpansion - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - CausalExpansion - A causal expansion is a fundamental causal system that is expressed as a complete bipartite directed graph K(m,n), when m<n. - - - - - - - LiquidFoam - A foam of trapped gas in a liquid. - LiquidFoam - A foam of trapped gas in a liquid. + AmountUnit + AmountUnit - + - - - HelmholtzEnergy - HelmholtzFreeEnergy - HelmholtzEnergy - https://www.wikidata.org/wiki/Q865821 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 - 5-20.4 - https://doi.org/10.1351/goldbook.H02772 - - - - - - - - - - - - - - - - - - - - - BottomQuark - BottomQuark - https://en.wikipedia.org/wiki/Bottom_quark - - - - - BlueUpQuark - BlueUpQuark + + MagneticPolarisation + Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. + MagneticPolarisation + https://qudt.org/vocab/quantitykind/MagneticPolarization + https://www.wikidata.org/wiki/Q856711 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-54 + 6-29 + Vector quantity equal to the product of the magnetization M and the magnetic constant μ0. - + - - HardnessTesting - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - HardnessTesting - A test to determine the resistance a material exhibits to permanent deformation by penetration of another harder material. - - - - - ZBoson - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - NeutralWeakBoson - ZBoson - An uncharged vector boson that mediate the weak interaction. - Z bosons are their own antiparticles. - https://en.wikipedia.org/wiki/W_and_Z_bosons + + CharacterisationComponent + + CharacterisationComponent - - - + + + + - - = + + T+1 L0 M-1 I0 Θ0 N0 J0 - - - - Equals - The equals symbol. - Equals - The equals symbol. + + MechanicalMobilityUnit + MechanicalMobilityUnit - - - - Numeral - Numeral + + + + + LatentHeat + LatentHeat + https://www.wikidata.org/wiki/Q207721 + 5-6.2 - - - - IsothermalMicrocalorimetry - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. - IMC - IsothermalMicrocalorimetry - Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + + + + + + + + + + + GasSolution + A gaseous solution made of more than one component type. + GasMixture + GasSolution + A gaseous solution made of more than one component type. - - - Person - Person + + + + ModulusOfAdmittance + ModulusOfAdmittance + https://qudt.org/vocab/quantitykind/ModulusOfAdmittance + https://www.wikidata.org/wiki/Q79466359 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-52 + 6-52.4 - + - + - - KinematicViscosity - Quotient of dynamic viscosity and mass density of a fluid. - KinematicViscosity - https://qudt.org/vocab/quantitykind/KinematicViscosity - https://www.wikidata.org/wiki/Q15106259 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-35 - 4-25 - Quotient of dynamic viscosity and mass density of a fluid. - https://doi.org/10.1351/goldbook.K03395 + + + ElectronDensity + Number of electrons in conduction band per volume. + ElectronDensity + https://qudt.org/vocab/quantitykind/ElectronDensity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=705-06-05 + 12-29.1 + Number of electrons in conduction band per volume. - - - - AlphaSpectrometry - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. - AlphaSpectrometry - Alpha spectrometry (also known as alpha(-particle) spectroscopy) is the quantitative study of the energy of alpha particles emitted by a radioactive nuclide that is an alpha emitter. As emitted alpha particles are mono-energetic (i.e. not emitted with a spectrum of energies, such as beta decay) with energies often distinct to the decay they can be used to identify which radionuclide they originated from. + + + + + PlanckConstant + The quantum of action. It defines the kg base unit in the SI system. + PlanckConstant + http://qudt.org/vocab/constant/PlanckConstant + The quantum of action. It defines the kg base unit in the SI system. + https://doi.org/10.1351/goldbook.P04685 - - + + + + ModellingLanguage + An artificial computer language used to express information or knowledge, often for use in computer system design. + ModellingLanguage + An artificial computer language used to express information or knowledge, often for use in computer system design. + Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + Hardware description language – used to model integrated circuits. + +Architecture description language – used as a language (or a conceptual model) to describe and represent system architectures. + +Algebraic Modeling Language which is a high-level programming languages for describing and solving high complexity problems like large-scale optimisation. + https://en.wikipedia.org/wiki/Modeling_language + + + + - T-4 L+3 M+1 I-2 Θ0 N0 J0 + T-1 L+2 M+1 I0 Θ0 N0 J0 - InversePermittivityUnit - InversePermittivityUnit + AngularMomentumUnit + AngularMomentumUnit - + - + + - - + + T-1 L0 M-1 I0 Θ0 N+1 J0 - - - - SpecificEntropy - SpecificEntropy - https://qudt.org/vocab/quantitykind/SpecificEntropy - https://www.wikidata.org/wiki/Q69423705 - 5-19 + + AmountPerMassTimeUnit + AmountPerMassTimeUnit - + + + + PhotoluminescenceMicroscopy + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + PhotoluminescenceMicroscopy + Photoluminescence spectroscopy is a widely used technique for characterisation of the optical and electronic properties of semiconductors and molecules. + + + + + BlueCharmQuark + BlueCharmQuark + + + + + + IsentropicExponent + For an ideal gas, isentropic exponent is equal to ratio of the specific heat capacities. + IsentropicExponent + https://qudt.org/vocab/quantitykind/IsentropicExponent + https://www.wikidata.org/wiki/Q75775739 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-52 + 5-17.2 + + + + + + + Tool + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + Tool + An object that enables or facilitate an agent in the execution of a process that modifies the surrounding environment. + + + + - - + + + + + + - - LuminousIntensity - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. - LuminousIntensity - http://qudt.org/vocab/quantitykind/LuminousIntensity - 7-14 - A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye. + + CharacterisationMeasurementTask + Used to break-down a CharacterisationMeasurementProcess into his specific tasks. + CharacterisationMeasurementTask + Used to break-down a CharacterisationMeasurementProcess into his specific tasks. - + - - + - - T+2 L0 M0 I0 Θ0 N0 J0 + + - - SquareTimeUnit - SquareTimeUnit + + + + MassieuFunction + Negative quotient of Helmholtz energy and temperature. + MassieuFunction + https://qudt.org/vocab/quantitykind/MassieuFunction + https://www.wikidata.org/wiki/Q3077625 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-26 + 5-22 + Negative quotient of Helmholtz energy and temperature. - + - GreenDownQuark - GreenDownQuark - - - - - - Tempering - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - QuenchingAndTempering - Vergüten - Tempering - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + ZBoson + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + NeutralWeakBoson + ZBoson + An uncharged vector boson that mediate the weak interaction. + Z bosons are their own antiparticles. + https://en.wikipedia.org/wiki/W_and_Z_bosons - + - - - PhaseDifference - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. - DisplacementAngle - PhaseDifference - https://www.wikidata.org/wiki/Q97222919 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 - 6-48 - Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + + + Spin + Vector quantity expressing the internal angular momentum of a particle or a particle system. + Spin + https://qudt.org/vocab/quantitykind/Spin + https://www.wikidata.org/wiki/Q133673 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 + 10-10 + Vector quantity expressing the internal angular momentum of a particle or a particle system. - - - - OpenCircuitHold - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). - OCVHold - OpenCircuitHold - A process in which the electric current is kept constant at 0 (i.e., open-circuit conditions). + + + + SourceVoltage + Voltage between the two terminals of a voltage source when there is no electric current through the source. + SourceTension + SourceVoltage + https://qudt.org/vocab/quantitykind/SourceVoltage + https://www.wikidata.org/wiki/Q185329 + 6-36 + Voltage between the two terminals of a voltage source when there is no electric current through the source. - - - - SecondaryIonMassSpectrometry - - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - SIMS - SecondaryIonMassSpectrometry - Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + + + + Numeral + Numeral - + - - + + + HyperfineTransitionFrequencyOfCs + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. + HyperfineTransitionFrequencyOfCs + The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency. + +It defines the base unit second in the SI system. + + + + + - - T0 L-3 M0 I0 Θ0 N-1 J0 + + + + + + + + + + + + + + - ReciprocalAmountPerVolumeUnit - ReciprocalAmountPerVolumeUnit - - - - - - - - - ThermodynamicCriticalMagneticFluxDensity - ThermodynamicCriticalMagneticFluxDensity - https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity - https://www.wikidata.org/wiki/Q106103200 - 12-36.1 + Conventional + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. + In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional. + Conventional + A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it. - + - + - LuminousFlux - Perceived power of light. - LuminousFlux - http://qudt.org/vocab/quantitykind/LuminousFlux - 7-13 - Perceived power of light. - https://doi.org/10.1351/goldbook.L03646 - - - - - - OpticalMicroscopy - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - OpticalMicroscopy - Optical microscopy is a technique used to closely view a sample through the magnification of a lens with visible light. - - - - - - QueryLanguage - A construction language used to make queries in databases and information systems. - QueryLanguage - A construction language used to make queries in databases and information systems. - SQL, SPARQL - https://en.wikipedia.org/wiki/Query_language + + IonNumberDensity + Number of ions per volume. + IonDensity + IonNumberDensity + https://www.wikidata.org/wiki/Q98831218 + 10-62.2 + Number of ions per volume. - - - - - - - - - - - - - - - - - - - DownQuarkType - DownQuarkType + + + + + PackingFraction + Quotient of relative mass excess and the nucleon number. + PackingFraction + https://qudt.org/vocab/quantitykind/PackingFraction + https://www.wikidata.org/wiki/Q98058276 + 10-23.1 + Quotient of relative mass excess and the nucleon number. - - - RightHandedParticle - RightHandedParticle + + + + Flanging + Flanging - - + + - - - - - - + + - JunctionTile - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. - JunctionTile - A direct part that is obtained by partitioning a whole hybridly in spatial, temporal and spatiotemporal parts. + + Torque + Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt. + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + Torque + http://qudt.org/vocab/quantitykind/Torque + 4-12.2 + The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis. + https://doi.org/10.1351/goldbook.T06400 - - - - - - - - - - - - - - - - - - - - - MetrologicalSymbol - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - MetrologicalSymbol - A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + + + + + DragCoefficient + Dimensionless parameter to quantify fluid resistance. + DragFactor + DragCoefficient + https://qudt.org/vocab/quantitykind/DragCoefficient + https://www.wikidata.org/wiki/Q1778961 + 4-23.4 + Dimensionless parameter to quantify fluid resistance. - + + + + Viscometry + + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + Viscosity + Viscometry + Viscometry or viscosity method was one of the first methods used for determining the MW of polymers. In this method, the viscosity of polymer solution is measured, and the simplest method used is capillary viscometry by using the Ubbelohde U-tube viscometer. In this method, both the flow time of the polymer solution (t) and the flow time of the pure solvent (t0) are recorded. The ratio of the polymer solution flow time (t) to the flow time of pure solvent (t0) is equal to the ratio of their viscosities (η/η0) only if they have the same densities. + + + + + + SpecificGibbsEnergy + Gibbs energy per unit mass. + SpecificGibbsEnergy + https://qudt.org/vocab/quantitykind/SpecificGibbsEnergy + https://www.wikidata.org/wiki/Q76360636 + 5-21.5 + Gibbs energy per unit mass. + + + + + + MarkupLanguage + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + MarkupLanguage + A grammar for annotating a document in a way that is syntactically distinguishable from the text. + HTML + https://en.wikipedia.org/wiki/Markup_language + + + + - - DebyeAngularWaveNumber - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. - DebyeAngluarRepetency - DebyeAngularWaveNumber - https://qudt.org/vocab/quantitykind/DebyeAngularWavenumber - https://www.wikidata.org/wiki/Q105554370 - 12-9.3 - Cut-off angular wavenumber in the Debye model of the vibrational spectrum of a solid. + ShortRangeOrderParameter + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction + ShortRangeOrderParameter + https://qudt.org/vocab/quantitykind/Short-RangeOrderParameter + https://www.wikidata.org/wiki/Q105495979 + 12-5.1 + fraction of nearest-neighbour atom pairs in an Ising ferromagnet having magnetic moments in one direction, minus the fraction having magnetic moments in the opposite direction - + - RedBottomAntiQuark - RedBottomAntiQuark + BlueUpAntiQuark + BlueUpAntiQuark - - - + + + + - - - 1 + + T0 L+2 M0 I0 Θ0 N0 J0 - - - IRI - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - IRI - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. - https://en.wiktionary.org/wiki/Ῥόδος - IRIs are commonly used as identifiers for ontological entities, although the extended unicode character set is rarely used. - https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier + + AreaUnit + AreaUnit - - - - LevelOfAutomation - Describes the level of automation of the test. - LevelOfAutomation - Describes the level of automation of the test. + + + + TransientLiquidPhaseSintering + TransientLiquidPhaseSintering - + - - BPMNDiagram - BPMNDiagram + + CharacterisationEnvironmentProperty + + CharacterisationEnvironmentProperty - - - - - - + + + + + + - - - - - - - + - - - - UpAntiQuarkType - UpAntiQuarkType + + + + BaseUnit + A set of units that correspond to the base quantities in a system of units. + BaseUnit + A set of units that correspond to the base quantities in a system of units. + base unit - + - PrecipitationHardening - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - PrecipitationHardening - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - - - - - - Broadcast - Broadcast - - - - - - - - - - - MixedTiling - A well formed tessellation with at least a junction tile. - MixedTiling - A well formed tessellation with at least a junction tile. + IsothermalConversion + IsothermalConversion - + - T+1 L-2 M0 I0 Θ0 N0 J+1 + T-1 L-1 M+1 I0 Θ0 N0 J0 - IlluminanceTimeUnit - IlluminanceTimeUnit + MassPerLengthTimeUnit + MassPerLengthTimeUnit - + - - + - - T-2 L0 M+2 I0 Θ0 N0 J0 + + - - SquareMassPerSquareTimeUnit - SquareMassPerSquareTimeUnit + + + + SectionModulus + SectionModulus + https://qudt.org/vocab/quantitykind/SectionModulus + https://www.wikidata.org/wiki/Q1930808 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-31 + 4-22 - - - - - - - T0 L-1 M0 I0 Θ+1 N0 J0 - - - TemperaturePerLengthUnit - TemperaturePerLengthUnit + + + + CPlusPlus + A language object respecting the syntactic rules of C++. + C++ + CPlusPlus + A language object respecting the syntactic rules of C++. - - - - Dismantling - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - Demontage - Dismantling - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + + + + CompiledLanguage + CompiledLanguage - + + + + AqueousSolution + A liquid solution in which the solvent is water. + AqueousSolution + A liquid solution in which the solvent is water. + + + - + - - - MassChangeRate - Mass increment per time. - MassChangeRate - https://www.wikidata.org/wiki/Q92020547 - 4-30.3 - Mass increment per time. - - - - - - - PhaseAngle - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - PhaseAngle - https://www.wikidata.org/wiki/Q415829 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-07-04 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=141-01-01 - 3-7 - Angular measure between the positive real axis and the radius of the polar representation of the complex number in the complex plane. - - - - - - Electroplating - Electroplating + + + BurgersVector + Vector characterising a dislocation in a crystal lattice. + BurgersVector + https://qudt.org/vocab/quantitykind/BurgersVector + https://www.wikidata.org/wiki/Q623093 + 12-6 + Vector characterising a dislocation in a crystal lattice. - - - - DeepFreezing - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - Cryogenic treatment, Deep-freeze - Tieftemperaturbehandeln - DeepFreezing - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + + + + + + + + + + + + + + Lepton + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + Lepton + An elementary particle of half-integer spin (spin 1⁄2) that does not undergo strong interactions. + https://en.wikipedia.org/wiki/Lepton - - - PseudovectorMeson - A meson with total spin 1 and even parit. - PseudovectorMeson - A meson with total spin 1 and even parit. - https://en.wikipedia.org/wiki/Pseudovector_meson + + + CausalInteraction + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. + CausalInteraction + A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - - - - Punctuation - Punctuation + + + + + + + + + + + + + + + KnownConstant + A variable that stand for a well known numerical constant (a known number). + KnownConstant + A variable that stand for a well known numerical constant (a known number). + π refers to the constant number ~3.14 - + - + - + - WBoson - A charged vector boson that mediate the weak interaction. - ChargedWeakBoson - IntermediateVectorBoson - WBoson - A charged vector boson that mediate the weak interaction. - https://en.wikipedia.org/wiki/W_and_Z_bosons + PhysicallyInteractingConvex + PhysicallyInteractingConvex - + + + + MaterialLaw + A law that provides a connection between a material property and other properties of the object. + MaterialLaw + A law that provides a connection between a material property and other properties of the object. + + + - T-3 L0 M+1 I0 Θ0 N0 J0 + T-4 L+2 M0 I0 Θ0 N0 J0 - PowerDensityUnit - PowerDensityUnit + AreaPerQuarticTimeUnit + AreaPerQuarticTimeUnit - - - AnalogData - Data that are decoded retaining its continuous variations characteristic. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. - AnalogData - Data that are decoded retaining its continuous variations characteristic. - A vynil contain continuous information about the recorded sound. - The fact that there may be a finite granularity in the variations of the material basis (e.g. the smallest peak in a vynil that can be recognized by the piezo-electric transducer) does not prevent a data to be analog. It means only that the focus on such data encoding is on a scale that makes such variations negligible, making them practically a continuum. + + + + GammaSpectrometry + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. + GammaSpectrometry + Gamma-ray spectroscopy is the qualitative study of the energy spectra of gamma-ray sources, such as in the nuclear industry, geochemical investigation, and astrophysics.[1] Gamma-ray spectrometry, on the other hand, is the method used to acquire a quantitative spectrum measurement. Most radioactive sources produce gamma rays, which are of various energies and intensities. When these emissions are detected and analyzed with a spectroscopy system, a gamma-ray energy spectrum can be produced. A detailed analysis of this spectrum is typically used to determine the identity and quantity of gamma emitters present in a gamma source, and is a vital tool in radiometric assay. The gamma spectrum is characteristic of the gamma-emitting nuclides contained in the source, just like in an optical spectrometer, the optical spectrum is characteristic of the material contained in a sample. - - - - - - - - - - - - - - - - Substance - A composite physical object made of fermions (i.e. having mass and occupying space). - Substance - A composite physical object made of fermions (i.e. having mass and occupying space). + + + + + HalfLife + Mean duration required for the decay of one half of the atoms or nuclei. + HalfLife + https://qudt.org/vocab/quantitykind/Half-Life + https://www.wikidata.org/wiki/Q98118544 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-12 + 10-31 + Mean duration required for the decay of one half of the atoms or nuclei. - + + + ResourceIdentifier + + ResourceIdentifier + + + - - MarkupLanguage - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - MarkupLanguage - A grammar for annotating a document in a way that is syntactically distinguishable from the text. - HTML - https://en.wikipedia.org/wiki/Markup_language + + ComputerScience + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. + A well-formed formula that follows the syntactic rules of computer science. + ComputerScience + A well-formed formula that follows the syntactic rules of computer science. + A well-formed formula in computer science may be or not be interpreted by a computer. For example pseudo-code is only intended for human consumption. - - - - TensileTesting - - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. - TensionTest - TensileTesting - Tensile testing, also known as tension testing, is a test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials. + + + + + LiquidFoam + A foam of trapped gas in a liquid. + LiquidFoam + A foam of trapped gas in a liquid. - + - - + + + LarmonFrequency + Quotient of Larmor angular frequency and 2π. + LarmonFrequency + 10-15.2 + Quotient of Larmor angular frequency and 2π. + + + + + - - T-1 L-3 M+1 I0 Θ0 N0 J0 + + + + + + + + + + + + + + + - MassPerVolumeTimeUnit - MassPerVolumeTimeUnit + SemioticEntity + Semiotic subclasse are defined using Peirce's semiotic theory. + +"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21). + +The triadic elements: +- 'sign': the sign A (e.g. a name) +- 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) +- 'object': the object C (e.g. the entity to which the sign A and B refer to) + +This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object' + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. + SemioticEntity + The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process. - + - - - - - - - - - - - - - - - - - - FundamentalInteraction - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. - FundamentalInteraction - A fundamental physical process is made of one or more standard particles as input, and one or more standard particles as output, where each input is direct cause of each output. -Each fundamental physical phenomena refers to a Feynman diagram, hence is made at least of three standard model particles. -This requirement implies that a physical phenomena is either a decay, annihilation, interaction, collapse or creation phenomena (fundamental) or a composition of them (non-fundamental). - A causal system that is the representation of a Feynman diagram, where quantum represents the real particles entering and exiting the system. - A fundamental system is expressed as a complete bipartite directed graph K(m,n) of quantums, m being the number of originating quantums, and n being the receiving quantums. + GreenUpQuark + GreenUpQuark - - - - FORTRAN - FORTRAN + + + + BPMNDiagram + BPMNDiagram + + + + + BlueTopQuark + BlueTopQuark - - - - AqueousSolution - A liquid solution in which the solvent is water. - AqueousSolution - A liquid solution in which the solvent is water. + + + + + SourceCode + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + SourceCode + A programming language entity expressing a formal detailed plan of what a software is intended to do. + A source code is the companion of an application, being it the entity used to generate the application list of CPU executable instructions. + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - - StyleSheetLanguage - A computer language that expresses the presentation of structured documents. - StyleSheetLanguage - A computer language that expresses the presentation of structured documents. - CSS - https://en.wikipedia.org/wiki/Style_sheet_language + + + + + + + + + + + Molality + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + AmountPerMass + Molality + https://www.wikidata.org/wiki/Q172623 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-19 + 9-15 + quotient of the amount of substance nB of solute B by the mass m of the solvent: bB = nB / m. + https://doi.org/10.1351/goldbook.M03970 - + - T0 L+3 M0 I0 Θ0 N-1 J0 + T+1 L+2 M0 I+1 Θ0 N0 J0 - VolumePerAmountUnit - VolumePerAmountUnit + ElectricChargeAreaUnit + ElectricChargeAreaUnit - - - - LightScattering - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - LightScattering - Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + + + PolymericMaterial + PolymericMaterial - - - RedTopQuark - RedTopQuark + + + + + + + + + + + ParticleSourceDensity + Quotient of the mean rate of production of particles in a volume, and that volume. + ParticleSourceDensity + https://qudt.org/vocab/quantitykind/ParticleSourceDensity + https://www.wikidata.org/wiki/Q98915762 + 10-66 + Quotient of the mean rate of production of particles in a volume, and that volume. - - - AntiMuon - AntiMuon + + + + + + + + + + + VolumicTotalCrossSection + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms + MacroscopicTotalCrossSection + VolumicTotalCrossSection + https://qudt.org/vocab/quantitykind/MacroscopicTotalCrossSection + https://www.wikidata.org/wiki/Q98280548 + 10-42.2 + Product of the number density na of the atoms and the cross section σ_tot for a given type of atoms - - - - NuclearMagneticResonance - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. - Magnetic resonance spectroscopy (MRS) - NMR - NuclearMagneticResonance - Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. This spectroscopy is based on the measurement of absorption of electromagnetic radiations in the radio frequency region from roughly 4 to 900 MHz. Absorption of radio waves in the presence of magnetic field is accompanied by a special type of nuclear transition, and for this reason, such type of spectroscopy is known as Nuclear Magnetic Resonance Spectroscopy. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. + + + + + + + + + + + DecayConstant + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + DisintegrationConstant + DecayConstant + https://qudt.org/vocab/quantitykind/DecayConstant + https://www.wikidata.org/wiki/Q11477200 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-11 + 10-24 + Disintegrations per unit time dN/dt for an atomic nucleus divided by the number of nuclei N existing at the same time t. + https://doi.org/10.1351/goldbook.D01538 - - - - - MaterialSynthesis - Deals with undefined shapes both input and output. - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - MaterialSynthesis - The creation of a material entity starting from fundamental substances, involving chemical phenomena (e.g. reaction, bonding). - Deals with undefined shapes both input and output. + + + + Unknown + The dependent variable for which an equation has been written. + Unknown + The dependent variable for which an equation has been written. + Velocity, for the Navier-Stokes equation. - - - - ProductionEngineering - ProductionEngineering + + + + + Gyroradius + Radius of the circular movement of an electrically charged particle in a magnetic field. + LarmorRadius + Gyroradius + https://www.wikidata.org/wiki/Q1194458 + 10-17 + Radius of the circular movement of an electrically charged particle in a magnetic field. - + - - + - - T0 L0 M+1 I0 Θ+1 N0 J0 + + - - MassTemperatureUnit - MassTemperatureUnit - - - - - - - RelativePermeability - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - RelativePermeability - https://qudt.org/vocab/quantitykind/ElectromagneticPermeabilityRatio - https://www.wikidata.org/wiki/Q77785645 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-29 - 6-27 - Scalar quantity or tensor quantity equal to the absolute permeability divided by the magnetic constant. - https://doi.org/10.1351/goldbook.R05272 + + + + + AbsorbedDose + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + AbsorbedDose + http://qudt.org/vocab/quantitykind/AbsorbedDose + Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume. + 10-81.1 + https://doi.org/10.1351/goldbook.A00031 - + - - DisplacementCurrentDensity - Vector quantity equal to the time derivative of the electric flux density. - DisplacementCurrentDensity - https://qudt.org/vocab/quantitykind/DisplacementCurrentDensity - https://www.wikidata.org/wiki/Q77614612 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-42 - 6-18 - Vector quantity equal to the time derivative of the electric flux density. + + + SpecificEnergyImparted + In nuclear physics, energy imparted per mass. + SpecificEnergyImparted + https://qudt.org/vocab/quantitykind/SpecificEnergyImparted + https://www.wikidata.org/wiki/Q99566195 + 10-81.2 + In nuclear physics, energy imparted per mass. - - - - - ThermalUtilizationFactor - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. - ThermalUtilizationFactor - https://qudt.org/vocab/quantitykind/ThermalUtilizationFactor - https://www.wikidata.org/wiki/Q99197650 - 10-76 - In an infinite medium, the quotient of the number of thermal neutrons absorbed in a fissionable nuclide or in a nuclear fuel, as specified, and the total number of thermal neutrons absorbed. + + + + CharacterisationDataValidation + Procedure to validate the characterisation data. + CharacterisationDataValidation + Procedure to validate the characterisation data. - - + + - + - + - - + + + + + + + - DownAntiQuark - DownAntiQuark + StateOfMatter + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + StateOfMatter + A superclass made as the disjoint union of all the form under which matter can exist. + In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. + https://en.wikipedia.org/wiki/State_of_matter - - + + - - + + - - Experiment - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - Experiment - An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment. - - - - - - RawSample - - RawSample + + AlgebricEquation + An 'equation' that has parts two 'polynomial'-s + AlgebricEquation + 2 * a - b = c - - - + + + + - - - - - - + + T-2 L+2 M+1 I0 Θ-1 N-1 J0 - - Deducer - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Deducer - An interpreter who establish the connection between an index sign and an object according to a causal contiguity. - Someone who deduces an emotional status of a persona according to facial expression. - Someone who deduces the occurring of a physical phenomenon through other phenomena. + + EntropyPerAmountUnit + EntropyPerAmountUnit - + - - - DiffusionCoefficientForParticleNumberDensity - Proportionality constant between the particle current density J and the gradient of the particle number density n. - DiffusionCoefficientForParticleNumberDensity - https://www.wikidata.org/wiki/Q98875545 - 10-64 - Proportionality constant between the particle current density J and the gradient of the particle number density n. - - - - - - Assembled - A system of independent elements that are assembled together to perform a function. - Assembled - A system of independent elements that are assembled together to perform a function. + + + + CubicExpansionCoefficient + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. + alpha_V = (1/V) * (dV/dT) + CubicExpansionCoefficient + https://qudt.org/vocab/quantitykind/CubicExpansionCoefficient + https://www.wikidata.org/wiki/Q74761076 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-28 + 5-3.2 + Quantity characterizing the variation with thermodynamic temperature T of the volume V of a body, under given conditions. - - - PhysicalyUnbonded - PhysicalyUnbonded + + + + SurfaceDensityOfElectricCharge + The derivative of the electric charge of a system with respect to the area. + AreicElectricCharge + SurfaceChargeDensity + SurfaceDensityOfElectricCharge + https://www.wikidata.org/wiki/Q12799324 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-08 + 6-4 + The derivative of the electric charge of a system with respect to the area. + https://doi.org/10.1351/goldbook.S06159 - + - + - - - ThomsonCoefficient - quotient of Thomson heat power developed, and the electric current and temperature difference - ThomsonCoefficient - https://qudt.org/vocab/quantitykind/ThomsonCoefficient - https://www.wikidata.org/wiki/Q105801233 - 12-23 - quotient of Thomson heat power developed, and the electric current and temperature difference + + MolarEntropy + Entropy per amount of substance. + MolarEntropy + https://qudt.org/vocab/quantitykind/MolarEntropy + https://www.wikidata.org/wiki/Q68972876 + 9-8 + Entropy per amount of substance. - + - - - - - - - - - JouleThomsonCoefficient - JouleThomsonCoefficient - https://www.wikidata.org/wiki/Q93946998 - 5-24 + + IsobaricHeatCapacity + Heat capacity at constant pressure. + HeatCapacityAtConstantPressure + IsobaricHeatCapacity + https://www.wikidata.org/wiki/Q112187490 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-49 + 5-16.2 + Heat capacity at constant pressure. - - - GluonType3 - GluonType3 + + + + EffectiveDiffusionCoefficient + Diffusion coefficient through the pore space of a porous media. + EffectiveDiffusionCoefficient + https://www.wikidata.org/wiki/Q258852 + Diffusion coefficient through the pore space of a porous media. - - - - Join - A tessellation in wich a tile is next for two or more non spatially connected tiles. - Join - A tessellation in wich a tile is next for two or more non spatially connected tiles. + + + + + Curvature + Inverse of the radius of curvature. + Curvature + https://qudt.org/vocab/quantitykind/CurvatureFromRadius + https://www.wikidata.org/wiki/Q214881 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-31 + https://dbpedia.org/page/Curvature + 3-2 + Inverse of the radius of curvature. - + + + + MachineCell + A group of machineries used to process a group of similar parts. + Is not simply a collection of machineries, since the connection between them is due to the parallel flow of processed parts that comes from a unique source and ends into a common repository. + MachineCell + A group of machineries used to process a group of similar parts. + + + - - FreezingPointDepressionOsmometry - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - FreezingPointDepressionOsmometry - The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + + DataNormalisation + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. + DataNormalisation + Data normalization involves adjusting raw data to a notionally common scale. + It involves the creation of shifted and/or scaled versions of the values to allow post-processing in a way that eliminates the effects of influences on subsequent properties extraction. - - - - Command - A command must be interpretable by the computer system. - An instruction to a computer system to perform a given task. - Command - From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. - A command must be interpretable by the computer system. - Commands are typically performed from a shell or a shell script, but not limited to them. + + + RedDownAntiQuark + RedDownAntiQuark - - - - - - AngularMeasure - The abstract notion of angle. - AngularMeasure - https://qudt.org/vocab/quantitykind/Angle - https://www.wikidata.org/wiki/Q1357788 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-04-14 - 3-5 - The abstract notion of angle. - https://doi.org/10.1351/goldbook.A00346 + + + + + + + T0 L0 M0 I0 Θ0 N-1 J0 + + + PerAmountUnit + PerAmountUnit - - - - - - - - - - - AmountOfSubstance - "In the name “amount of substance”, the word “substance” will typically be replaced by words to specify the substance concerned in any particular application, for example “amount of hydrogen chloride, HCl”, or “amount of benzene, C6H6 ”. It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word “amount” has a more general dictionary definition, the abbreviation of the full name “amount of substance” to “amount” may be used for brevity." + + + + Molds + Molds + --- SI Brochure - The number of elementary entities present. - AmountOfSubstance - http://qudt.org/vocab/quantitykind/AmountOfSubstance - 9-2 - The number of elementary entities present. - https://doi.org/10.1351/goldbook.A00297 + + + + SystemProgram + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + SystemProgram + System program refers to operating systems and utility programs that manage computer resources at a low level enabling a computer to function. + An operating system. A graphic driver. - + - + + - - + + T+2 L-2 M-1 I0 Θ0 N0 J0 - - - - Action - Physical quantity of dimension energy × time. - Action - https://qudt.org/vocab/quantitykind/Action - https://www.wikidata.org/wiki/Q846785 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-51 - 4-32 - Physical quantity of dimension energy × time. + + PerEnergyUnit + PerEnergyUnit - + - - CreepTesting - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. - CreepTesting - The creep test is a destructive materials testing method for determination of the long-term strength and heat resistance of a material. When running a creep test, the specimen is subjected to increased temperature conditions for an extended period of time and loaded with a constant tensile force or tensile stress. + + Tomography + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. + Tomography + Tomography is imaging by sections or sectioning that uses any kind of penetrating wave. The method is used in radiology, archaeology, biology, atmospheric science, geophysics, oceanography, plasma physics, materials science, cosmochemistry, astrophysics, quantum information, and other areas of science. The word tomography is derived from Ancient Greek τόμος tomos, "slice, section" and γράφω graphō, "to write" or, in this context as well, "to describe." A device used in tomography is called a tomograph, while the image produced is a tomogram. - - + + - T-2 L+3 M-1 I0 Θ0 N0 J0 + T-3 L+2 M+1 I-1 Θ0 N0 J0 - NewtonianConstantOfGravityUnit - NewtonianConstantOfGravityUnit + ElectricPotentialUnit + ElectricPotentialUnit - - + + - - - 2 + + + + + AbsorbedDoseRate + Differential quotient of the absorbed dose with respect to time. + AbsorbedDoseRate + https://qudt.org/vocab/quantitykind/AbsorbedDoseRate + https://www.wikidata.org/wiki/Q69428958 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-07 + 10-84 + Differential quotient of the absorbed dose with respect to time. + + + + - - - 1 + + - Neutron - An uncharged subatomic particle found in the atomic nucleus. - Neutron - An uncharged subatomic particle found in the atomic nucleus. - https://en.wikipedia.org/wiki/Neutron - - - - - - Strain - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. - Strain - http://qudt.org/vocab/quantitykind/Strain - 4-17.1 - Change of the relative positions of parts of a body, excluding a displacement of the body as a whole. + + SurfaceTension + 4-26 + SurfaceTension + https://qudt.org/vocab/quantitykind/SurfaceTension + https://www.wikidata.org/wiki/Q170749 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-42 + https://doi.org/10.1351/goldbook.S06192 - + - T+1 L-1 M0 I0 Θ0 N0 J0 + T+2 L0 M0 I0 Θ0 N0 J0 - TimePerLengthUnit - TimePerLengthUnit + SquareTimeUnit + SquareTimeUnit - + + + + Foaming + Foaming + + + - + - - Compressibility - Measure of the relative volume change of a fluid or solid as a response to a pressure change. - Compressibility - https://qudt.org/vocab/quantitykind/Compressibility - https://www.wikidata.org/wiki/Q8067817 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-70 - 4-20 - Measure of the relative volume change of a fluid or solid as a response to a pressure change. + + + MolecularConcentration + Number of molecules of a substance in a mixture per volume. + MolecularConcentration + https://qudt.org/vocab/quantitykind/MolecularConcentration + https://www.wikidata.org/wiki/Q88865973 + 9-9.2 + Number of molecules of a substance in a mixture per volume. - - - - - EnergyImparted - Sum of energies deposited by ionizing radiation in a given volume. - EnergyImparted - https://qudt.org/vocab/quantitykind/EnergyImparted - https://www.wikidata.org/wiki/Q99526944 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-34 - 10-80.1 - Sum of energies deposited by ionizing radiation in a given volume. + + + + + + + + + + + + + + + + Substance + A composite physical object made of fermions (i.e. having mass and occupying space). + Substance + A composite physical object made of fermions (i.e. having mass and occupying space). - + - - - ThermodynamicGrueneisenParameter - ThermodynamicGrueneisenParameter - https://www.wikidata.org/wiki/Q105658620 - 12-13 - - - - - BlueCharmAntiQuark - BlueCharmAntiQuark + + + + + + + + + DiffusionArea + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. + DiffusionArea + https://qudt.org/vocab/quantitykind/DiffusionArea + https://www.wikidata.org/wiki/Q98966292 + 10-72.2 + One-sixth of the mean square distance between the point where a neutron enters a specified class and the point where it leaves this class. - - - PhysicalPhenomena - A CausalSystem that includes quantum parts that are not bonded with the rest. - PhysicalPhenomena - A CausalSystem that includes quantum parts that are not bonded with the rest. + + + + SampledDCPolarography + + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + In this way, the ratio of faradaic current to double layer charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detection is lowered. + TASTPolarography + SampledDCPolarography + DC polarography with current sampling at the end of each drop life mechanically enforced by a knocker at a preset drop time value. The current sampling and mechanical drop dislodge are synchronized. + https://doi.org/10.1515/pac-2018-0109 - + - - ElectrochemicalImpedanceSpectroscopy - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - EIS - ElectrochemicalImpedanceSpectroscopy - https://www.wikidata.org/wiki/Q3492904 - Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. - https://doi.org/10.1515/pac-2018-0109 + + IntermediateSample + + IntermediateSample - + - MicrocanonicalPartitionFunction - MicrocanonicalPartitionFunction - https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction - https://www.wikidata.org/wiki/Q96106546 - 9-35.1 + + ThermalDiffusionFactor + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. + ThermalDiffusionFactor + https://qudt.org/vocab/quantitykind/ThermalDiffusionFactor + https://www.wikidata.org/wiki/Q96249629 + 9-40.2 + Quotient of the thermal diffusion ratio and the product of the local amount-of-substance fractions. - + + + + Assigned + Assigned + + + + + DataProcessingThroughCalibration + Describes how raw data are corrected and/or modified through calibrations. + DataProcessingThroughCalibration + Describes how raw data are corrected and/or modified through calibrations. + + + - + + - - + + T+7 L-3 M-2 I+3 Θ0 N0 J0 - - - AvogadroConstant - The DBpedia definition (http://dbpedia.org/page/Avogadro_constant) is outdated as May 20, 2019. It is now an exact quantity. - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + + CubicElectricChargeLengthPerSquareEnergyUnit + CubicElectricChargeLengthPerSquareEnergyUnit + -It defines the base unit mole in the SI system. - AvogadroConstant - http://qudt.org/vocab/constant/AvogadroConstant - The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole. + + + + PermanentLiquidPhaseSintering + PermanentLiquidPhaseSintering + -It defines the base unit mole in the SI system. - https://doi.org/10.1351/goldbook.A00543 + + + NumericalData + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. + NumericalData + Data that can be decoded under a quantitative schema and also associated with a graphical number symbols. - - + + - - + + + - - StructureFactor - Mathematical description in crystallography. - StructureFactor - https://qudt.org/vocab/quantitykind/StructureFactor - https://www.wikidata.org/wiki/Q900684 - 12-5.4 - Mathematical description in crystallography. + + Plus + Plus - + - - Folding - Folding - - - - - - AnalyticalElectronMicroscopy - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. - AnalyticalElectronMicroscopy - Analytical electron microscopy (AEM) refers to the collection of spectroscopic data in TEM or STEM, enabling qualitative or quantitative compositional analysis. + + FormingBlasting + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + Umformstrahlen + FormingBlasting - - - - CyclicChronopotentiometry - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - CyclicChronopotentiometry - Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. - chronopotentiometry where the change in applied current undergoes a cyclic current reversal + + + + + AlphaDisintegrationEnergy + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. + AlphaDisintegrationEnergy + http://qudt.org/vocab/quantitykind/AlphaDisintegrationEnergy + https://www.wikidata.org/wiki/Q98146025 + 10-32 + Sum of the kinetic energy of the α-particle produced in the disintegration process and the recoil energy of the product atom in a reference frame in which the emitting nucleus is at rest before its disintegration. - + - + - + - + @@ -21026,1980 +20919,1944 @@ It defines the base unit mole in the SI system. - DownAntiQuarkType - DownAntiQuarkType - - - - - - - InternalStep - A generic step in a workflow, that is not the begin or the end. - InternalStep - A generic step in a workflow, that is not the begin or the end. - - - - - - - ProtonMass - The rest mass of a proton. - ProtonMass - http://qudt.org/vocab/constant/ProtonMass - https://doi.org/10.1351/goldbook.P04914 - - - - - - - DebyeAngularFrequency - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - DebyeAngularFrequency - https://qudt.org/vocab/quantitykind/DebyeAngularFrequency - https://www.wikidata.org/wiki/Q105580986 - 12-10 - Cut-off angular frequency in the Debye model of the vibrational spectrum of a solid. - - - - - - Modeller - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - Modeller - A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - - - - - - RefractiveIndex - Factor by which the phase velocity of light is reduced in a medium. - RefractiveIndex - http://qudt.org/vocab/quantitykind/RefractiveIndex - https://doi.org/10.1351/goldbook.R05240 - - - - - - - DiffusionCoefficientForFluenceRate - Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - DiffusionCoefficientForFluenceRate - https://qudt.org/vocab/quantitykind/DiffusionCoefficientForFluenceRate - https://www.wikidata.org/wiki/Q98876254 - 10-65 - Proportionality constant between the particle current density J and the gradient of the particle fluence rate. - - - - - ContinuumModel - A physics-based model based on a physics equation describing the behaviour of continuum volume. - ContinuumModel - A physics-based model based on a physics equation describing the behaviour of continuum volume. + UpAntiQuarkType + UpAntiQuarkType - + - + - - - Permittivity - Measure for how the polarization of a material is affected by the application of an external electric field. - Permittivity - http://qudt.org/vocab/quantitykind/Permittivity - 6-14.1 - 6-14.2 - https://doi.org/10.1351/goldbook.P04507 + + Mobility + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + Mobility + https://qudt.org/vocab/quantitykind/Mobility + https://www.wikidata.org/wiki/Q900648 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-36 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-02-77 + 10-61 + Quotient of average drift speed imparted to a charged particle in a medium by an electric field, and the electric field strength. + https://doi.org/10.1351/goldbook.M03955 + + + + + + + + ScientificTheory + A scientific theory is a description, objective and observed, produced with scientific methodology. + ScientificTheory + A scientific theory is a description, objective and observed, produced with scientific methodology. + + + + + + XrayPowderDiffraction + + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + XRPD + XrayPowderDiffraction + a method for analyzing the crystal structure of powdered materials by measuring the diffraction patterns produced when X-rays interact with randomly oriented crystallites within the sample + https://en.wikipedia.org/wiki/Powder_diffraction - - + + - T-1 L+2 M+1 I0 Θ0 N0 J0 + T-1 L0 M0 I0 Θ0 N0 J0 - AngularMomentumUnit - AngularMomentumUnit + FrequencyUnit + FrequencyUnit - + + + + MetallicPowderSintering + MetallicPowderSintering + + + + + GluonType2 + GluonType2 + + + - + - - - - - - ParticleConcentration - ParticleConcentration - https://www.wikidata.org/wiki/Q39078574 - 9-9.1 + + VolumeFlowRate + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + VolumetricFlowRate + VolumeFlowRate + https://qudt.org/vocab/quantitykind/VolumeFlowRate + https://www.wikidata.org/wiki/Q1134348 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-72 + 4-31 + Quantity equal to the volume dV of substance crossing a given surface during a time interval with infinitesimal duration dt, divided by this duration, thus qV = dV / dt- + https://en.wikipedia.org/wiki/Volumetric_flow_rate - + - + - - ParticleNumberDensity - Mean number of particles per volume. - ParticleNumberDensity - https://qudt.org/vocab/quantitykind/ParticleNumberDensity - https://www.wikidata.org/wiki/Q98601569 - 10-62.1 - Mean number of particles per volume. - https://doi.org/10.1351/goldbook.N04262 + + ElectricFieldStrength + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. + ElectricFieldStrength + https://qudt.org/vocab/quantitykind/ElectricFieldStrength + https://www.wikidata.org/wiki/Q20989 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-18 + 6-10 + Vector field quantity E which exerts on any charged particle at rest a force F equal to the product of E and the electric charge Q of the particle. - - - ScalarMeson - A meson with spin zero and even parity. - ScalarMeson - A meson with spin zero and even parity. - https://en.wikipedia.org/wiki/Scalar_meson + + + + + + + + + + + LorenzCoefficient + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. + LorenzNumber + LorenzCoefficient + https://qudt.org/vocab/quantitykind/LorenzCoefficient + https://www.wikidata.org/wiki/Q105728754 + 12-18 + Quotient of thermal conductivity, and the product of electric conductivity and thermodynamic temperature. - + - - - MaximumEfficiency - Efficiency of an ideal heat engine operating according to the Carnot process. - CarnotEfficiency - MaximumEfficiency - https://www.wikidata.org/wiki/Q93949862 - 5-25.2 - Efficiency of an ideal heat engine operating according to the Carnot process. + + ReactivePower + Imaginary part of the complex power. + ReactivePower + https://qudt.org/vocab/quantitykind/ReactivePower + https://www.wikidata.org/wiki/Q2144613 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-44 + 6-60 + Imaginary part of the complex power. - + + + BlueStrangeQuark + BlueStrangeQuark + + + + + RightHandedParticle + RightHandedParticle + + + - T-2 L-1 M+1 I0 Θ-1 N0 J0 + T0 L0 M0 I0 Θ+1 N+1 J0 - PressurePerTemperatureUnit - PressurePerTemperatureUnit + AmountTemperatureUnit + AmountTemperatureUnit - + - - T-1 L+2 M-1 I0 Θ+1 N0 J0 + + T-2 L+2 M+1 I-1 Θ0 N0 J0 + + + MagneticFluxUnit + MagneticFluxUnit + + + + + + + + + + + + + + + Uncoded + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + Uncoded + A conventional that provides no possibility to infer the characteristics of the object to which it refers. + A random generated id for a product. + + + + + GreenCharmQuark + GreenCharmQuark + + + + + + Namer + An interpreter who assigns a name to an object without any motivations related to the object characters. + Namer + An interpreter who assigns a name to an object without any motivations related to the object characters. + + + + + + + Constituent + An object which is an holistic spatial part of a object. + ObjectPart + Constituent + An object which is an holistic spatial part of a object. + A tire is a constituent of a car. + + + + + + + CoherenceLength + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + CoherenceLength + https://www.wikidata.org/wiki/Q1778793 + 12-38.2 + Distance in a superconductor over which the effect of a perturbation is appreciable at zero thermodynamic temperature + + + + + + FieldEmissionScanningElectronMicroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + FE-SEM + FieldEmissionScanningElectronMicroscopy + Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + + + + + + + MolecularPartitionFunction + Partition function of a molecule. + MolecularPartitionFunction + https://www.wikidata.org/wiki/Q96192064 + 9-35.4 + Partition function of a molecule. + + + + + + + MolarHelmholtzEnergy + Helmholtz energy per amount of substance. + MolarHelmholtzEnergy + https://www.wikidata.org/wiki/Q88862986 + 9-6.3 + Helmholtz energy per amount of substance. + + + + + + TransferMolding + TransferMolding + + + + + Deduced + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + Deduced + A semantic object that is connected to an index sign by an interpreter (a deducer) by causal cogiguity. + + + + + + + + - - TemperatureAreaPerMassTimeUnit - TemperatureAreaPerMassTimeUnit + + + + PlanckFunction + Ngative quotient of Gibbs energy and temperature. + PlanckFunction + https://qudt.org/vocab/quantitykind/PlanckFunction + https://www.wikidata.org/wiki/Q76364998 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-25 + 5-23 + Ngative quotient of Gibbs energy and temperature. - + - + - - MolarMass - Mass per amount of substance. - MolarMass - https://qudt.org/vocab/quantitykind/MolarMass - https://www.wikidata.org/wiki/Q145623 - 9-4 - Mass per amount of substance. + + MagneticFieldStrength + Strength of a magnetic field. Commonly denoted H. + MagnetizingFieldStrength + MagneticFieldStrength + http://qudt.org/vocab/quantitykind/MagneticFieldStrength + https://www.wikidata.org/wiki/Q28123 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-56 + 6-25 + https://doi.org/10.1351/goldbook.M03683 - - - - - LevelWidth - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - LevelWidth - https://qudt.org/vocab/quantitykind/LevelWidth - https://www.wikidata.org/wiki/Q98082340 - 10-26 - In nuclear physics, quotient of the reduced Planck constant and the mean duration of life of an unstable particle or an excited state. - https://doi.org/10.1351/goldbook.L03507 + + + + SolidSolidSuspension + A coarse dispersion of solid in a solid continuum phase. + SolidSolidSuspension + A coarse dispersion of solid in a solid continuum phase. + Granite, sand, dried concrete. - - - AmorphousMaterial - NonCrystallineMaterial - AmorphousMaterial + + + + Polynomial + Polynomial + 2 * x^2 + x + 3 - - - - PaperManufacturing - PaperManufacturing + + + + AlgebricExpression + An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number) + AlgebricExpression + 2x+3 - - - - CharacterisationDataValidation - Procedure to validate the characterisation data. - CharacterisationDataValidation - Procedure to validate the characterisation data. + + + GreenStrangeAntiQuark + GreenStrangeAntiQuark - - - - OrdinaryMatter - Matter composed of only matter particles, excluding anti-matter particles. - OrdinaryMatter - Matter composed of only matter particles, excluding anti-matter particles. + + + + AmountFractionUnit + Unit for quantities of dimension one that are the fraction of two amount of substance. + AmountFractionUnit + Unit for quantities of dimension one that are the fraction of two amount of substance. + Unit for amount fraction. - - - GreenBottomAntiQuark - GreenBottomAntiQuark + + + + Language + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). + Language + A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula). - + - T-2 L+4 M+1 I0 Θ0 N0 J0 + T0 L0 M+1 I0 Θ0 N-1 J0 - EnergyAreaUnit - EnergyAreaUnit + MassPerAmountUnit + MassPerAmountUnit - - - - FieldEmissionScanningElectronMicroscopy - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. - FE-SEM - FieldEmissionScanningElectronMicroscopy - Field emission scanning electron microscopy (FE-SEM) is an advanced technology used to capture the microstructure image of the materials. FE-SEM is typically performed in a high vacuum because gas molecules tend to disturb the electron beam and the emitted secondary and backscattered electrons used for imaging. + + + + SolidLiquidSuspension + A coarse dispersion of liquid in a solid continuum phase. + SolidLiquidSuspension + A coarse dispersion of liquid in a solid continuum phase. - + + + + + + + T-1 L-1 M0 I0 Θ0 N0 J0 + + + PerLengthTimeUnit + PerLengthTimeUnit + + + - - LevelOfExpertise - Describes the level of expertise required to carry out a process (the entire test or the data processing). - LevelOfExpertise - Describes the level of expertise required to carry out a process (the entire test or the data processing). + + Nanoindentation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + Nanoindentation + Nanoindentation (known also as nanoindentation test) is a method for testing the hardness and related mechanical properties of materials, facilitated by high-precision instrumentation in the nanometer scale, as well as analytical and computational algorithms for result evaluation. + By definition, when someone performs nanoindentation, it refers to either quasistatic or continuous stiffness measurement. However, in reality with a nanoindenter it is also possible to perform scratch testing, scanning probe microscopy, and apply non-contact surface energy mapping, which can also be called nanoindentation, because they are measurements conducted using an nanoindenter. - - - BlueStrangeAntiQuark - BlueStrangeAntiQuark + + + + TotalAngularMomentumQuantumNumber + Quantum number in an atom describing the magnitude of total angular momentum J. + TotalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/TotalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1141095 + 10-13.6 + Quantum number in an atom describing the magnitude of total angular momentum J. - + + + + StandaloneModelSimulation + A standalone simulation, where a single physics equation is solved. + StandaloneModelSimulation + A standalone simulation, where a single physics equation is solved. + + + + + + Solubility + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + The solubility may be expressed as a concentration, molality, mole fraction, mole ratio, etc. + Solubility + https://www.wikidata.org/wiki/Q170731 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-15 + The analytical composition of a saturated solution, expressed in terms of the proportion of a designated solute in a designated solvent, is the solubility of that solute. + https://doi.org/10.1351/goldbook.S05740 + + + + + + C + C + + + - + - + - - - - - - - - - - - - - - - - - + + - - GreenQuark - GreenQuark - - - - - - - - - T+2 L+1 M-1 I0 Θ+1 N0 J0 - - - TemperaturePerPressureUnit - TemperaturePerPressureUnit + + + + + + + + + + + + + AntiQuark + AntiQuark - + - - - - - - - - - MagnetomotiveForce - Scalar line integral of the magnetic field strength along a closed path. - MagnetomotiveForce - https://qudt.org/vocab/quantitykind/MagnetomotiveForce - https://www.wikidata.org/wiki/Q1266982 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-60 - 6-37.3 - Scalar line integral of the magnetic field strength along a closed path. + + + ElectronRadius + Radius of a sphere such that the relativistic electron energy is distributed uniformly. + ElectronRadius + https://www.wikidata.org/wiki/Q2152581 + 10-19.2 + Radius of a sphere such that the relativistic electron energy is distributed uniformly. - + - Python - Python + ApplicationSpecificScript + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + ApplicationSpecificScript + A scripting language developed specifically for an application, so that it's usage and interpretation is limited in this context. + Scripting file for the execution of modelling software such as LAMMPS, OpenFOAM, or for general purpose platforms such as MATLAB or Mathematica. - + - - - - - - - - Vergence - In geometrical optics, vergence describes the curvature of optical wavefronts. - Vergence - http://qudt.org/vocab/quantitykind/Curvature - - - - - - MeasurementParameter - Describes the main input parameters that are needed to acquire the signal. - Describes the main input parameters that are needed to acquire the signal. - MeasurementParameter - Describes the main input parameters that are needed to acquire the signal. - - - - - T0 L+2 M0 I+1 Θ0 N0 J0 + T+3 L0 M-1 I0 Θ+1 N0 J0 - MagneticDipoleMomentUnit - MagneticDipoleMomentUnit - - - - - - CriticalAndSupercriticalChromatography - - CriticalAndSupercriticalChromatography + PerThermalTransmittanceUnit + PerThermalTransmittanceUnit - + - + - - MolarConductivity - Conductivity per molar concentration of electrolyte. - MolarConductivity - https://qudt.org/vocab/quantitykind/MolarConductivity - https://www.wikidata.org/wiki/Q1943278 - 9-45 - Conductivity per molar concentration of electrolyte. - https://doi.org/10.1351/goldbook.M03976 - - - - - - Shape3Vector - A real vector with 3 elements. - Shape3Vector - A real vector with 3 elements. - The quantity value of physical quantities if real space is a Shape3Vector. + + CatalyticActivity + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + CatalyticActivity + http://qudt.org/vocab/quantitykind/CatalyticActivity + Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system. + https://doi.org/10.1351/goldbook.C00881 - - - - PowderCoating - PowderCoating + + + GreenTopQuark + GreenTopQuark - + - T-1 L+3 M0 I-1 Θ0 N0 J0 + T-3 L+1 M+1 I0 Θ0 N0 J0 - ReciprocalElectricChargeDensityUnit - ReciprocalElectricChargeDensityUnit + MassLengthPerCubicTimeUnit + MassLengthPerCubicTimeUnit - - + + + + + + Guess + A guess is a theory, estimated and subjective, since its premises are subjective. + Guess + A guess is a theory, estimated and subjective, since its premises are subjective. + + + + - T-1 L0 M+1 I-1 Θ0 N0 J0 + T0 L+2 M-1 I0 Θ0 N0 J0 - MassPerElectricChargeUnit - MassPerElectricChargeUnit + AreaPerMassUnit + AreaPerMassUnit - - - TauAntiNeutrino - TauAntiNeutrino + + + + TotalCurrent + Sum of electric current and displacement current + TotalCurrent + https://qudt.org/vocab/quantitykind/TotalCurrent + https://www.wikidata.org/wiki/Q77679732 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-45 + 6-19.2 + Sum of electric current and displacement current - - - - Molds - Molds + + + + + Rotation + Rotation + https://www.wikidata.org/wiki/Q76435127 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 + 3-16 - + + + + + MolarGibbsEnergy + Gibbs energy per amount of substance. + MolarGibbsEnergy + https://www.wikidata.org/wiki/Q88863324 + 9-6.4 + Gibbs energy per amount of substance. + + + - - ConductometricTitration - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - ConductometricTitration - https://www.wikidata.org/wiki/Q11778221 - Titration in which the electric conductivity of a solution is measured as a function of the amount of titrant added. The equivalence-point is obtained as the intersection of linear parts of the conductance G, versus titrant volume V, curve. The method can be used for deeply coloured or turbid solutions. Acid-base and precipitation reactions are most frequently used. The method is based on replacing an ionic species of the analyte with another species, cor- responding to the titrant or the product with significantly different conductance. - https://doi.org/10.1515/pac-2018-0109 + + CyclicChronopotentiometry + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + CyclicChronopotentiometry + Chronopotentiometry where the change in applied current undergoes a cyclic current reversal. + chronopotentiometry where the change in applied current undergoes a cyclic current reversal - + + + CompositePhysicalObject + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + CompositePhysicalObject + The class of physical objects possessing a structure that is larger than a single composite particle, for which its bosonic or fermionic nature is undetermined. + + + - - Conductometry - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Conductometry - https://www.wikidata.org/wiki/Q901180 - Measurement principle in which the electric conductivity of a solution is measured. The conductivity of a solution depends on the concentration and nature of ions present. - Monitoring of the purity of deionized water. - https://en.wikipedia.org/wiki/Conductometry - https://doi.org/10.1515/pac-2018-0109 + + + ElectronBackscatterDiffraction + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. + EBSD + ElectronBackscatterDiffraction + Electron backscatter diffraction (EBSD) is a scanning electron microscopy (SEM) technique used to study the crystallographic structure of materials. EBSD is carried out in a scanning electron microscope equipped with an EBSD detector comprising at least a phosphorescent screen, a compact lens and a low-light camera. In this configuration, the SEM incident beam hits the tilted sample. As backscattered electrons leave the sample, they interact with the crystal's periodic atomic lattice planes and diffract according to Bragg's law at various scattering angles before reaching the phosphor screen forming Kikuchi patterns (EBSPs). EBSD spatial resolution depends on many factors, including the nature of the material under study and the sample preparation. Thus, EBSPs can be indexed to provide information about the material's grain structure, grain orientation, and phase at the micro-scale. EBSD is applied for impurities and defect studies, plastic deformation, and statistical analysis for average misorientation, grain size, and crystallographic texture. EBSD can also be combined with energy-dispersive X-ray spectroscopy (EDS), cathodoluminescence (CL), and wavelength-dispersive X-ray spectroscopy (WDS) for advanced phase identification and materials discovery. - - - - - LossFactor - Inverse of the quality factor. - LossFactor - https://qudt.org/vocab/quantitykind/LossFactor - https://www.wikidata.org/wiki/Q79468728 - 6-54 - Inverse of the quality factor. + + + + ScanningElectronMicroscopy + + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. + SEM + ScanningElectronMicroscopy + The scanning electron microscope (SEM) uses a focused beam of high-energy electrons to generate a variety of signals at the surface of solid specimens. The signals that derive from electron-sample interactions reveal information about the sample including external morphology (texture), chemical composition, and crystalline structure and orientation of materials making up the sample. - + - + - + - - - - - - - - - - - - - - - - - + + - RedQuark - RedQuark - - - - - - - IsothermalCompressibility - IsothermalCompressibility - https://qudt.org/vocab/quantitykind/IsothermalCompressibility - https://www.wikidata.org/wiki/Q2990696 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 - 5-5.1 - - - - - - LiquidGasSuspension - A coarse dispersion of gas in a liquid continuum phase. - LiquidGasSuspension - A coarse dispersion of gas in a liquid continuum phase. - Sparkling water - - - - - RedUpQuark - RedUpQuark + TopQuark + TopQuark + https://en.wikipedia.org/wiki/Top_quark - + - T+4 L-4 M-2 I0 Θ0 N0 J0 + T-3 L+1 M+1 I0 Θ-1 N0 J0 - ReciprocalSquareEnergyUnit - ReciprocalSquareEnergyUnit + ThermalConductivityUnit + ThermalConductivityUnit - + + + + 3DPrinting + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + 3DPrinting + Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. + This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + + - T-1 L0 M-1 I0 Θ0 N0 J0 + T0 L0 M0 I+1 Θ-1 N0 J0 - PerTimeMassUnit - PerTimeMassUnit - - - - - - FlameCutting - FlameCutting - - - - - - Weight - Force of gravity acting on a body. - Weight - http://qudt.org/vocab/quantitykind/Weight - 4-9.2 - https://doi.org/10.1351/goldbook.W06668 + ElectricCurrentPerTemperatureUnit + ElectricCurrentPerTemperatureUnit - - - + + + + - - + + T+1 L+2 M0 I0 Θ+1 N0 J0 - - - - ExtentOfReaction - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - ExtentOfReaction - https://qudt.org/vocab/quantitykind/ExtentOfReaction - https://www.wikidata.org/wiki/Q899046 - 9-31 - Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. - https://doi.org/10.1351/goldbook.E02283 - - - - - RedDownQuark - RedDownQuark - - - - - - NanoMaterial - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - NanoMaterial - Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm - - - - - - SizeDefinedMaterial - SizeDefinedMaterial + + AreaTimeTemperatureUnit + AreaTimeTemperatureUnit - + - - SurfaceCoefficientOfHeatTransfer - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. - SurfaceCoefficientOfHeatTransfer - https://qudt.org/vocab/quantitykind/SurfaceCoefficientOfHeatTransfer - https://www.wikidata.org/wiki/Q74770365 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-40 - 5-10.2 - Coefficient of heat transfer when heat exchange takes place between a body at thermodynamic temperature Ts and its surroundings that are at a reference temperature Tr. - - - - - - - - - - - - - - - - NumberOfElements - Number of direct parts of a Reductionistic. - Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. - NumberOfElements - Number of direct parts of a Reductionistic. - - - - - - - StandardAbsoluteActivity - Property of a solute in a solution. - StandardAbsoluteActivityInASolution - StandardAbsoluteActivity - https://www.wikidata.org/wiki/Q89485936 - 9-26 - Property of a solute in a solution. - - - - - - MeasuredProperty - A quantity that is the result of a well-defined measurement procedure. - The specification of a measurand requires knowledge of the kind of quantity, description of the state of the phenomenon, body, or substance carrying the quantity, including any relevant component, and the chemical entities involved. - --- VIM - MeasuredProperty - A quantity that is the result of a well-defined measurement procedure. + + RelativeMassFractionOfVapour + RelativeMassFractionOfVapour + 5-35 - + - - DirectCoulometryAtControlledPotential - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - DirectCoulometryAtControlledPotential - Coulometry at a preselected constant potential of the working electrode. Direct coulometry at controlled potential is usually carried out in convective mass trans- fer mode using a large surface working electrode. Reference and auxiliary electrodes are placed in separate compartments. The total electric charge is obtained by integration of the I–t curve or can be measured directly using a coulometer. - In principle, the end point at which I = 0, i.e. when the concentration of species under study becomes zero, can be reached only at infinite time. However, in practice, the electrolysis is stopped when the current has decayed to a few percent of the initial value and the charge passed at infinite time is calculated from a plot of charge Q(t) against time t. For a simple system under diffusion control Qt= Q∞[1 − exp(−DAt/Vδ)], where Q∞ = limt→∞Q(t) is the total charge passed at infinite time, D is the diffusion coefficient of the electroactive species, A the electrode area, δ the diffusion layer thickness, and V the volume of the solution. - https://doi.org/10.1515/pac-2018-0109 + + LightScattering + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. + LightScattering + Light scattering is the way light behaves when it interacts with a medium that contains particles or the boundary between different mediums where defects or structures are present. It is different than the effects of refraction, where light undergoes a change in index of refraction as it passes from one medium to another, or reflection, where light reflects back into the same medium, both of which are governed by Snell’s law. Light scattering can be caused by factors such as the nature, texture, or specific structures of a surface and the presence of gas, liquid, or solid particles through which light propagates, as well as the nature of the light itself, of its wavelengths and polarization states. It usually results in diffuse light and can also affect the dispersion of color. - - - - RamanSpectroscopy - - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - -Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - -Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. - RamanSpectroscopy - Raman spectroscopy (/ˈrɑːmən/) (named after physicist C. V. Raman) is a spectroscopic technique typically used to determine vibrational modes of molecules, although rotational and other low-frequency modes of systems may also be observed. Raman spectroscopy is commonly used in chemistry to provide a structural fingerprint by which molecules can be identified. - -Raman spectroscopy relies upon inelastic scattering of photons, known as Raman scattering. A source of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range is used, although X-rays can also be used. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down. The shift in energy gives information about the vibrational modes in the system. Infrared spectroscopy typically yields similar yet complementary information. - -Typically, a sample is illuminated with a laser beam. Electromagnetic radiation from the illuminated spot is collected with a lens and sent through a monochromator. Elastic scattered radiation at the wavelength corresponding to the laser line (Rayleigh scattering) is filtered out by either a notch filter, edge pass filter, or a band pass filter, while the rest of the collected light is dispersed onto a detector. + + + + ApparentPower + RMS value voltage multiplied by rms value of electric current. + ApparentPower + https://qudt.org/vocab/quantitykind/ApparentPower + https://www.wikidata.org/wiki/Q1930258 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-41 + 6-57 + RMS value voltage multiplied by rms value of electric current. - + - - DynamicLightScattering - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). - DLS - DynamicLightScattering - Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using the intensity or photon auto-correlation function (also known as photon correlation spectroscopy - PCS or quasi-elastic light scattering - QELS). + + AtomProbeTomography + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + 3D Atom Probe + APT + AtomProbeTomography + Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - - - - PermanentLiquidPhaseSintering - PermanentLiquidPhaseSintering + + + + DoseEquivalentRate + Time derivative of the dose equivalent. + DoseEquivalentRate + https://www.wikidata.org/wiki/Q99604810 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-14-02 + 10-83.2 + Time derivative of the dose equivalent. - - - MetallicMaterial - MetallicMaterial + + + + + + + T-6 L+4 M+2 I-2 Θ0 N0 J0 + + + LorenzNumberUnit + LorenzNumberUnit - - - - Assemblying - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. - The act of connecting together the parts of something - Assemblying - The act of connecting together the parts of something - No loss or adds of parts by the components, nor merging. In assemblying parts are losing some of theirs movement degrees of freedom. + + + + Modeller + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). + Modeller + A estimator that uses modelling to declare a property of an object (i.e. infer a property from other properties). - - - - Foaming - Foaming + + + Estimator + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). + Estimator + A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties). - - - - - - * - - - - Multiplication - Multiplication + + + + + FermiAnglularWaveNumber + angular wavenumber of electrons in states on the Fermi sphere + FermiAnglularRepetency + FermiAnglularWaveNumber + https://qudt.org/vocab/quantitykind/FermiAngularWavenumber + https://www.wikidata.org/wiki/Q105554303 + 12-9.2 + angular wavenumber of electrons in states on the Fermi sphere - + - - - - - T0 L+1 M0 I0 Θ-1 N0 J0 - - - LengthPerTemperatureUnit - LengthPerTemperatureUnit + + + Activity + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + Activity + https://qudt.org/vocab/quantitykind/Activity + https://www.wikidata.org/wiki/Q317949 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-01-05 + 10-27 + Number dN of spontaneous nuclear transitions or nuclear disintegrations for a radionuclide of amount N produced during a short time interval dt, divided by this time interval. + https://goldbook.iupac.org/terms/view/A00114 - + - T-3 L+3 M+1 I-2 Θ0 N0 J0 + T+1 L-1 M0 I0 Θ0 N0 J0 - ElectricResistivityUnit - ElectricResistivityUnit - - - - - - ReactiveMaterial - A material that takes active part in a chemical reaction. - ReactiveMaterial - A material that takes active part in a chemical reaction. - - - - - - ChemicallyDefinedMaterial - ChemicallyDefinedMaterial + TimePerLengthUnit + TimePerLengthUnit - - - - MultiSimulation - A physics based simulation with multiple physics based models. - MultiSimulation - A physics based simulation with multiple physics based models. + + + + + IterativeStep + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + IterativeStep + A workflow whose output ca be used as input for another workflow of the same type, iteratively, within the framework of a larger workflow. + Jacobi method numerical step, involving the multiplication between a matrix A and a vector x, whose result is used to update the vector x. - - - BlueTopQuark - BlueTopQuark + + + + AnodicStrippingVoltammetry + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + AnodicStrippingVoltammetry + https://www.wikidata.org/wiki/Q939328 + Stripping voltammetry in which material accumulated at the working electrode is electrochemically oxi- dized in the stripping step. A peak-shaped anodic stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. A solid electrode, carbon paste or composite electrode, bismuth film electrode, mercury film electrode, or static mercury drop electrode may be used. + https://doi.org/10.1515/pac-2018-0109 - - - - - PhysicsEquation - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - PhysicsEquation - An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. - The Newton's equation of motion. -The Schrödinger equation. -The Navier-Stokes equation. + + + + IntentionalAgent + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. + IntentionalAgent + An agent that is driven by the intention to reach a defined objective in driving a process. + Intentionality is not limited to human agents, but in general to all agents that have the capacity to decide to act in driving a process according to a motivation. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - BlueQuark - BlueQuark + + + + + StaticFrictionForce + StaticFriction + StaticFrictionForce + https://qudt.org/vocab/quantitykind/StaticFriction + https://www.wikidata.org/wiki/Q90862568 + 4-9.3 - + - T-3 L+2 M+1 I0 Θ0 N0 J0 + T0 L+3 M-1 I0 Θ0 N0 J0 - PowerUnit - PowerUnit + VolumePerMassUnit + VolumePerMassUnit - + - - ThermomechanicalTreatment - ThermomechanicalTreatment + + PrecipitationHardening + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + PrecipitationHardening + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution - + - T-3 L-2 M+2 I0 Θ0 N0 J0 + T-1 L-2 M0 I0 Θ0 N+1 J0 - SquarePressureTimeUnit - SquarePressureTimeUnit + AmountPerAreaTimeUnit + AmountPerAreaTimeUnit - + - - GyromagneticRatioOfTheElectron - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. - GyromagneticCoefficientOfTheElectron - MagnetogyricRatioOfTheElectron - GyromagneticRatioOfTheElectron - https://www.wikidata.org/wiki/Q97543076 - 10-12.2 - Proportionality constant between the magnetic dipole moment and the angular momentum of the electron. + + + LinearAttenuationCoefficient + In nuclear physics, fraction of interacting particles per distance traversed in a given material. + LinearAttenuationCoefficient + https://www.wikidata.org/wiki/Q98583077 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-31 + 10-49 + In nuclear physics, fraction of interacting particles per distance traversed in a given material. - + - - AcousticQuantity - Quantities categorised according to ISO 80000-8. - AcousticQuantity - Quantities categorised according to ISO 80000-8. + + + + + T-2 L-2 M0 I0 Θ0 N0 J0 + + + FrequencyPerAreaTimeUnit + FrequencyPerAreaTimeUnit - - - - FourierTransformInfraredSpectroscopy - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - FTIR - FourierTransformInfraredSpectroscopy - https://www.wikidata.org/wiki/Q901559 - A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas - https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy + + + + + + + + + + + MagneticVectorPotential + Vector potential of the magnetic flux density. + MagneticVectorPotential + https://qudt.org/vocab/quantitykind/MagneticVectorPotential + https://www.wikidata.org/wiki/Q2299100 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-23 + 6-32 + Vector potential of the magnetic flux density. - - - MesoscopicSubstance - MesoscopicSubstance + + + + + + + ThermodynamicCriticalMagneticFluxDensity + ThermodynamicCriticalMagneticFluxDensity + https://qudt.org/vocab/quantitykind/ThermodynamicCriticalMagneticFluxDensity + https://www.wikidata.org/wiki/Q106103200 + 12-36.1 - + - - - OsmoticPressure - Measure of the tendency of a solution to take in pure solvent by osmosis. - OsmoticPressure - https://qudt.org/vocab/quantitykind/OsmoticPressure - https://www.wikidata.org/wiki/Q193135 - 9-28 - Measure of the tendency of a solution to take in pure solvent by osmosis. - https://doi.org/10.1351/goldbook.O04344 + + + BraggAngle + Angle between the scattered ray and the lattice plane. + BraggAngle + https://qudt.org/vocab/quantitykind/BraggAngle + https://www.wikidata.org/wiki/Q105488118 + 12-4 + Angle between the scattered ray and the lattice plane. - + - T-1 L0 M0 I0 Θ0 N+1 J0 + T-2 L+4 M+1 I0 Θ0 N0 J0 - CatalyticActivityUnit - CatalyticActivityUnit + EnergyAreaUnit + EnergyAreaUnit - - - - Synchrotron - - Synchrotron + + + + Plasma + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + Plasma + A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - - - - - - - T+3 L-2 M-1 I+2 Θ0 N0 J0 - - - ElectricConductanceUnit - ElectricConductanceUnit + + + + SandMolds + SandMolds - - - - - - - - - - - - Program - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - A set of instructions that tell a computer what to do. - Executable - Program - A set of instructions that tell a computer what to do. - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + + + + FreezingPointDepressionOsmometry + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. + FreezingPointDepressionOsmometry + The general principle of freezing point depression osmometry involves the relationship between the number of moles of dissolved solute in a solution and the change in freezing point. - - + + - T0 L-3 M0 I0 Θ0 N+1 J0 + T+3 L-1 M-1 I0 Θ+1 N0 J0 - AmountConcentrationUnit - AmountConcentrationUnit + ThermalResistivityUnit + ThermalResistivityUnit - + - T+3 L-1 M-1 I0 Θ+1 N0 J0 + T+1 L+1 M0 I0 Θ+1 N0 J0 - ThermalResistivityUnit - ThermalResistivityUnit + LengthTimeTemperatureUnit + LengthTimeTemperatureUnit - - - - - - - - - - - MassFlow - At a point in a fluid, the product of mass density and velocity. - MassFlow - https://www.wikidata.org/wiki/Q3265048 - 4-30.1 - At a point in a fluid, the product of mass density and velocity. + + + + PhysicalPhenomenon + A 'process' that is recognized by physical sciences and is categorized accordingly. + While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist + PhysicalPhenomenon + A 'process' that is recognized by physical sciences and is categorized accordingly. - + + + + DefinedEdgeCutting + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + Spanen mit geometrisch bestimmten Schneiden + DefinedEdgeCutting + + + - - - Spin - Vector quantity expressing the internal angular momentum of a particle or a particle system. - Spin - https://qudt.org/vocab/quantitykind/Spin - https://www.wikidata.org/wiki/Q133673 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-05-09 - 10-10 - Vector quantity expressing the internal angular momentum of a particle or a particle system. + + PotentialEnergy + The energy possessed by a body by virtue of its position or orientation in a potential field. + PotentialEnergy + http://qudt.org/vocab/quantitykind/PotentialEnergy + 4-28.1 + The energy possessed by a body by virtue of its position or orientation in a potential field. + https://doi.org/10.1351/goldbook.P04778 + + + + + Tau + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + Tau + The class of individuals that stand for tau elementary particles belonging to the third generation of leptons. + https://en.wikipedia.org/wiki/Tau_(particle) + + + + + + JavaScript + JavaScript - - - - - - - - - - - RichardsonConstant - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. - RichardsonConstant - https://qudt.org/vocab/quantitykind/RichardsonConstant - https://www.wikidata.org/wiki/Q105883079 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-30 - 12-26 - Parameter in the expression for the thermionic emission current density J for a metal in terms of the thermodynamic temperature T and work function. + + + RedUpAntiQuark + RedUpAntiQuark - - - - - - - T+1 L+1 M0 I+1 Θ0 N0 J0 - - - LengthTimeCurrentUnit - LengthTimeCurrentUnit + + + + FiberboardManufacturing + FiberboardManufacturing - + + + PhysicalPhenomena + A CausalSystem that includes quantum parts that are not bonded with the rest. + PhysicalPhenomena + A CausalSystem that includes quantum parts that are not bonded with the rest. + + + - - - - - T+4 L-1 M-1 I+2 Θ0 N0 J0 - - - CapacitancePerLengthUnit - CapacitancePerLengthUnit + + + MixingRatio + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. + The mixing ratio at saturation is denoted xsat. + MassRatioOfWaterVapourToDryGas + MixingRatio + https://www.wikidata.org/wiki/Q76378940 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-62 + 5-30 + Ratio of the mass of water vapour to the mass of dry air in a given volume of air. - - + + - T+3 L-3 M-1 I+2 Θ0 N0 J0 + T0 L0 M-1 I+1 Θ0 N0 J0 - ElectricConductivityUnit - ElectricConductivityUnit - - - - - BlueDownAntiQuark - BlueDownAntiQuark - - - - - - ShearForming - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - Schubumformen - ShearForming - - - - - - Cementing - Cementing + ElectricCurrentPerMassUnit + ElectricCurrentPerMassUnit - + - - ElectricCurrentPhasor - ElectricCurrentPhasor - https://qudt.org/vocab/quantitykind/ElectricCurrentPhasor - https://www.wikidata.org/wiki/Q78514596 - 6-49 + + ConductanceForAlternatingCurrent + Real part of the admittance. + ConductanceForAlternatingCurrent + https://www.wikidata.org/wiki/Q79464628 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-53 + 6-52.2 + Real part of the admittance. - - - - SpecificationLanguage - A language used to describe what a computer system should do. - SpecificationLanguage - A language used to describe what a computer system should do. - ACSL, VDM, LOTUS, MML, ... - https://en.wikipedia.org/wiki/Specification_language + + + + + POH + Written as pOH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) + POH + number quantifying the acidic or the alkaline character of a solution, equal to the negative of the decimal logarithm of ion activity aOH- of the hydroxide anion OH- +pH = −10 log(a_OH-) - - - - ChipboardManufacturing - ChipboardManufacturing + + + + Synchrotron + + Synchrotron - + - + + - - + + T+1 L-3 M0 I+1 Θ0 N0 J0 - - - PoyntingVector - Electric field strength multiplied by magnetic field strength. - PoyntingVector - https://qudt.org/vocab/quantitykind/PoyntingVector - https://www.wikidata.org/wiki/Q504186 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-66 - 6-34 - Electric field strength multiplied by magnetic field strength. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - BlueAntiQuark - BlueAntiQuark + + ElectricChargeDensityUnit + ElectricChargeDensityUnit - + - + + - - - SecondPolarMomentOfArea - SecondPolarMomentOfArea - https://qudt.org/vocab/quantitykind/SecondPolarMomentOfArea - https://www.wikidata.org/wiki/Q1049636 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-30 - 4-21.2 - - - - - - - SuperconductorEnergyGap - Width of the forbidden energy band in a superconductor. - SuperconductorEnergyGap - https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap - https://www.wikidata.org/wiki/Q106127898 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 - 12-37 - Width of the forbidden energy band in a superconductor. + Radioactivity + Decays per unit time. + RadioactiveActivity + Radioactivity + http://qudt.org/vocab/quantitykind/SpecificActivity + Decays per unit time. + https://doi.org/10.1351/goldbook.A00114 - - - - - IsentropicCompressibility - IsentropicCompressibility - https://qudt.org/vocab/quantitykind/IsentropicCompressibility - https://www.wikidata.org/wiki/Q2990695 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-32 - 5-5.2 + + + + RapidPrototyping + Application of additive manufacturing intended for reducing the time needed for producing prototypes. + RapidPrototyping + Application of additive manufacturing intended for reducing the time needed for producing prototypes. - - - - - - - - - - - CelsiusTemperature - An objective comparative measure of hot or cold. - -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - CelsiusTemperature - http://qudt.org/vocab/quantitykind/CelciusTemperature - 5-2 - An objective comparative measure of hot or cold. + + + + DataProcessingApplication + DataProcessingApplication + -Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures. - https://doi.org/10.1351/goldbook.T06261 + + + ContinuumModel + A physics-based model based on a physics equation describing the behaviour of continuum volume. + ContinuumModel + A physics-based model based on a physics equation describing the behaviour of continuum volume. - + - T-1 L+2 M0 I0 Θ0 N0 J0 + T0 L-1 M0 I0 Θ+1 N0 J0 - AreaPerTimeUnit - AreaPerTimeUnit + TemperaturePerLengthUnit + TemperaturePerLengthUnit - - - - - PhysicsMathematicalComputation - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. - PhysicsMathematicalComputation - A functional icon that imitates the behaviour of the object through mathematical evaluations of some mathematical construct. - The equation that describes the velocity of a uniform accelerated body v = v0 + a*t is a functional icon. In general every analitical solution of a mathematical model can be considered an icon. A functional icon expresses its similarity with the object when is part of a process the makes it imitate the behavior of the object. In the case of v = v0 + a*t, plotting the velocity over time or listing their values at certain instants is when the icon expresses it functionality. + + + + EnvironmentalScanningElectronMicroscopy + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + EnvironmentalScanningElectronMicroscopy + The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - - - GreenTopQuark - GreenTopQuark + + + + + + + + + + + + + + + ParticleConcentration + ParticleConcentration + https://www.wikidata.org/wiki/Q39078574 + 9-9.1 - + - - CharacterisedSample - The sample after having been subjected to a characterization process - CharacterisedSample - The sample after having been subjected to a characterization process + + HPPC + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + HybridPulsePowerCharacterisation + HybridPulsePowerCharacterization + HPPC + Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - + - - - LeakageFactor - One minus the square of the coupling factor - LeakageFactor - https://www.wikidata.org/wiki/Q78102042 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-42 - 6-42.2 - One minus the square of the coupling factor + + + + + + + + + ExtentOfReaction + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + ExtentOfReaction + https://qudt.org/vocab/quantitykind/ExtentOfReaction + https://www.wikidata.org/wiki/Q899046 + 9-31 + Difference between equilibrium and initial amount of a substance, divided by its stoichiometric number. + https://doi.org/10.1351/goldbook.E02283 - - - - TransmissionElectronMicroscopy - - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - TEM - TransmissionElectronMicroscopy - Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + + + + FORTRAN + FORTRAN - - - - Spacing - Spacing + + + + + NeutronYieldPerFission + Average number of fission neutrons, both prompt and delayed, emitted per fission event. + NeutronYieldPerFission + https://qudt.org/vocab/quantitykind/NeutronYieldPerFission + https://www.wikidata.org/wiki/Q99157909 + 10-74.1 + Average number of fission neutrons, both prompt and delayed, emitted per fission event. - + - - MagneticQuantumNumber - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. - MagneticQuantumNumber - https://qudt.org/vocab/quantitykind/MagneticQuantumNumber - https://www.wikidata.org/wiki/Q2009727 - 10-13.4 - Atomic quantum number related to the z component lz, jz or sz, of the orbital, total, or spin angular momentum. + + + + RollingResistance + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. + RollingDrag + RollingFrictionForce + RollingResistance + https://www.wikidata.org/wiki/Q914921 + 4-9.5 + Force resisting the motion when a body (such as a ball, tire, or wheel) rolls on a surface. - - - - - - - - - - - - - - - - - - - AntiElectronType - AntiElectronType + + + + + RollingResistanceFactor + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. + RollingResistanceFactor + https://www.wikidata.org/wiki/Q91738044 + 4-23.3 + Quotient of tangential and normal component of the force applied to a body which is rolling at constant speed over a surface. - - - - PressureFractionUnit - Unit for quantities of dimension one that are the fraction of two pressures. - PressureFractionUnit - Unit for quantities of dimension one that are the fraction of two pressures. + + + + + ResidualResistivity + for metals, the resistivity extrapolated to zero thermodynamic temperature + ResidualResistivity + https://qudt.org/vocab/quantitykind/ResidualResistivity + https://www.wikidata.org/wiki/Q25098876 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-13-61 + 12-17 + for metals, the resistivity extrapolated to zero thermodynamic temperature - - - - AreaFractionUnit - Unit for quantities of dimension one that are the fraction of two areas. - AreaFractionUnit - Unit for quantities of dimension one that are the fraction of two areas. - Unit for solid angle. + + + + Spray + A suspension of liquid droplets dispersed in a gas through an atomization process. + Spray + A suspension of liquid droplets dispersed in a gas through an atomization process. - + - - MaterialLaw - A law that provides a connection between a material property and other properties of the object. - MaterialLaw - A law that provides a connection between a material property and other properties of the object. + + + PhysicsEquation + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + PhysicsEquation + An 'equation' that stands for a 'physical_law' by mathematically defining the relations between physics_quantities. + The Newton's equation of motion. +The Schrödinger equation. +The Navier-Stokes equation. + + + + + + + + + T-2 L+3 M+1 I-1 Θ+1 N0 J0 + + + NewtonSquareMetrePerAmpereUnit + NewtonSquareMetrePerAmpereUnit - - - ClassicalData - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. - ClassicalData - Data that are expressed through classical physics mechanisms, having one value and one state, and being in the same place at the same time. + + + + + + = + + + + + Equals + The equals symbol. + Equals + The equals symbol. - + - - CharacterisationEnvironmentProperty + + SecondaryIonMassSpectrometry - CharacterisationEnvironmentProperty + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. + SIMS + SecondaryIonMassSpectrometry + Secondary-ion mass spectrometry (SIMS) is a technique used to analyze the composition of solid surfaces and thin films by sputtering the surface of the specimen with a focused primary ion beam and collecting and analyzing ejected secondary ions. - + - T-4 L+2 M+1 I-1 Θ0 N0 J0 + T+1 L0 M0 I+1 Θ0 N-1 J0 - ElectricPotentialPerTimeUnit - ElectricPotentialPerTimeUnit + ElectricChargePerAmountUnit + ElectricChargePerAmountUnit - + - - ScanningProbeMicroscopy - - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. - ScanningProbeMicroscopy - Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + FourierTransformInfraredSpectroscopy + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + FTIR + FourierTransformInfraredSpectroscopy + https://www.wikidata.org/wiki/Q901559 + A technique used to obtain an infrared spectrum of absorption or emission of a solid, liquid, or gas + https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectroscopy - - - - - SlowingDownLength - Square root of the slowing down area. - SlowingDownLength - https://qudt.org/vocab/quantitykind/Slowing-DownLength - https://www.wikidata.org/wiki/Q98996963 - 10-73.1 - Square root of the slowing down area. + + + ProcedureUnit + A reference unit provided by a measurement procedure. + Procedure units and measurement units are disjoint. + MeasurementProcedure + ProcedureUnit + A reference unit provided by a measurement procedure. + Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg) + Procedure units and measurement units are disjoint. - - - - MicrowaveSintering - MicrowaveSintering - + + + + PhaseOfMatter + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - - - - - - ActivityFactor - ActivityFactor - https://www.wikidata.org/wiki/Q89335167 - 9-22 +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + Phase + PhaseOfMatter + A matter object throughout which all physical properties of a material are essentially uniform. + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - + - T+2 L0 M+1 I0 Θ0 N0 J0 + T+1 L-2 M0 I0 Θ0 N0 J+1 - MassSquareTimeUnit - MassSquareTimeUnit + IlluminanceTimeUnit + IlluminanceTimeUnit - - - - Calendering - Calendering + + + + OrbitalAngularMomentumQuantumNumber + Atomic quantum number related to the orbital angular momentum l of a one-electron state. + OrbitalAngularMomentumQuantumNumber + https://qudt.org/vocab/quantitykind/OrbitalAngularMomentumQuantumNumber + https://www.wikidata.org/wiki/Q1916324 + 10-13.3 + Atomic quantum number related to the orbital angular momentum l of a one-electron state. - + + + AmorphousMaterial + NonCrystallineMaterial + AmorphousMaterial + + + + + + + PhaseDifference + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + DisplacementAngle + PhaseDifference + https://www.wikidata.org/wiki/Q97222919 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-11-48 + 6-48 + Under sinusoidal conditions, phase difference between the voltage applied to a linear two-terminal element or two-terminal circuit and the electric current in the element or circuit. + + + - T0 L+4 M0 I0 Θ0 N0 J0 + T-3 L0 M+1 I0 Θ-4 N0 J0 - QuarticLengthUnit - QuarticLengthUnit - - - - - - - FermiEnergy - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - FermiEnergy - https://qudt.org/vocab/quantitykind/FermiEnergy - https://www.wikidata.org/wiki/Q431335 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-06-18 - 12-27.1 - in a metal, highest occupied energy level at zero thermodynamic temperature, where energy level means the energy of an electron in the interior of a substance - https://doi.org/10.1351/goldbook.F02340 - - - - - WPositiveBoson - WPositiveBoson - - - - - - ArithmeticEquation - ArithmeticEquation - 1 + 1 = 2 + MassPerCubicTimeQuarticTemperatureUnit + MassPerCubicTimeQuarticTemperatureUnit - - - - FiberReinforcePlasticManufacturing - FiberReinforcePlasticManufacturing + + + + PressureFractionUnit + Unit for quantities of dimension one that are the fraction of two pressures. + PressureFractionUnit + Unit for quantities of dimension one that are the fraction of two pressures. - + - - - - - - - - MolarAttenuationCoefficient - Quotient of linear attenuation coefficient µ and the amount c of the medium. - MolarAttenuationCoefficient - https://www.wikidata.org/wiki/Q98592828 - 10-51 - Quotient of linear attenuation coefficient µ and the amount c of the medium. + + LarmonAngularFrequency + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. + LarmonAngularFrequency + 10-15.1 + Angular frequency of the electron angular momentum vector precession about the axis of an external magnetic field. - - - - ManufacturingDevice - A device that is designed to participate to a manufacturing process. - ManufacturingDevice - A device that is designed to participate to a manufacturing process. + + + BlueBottomQuark + BlueBottomQuark - - - - DifferentialThermalAnalysis - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. - DTA - DifferentialThermalAnalysis - Differential thermal analysis (DTA) is a thermoanalytic technique that is similar to differential scanning calorimetry. In DTA, the material under study and an inert reference are made to undergo identical thermal cycles, (i.e., same cooling or heating programme) while recording any temperature difference between sample and reference.[1] This differential temperature is then plotted against time, or against temperature (DTA curve, or thermogram). Changes in the sample, either exothermic or endothermic, can be detected relative to the inert reference. Thus, a DTA curve provides data on the transformations that have occurred, such as glass transitions, crystallization, melting and sublimation. The area under a DTA peak is the enthalpy change and is not affected by the heat capacity of the sample. + + + MesoscopicSubstance + MesoscopicSubstance + + + + + + Exponent + Exponent - + - - - ThermoelectricVoltage - Voltage between substances a and b caused by the thermoelectric effect. - ThermoelectricVoltage - https://www.wikidata.org/wiki/Q105761637 - 12-20 - Voltage between substances a and b caused by the thermoelectric effect. - - - - - T0 L+5 M0 I0 Θ0 N0 J0 + T-3 L0 M+1 I0 Θ-1 N0 J0 - SectionAreaIntegralUnit - SectionAreaIntegralUnit + ThermalTransmittanceUnit + ThermalTransmittanceUnit - - - - AtomProbeTomography - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. - 3D Atom Probe - APT - AtomProbeTomography - Atom Probe Tomography (APT or 3D Atom Probe) is the only material analysis technique offering extensive capabilities for both 3D imaging and chemical composition measurements at the atomic scale (around 0.1-0.3nm resolution in depth and 0.3-0.5nm laterally). Since its early developments, Atom Probe Tomography has contributed to major advances in materials science. The sample is prepared in the form of a very sharp tip. The cooled tip is biased at high DC voltage (3-15 kV). The very small radius of the tip and the High Voltage induce a very high electrostatic field (tens V/nm) at the tip surface, just below the point of atom evaporation. Under laser or HV pulsing, one or more atoms are evaporated from the surface, by field effect (near 100% ionization), and projected onto a Position Sensitive Detector (PSD) with a very high detection efficiency. Ion efficiencies are as high as 80%, the highest analytical efficiency of any 3D microscopy. + + + + AreaFractionUnit + Unit for quantities of dimension one that are the fraction of two areas. + AreaFractionUnit + Unit for quantities of dimension one that are the fraction of two areas. + Unit for solid angle. - - + + - T0 L0 M-2 I0 Θ0 N0 J0 + T+1 L0 M-1 I+1 Θ0 N0 J0 - InverseSquareMassUnit - InverseSquareMassUnit + ElectricChargePerMassUnit + ElectricChargePerMassUnit - - - - MembraneOsmometry - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - MembraneOsmometry - In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + + + + ArithmeticEquation + ArithmeticEquation + 1 + 1 = 2 - + - - - - - - - - - Acceleration - Derivative of velocity with respect to time. - Acceleration - http://qudt.org/vocab/quantitykind/Acceleration - 3-9.1 - https://doi.org/10.1351/goldbook.A00051 - - - - - - Plasma - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. - Plasma - A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour. + + + IsothermalCompressibility + IsothermalCompressibility + https://qudt.org/vocab/quantitykind/IsothermalCompressibility + https://www.wikidata.org/wiki/Q2990696 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-31 + 5-5.1 - + - - DirectCoulometryAtControlledCurrent - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - DirectCoulometryAtControlledCurrent - Coulometry at an imposed, constant current in the electrochemical cell. Direct coulometry at controlled current is usually carried out in convective mass transfer mode. The end-point of the electrolysis, at which the current is stopped, must be determined either from the inflection point in the E–t curve or by using visual or objective end-point indi- cation, similar to volumetric methods. The total electric charge is calculated as the product of the constant current and time of electrolysis or can be measured directly using a coulometer. The advantage of this method is that the electric charge consumed during the electrode reaction is directly proportional to the electrolysis time. Care must be taken to avoid the potential region where another electrode reaction may occur. - - - - - - - MigrationArea - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - MigrationArea - https://qudt.org/vocab/quantitykind/MigrationArea - https://www.wikidata.org/wiki/Q98966325 - 10-72.3 - Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. - - - - - RedStrangeQuark - RedStrangeQuark + + DynamicMechanicalAnalysis + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. + DynamicMechanicalAnalysis + Dynamic mechanical analysis (abbreviated DMA) is a characterisation technique where a sinusoidal stress is applied and the strain in the material is measured, allowing one to determine the complex modulus. The temperature of the sample or the frequency of the stress are often varied, leading to variations in the complex modulus; this approach can be used to locate the glass transition temperature[1] of the material, as well as to identify transitions corresponding to other molecular motions. - + - - - - Guess - A guess is a theory, estimated and subjective, since its premises are subjective. - Guess - A guess is a theory, estimated and subjective, since its premises are subjective. - - - - - - - AverageLogarithmicEnergyDecrement - Average value of the increment of the lethargy per collision. - AverageLogarithmicEnergyDecrement - https://qudt.org/vocab/quantitykind/AverageLogarithmicEnergyDecrement.html - https://www.wikidata.org/wiki/Q1940739 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=395-07-02 - 10-70 - Average value of the increment of the lethargy per collision. - - - - - GluonType6 - GluonType6 + + + + + + + + + + Replica + An icon that not only resembles the object, but also can express some of the object's functions. + Replica + An icon that not only resembles the object, but also can express some of the object's functions. + A small scale replica of a plane tested in a wind gallery shares the same functionality in terms of aerodynamic behaviour of the bigger one. + Pinocchio is a functional icon of a boy since it imitates the external behaviour without having the internal biological structure of a human being (it is made of magic wood...). - - - - SpecificHelmholtzEnergy - Helmholtz energy per unit mass. - SpecificHelmholtzEnergy - https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy - https://www.wikidata.org/wiki/Q76359554 - 5-21.4 - Helmholtz energy per unit mass. + + + + + + + T-3 L+2 M0 I0 Θ0 N0 J0 + + + AbsorbedDoseRateUnit + AbsorbedDoseRateUnit - - - CompositeMaterial - CompositeMaterial + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Suspension + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. + Suspensions show no significant effect on light. + Suspension + An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase. - - - - VoltammetryAtARotatingDiskElectrode - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - VoltammetryAtARotatingDiskElectrode - Hydrodynamic voltammetry using a a rotating disc electrode, where the limiting current is described by the Levich equation - https://doi.org/10.1515/pac-2018-0109 + + + + + + + + + + + + + + AntiLepton + AntiLepton - - + + - T-2 L0 M0 I0 Θ+1 N0 J0 + T0 L0 M0 I0 Θ+1 N0 J0 - TemperaturePerSquareTimeUnit - TemperaturePerSquareTimeUnit + TemperatureUnit + TemperatureUnit - + - - Irradiate - Irradiate + + Screwing + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + Schrauben + Screwing - + - - - - - - - - - ModulusOfRigidity - Ratio of shear stress to the shear strain. - ShearModulus - ModulusOfRigidity - https://qudt.org/vocab/quantitykind/ShearModulus - https://www.wikidata.org/wiki/Q461466 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-68 - 4-19.2 - Ratio of shear stress to the shear strain. - https://doi.org/10.1351/goldbook.S05635 + + + LatentHeatOfPhaseTransition + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. + LatentHeatOfPhaseTransition + https://www.wikidata.org/wiki/Q106553458 + 9-16 + Energy to be added to or removed from a system under constant temperature and pressure to undergo a complete phase transition. - + - CausallHairedSystem - CausallHairedSystem + + + + + + + + + + + + + + + + + CharmAntiQuark + CharmAntiQuark - - - - Presses - Presses + + + NeutralAtom + A standalone atom that has no net charge. + NeutralAtom + A standalone atom that has no net charge. - + + + + Assigner + A estimator that uses its predefined knowledge to declare a property of an object. + Assigner + A estimator that uses its predefined knowledge to declare a property of an object. + I estimate the molecular mass of the gas in my bottle as 1.00784 u because it is tagged as H. + + + - - CharacterisationExperiment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. - CharacterisationExperiment - A characterisation experiment is the process by which a material's structure and properties are probed and measured. It is a fundamental process in the field of materials science, without which no scientific understanding of engineering materials could be ascertained. + + GalvanostaticIntermittentTitrationTechnique + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. + GITT + GalvanostaticIntermittentTitrationTechnique + https://www.wikidata.org/wiki/Q120906986 + Electrochemical method that applies current pulses to an electrochemical cell at rest and measures the voltage response. - - - OrdinalQuantity - "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." -International vocabulary of metrology (VIM) - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - OrdinalQuantity - "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" -International vocabulary of metrology (VIM) - Hardness -Resilience - ordinal quantity + + + + + + + + + + + + + + FundamentalAntiMatterParticle + FundamentalAntiMatterParticle - + - - FormingBlasting - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - Umformstrahlen - FormingBlasting + + CommercialProduct + An product that is ready for commercialisation. + Product + CommercialProduct + An product that is ready for commercialisation. - - - - LinkedModelsSimulation - A chain of linked physics based model simulations, where equations are solved sequentially. - LinkedModelsSimulation - A chain of linked physics based model simulations, where equations are solved sequentially. + + + + + + + T0 L-2 M0 I0 Θ0 N0 J0 + + + PerAreaUnit + PerAreaUnit - - - - GasAdsorptionPorosimetry - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. - GasAdsorptionPorosimetry - GasAdsorptionPorosimetry - Gas Adsorption Porosimetry is a method used for analyzing the surface area and porosity of materials. In this method, a gas, typically nitrogen or argon, is adsorbed onto the surface of the material at various pressures and temperatures. + + + + + GrandCanonicalPartionFunction + GrandPartionFunction + GrandCanonicalPartionFunction + https://qudt.org/vocab/quantitykind/GrandCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96176022 + 9-35.3 - - - - EmpiricalSimulationSoftware - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. - EmpiricalSimulationSoftware - A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + + + + DifferentialLinearPulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + DifferentialLinearPulseVoltammetry + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. @@ -23015,1424 +22872,1575 @@ Resilience VolumePerAmountTimeUnit - - - - Gathering - Gathering + + + + + + + + + + FineStructureConstant + A fundamental physical constant characterizing the strength of the electromagnetic interaction between elementary charged particles. + FineStructureConstant + http://qudt.org/vocab/constant/FineStructureConstant + https://doi.org/10.1351/goldbook.F02389 - + + + + Fractography + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + Fractography + Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + + + - + - - ElectricChargeDensity - Electric charge per volume. - VolumeElectricCharge - ElectricChargeDensity - https://qudt.org/vocab/quantitykind/ElectricChargeDensity - https://www.wikidata.org/wiki/Q69425629 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-07 - 6-3 - Electric charge per volume. - https://doi.org/10.1351/goldbook.C00988 + + EnergyFluenceRate + In nuclear physics, time derivative of the energy fluence. + EnergyFluenceRate + https://qudt.org/vocab/quantitykind/EnergyFluenceRate + https://www.wikidata.org/wiki/Q98538655 + 10-47 + In nuclear physics, time derivative of the energy fluence. - + - - - - - T+2 L-5 M-1 I0 Θ0 N0 J0 - - - EnergyDensityOfStatesUnit - EnergyDensityOfStatesUnit + + + DragForce + Retarding force on a body moving in a fluid. + DragForce + https://www.wikidata.org/wiki/Q206621 + 4-9.6 + Retarding force on a body moving in a fluid. - + - - Calorimetry - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - Calorimetry - In chemistry and thermodynamics, calorimetry (from Latin calor 'heat', and Greek μέτρον (metron) 'measure') is the science or act of measuring changes in state variables of a body for the purpose of deriving the heat transfer associated with changes of its state due, for example, to chemical reactions, physical changes, or phase transitions under specified constraints. Calorimetry is performed with a calorimeter. - - - - - WNegativeBoson - WNegativeBoson + + Signal + + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. + Signal + According to UPAC Compendium of Chemical Terminology, a “signal” is “A representation of a quantity within an analytical instrument” (https://goldbook.iupac.org/terms/view/S05661 ). + Result (effect) of the interaction between the sample and the probe, which usually is a measurable and quantifiable quantity. + Signal is usually emitted from a characteristic “emission” volume, which can be different from the sample/probe “interaction” volume and can be usually quantified using proper physics equations and/or modelling of the interaction mechanisms. - - - - DataBasedSimulationSoftware - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. - DataBasedSimulationSoftware - A computational application that uses existing data to predict the behaviour of a system without providing a identifiable analogy with the original object. + + + + IonMobilitySpectrometry + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + IMS + IonMobilitySpectrometry + Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - - - - - - - T-3 L0 M+1 I0 Θ-4 N0 J0 - - - MassPerCubicTimeQuarticTemperatureUnit - MassPerCubicTimeQuarticTemperatureUnit + + + VectorMeson + A meson with total spin 1 and odd parit. + VectorMeson + A meson with total spin 1 and odd parit. + https://en.wikipedia.org/wiki/Vector_meson - + - - + - - T-4 L0 M+1 I0 Θ0 N0 J0 + + - - MassPerQuarticTimeUnit - MassPerQuarticTimeUnit + + + DissociationConstant + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. + DissociationConstant + https://www.wikidata.org/wiki/Q898254 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=114-01-10 + ratio of the number of dissociated molecules of a specified type to the total number of dissolved molecules of this type. - - - - NewtonianConstantOfGravity - Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity. - NewtonianConstantOfGravity - http://qudt.org/vocab/constant/NewtonianConstantOfGravitation - https://doi.org/10.1351/goldbook.G02695 + + + + SupplyChain + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + SupplyChain + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - + - GreenCharmAntiQuark - GreenCharmAntiQuark + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + BlueAntiQuark + BlueAntiQuark - + - - - - - T0 L+2 M0 I0 Θ0 N-1 J0 - - - AreaPerAmountUnit - AreaPerAmountUnit + + + ElementaryCharge + The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + ElementaryCharge + http://qudt.org/vocab/quantitykind/ElementaryCharge + 10-5.1 + The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. + https://doi.org/10.1351/goldbook.E02032 - + - - + - - T+1 L+2 M0 I+1 Θ0 N0 J0 + + - - ElectricChargeAreaUnit - ElectricChargeAreaUnit + + + + MolarVolume + Volume per amount of substance. + MolarVolume + https://qudt.org/vocab/quantitykind/MolarVolume + https://www.wikidata.org/wiki/Q487112 + 9-5 + Volume per amount of substance. - + - - PotentialEnergy - The energy possessed by a body by virtue of its position or orientation in a potential field. - PotentialEnergy - http://qudt.org/vocab/quantitykind/PotentialEnergy - 4-28.1 - The energy possessed by a body by virtue of its position or orientation in a potential field. - https://doi.org/10.1351/goldbook.P04778 + + CentreOfMass + In non-relativistic physics, the centre of mass doesn’t depend on the chosen reference frame. + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + CentreOfMass + The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation. + https://en.wikipedia.org/wiki/Center_of_mass - + - T+1 L+1 M-1 I0 Θ0 N0 J0 + T-4 L+3 M+1 I-2 Θ0 N0 J0 - LengthTimePerMassUnit - LengthTimePerMassUnit + InversePermittivityUnit + InversePermittivityUnit - + + + + IsothermalMicrocalorimetry + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + IMC + IsothermalMicrocalorimetry + Isothermal microcalorimetry (IMC) is a laboratory method for real-time monitoring and dynamic analysis of chemical, physical and biological processes. Over a period of hours or days, IMC determines the onset, rate, extent and energetics of such processes for specimens in small ampoules (e.g. 3–20 ml) at a constant set temperature (c. 15 °C–150 °C). IMC accomplishes this dynamic analysis by measuring and recording vs. elapsed time the net rate of heat flow (μJ/s = μW) to or from the specimen ampoule, and the cumulative amount of heat (J) consumed or produced. + + + - + + - - + + T-2 L-1 M+1 I0 Θ-1 N0 J0 - - - - ThermalInsulance - Reciprocal of the coefficient of heat transfer. - CoefficientOfThermalInsulance - ThermalInsulance - https://qudt.org/vocab/quantitykind/ThermalInsulance - https://www.wikidata.org/wiki/Q2596212 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-41 - 5-11 - Reciprocal of the coefficient of heat transfer. - - - - - - SparkPlasmaSintering - SparkPlasmaSintering + + PressurePerTemperatureUnit + PressurePerTemperatureUnit - - - - - - - - - - - - - - PhysicallyInteracting - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. - PhysicallyInteracting - A causally bonded system is a system in which there are at least thwo causal paths that are interacting. + + + + + + + + + + AngularVelocity + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + AngularVelocity + https://qudt.org/vocab/quantitykind/AngularVelocity + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-41 + https://dbpedia.org/page/Angular_velocity + 3-12 + Axial vector quantity describing the rotation around an axis, with magnitude ω=|dφ/dt|, where dφ is the plane angle change during the infinitesimal time interval with duration dt, and with direction along the axis for which the rotation is clockwise. + https://en.wikipedia.org/wiki/Angular_velocity - - - + + - + - - + + + + + + + - StandaloneAtom - A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing. - An atom that does not share electrons with other atoms. - StandaloneAtom - An atom that does not share electrons with other atoms. + BottomQuark + BottomQuark + https://en.wikipedia.org/wiki/Bottom_quark - - - - - InfiniteMultiplicationFactor - In nuclear physics, the multiplication factor for an infinite medium. - InfiniteMultiplicationFactor - https://qudt.org/vocab/quantitykind/InfiniteMultiplicationFactor - https://www.wikidata.org/wiki/Q99440487 - 10-78.2 - In nuclear physics, the multiplication factor for an infinite medium. + + + + Shape3Vector + A real vector with 3 elements. + Shape3Vector + A real vector with 3 elements. + The quantity value of physical quantities if real space is a Shape3Vector. - + - - - RelativeMassDensity - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - RelativeDensity - RelativeMassDensity - https://www.wikidata.org/wiki/Q11027905 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-08 - 4-4 - Mass density ρ of a substance divided by the mass density ρ0 of a reference substance, under conditions that should be specified for both substances. - https://doi.org/10.1351/goldbook.R05262 + + ElectricImpedance + Measure of the opposition that a circuit presents to a current when a voltage is applied. + Impedance + ElectricImpedance + http://qudt.org/vocab/quantitykind/Impedance + https://www.wikidata.org/wiki/Q179043 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-43 + 6-51.1 + https://en.wikipedia.org/wiki/Electrical_impedance - + - - - Rotation - Rotation - https://www.wikidata.org/wiki/Q76435127 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-22 - 3-16 + + + SuperconductorEnergyGap + Width of the forbidden energy band in a superconductor. + SuperconductorEnergyGap + https://qudt.org/vocab/quantitykind/SuperconductorEnergyGap + https://www.wikidata.org/wiki/Q106127898 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=815-10-28 + 12-37 + Width of the forbidden energy band in a superconductor. - - - - Fractography - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. - Fractography - Fractography is the study of fracture surfaces in order to determine the relation between the microstructure and the mechanism(s) of crack initiation and propagation and, eventually, the root cause of the fracture. Fractography qualitatively interprets the mechanisms of fracture that occur in a sample by microscopic examination of fracture surface morpholog. + + + + + + + T-1 L0 M+1 I-1 Θ0 N0 J0 + + + MassPerElectricChargeUnit + MassPerElectricChargeUnit - - - - - ParticleEmissionRate - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. - ParticleEmissionRate - https://www.wikidata.org/wiki/Q98153151 - 10-36 - Differential quotient of N with respect to time, where N is the number of particles being emitted from an infinitesimally small volume element in the time interval of duration dt, and dt. + + + + + + + + + + + + + + SimulationLanguage + A computer language used to describe simulations. + SimulationLanguage + A computer language used to describe simulations. + https://en.wikipedia.org/wiki/Simulation_language - - - CausalInteraction - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. - CausalInteraction - A causal interaction is a fundamental causal system that is expressed as a complete bupartite directed graph K(m,n), when m=n. + + + + + + + + + + Gradient + Gradient - + - + - - ElectromagneticEnergyDensity - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) - VolumicElectromagneticEnergy - ElectromagneticEnergyDensity - https://qudt.org/vocab/quantitykind/ElectromagneticEnergyDensity - https://www.wikidata.org/wiki/Q77989624 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-65 - 6-33 - Arithmetic average of (electric field strength multiplied by electric flux density) and (magnetic field strength multiplied by magnetic flux density) + + MassAttenuationCoefficient + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. + MassAttenuationCoefficient + https://qudt.org/vocab/quantitykind/MassAttenuationCoefficient + https://www.wikidata.org/wiki/Q98591983 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-04-27 + 10-50 + Quotient of the linear attenuation coefficient µ and the mass density ρ of the medium. - + + + + Ruby + Ruby + + + - - - - - T+1 L+1 M0 I0 Θ+1 N0 J0 - - - LengthTimeTemperatureUnit - LengthTimeTemperatureUnit + + + EffectiveMass + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. + EffectiveMass + https://qudt.org/vocab/quantitykind/EffectiveMass + https://www.wikidata.org/wiki/Q1064434 + 12-30 + The mass that it seems to have when responding to forces, or the mass that it seems to have when interacting with other identical particles in a thermal distribution. - - - - - - - - - - - ParticulateMatter - ParticulateMatter + + + + TransmissionElectronMicroscopy + + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. + TEM + TransmissionElectronMicroscopy + Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device. - - - - - - - T+2 L-3 M-1 I0 Θ0 N+1 J0 - - - AmountSquareTimePerMassVolumeUnit - AmountSquareTimePerMassVolumeUnit + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + RedQuark + RedQuark - - - - FormingFromPulp - FormingFromPulp + + + GluonType5 + GluonType5 - - - - - StatisticalWeightOfSubsystem - StatisticalWeightOfSubsystem - https://www.wikidata.org/wiki/Q96207431 - 9-36.1 + + + + EmpiricalSimulationSoftware + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. + EmpiricalSimulationSoftware + A computational application that uses an empiric equation to predict the behaviour of a system without relying on the knowledge of the actual physical phenomena occurring in the object. - - - - NormalPulseVoltammetry - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - NPV - NormalPulseVoltammetry - Voltammetry in which potential pulses of amplitude increasing by a constant increment and with a pulse width of 2 to 200 ms are superimposed on a constant initial potential. Normal pulse polarography is NPV in which a dropping mercury electrode is used as the working electrode. A pulse is applied just before the mechanically enforced end of the drop. The pulse width is usually 10 to 20 % of the drop time. The drop dislodgment is synchro- nized with current sampling, which is carried out just before the end of the pulse, as in NPV. Sigmoidal wave-shaped voltammograms are obtained. The current is sampled at the end of the pulse and then plotted versus the potential of the pulse. The current is sampled just before the end of the pulse, when the charging current is greatly diminished. In this way, the ratio of faradaic current to charging current is enhanced and the negative influence of charging current is partially eliminated. Due to the improved signal (faradaic current) to noise (charging current) ratio, the limit of detec- tion is lowered. The sensitivity of NPV is not affected by the reversibility of the electrode reaction of the analyte. - https://doi.org/10.1515/pac-2018-0109 + + + + + InjectionMolding + InjectionMolding - + - - - - - T0 L+1 M0 I0 Θ+1 N0 J0 - - - LengthTemperatureUnit - LengthTemperatureUnit + + VoltagePhasor + Complex representation of an oscillating voltage. + VoltagePhasor + https://qudt.org/vocab/quantitykind/VoltagePhasor + https://www.wikidata.org/wiki/Q78514605 + 6-50 + Complex representation of an oscillating voltage. - - - - Assigned - Assigned + + + TemporallyRedundant + A whole with temporal parts of its same type. + TemporallyRedundant + A whole with temporal parts of its same type. - - - GreenUpAntiQuark - GreenUpAntiQuark + + + + + RadiantEnergy + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. + RadiantEnergy + https://www.wikidata.org/wiki/Q1259526 + 10-45 + Mean energy, excluding rest energy, of the particles that are emitted, transferred, or received. - - - - - VacuumElectricPermittivity - The DBpedia definition (http://dbpedia.org/page/Vacuum_permittivity) is outdated since May 20, 2019. It is now a measured constant. - The value of the absolute dielectric permittivity of classical vacuum. - PermittivityOfVacuum - VacuumElectricPermittivity - http://qudt.org/vocab/constant/PermittivityOfVacuum - 6-14.1 - https://doi.org/10.1351/goldbook.P04508 + + + + Calendering + Calendering - + - T+2 L0 M-1 I+1 Θ+1 N0 J0 + T-3 L+4 M+1 I0 Θ0 N0 J0 - TemperaturePerMagneticFluxDensityUnit - TemperaturePerMagneticFluxDensityUnit - - - - - - - MeanLinearRange - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - MeanLinearRange - https://qudt.org/vocab/quantitykind/MeanLinearRange - https://www.wikidata.org/wiki/Q98681589 - 10-56 - Mean total rectified path length travelled by a particle in the course of slowing down to rest in a given material averaged over a group of particles having the same initial energy. - https://doi.org/10.1351/goldbook.M03782 - - - - - GluonType4 - GluonType4 + PowerAreaUnit + PowerAreaUnit - + - - Milling - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. - Milling - Milling is a machining process that involves the use of a milling machine to remove material from a workpiece. Milling machines feature cutting blades that rotate while they press against the workpiece. + + AdsorptiveStrippingVoltammetry + A peak-shaped adsorptive stripping voltammogram is obtained. Peak current depends on time of accumulation, mass transport of analyte (stirring), scan rate and mode (linear or pulse), and analyte concentration in solution. AdSV is usually employed for analysis of organic compounds or metal complexes with organic ligands. Stripping is done by means of an anodic or a cathodic voltammetric scan (linear or pulse), during which the adsorbed compound is oxidized or reduced. + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + AdSV + AdsorptiveStrippingVoltammetry + Stripping voltammetry involving pre-concentration by adsorption of the analyte (in contrast to electro-chemical accumulation). + https://doi.org/10.1515/pac-2018-0109 - + - T0 L+3 M0 I0 Θ-1 N0 J0 + T0 L0 M-1 I0 Θ0 N0 J0 - VolumePerTemperatureUnit - VolumePerTemperatureUnit - - - - - - LightAndRadiationQuantity - Quantities categorised according to ISO 80000-7. - LightAndRadiationQuantity - Quantities categorised according to ISO 80000-7. - - - - - - MercuryPorosimetry - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - MercuryPorosimetry - A method used to measure the pore size distribution and total pore volume of solid materials by infiltrating mercury into the pores under controlled pressure conditions and analyzing the amount of mercury intrusion. - - - - - - - NeelTemperature - Critical thermodynamic temperature of an antiferromagnet. - NeelTemperature - https://www.wikidata.org/wiki/Q830311 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-12-52 - 12-35.2 - Critical thermodynamic temperature of an antiferromagnet. - - - - - MesoscopicModel - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - MesoscopicModel - A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle. - - - - - - PhysicsEquationSolution - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - This must be a mathematical function v(t), x(t). -A dataset as solution is a conventional sign. - PhysicsEquationSolution - A function solution of a physics equation that provides a methods for the prediction of some quantitiative properties of an object. - A parabolic function is a prediction of the trajectory of a falling object in a gravitational field. While it has predictive capabilities it lacks of an analogical character, since it does not show the law behind that trajectory. - - - - - BlueBottomQuark - BlueBottomQuark + ReciprocalMassUnit + ReciprocalMassUnit - - + + + + ContinuousCasting + ContinuousCasting + + + + - T-3 L0 M+1 I-1 Θ0 N0 J0 + T-2 L+2 M+1 I0 Θ0 N-1 J0 - ElectricPotentialPerAreaUnit - ElectricPotentialPerAreaUnit + EnergyPerAmountUnit + EnergyPerAmountUnit - + - - - SolidSolution - A solid solution made of two or more component substances. - SolidSolution - A solid solution made of two or more component substances. + + + + + + + + + ParticulateMatter + ParticulateMatter - - - - ScanningKelvinProbe - - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. - SKB - ScanningKelvinProbe - Scanning Kelvin probe (SKP) and scanning Kelvin probe force microscopy (SKPFM) are probe techniques which permit mapping of topography and Volta potential distribution on electrode surfaces. It measures the surface electrical potential of a sample without requiring an actual physical contact. + + + + + + + T+2 L+2 M-1 I+2 Θ0 N0 J0 + + + EnergyPerSquareMagneticFluxDensityUnit + EnergyPerSquareMagneticFluxDensityUnit - - - PolymericMaterial - PolymericMaterial + + + + InterferenceFitting + InterferenceFitting - - - - - - Δ - - - - Laplacian - Laplacian + + + GreenStrangeQuark + GreenStrangeQuark - - - - DifferentialOperator - DifferentialOperator + + + + + + + T0 L0 M+1 I0 Θ+1 N0 J0 + + + MassTemperatureUnit + MassTemperatureUnit - + - - ScanningAugerElectronMicroscopy - - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - AES - ScanningAugerElectronMicroscopy - Auger electron spectroscopy (AES or simply Auger) is a surface analysis technique that uses an electron beam to excite electrons on atoms in the particle. Atoms that are excited by the electron beam can emit “Auger” electrons. AES measures the kinetic energies of the emitted electrons. The energy of the emitted electrons is characteristic of elements present at the surface and near the surface of a sample. - - - - - - PlasmaCutting - PlasmaCutting + + BrunauerEmmettTellerMethod + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + BET + BrunauerEmmettTellerMethod + https://www.wikidata.org/wiki/Q795838 + A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface + https://en.wikipedia.org/wiki/BET_theory - + - T-2 L+4 M0 I0 Θ0 N0 J0 + T+2 L-2 M-1 I+2 Θ0 N0 J0 - MassStoppingPowerUnit - MassStoppingPowerUnit + MagneticReluctanceUnit + MagneticReluctanceUnit - - - - Ruby - Ruby + + + + DieCasting + DieCasting - + - - - MeanFreePathOfElectrons - Average distance that electrons travel between two successive interactions. - MeanFreePathOfElectrons - https://qudt.org/vocab/quantitykind/ElectronMeanFreePath - https://www.wikidata.org/wiki/Q105672307 - 12-15.2 - Average distance that electrons travel between two successive interactions. + + + + + T+2 L-5 M-1 I0 Θ0 N0 J0 + + + EnergyDensityOfStatesUnit + EnergyDensityOfStatesUnit - + - T-1 L-4 M+1 I0 Θ0 N0 J0 + T-1 L+3 M0 I-1 Θ0 N0 J0 - MassPerQuarticLengthTimeUnit - MassPerQuarticLengthTimeUnit + ReciprocalElectricChargeDensityUnit + ReciprocalElectricChargeDensityUnit - - - GreenStrangeQuark - GreenStrangeQuark + + + + Milling + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + Fräsen + Milling - + - - - ElementaryCharge - The DBpedia definition (http://dbpedia.org/page/Elementary_charge) is outdated as May 20, 2019. It is now an exact quantity. - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - ElementaryCharge - http://qudt.org/vocab/quantitykind/ElementaryCharge - 10-5.1 - The magnitude of the electric charge carried by a single electron. It defines the base unit Ampere in the SI system. - https://doi.org/10.1351/goldbook.E02032 + + KineticEnergy + The energy of an object due to its motion. + KineticEnergy + http://qudt.org/vocab/quantitykind/KineticEnergy + 4-28.2 + The energy of an object due to its motion. + https://doi.org/10.1351/goldbook.K03402 - + - - Grinding - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - Grinding - Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + + + HardwareManufacturer + + HardwareManufacturer - - - - CeramicSintering - CeramicSintering + + + + + + + + + + + + + + NumberOfElements + Number of direct parts of a Reductionistic. + Using direct parthood EMMO creates a well-defined broadcasting between granularity levels. This also make it possible to count the direct parts of each granularity level. + NumberOfElements + Number of direct parts of a Reductionistic. - + - - ResistanceToAlternativeCurrent - Real part of the impedance. - ResistanceToAlternativeCurrent - https://www.wikidata.org/wiki/Q1048490 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=131-12-45 - 6-51.2 - Real part of the impedance. + + + MaximumBetaParticleEnergy + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. + MaximumBetaParticleEnergy + https://qudt.org/vocab/quantitykind/MaximumBeta-ParticleEnergy + https://www.wikidata.org/wiki/Q98148038 + 10-33 + Maximum kinetic energy of the emitted beta particle produced in the nuclear disintegration process. - + - - - HardwareManufacturer + + RawSample - HardwareManufacturer + RawSample - - - GreenDownAntiQuark - GreenDownAntiQuark + + + + + + + + + + + + EnergyDensityOfStates + Quantity in condensed matter physics. + EnergyDensityOfStates + https://qudt.org/vocab/quantitykind/EnergyDensityOfStates + https://www.wikidata.org/wiki/Q105687031 + 12-16 + Quantity in condensed matter physics. - - - Observer - A characteriser that declares a property for an object through the specific interaction required by the property definition. - Observer - A characteriser that declares a property for an object through the specific interaction required by the property definition. + + + + GrowingCrystal + GrowingCrystal - - - VectorMeson - A meson with total spin 1 and odd parit. - VectorMeson - A meson with total spin 1 and odd parit. - https://en.wikipedia.org/wiki/Vector_meson + + + + + + + + + + + + + + + + + + + + + MetrologicalSymbol + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. + MetrologicalSymbol + A symbol that stands for a concept in the language of the meterological domain of ISO 80000. - + - - - BraggAngle - Angle between the scattered ray and the lattice plane. - BraggAngle - https://qudt.org/vocab/quantitykind/BraggAngle - https://www.wikidata.org/wiki/Q105488118 - 12-4 - Angle between the scattered ray and the lattice plane. + + + + + T0 L-3 M0 I+1 Θ0 N-1 J0 + + + ElectricCurrentPerAmountVolumeUnit + ElectricCurrentPerAmountVolumeUnit - + - + + - - + + T-4 L0 M+1 I0 Θ0 N0 J0 - - - GaugePressure - GaugePressure - https://www.wikidata.org/wiki/Q109594211 - 4-14.2 + + MassPerQuarticTimeUnit + MassPerQuarticTimeUnit - - - - - - - - - - - - - - - - - - - ElectronType - ElectronType + + + + + MicrocanonicalPartitionFunction + MicrocanonicalPartitionFunction + https://qudt.org/vocab/quantitykind/MicroCanonicalPartitionFunction + https://www.wikidata.org/wiki/Q96106546 + 9-35.1 - + - - ContinuousCasting - ContinuousCasting + + Filling + Filling - + - + - AtomicScatteringFactor - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - AtomicScatteringFactor - https://qudt.org/vocab/quantitykind/AtomScatteringFactor - https://www.wikidata.org/wiki/Q837866 - 12-5.3 - Quotient of radiation amplitude scattered by the atom and radiation amplitude scattered by a single electron. - https://en.wikipedia.org/wiki/Atomic_form_factor + MechanicalEfficiency + Quotient of mechanical output and input power. + MechanicalEfficiency + https://www.wikidata.org/wiki/Q2628085 + 4-29 + Quotient of mechanical output and input power. - - - - PorcelainOrCeramicCasting - PorcelainOrCeramicCasting + + + + + + + T0 L-2 M+1 I0 Θ+1 N0 J0 + + + TemperatureMassPerAreaUnit + TemperatureMassPerAreaUnit - - - - DataFiltering - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. - DataFiltering - Data filtering is the process of examining a dataset to exclude, rearrange, or apportion data according to certain criteria. + + + + + MolarGasConstant + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + MolarGasConstant + http://qudt.org/vocab/constant/MolarGasConstant + 9-37.1 + Equivalent to the Boltzmann constant, but expressed in units of energy per temperature increment per mole (rather than energy per temperature increment per particle). + https://doi.org/10.1351/goldbook.G02579 - + - - ConfocalMicroscopy - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. - ConfocalMicroscopy - Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. + + CoulometricTitration + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. + CoulometricTitration + Titration in which the titrant is generated electrochemically, either by constant current or at constant potential. The titrant reacts stoichiometrically with the analyte, the amount of which is calculated using Faraday’s laws of electrolysis from the electric charge required to reach the end-point. Coulometric titrations are usually carried out in convective mass transfer mode using a large surface working electrode. The reference and auxiliary electrodes are located in sepa- rate compartments. A basic requirement is a 100 % current efficiency of titrant generation at the working electrode. End-point detection can be accomplished with potentiometry, amperometry, biamperometry, bipotentiometry, photometry, or by using a visual indicator. The main advantages are that titration is possible with less stable titrants, the standardi- zation of titrant is not necessary, the volume of the test solution is not changed, and the method is easily automated. - - - - 3DPrinting - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - 3DPrinting - Fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology. - This term is often used in a non-technical context synonymously with additive manufacturing and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + + + + + + + + + IterativeWorkflow + A workflow whose steps (iterative steps) are the repetition of the same workflow type. + IterativeWorkflow + A workflow whose steps (iterative steps) are the repetition of the same workflow type. - + - - DieCasting - DieCasting - - - - - RedTopAntiQuark - RedTopAntiQuark - - - - - - DataAnalysis - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. - DataAnalysis - Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + + Peening + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + ShotPeening + Verfestigungsstrahlen + Peening + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) - - - - SpecificHeatCapacityAtSaturatedVaporPressure - Specific heat capacity at saturated vaport pressure. - SpecificHeatCapacityAtSaturatedVaporPressure - https://qudt.org/vocab/quantitykind/SpecificHeatCapacityAtSaturation - https://www.wikidata.org/wiki/Q75775005 - 5-16.4 - Specific heat capacity at saturated vaport pressure. + + + + Galvanizing + Galvanizing - - - BlueUpAntiQuark - BlueUpAntiQuark + + + + UltrasonicTesting + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. + UltrasonicTesting + Ultrasonic testing (UT) is a family of non-destructive testing techniques based on the propagation of ultrasonic waves in the object or material tested. In most common UT applications, very short ultrasonic pulse-waves with center frequencies ranging from 0.1-15 MHz, and occasionally up to 50 MHz, are transmitted into materials to detect internal flaws or to characterize materials. A common example is ultrasonic thickness measurement, which tests the thickness of the test object, for example, to monitor pipework corrosion. Ultrasonic testing is often performed on steel and other metals and alloys, though it can also be used on concrete, wood and composites, albeit with less resolution. It is used in many industries including steel and aluminium construction, metallurgy, manufacturing, aerospace, automotive and other transportation sectors. - + - T-3 L+4 M+1 I0 Θ0 N0 J0 + T-1 L+2 M+1 I0 Θ0 N-1 J0 - PowerAreaUnit - PowerAreaUnit + EnergyTimePerAmountUnit + EnergyTimePerAmountUnit - + - - - DiffusionLength - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - DiffusionLength - https://qudt.org/vocab/quantitykind/SolidStateDiffusionLength - https://www.wikidata.org/wiki/Q106097176 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=521-02-60 - 12-33 - In condensed matter physics, the square root of the product of diffusion coefficient and lifetime. - - - - - - - - - - - - + + + + - - ArithmeticExpression - ArithmeticExpression - 2+2 + + + MolarMass + Mass per amount of substance. + MolarMass + https://qudt.org/vocab/quantitykind/MolarMass + https://www.wikidata.org/wiki/Q145623 + 9-4 + Mass per amount of substance. - + - T-1 L-3 M0 I0 Θ0 N+1 J0 + T-1 L-4 M+1 I0 Θ0 N0 J0 - AmountPerVolumeTimeUnit - AmountPerVolumeTimeUnit - - - - - - AmountFractionUnit - Unit for quantities of dimension one that are the fraction of two amount of substance. - AmountFractionUnit - Unit for quantities of dimension one that are the fraction of two amount of substance. - Unit for amount fraction. + MassPerQuarticLengthTimeUnit + MassPerQuarticLengthTimeUnit - + - T0 L+2 M0 I0 Θ+1 N0 J0 + T+2 L+1 M-1 I0 Θ0 N0 J0 - AreaTemperatureUnit - AreaTemperatureUnit + PerPressureUnit + PerPressureUnit - - - - - Extrusion - Extrusion + + + + + + + T-3 L+1 M0 I0 Θ0 N0 J0 + + + LengthPerCubeTimeUnit + LengthPerCubeTimeUnit - + - - HPPC - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. - HybridPulsePowerCharacterisation - HybridPulsePowerCharacterization - HPPC - Electrochemical method that measures the voltage drop of a cell resulting from a square wave current load. + + Grinding + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. + Grinding + Grinding is a machining process that involves the use of a disc-shaped grinding wheel to remove material from a workpiece. There are several types of grinding wheels, some of which include grindstones, angle grinders, die grinders and specialized grinding machines. - + - + - - FundamentalReciprocalLatticeVector - Fundamental translation vectors for the reciprocal lattice. - FundamentalReciprocalLatticeVector - https://qudt.org/vocab/quantitykind/FundamentalReciprocalLatticeVector - https://www.wikidata.org/wiki/Q105475399 - 12-2.2 - Fundamental translation vectors for the reciprocal lattice. + + + SlowingDownDensity + Number of slowed-down particles per time and volume. + SlowingDownDensity + https://qudt.org/vocab/quantitykind/Slowing-DownDensity + https://www.wikidata.org/wiki/Q98915830 + 10-67 + Number of slowed-down particles per time and volume. - + - - ElectrochemicalPiezoelectricMicrogravimetry - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. - ElectrochemicalPiezoelectricMicrogravimetry - Electrogravimetry using an electrochemical quartz crystal microbalance. The change of mass is, for rigid deposits, linearly proportional to the change of the reso- nance frequency of the quartz crystal, according to the Sauerbrey equation. For non- rigid deposits, corrections must be made. + + ScanningProbeMicroscopy + + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + ScanningProbeMicroscopy + Scanning probe microscopy (SPM) is a branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. + + + + + + SpecificHelmholtzEnergy + Helmholtz energy per unit mass. + SpecificHelmholtzEnergy + https://qudt.org/vocab/quantitykind/SpecificHelmholtzEnergy + https://www.wikidata.org/wiki/Q76359554 + 5-21.4 + Helmholtz energy per unit mass. + + + + + + Java + Java + + + + + + ElectrochemicalImpedanceSpectroscopy + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. + EIS + ElectrochemicalImpedanceSpectroscopy + https://www.wikidata.org/wiki/Q3492904 + Electrochemical measurement method of the complex impedance of an electrochemical system as a function of the frequency of a small amplitude (normally 5 to 10 mV) sinusoidal voltage perturbation superimposed on a fixed value of applied potential or on the open circuit potential. Impedimetric sensors are based on measurement of a concentration-dependent parameter taken from analysis of the respective electrochemical impedance spectra, or from the impedance magnitudes at a chosen fixed frequency. The sinusoidal current response lags behind the sinusoidal voltage perturbation by a phase angle φ. Resistances (e.g. to charge transfer) give a response in phase with the voltage perturbation; capacitances (e.g. double layer) give a response 90° out of phase; combinations of resistances and capacitances give phase angles between 0 and 90°. Plots of the out of phase vs. the in phase component of the impedance for all the frequencies tested are called complex plane (or Nyquist) plots. Plots of the phase angle and the magnitude of the impedance vs. the logarithm of perturbation frequency are called Bode diagrams. Complex plane plots are the more commonly used for electrochemical sensors. https://doi.org/10.1515/pac-2018-0109 - + + + + + MigrationArea + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + MigrationArea + https://qudt.org/vocab/quantitykind/MigrationArea + https://www.wikidata.org/wiki/Q98966325 + 10-72.3 + Sum of the slowing-down area from fission energy to thermal energy and the diffusion area for thermal neutrons. + + + + + + DataAnalysis + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + DataAnalysis + Data processing activities performed on the secondary data to determine the characterisation property (e.g. classification, quantification), which can be performed manually or exploiting a model. + + + + + BlueTopAntiQuark + BlueTopAntiQuark + + + + + + + HelmholtzEnergy + HelmholtzFreeEnergy + HelmholtzEnergy + https://www.wikidata.org/wiki/Q865821 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-24 + 5-20.4 + https://doi.org/10.1351/goldbook.H02772 + + + + + BlueUpQuark + BlueUpQuark + + + + + + + + + + + + + + + + FundamentalMatterParticle + FundamentalMatterParticle + + + - - LowPressureCasting - LowPressureCasting + + DippingForms + DippingForms - - - - - - - T-2 L0 M0 I0 Θ0 N0 J0 - - - AngularFrequencyUnit - AngularFrequencyUnit + + + + NaturalProcess + A process occurring by natural (non-intentional) laws. + NonIntentionalProcess + NaturalProcess + A process occurring by natural (non-intentional) laws. - - + + + GluonType4 + GluonType4 + + + + - T+3 L-1 M-1 I0 Θ0 N0 J+1 + T+4 L-1 M-1 I+2 Θ0 N0 J0 - LuminousEfficacyUnit - LuminousEfficacyUnit + CapacitancePerLengthUnit + CapacitancePerLengthUnit - - - + + + - - - - + + + + + + - - GasMixture - GasMixture + + + ArithmeticExpression + ArithmeticExpression + 2+2 - - - - ConcreteOrPlasterPouring - ConcreteOrPlasterPouring + + + + Homonuclear + A molecule composed of only one element type. + ElementalMolecule + Homonuclear + A molecule composed of only one element type. + Hydrogen molecule (H₂). - - - - - DebyeTemperature - DebyeTemperature - https://qudt.org/vocab/quantitykind/DebyeTemperature - https://www.wikidata.org/wiki/Q3517821 - 12-11 + + + HiggsBoson + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + HiggsBoson + An elementary bosonic particle with zero spin produced by the quantum excitation of the Higgs field. + https://en.wikipedia.org/wiki/Higgs_boson - - - - IonMobilitySpectrometry - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. - IMS - IonMobilitySpectrometry - Ion mobility spectrometry (IMS) It is a method of conducting analytical research that separates and identifies ionized molecules present in the gas phase based on the mobility of the molecules in a carrier buffer gas. Even though it is used extensively for military or security objectives, such as detecting drugs and explosives, the technology also has many applications in laboratory analysis, including studying small and big biomolecules. IMS instruments are extremely sensitive stand-alone devices, but are often coupled with mass spectrometry, gas chromatography or high-performance liquid chromatography in order to achieve a multi-dimensional separation. They come in various sizes, ranging from a few millimeters to several meters depending on the specific application, and are capable of operating under a broad range of conditions. IMS instruments such as microscale high-field asymmetric-waveform ion mobility spectrometry can be palm-portable for use in a range of applications including volatile organic compound (VOC) monitoring, biological sample analysis, medical diagnosis and food quality monitoring. + + + BlueBottomAntiQuark + BlueBottomAntiQuark - - - - ElectroSinterForging - ElectroSinterForging + + + MetallicMaterial + MetallicMaterial - - - - - - - T+1 L-1 M0 I+1 Θ0 N0 J0 - - - ElectricChargePerLengthUnit - ElectricChargePerLengthUnit + + + + SpeedFractionUnit + Unit for quantities of dimension one that are the fraction of two speeds. + SpeedFractionUnit + Unit for quantities of dimension one that are the fraction of two speeds. + Unit for refractive index. - - + + - - + + - - - Momentum - Product of mass and velocity. - Momentum - http://qudt.org/vocab/quantitykind/Momentum - 4-8 - https://doi.org/10.1351/goldbook.M04007 - - - - - - + + + + + + + + + + - - - KermaRate - Time derivative of kerma. - KermaRate - https://qudt.org/vocab/quantitykind/KermaRate - https://www.wikidata.org/wiki/Q99713105 - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=881-12-28 - 10-86.2 - Time derivative of kerma. - - - - - - Fork - A tessellation in wich a tile has next two or more non spatially connected tiles. - Fork - A tessellation in wich a tile has next two or more non spatially connected tiles. - - - - - - Vapor - A liquid aerosol composed of water droplets in air or another gas. - Vapor - A liquid aerosol composed of water droplets in air or another gas. - - - - - - DampingCoefficient - Inverse of the time constant of an exponentially varying quantity. - DampingCoefficient - https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=103-05-24 - 3-24 - Inverse of the time constant of an exponentially varying quantity. + + Hyperon + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + Hyperon + A baryon containing one or more strange quarks, but no charm, bottom, or top quark. + This form of matter may exist in a stable form within the core of some neutron stars. + https://en.wikipedia.org/wiki/Hyperon - - - - - PureParallelWorkflow - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. - EmbarassinglyParallelWorkflow - PureParallelWorkflow - A workflow that is the concurrent evolution of two or more tasks, not communicacting between themselves. + + + + PorcelainOrCeramicCasting + PorcelainOrCeramicCasting - - - - Flanging - Flanging + + + + CSharp + C# + CSharp - - - - InterferenceFitting - InterferenceFitting + + + + CalibrationDataPostProcessing + Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. + CalibrationDataPostProcessing + Post-processing of the output of the calibration in order to get the actual calibration data to be used as input for the measurement. - - - - - - - - - - - - + + + - - - - - - + + + T+3 L-2 M-1 I0 Θ0 N0 J+1 + - MathematicalSymbol - MathematicalSymbol - - - - - - - NumberOfTurnsInAWinding - NumberOfTurnsInAWinding - https://www.wikidata.org/wiki/Q77995997 - 6-38 + LuminousEfficacyUnit + LuminousEfficacyUnit - - - - DifferentialRefractiveIndex - - DifferentialRefractiveIndex + + + + HandlingDevice + HandlingDevice - + - T-1 L0 M+1 I0 Θ0 N0 J0 + T+2 L0 M-1 I+1 Θ+1 N0 J0 - MassPerTimeUnit - MassPerTimeUnit + TemperaturePerMagneticFluxDensityUnit + TemperaturePerMagneticFluxDensityUnit - - - - JavaScript - JavaScript + + + + QuantumDecay + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). + QuantumDecay + A quantum decay is a fundamental causal system that is expressed as a complete bipartite directed graph K(1,n). - + - - GrueneisenParamter - Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. - GrueneisenParamter - https://www.wikidata.org/wiki/Q444656 - 12-14 - Describes the effect that changing the volume of a crystal lattice has on its vibrational properties, and, as a consequence, the effect that changing temperature has on the size or dynamics of the lattice. + + LossFactor + Inverse of the quality factor. + LossFactor + https://qudt.org/vocab/quantitykind/LossFactor + https://www.wikidata.org/wiki/Q79468728 + 6-54 + Inverse of the quality factor. - - - - BrunauerEmmettTellerMethod - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - BET - BrunauerEmmettTellerMethod - https://www.wikidata.org/wiki/Q795838 - A technique used to measure the specific surface area of porous materials by analyzing the adsorption of gas molecules onto the material's surface - https://en.wikipedia.org/wiki/BET_theory - + + + + LogarithmicUnit + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. - - - - - - - - - - Gradient - Gradient +It is advisory to create a uniquely defined subclass these units for concrete usage. + LogarithmicUnit + http://qudt.org/schema/qudt/LogarithmicUnit + A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. + Decibel + Note that logarithmic units like decibel or neper are not univocally defines, since their definition depends on whether they are used to measure a "power" or a "root-power" quantity. + +It is advisory to create a uniquely defined subclass these units for concrete usage. + https://en.wikipedia.org/wiki/Logarithmic_scale#Logarithmic_units - - - - Dust - A suspension of fine particles in the atmosphere. - Dust - A suspension of fine particles in the atmosphere. + + + + + + + + + + + + + + + + + SecondGenerationFermion + SecondGenerationFermion - + - - - RelativeMassFractionOfVapour - RelativeMassFractionOfVapour - 5-35 + + + DebyeTemperature + DebyeTemperature + https://qudt.org/vocab/quantitykind/DebyeTemperature + https://www.wikidata.org/wiki/Q3517821 + 12-11 - + + + + SparkPlasmaSintering + SparkPlasmaSintering + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + GreenAntiQuark + GreenAntiQuark + + + - T+1 L-3 M0 I0 Θ0 N0 J0 + T0 L-1 M+1 I0 Θ0 N0 J0 - TimePerVolumeUnit - TimePerVolumeUnit + MassPerLengthUnit + MassPerLengthUnit - + - - - - - T-2 L+2 M+1 I-1 Θ0 N0 J0 - - - MagneticFluxUnit - MagneticFluxUnit + + + RybergConstant + The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state. + RybergConstant + http://qudt.org/vocab/constant/RydbergConstant + https://doi.org/10.1351/goldbook.R05430 + + + + + + Broadcast + Broadcast + + + + + + QueryLanguage + A construction language used to make queries in databases and information systems. + QueryLanguage + A construction language used to make queries in databases and information systems. + SQL, SPARQL + https://en.wikipedia.org/wiki/Query_language + + + + + + Letter + Letter - - - - - ElectronRadius - Radius of a sphere such that the relativistic electron energy is distributed uniformly. - ElectronRadius - https://www.wikidata.org/wiki/Q2152581 - 10-19.2 - Radius of a sphere such that the relativistic electron energy is distributed uniformly. + + + + VolumeFractionUnit + Unit for quantities of dimension one that are the fraction of two volumes. + VolumeFractionUnit + Unit for quantities of dimension one that are the fraction of two volumes. + Unit for volume fraction. - - - - LuminousEfficacyOf540THzRadiation - Defines the Candela base unit in the SI system. - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. - LuminousEfficacyOf540THzRadiation - The luminous efficacy of monochromatic radiation of frequency 540 × 10 12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of 540 × 10 12 hertz. + + + ElementaryBoson + ElementaryBoson - - - RedCharmAntiQuark - RedCharmAntiQuark + + + + WearTesting + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. + WearTesting + A wear test measures the changes in conditions caused by friction, and the result is obtained from deformation, scratches, and indentations on the interacting surfaces. Wear is defined as the progressive removal of the material from a solid surface and manifested by a change in the geometry of the surface. - + - - + - - T-1 L0 M-1 I0 Θ0 N+1 J0 + + - - AmountPerMassTimeUnit - AmountPerMassTimeUnit + + + Illuminance + The total luminous flux incident on a surface, per unit area. + Illuminance + http://qudt.org/vocab/quantitykind/Illuminance + The total luminous flux incident on a surface, per unit area. + https://doi.org/10.1351/goldbook.I02941 - - - - EnvironmentalScanningElectronMicroscopy - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. - EnvironmentalScanningElectronMicroscopy - The environmental scanning electron microscope (ESEM) is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are wet, uncoated, or both by allowing for a gaseous environment in the specimen chamber. + + + + + GibbsEnergy + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + GibbsFreeEnergy + GibbsEnergy + https://www.wikidata.org/wiki/Q334631 + https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-23 + 5-20.5 + Type of thermodynamic potential; useful for calculating reversible work in certain systems. + https://doi.org/10.1351/goldbook.G02629 - + + + + Irradiate + Irradiate + + + - T+1 L+2 M0 I0 Θ0 N0 J0 + T-2 L+3 M0 I0 Θ0 N0 J0 - AreaTimeUnit - AreaTimeUnit + VolumePerSquareTimeUnit + VolumePerSquareTimeUnit - + - ElectronNeutrino - A neutrino belonging to the first generation of leptons. - ElectronNeutrino - A neutrino belonging to the first generation of leptons. - https://en.wikipedia.org/wiki/Electron_neutrino + ElectronAntiNeutrino + ElectronAntiNeutrino @@ -24448,227 +24456,225 @@ Note 1 to entry: This term is often used in a non-technical context synonymously AmountPerMassPressureUnit - + + + MultiParticlePath + MultiParticlePath + + + + + + Command + A command must be interpretable by the computer system. + An instruction to a computer system to perform a given task. + Command + From a bash shell would e.g. `ls` be a command. Another example of a shell command would be `/path/to/executable arg1 arg2`. + A command must be interpretable by the computer system. + Commands are typically performed from a shell or a shell script, but not limited to them. + + + - T0 L+2 M0 I0 Θ-1 N0 J0 + T-4 L+2 M+1 I-1 Θ0 N0 J0 - AreaPerTemperatureUnit - AreaPerTemperatureUnit + ElectricPotentialPerTimeUnit + ElectricPotentialPerTimeUnit - - - - IsothermalConversion - IsothermalConversion + + + + Shape4x3Matrix + A real matrix with shape 4x3. + Shape4x3Matrix + A real matrix with shape 4x3. - + - - PrimaryData - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - PrimaryData - Data resulting of a pre-processing of raw data, applying corrections to normalize/harmonize, in order to prepare them for the post-processing. - Baseline subtraction, noise reduction , X and Y axes correction. - - - - - - - - - - - - - - - - SimulationLanguage - A computer language used to describe simulations. - SimulationLanguage - A computer language used to describe simulations. - https://en.wikipedia.org/wiki/Simulation_language + + DifferentialScanningCalorimetry + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. + DSC + DifferentialScanningCalorimetry + Differential scanning calorimetry (DSC) is a thermoanalytical technique in which the difference in the amount of heat required to increase the temperature of a sample and reference is measured as a function of temperature. Both the sample and reference are maintained at nearly the same temperature throughout the experiment. Generally, the temperature program for a DSC analysis is designed such that the sample holder temperature increases linearly as a function of time. The reference sample should have a well-defined heat capacity over the range of temperatures to be scanned. Additionally, the reference sample must be stable, of high purity, and must not experience much change across the temperature scan. Typically, reference standards have been metals such as indium, tin, bismuth, and lead, but other standards such as polyethylene and fatty acids have been proposed to study polymers and organic compounds, respectively. - + - T+2 L-2 M-1 I+1 Θ0 N0 J0 + T-6 L+4 M+2 I-2 Θ-2 N0 J0 - ElectricCurrentPerEnergyUnit - ElectricCurrentPerEnergyUnit + SquareElectricPotentialPerSquareTemperatureUnit + SquareElectricPotentialPerSquareTemperatureUnit - - + + - T-3 L+1 M0 I0 Θ0 N0 J0 + T+2 L-1 M-1 I+1 Θ0 N0 J0 - LengthPerCubeTimeUnit - LengthPerCubeTimeUnit + MagneticReluctivityUnit + MagneticReluctivityUnit - - - - - - - T+3 L-2 M-1 I0 Θ0 N0 J+1 - - - LuminousEfficacyUnit - LuminousEfficacyUnit + + + GluonType1 + GluonType1 - - - - - - - T-3 L+2 M+1 I0 Θ-1 N0 J0 - - - ThermalConductanceUnit - ThermalConductanceUnit + + + + MembraneOsmometry + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. + MembraneOsmometry + In the membrane osmometry technique, a pure solvent and polymer solution are separated by a semipermeable membrane, due to the higher chemical potential of the solvent in the pure solvent than in polymer solution, the solvent starts moving towards the polymer solution. - + + + + SampleInspectionInstrument + + SampleInspectionInstrument + + + + + + FlameCutting + FlameCutting + + + - T+3 L0 M-1 I+2 Θ0 N-1 J0 + T0 L+1 M0 I0 Θ0 N-1 J0 - AmountConductivityUnit - AmountConductivityUnit + LengthPerAmountUnit + LengthPerAmountUnit - + - - - InjectionMolding - InjectionMolding + + PowderCoating + PowderCoating - + - - CentrifugalCasting - CentrifugalCasting + + ElectrolyticDeposition + ElectrolyticDeposition - + - MultiParticlePath - MultiParticlePath + Positron + Positron - + + + GluonType7 + GluonType7 + + + + + + DropForging + DropForging + + + - T-1 L+2 M0 I0 Θ0 N-1 J0 + T-1 L-3 M0 I0 Θ0 N+1 J0 - DiffusivityUnit - DiffusivityUnit + AmountPerVolumeTimeUnit + AmountPerVolumeTimeUnit - + - T-3 L-3 M+1 I0 Θ0 N0 J0 + T+2 L+2 M0 I0 Θ0 N0 J0 - PowerPerAreaVolumeUnit - PowerPerAreaVolumeUnit - - - - - - Magnetizing - Magnetizing - - - - - - BlowMolding - BlowMolding + AreaSquareTimeUnit + AreaSquareTimeUnit - + - T0 L-2 M+1 I0 Θ+1 N0 J0 + T+1 L0 M0 I+1 Θ-1 N0 J0 - TemperatureMassPerAreaUnit - TemperatureMassPerAreaUnit - - - - - - DippingForms - DippingForms + ElectricChargePerTemperatureUnit + ElectricChargePerTemperatureUnit - + - T-2 L+3 M0 I0 Θ0 N0 J0 + T-2 L+3 M+1 I0 Θ0 N-1 J0 - VolumePerSquareTimeUnit - VolumePerSquareTimeUnit + EnergyLengthPerAmountUnit + EnergyLengthPerAmountUnit - - - - MaterialRelationComputation - MaterialRelationComputation + + + + Exafs + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. + Exafs + Extended X-ray absorption fine structure (EXAFS), along with X-ray absorption near edge structure (XANES), is a subset of X-ray absorption spectroscopy (XAS). Like other absorption spectroscopies, XAS techniques follow Beer's law. The X-ray absorption coefficient of a material as a function of energy is obtained by directing X-rays of a narrow energy range at a sample, while recording the incident and transmitted x-ray intensity, as the incident x-ray energy is incremented. When the incident x-ray energy matches the binding energy of an electron of an atom within the sample, the number of x-rays absorbed by the sample increases dramatically, causing a drop in the transmitted x-ray intensity. This results in an absorption edge. Every element has a set of unique absorption edges corresponding to different binding energies of its electrons, giving XAS element selectivity. XAS spectra are most often collected at synchrotrons because of the high intensity of synchrotron X-ray sources allow the concentration of the absorbing element to reach as low as a few parts per million. Absorption would be undetectable if the source is too weak. Because X-rays are highly penetrating, XAS samples can be gases, solids or liquids. - + - - TransferMolding - TransferMolding + + CentrifugalCasting + CentrifugalCasting @@ -24707,11 +24713,6 @@ Note 1 to entry: This term is often used in a non-technical context synonymously The universe is considered as a causally self-connected object, encompassing all other objects. For this reason is unique. - - - - - @@ -24728,13 +24729,16 @@ Note 1 to entry: This term is often used in a non-technical context synonymously Indicate a resource that might provide additional information about the subject resource. - + - - - isTemporallyBefore - isTemporallyBefore + + + + hasJunctionTile + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + hasJunctionTile + A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. @@ -24753,119 +24757,6 @@ Note 1 to entry: This term is often used in a non-technical context synonymously This owl:ObjectProperty is, like its super property, a mere collector of direct parthoods that manifest a spatiotemporal meaningful shape. - - - - - - - - - - - hasSpatialTile - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - hasSpatialDirectPart - hasSpatialTile - A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. - - - - - - - - - hasTemporalTile - A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. - hasTemporalDirectPart - hasTemporalTile - A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. - - - - - - - - - - hasDirectPart - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - hasDirectPart - Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. -The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). -The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. - The relation grouping all direct parthood relations used in the reductionistic perspective. - This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. - This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). - - - - - - - - - - - hasPortionPart - A proper part relation with domain restricted to items. - hasPortionPart - A proper part relation with domain restricted to items. - - - - - - - - - hasItemPart - A proper part relation with range restricted to items. - hasItemPart - A proper part relation with range restricted to items. - - - - - - - - hasScatteredPart - A proper part relation with range restricted to collections. - hasScatteredPart - A proper part relation with range restricted to collections. - - - - - - - - - hasProperPart - The relation between an entity and one of its parts, when both entities are distinct. - hasProperPart - The relation between an entity and one of its parts, when both entities are distinct. - - - - - - - - - hasGatheredPart - A proper part relation with domain restricted to collections. - hasGatheredPart - A proper part relation with domain restricted to collections. - - @@ -24880,44 +24771,46 @@ The direct parts (tiles) and the tessellated entity (tessellation) are causally A causal relation between the y effected and the x causing entities with intermediaries, where x isCauseOf y and not(y isCauseOf x). - + - - - hasEndTile - The relation between the whole and a temporal tile that has only ingoing temporal connections. - hasTemporalLast - hasEndTile - The relation between the whole and a temporal tile that has only ingoing temporal connections. + + + + hasProperPart + The relation between an entity and one of its parts, when both entities are distinct. + hasProperPart + The relation between an entity and one of its parts, when both entities are distinct. - - + + - - - - isProperPartOf - The inverse relation for hasProperPart. - isProperPartOf - The inverse relation for hasProperPart. + + + + + hasPortionPart + A proper part relation with domain restricted to items. + hasPortionPart + A proper part relation with domain restricted to items. - + - - - + + + - - - - - hasNumericalPart - Relates a quantity to its numerical value through spatial direct parthood. - hasNumericalPart + + + + + hasGatheredPart + A proper part relation with domain restricted to collections. + hasGatheredPart + A proper part relation with domain restricted to collections. @@ -24952,28 +24845,16 @@ The label of this class was also changed from PhysicsDimension to PhysicalDimens hasMetrologicalReference - - - - - - hasBeginTile - The relation between the whole and a temporal tile that has only outgoing temporal connections. - hasTemporalFirst - hasBeginTile - The relation between the whole and a temporal tile that has only outgoing temporal connections. - - - - + - - - - hasJunctionTile - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. - hasJunctionTile - A relation between the whole and one of its tiles, where the tile is both spatially and temporally connected with the other tiles forming the tessellation. + + + + + hasItemPart + A proper part relation with range restricted to items. + hasItemPart + A proper part relation with range restricted to items. @@ -24997,6 +24878,114 @@ This means that the causing entity can be in direct and optionally indirect caus This relation is asymmetric and irreflexive. + + + + + + + + isProperPartOf + The inverse relation for hasProperPart. + isProperPartOf + The inverse relation for hasProperPart. + + + + + + + + isTemporallyBefore + isTemporallyBefore + + + + + + + + + hasSpatialTile + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + hasSpatialDirectPart + hasSpatialTile + A relation between the whole and one of its tiles, where the tile is only spatially connected with the other tiles forming the tessellation. + + + + + + + + + + hasScatteredPart + A proper part relation with range restricted to collections. + hasScatteredPart + A proper part relation with range restricted to collections. + + + + + + + + hasEndTile + The relation between the whole and a temporal tile that has only ingoing temporal connections. + hasTemporalLast + hasEndTile + The relation between the whole and a temporal tile that has only ingoing temporal connections. + + + + + + + + + hasTemporalTile + A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. + hasTemporalDirectPart + hasTemporalTile + A relation that establishes for the whole a univocal tessellation in temporal parts forming the tessellation. + + + + + + + + + + hasDirectPart + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + hasDirectPart + Direct parthood is the non transitive version of parthood enabling the establishment of hierarchy of granularities, starting with an entity and providing several tesselation levels according to specific criteria. +The criteria are implemented in specialised versions of the direct parthood relation (e.g., metrological direct part, XML format direct part). +The direct parts (tiles) and the tessellated entity (tessellation) are causally self connected (i.e., items), coherently with the concept behind the definition of the reductionistic perspective. + The relation grouping all direct parthood relations used in the reductionistic perspective. + This relation is a simple collector of all relations inverse functional direct parthoods that can be defined in specialised theories using reductionism. + This relation is not antitransitive, to enable partitioning of a causal structure with more than one tiling scheme (e.g. time and space partitioning). + + + + + + + + + + + hasNumericalPart + Relates a quantity to its numerical value through spatial direct parthood. + hasNumericalPart + + @@ -25009,20 +24998,28 @@ This means that the causing entity can be in direct and optionally indirect caus The relation between a collection and one of its item members. - - 1 - + + + + + + hasBeginTile + The relation between the whole and a temporal tile that has only outgoing temporal connections. + hasTemporalFirst + hasBeginTile + The relation between the whole and a temporal tile that has only outgoing temporal connections. + 1 - 2 + 1 - 4 + 1 @@ -25030,7 +25027,7 @@ This means that the causing entity can be in direct and optionally indirect caus - 1 + 3 @@ -25038,7 +25035,7 @@ This means that the causing entity can be in direct and optionally indirect caus - 1 + 2 @@ -25058,7 +25055,7 @@ This means that the causing entity can be in direct and optionally indirect caus - 1 + 4 @@ -25066,26 +25063,16 @@ This means that the causing entity can be in direct and optionally indirect caus - 3 + 1 1 - - - - DIN EN ISO 5349-2:2015-12 - Object that is processed with a machine - - - - - - ISO/TR 10809-1:2009, 0000_19 - Heat treatment process that generally produces martensite in the matrix. - + + 1 + @@ -25094,7 +25081,7 @@ This means that the causing entity can be in direct and optionally indirect caus - + @@ -25103,63 +25090,52 @@ This means that the causing entity can be in direct and optionally indirect caus - + - + + + Enforcing exclusivity between overlapping and causality. - - - Lifetime - From Middle English liftime, equivalent to life +‎ time. - - - - - - Equipment - From French équipement, from équiper ‘equip’. - - - - - - EN 10028-1:2017-07 - heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - - - - - - http://www.linfo.org/source_code.html - Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - - - - Assemblying - From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. + + + Engineered + From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). + + + + + + + + + + + + + + + - - Property - From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). + + Variable + Fom Latin variabilis ("changeable"). - - - A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. - https://en.wikipedia.org/wiki/Variable_(mathematics) + + + https://en.wiktionary.org/wiki/procedure + The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). @@ -25178,38 +25154,44 @@ This means that the causing entity can be in direct and optionally indirect caus - - DIN 8586:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress + + DIN 65099-3:1989-11 + Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). + + + + + + Dedomena + From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + + https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL + Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. - - - Perspective - From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. + + + https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf + Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) - - - ISO/ASTM 52900:2021(en), 3.3.1 - fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. + + + EN 10028-1:2017-07 + heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. + + + Data + From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). @@ -25220,95 +25202,181 @@ Note 1 to entry: This term is often used in a non-technical context synonymously - - - Elementary - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + Role + From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. - - CausalObject - From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + DIN 8580:2022-12 + Verfestigen durch Umformen - - - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + the accumulation is similar to that used in stripping voltammetry - - DIN 65099-4:1989-11 - Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN + + http://www.linfo.org/program.html + Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ManufacturedProduct + From Latin manufacture: "made by hand". + + + + + + DIN 8586:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + + + + + + + + + + + + + + + + + + + + + + + + + + + Enforcing parthood reflexivity. + + + + + + https://en.wiktionary.org/wiki/workpiece + The raw material or partially finished piece that is shaped by performing various operations. J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury - - - Quantum - From Latin quantum (plural quanta) "as much as, so much as". + + + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - - :isCauseOf owl:propertyDisjointWith :overlaps - Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. + + + https://www.iso.org/standard/45324.html + A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - - - AnalogicalIcon - From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). + + + Model + From Latin modus (“measure”). - - - DIN 8589-0:2003-09 - Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined + + + The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. + While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). - - - Machine - From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. + + + http://www.linfo.org/source_code.html + Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters). - - - https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 - ISO/ASTM TR 52906:2022 Additive manufacturing -sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion + + + Perspective + From medieval Latin perspectiva ‘(science of) optics’, from perspect- ‘looked at closely’, from the verb perspicere, from per- ‘through’ + specere ‘to look’. - - - DIN 8583-2:2003-09 - Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools + + + The disjoint union of the Item and Collection classes. + The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). +Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. - - - Wholistic - From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. + + + A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. + https://en.wikipedia.org/wiki/Supply_chain + + + + + + Computation + From Latin con- +‎ putō (“I reckon”). @@ -25318,7 +25386,7 @@ sintering: process of heating a powder metal compact to increase density and/or - + @@ -25326,8 +25394,8 @@ sintering: process of heating a powder metal compact to increase density and/or - - + + @@ -25338,34 +25406,52 @@ sintering: process of heating a powder metal compact to increase density and/or - + - - - + + - Transitivity for proper parthood. + Implementation of equality based on mereology. - - http://www.linfo.org/program.html - A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. + + DIN 65099-7:1989-11 + (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + + + + + We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). +We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. + The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen. + + + + + + + + + + + + Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. - + - - - + + @@ -25374,51 +25460,55 @@ sintering: process of heating a powder metal compact to increase density and/or - + - + - Enforcing a strict one-way causality direction. + Enforcing reflexivity of overlapping. - - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 - ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder + + + Wholistic + From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'. - - Collection - From Latin collectio, from colligere ‘gather together’. + + isCauseOf + From Latin causa (“reason, sake, cause”). - - - https://en.wiktionary.org/wiki/Wiktionary - Definitions are usually taken from Wiktionary. + + + https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol + In Peirce semiotics three subtypes of icon are possible: +(a) the image, which depends on a simple quality (e.g. picture) +(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) +(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else +[Wikipedia] - - - DIN 8590 Berichtigung 1:2004-02 - Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + chronopotentiometry where the applied current is changed in steps - - - Estimation - From Latin aestimatus (“to value, rate, esteem”). + + + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 + ISO 15531-1:2004 +discrete manufacturing: production of discrete items. @@ -25430,203 +25520,52 @@ manufacturing: production of components - - - Tool - Old English tōl, from a Germanic base meaning ‘prepare’. - - - - - - - - - - - - - - - - All EMMO individuals are part of the most comprehensive entity which is the universe. - - - - - - DIN 8590 Berichtigung 1:2004-02 - A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - - - - - - ResemblanceIcon - From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). - - - - - - DIN 65099-3:1989-11 - Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82). - - - - - - Cogniser - From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” - - - - - - - - - - - - Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO. - - - - - - https://dictionary.iucr.org/Crystal - A material is a crystal if it has essentially a sharp diffraction pattern. - -A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - -H=∑ni=1hia∗i (n≥3) - - - - - - DIN 65099-3:1989-11 - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - - - - - - The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions. - While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon). - - - - - - Factory - From Latin factor, from fact- ‘done’, from the verb facere (to do). - - - - - - - - - - - - - - - - - - - - - https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 - ISO 55000:2014 -organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives - - - - - - IntentionalProcess - From Latin intentionem, derived from intendere ("stretching out") - - - - - - Manufacturing - From Latin manu factum ("made by hand"). - - - - - - DIN 8587:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - - - - - - https://en.wikipedia.org/wiki/Technology - Technology is the application of knowledge for achieving practical goals in a reproducible way. - - - - - - measurand - VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity. + + + DIN 65099-5:1989-11 + Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). - - - https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf - Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2) + + + DIN 8589-0:2003-09 + Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined - - - FundamentalBoson - 1940s: named after S.N. Bose. + + + DIN 8580:2022-12 + Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - - DIN 8585-3:2003-09 - Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. + + DIN 8589-6:2003-09 + Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool - - DIN EN 12258-1:2012-08 - Removal of material by means of rigid or flexible discs or belts containing abrasives. + + DIN 8583-2:2003-09 + Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools - - - DIN 8589-6:2003-09 - Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool + + + Factory + From Latin factor, from fact- ‘done’, from the verb facere (to do). - - https://datatracker.ietf.org/doc/rfc3987/ - An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp. @@ -25637,24 +25576,38 @@ organization: person or group of people that has its own functions with responsi - - - Index - From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + chronopotentiometry where the applied current is changed linearly + + + + + + DIN 8589-3:2003-09 + Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + + + + + + http://www.linfo.org/program.html + A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data. - - TangibleProduct - From late Latin tangibilis, from tangere ‘to touch’. + + CausalObject + From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”). - - - https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en - All or part of the programs, procedures, rules, and associated documentation of an information processing system. + + + DIN EN ISO 5349-2:2015-12 + Object that is processed with a machine @@ -25664,120 +25617,36 @@ organization: person or group of people that has its own functions with responsi - + - - - - - + + + + - - - - - - - - - - - - Implementation of equality based on mereology. - - - - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - the accumulation is similar to that used in stripping voltammetry - - - - - - DIN 8584-1:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - - - - - - A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer. - https://en.wikipedia.org/wiki/Supply_chain - - - - - - Variable - Fom Latin variabilis ("changeable"). - - - - - - - - - - - - - - - - + + - Enforcing parthood reflexivity. - - - - EMMO - EMMO is the acronym of Elementary Multiperspective Material Ontology. - - - - - - https://www.iso.org/standard/45324.html - A measurement is the process of experimentally obtaining one or more measurement results that can reasonably be attributed to a quantity. - - - - - - Icon - From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - - - - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - chronopotentiometry where the change in applied current undergoes a cyclic current reversal - - @@ -25786,18 +25655,10 @@ organization: person or group of people that has its own functions with responsi - - - DIN 8580:2022-12 - Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes. - - - - - - The disjoint union of the Item and Collection classes. - The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). -Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time. + + + Lifetime + From Middle English liftime, equivalent to life +‎ time. @@ -25808,88 +25669,78 @@ Disjointness means that a collection cannot be an item and viceversa, representi - - - ManufacturedProduct - From Latin manufacture: "made by hand". - + + + https://dictionary.iucr.org/Crystal + A material is a crystal if it has essentially a sharp diffraction pattern. - - - - DIN 8588:2013-08 - Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - +A solid is a crystal if it has essentially a sharp diffraction pattern. The word essentially means that most of the intensity of the diffraction is concentrated in relatively sharp Bragg peaks, besides the always present diffuse scattering. In all cases, the positions of the diffraction peaks can be expressed by - - - - The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. - https://en.wikipedia.org/wiki/Condensed_matter_physics - - - - - Language - From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). +H=∑ni=1hia∗i (n≥3) - - - DIN EN 14943:2006-03 - Conversion of materials and assembly of components for the manufacture of products + + + Device + From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". - - DIN 65099-5:1989-11 - Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85). + + DIN 65099-3:1989-11 + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70). - - - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). + + + https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9 + ISO/ASTM TR 52906:2022 Additive manufacturing +sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion - - - - DIN EN ISO 4885:2018-07 - Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite + + + + + + + + 2 + + + Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). - - - DIN EN 9110:2018-08 - action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. - - - ISO 4885:2018-02 - hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + + + DIN 8588:2013-08 + Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). - - - mereological - Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). -https://en.wiktionary.org/wiki/mereology + + + ISO 13574:2015-02 + Process for removing unwanted residual or waste material from a given product or material - - - DIN EN 10210-3:2020-11 - Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. + + + DIN 65099-3:1989-11 + Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. @@ -25899,7 +25750,7 @@ https://en.wiktionary.org/wiki/mereology - + @@ -25909,51 +25760,60 @@ https://en.wiktionary.org/wiki/mereology - - - + + + - Enforcing exclusivity between overlapping and causality. + Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. - - - DIN 8589-2:2003-09 - machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). + + + In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. + +The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. + https://en.wikipedia.org/wiki/Phase_(matter) - - - A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. - https://en.wikipedia.org/wiki/Tessellation + + + DIN EN 62047-1:2016-12 + Process for joining two (base) materials by means of an adhesive polymer material - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 - ISO 3252:2019 Powder metallurgy -sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles + + https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 + ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + + + + + + DIN EN ISO 472/A1:2019-03 + Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. - ISO 14034:2016-11 - application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process + DIN EN 14943:2006-03 + Conversion of materials and assembly of components for the manufacture of products - - DIN 55405:2014-12 - Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents + + https://en.wikipedia.org/wiki/Technology + Technology is the application of knowledge for achieving practical goals in a reproducible way. @@ -25963,122 +25823,125 @@ sintering: thermal treatment of a powder or compact, at a temperature below the - + - - - - - - - - - - - + - - - + + + + Enforcing a strict one-way causality direction. + + + + The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with "condensed" phases of matter: systems of many constituents with strong interactions between them. + https://en.wikipedia.org/wiki/Condensed_matter_physics + + - - Holistic - Holism (from Greek ὅλος holos "all, whole, entire"). + + Quantum + From Latin quantum (plural quanta) "as much as, so much as". + + + + + + DIN EN ISO 15156-3:2015-12 + Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + + + + + ISO 4885:2018-02 + hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution + + + + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + the time between changes in potential in step 2 is related to the concentration of analyte in the solution + + + + + + ISO/ASTM 52900:2021(en), 3.3.1 + fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use. - - https://www.ietf.org/rfc/rfc3986.txt - The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. + chronopotentiometry where the change in applied current undergoes a cyclic current reversal - - Existent - ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). + + Language + From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”). + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 + ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + + + + + + Equipment + From French équipement, from équiper ‘equip’. - - Role - From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written. + + CausalStructure + From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). - - EN 16603-11:2019-11 - application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + + DIN 8590 Berichtigung 1:2004-02 + Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) "process in the effective zone on the surface of the workpiece": - thermal ablation; - chemical ablation; - electrochemical ablation. - - ISO 13574:2015-02 - Process for removing unwanted residual or waste material from a given product or material + + DIN 8593-3:2003-09 + A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Transitivity for parthood. - - - - - DIN EN 13831:2007-12 - Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added + + + https://datatracker.ietf.org/doc/rfc3987/ + An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set. @@ -26119,95 +25982,111 @@ sintering: thermal treatment of a powder or compact, at a temperature below the - - - ISO 23704-1:2022(en), 3.1.2 - process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, + + + Index + From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”). + + + + + + https://de.wikipedia.org/wiki/Werkst%C3%BCck + In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). - - DIN 8584-2:2003-09 - Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + + DIN 8586:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress - - - Computation - From Latin con- +‎ putō (“I reckon”). + + + https://www.collinsdictionary.com/it/dizionario/inglese/technology + Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. - - - https://en.wiktionary.org/wiki/procedure - The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary). + + + ISO 14034:2016-11 + application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - chronopotentiometry where the applied current is changed linearly + + + Symbolic + From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). - - - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22 - ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion + + + https://en.wiktionary.org/wiki/Wiktionary + Definitions are usually taken from Wiktionary. - - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 - ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed + + + Product + From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. - - - DIN 8593-3:2003-09 - A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection. + + + Elementary + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - Data - From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”). + + Collection + From Latin collectio, from colligere ‘gather together’. - - - DIN 8589-3:2003-09 - Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface. + + + measurand + VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity. - - - https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 - ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering + + + DIN 8585-3:2003-09 + Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging. - + - - + + + - + + + + + + + + + + + + @@ -26215,133 +26094,231 @@ reaction sintering: process wherein at least two constituents of a powder mixtur - - + + - Enforcing the fact that an entity cannot cause itself. + Transitivity for proper parthood. - - - DIN 8593-0:2003-09 - The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. + + + Tool + Old English tōl, from a Germanic base meaning ‘prepare’. + + + + + + Software + From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. - https://www.collinsdictionary.com/it/dizionario/inglese/technology - Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes. + EN 16603-11:2019-11 + application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective + + + + + + DIN 65099-5:1989-11 + Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + + + + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33 + ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder - + - - - 2 + + + + + + - Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item). + All EMMO individuals are part of the most comprehensive entity which is the universe. - - - DIN 8588:2013-08 - Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard]). + + + ISO 23704-1:2022(en), 3.1.2 + process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies, - - - DIN 8586:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress. + + + International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org + method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. - + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential + + + + + + DIN 65099-7:1989-11 + Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + + + + + Particle + From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + + - https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16 - ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area + Manufacturing + From Latin manu factum ("made by hand"). + + + + + + DIN 8584-1:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress. - - Software - From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953. + + Boson + 1940s: named after S.N. Bose. - - - CausalChain - From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). + + + DIN 8588:2013-08 + Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless). - - Procedure - From Latin pro-cedere (“to go forward, to proceed”). + + IntentionalProcess + From Latin intentionem, derived from intendere ("stretching out") + + + + + + Property + From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”). + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Transitivity for parthood. + + - - Matter - From Latin materia (“matter, stuff, material”), from mater (“mother”). + + AnalogicalIcon + From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”). - - Fundamental - From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). + + Existent + ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest). - - https://www.ietf.org/rfc/rfc3986.txt - The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. + + https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en + All or part of the programs, procedures, rules, and associated documentation of an information processing system. - - - Part - From Latin partire, partiri ‘divide, share’. + + + ISO 23952:2020(en), 3.4.143 + a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation - - - Crystal - From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). + + + :isCauseOf owl:propertyDisjointWith :overlaps + Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property. - - - Artifact - From Latin arte ‘by or using art’ + factum ‘something made’. + + + DIN 8590 Berichtigung 1:2004-02 + A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching). - - - isCauseOf - From Latin causa (“reason, sake, cause”). + + + DIN EN 12258-1:2012-08 + Removal of material by means of rigid or flexible discs or belts containing abrasives. @@ -26352,125 +26329,88 @@ manufacturing process: set of processes in manufacturing involving a flow and/or - - - DIN 65099-7:1989-11 - (according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982) + + + Assemblying + From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’. - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109. - chronopotentiometry where the applied current is changed in steps + + + FundamentalBoson + 1940s: named after S.N. Bose. - - Engineered - From Latin ingenium "innate qualities, ability; inborn character," in Late Latin "a war engine, battering ram"; literally "that which is inborn," from in- ("in") + gignere ("give birth, beget"). - - - - - - DIN 65099-3:1989-11 - Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other. + + CausalChain + From Old French chaine, chaene (“chain”), from Latin catēna (“chain”). - - http://www.linfo.org/program.html - Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users. - - - - - - ElementaryParticle - From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - - - - - Model - From Latin modus (“measure”). + + DIN EN 9110:2018-08 + action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage - + https://www.ietf.org/rfc/rfc3986.txt - A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. + The term "Uniform Resource Name" (URN) has been used historically to refer to both URIs under the "urn" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name. - - isPredecessorOf - From Latin prae ("beforehand") and decedere ("depart"). + + PhysicalObject + From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). - - - Particle - From Latin particula (“small part, particle”), diminutive of pars (“part, piece”). + + + DIN EN ISO 4885:2018-07 + Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite - - https://en.wiktionary.org/wiki/workpiece - The raw material or partially finished piece that is shaped by performing various operations. - - - - - - https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf - CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - - - - - - In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase. - -The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used. - https://en.wikipedia.org/wiki/Phase_(matter) + + DIN 55405:2014-12 + Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents - - https://de.wikipedia.org/wiki/Werkst%C3%BCck - In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone ). + + DIN EN 13831:2007-12 + Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added - - - DIN 8583-1:2003-09 - Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. + + + mereological + Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). +https://en.wiktionary.org/wiki/mereology - - DIN 65099-7:1989-11 - Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material. + + ISO/TR 10809-1:2009, 0000_19 + Heat treatment process that generally produces martensite in the matrix. - - - CausalStructure - From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”). + + + Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; + electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve @@ -26491,229 +26431,290 @@ The term phase is sometimes used as a synonym for state of matter, but there can - + - Enforcing reflexivity of overlapping. + Enforcing the fact that an entity cannot cause itself. - - - Scholz F, Nitschke L, Henrion G (1989) Naturwiss 76:71; - electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve + + + A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. + https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + + + + + + FunctionalIcon + From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). + + + + + + Matter + From Latin materia (“matter, stuff, material”), from mater (“mother”). + + + + + + Crystal + From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”). + + + + + + TangibleProduct + From late Latin tangibilis, from tangere ‘to touch’. + + + + + + DIN EN 13956:2013-03 + Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + + + + + + DIN 8584-2:2003-09 + Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction. + + + + + + Artifact + From Latin arte ‘by or using art’ + factum ‘something made’. + + + + + + J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 + the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution + + + + + + DIN 8593-0:2003-09 + The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole. - - DIN EN ISO 472/A1:2019-03 - Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test. + + DIN 8587:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by shear stress. - - Symbolic - From Ancient Greek σύμβολον (súmbolon, “a sign by which one infers something; a mark, token, badge, ticket, tally, check, a signal, watchword, outward sign”), from συμβάλλω (sumbállō, “I throw together, dash together, compare, correspond, tally, come to a conclusion”), from σύν (sún, “with, together”) + βάλλω (bállō, “I throw, put”). + + ElementaryParticle + From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”). - - FunctionalIcon - From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”). + + Estimation + From Latin aestimatus (“to value, rate, esteem”). - - - International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org - method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode. + + + Holistic + Holism (from Greek ὅλος holos "all, whole, entire"). - - - - - - - - - - - - - - - - - - - - - - - - - - Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities. - + + + + https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13 + ISO 55000:2014 +organization: person or group of people that has its own functions with responsibilities, authorities and relationships to achieve its objectives + - - - DIN EN 13956:2013-03 - Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together. + + + https://www.ietf.org/rfc/rfc3986.txt + The term "Uniform Resource Locator" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location"). - + - https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol - In Peirce semiotics three subtypes of icon are possible: -(a) the image, which depends on a simple quality (e.g. picture) -(b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart) -(c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else -[Wikipedia] + Simulacrum + From Latin simulacrum ("likeness, semblance") - - Item - From Latin item, "likewise, just so, moreover". + + Procedure + From Latin pro-cedere (“to go forward, to proceed”). - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - the time between changes in potential in step 2 is related to the concentration of analyte in the solution + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32 + ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed - - - Boson - 1940s: named after S.N. Bose. + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55 + ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering - - - PhysicalObject - From Latin physica "study of nature" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”). + + + https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60 + ISO 3252:2019 Powder metallurgy +sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles - - - https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL - Axiom not included in the theory because of OWL 2 DL global restrictions for decidability. + + + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - - - We call "decoding" the act of recognise the variation according to a particular rule and generate another equivalent schema (e.g. in the agent's cognitive apparatus, as another form of data). -We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective. - The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen. + + + ResemblanceIcon + From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”). - - - ISO 23952:2020(en), 3.4.143 - a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation + + + Part + From Latin partire, partiri ‘divide, share’. - - - DIN EN ISO 15156-3:2015-12 - Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties. + + + Cogniser + From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know” - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury + + DIN 8589-2:2003-09 + machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound). - - Dedomena - From Greek, nominative plural form of δεδομένο (dedoméno) (data, information) + + Machine + From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical. + + + + + + Icon + From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”). - - A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention. - https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention + + A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set. + https://en.wikipedia.org/wiki/Variable_(mathematics) - - - Simulacrum - From Latin simulacrum ("likeness, semblance") + + + EMMO + EMMO is the acronym of Elementary Multiperspective Material Ontology. + + + + + + DIN 8583-1:2003-09 + Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress. - - Device - From Old French "deviser", meaning: arrange, plan, contrive. Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide". + + Fundamental + From Latin fundamentum (“foundation”), from fundō (“to lay the foundation (of something), to found”), from fundus (“bottom”). - - - https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9 - ISO 15531-1:2004 -discrete manufacturing: production of discrete items. + + + DIN EN 10210-3:2020-11 + Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air. - - - J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109 - Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential. + + + A tessellation (or tiling) is the covering of a surface, often a plane, using one or more geometric shapes, called tiles, with no overlaps and no gaps. + https://en.wikipedia.org/wiki/Tessellation + + + + + + https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf + CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata” - - Product - From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’. + + Item + From Latin item, "likewise, just so, moreover". - - - DIN 8580:2022-12 - Verfestigen durch Umformen + + + https://www.ietf.org/rfc/rfc3986.txt + A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource. - - - DIN 65099-5:1989-11 - Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85). + + + isPredecessorOf + From Latin prae ("beforehand") and decedere ("depart"). - - - DIN EN 62047-1:2016-12 - Process for joining two (base) materials by means of an adhesive polymer material + + + DIN 65099-4:1989-11 + Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN diff --git a/chameo.ttl b/chameo.ttl index 3e3e8e4..f219dc0 100644 --- a/chameo.ttl +++ b/chameo.ttl @@ -11,10 +11,6 @@ @prefix vann: . @prefix xsd: . - a owl:NamedIndividual, - :CharacterisationData ; - rdfs:isDefinedBy : . - dcterms:abstract a owl:AnnotationProperty ; rdfs:isDefinedBy . @@ -890,12 +886,12 @@ ns1:EMMO_18d180e4_5e3e_42f7_820c_e08951223486 a owl:Class ; rdfs:comment "A real number."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ], - [ a owl:Restriction ; owl:onDataRange xsd:double ; owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ; owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ], ns1:EMMO_21f56795_ee72_4858_b571_11cfaa59c1a8 ; owl:equivalentClass [ a owl:Restriction ; owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ; @@ -9133,6 +9129,7 @@ NOTE 4 A measuring system can be used as a measurement standard."""@en ; "From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated."@en ; rdfs:isDefinedBy : ; rdfs:subClassOf :CharacterisationProcedure ; + skos:altLabel "MeasurementParameterAdjustment"^^xsd:string ; skos:prefLabel "MeasurementSystemAdjustment"^^xsd:string ; ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 "From the International Vocabulary of Metrology (VIM): Set of operations carried out on a measuring system so that it provides prescribed indications corresponding to given values of a quantity being measured. NOTE 1: If there is any doubt that the context in which the term is being used is that of metrology, the long form “adjustment of a measuring system” might be used. NOTE 2: Types of adjustment of a measuring system include zero adjustment, offset adjustment, and span adjustment (sometimes called “gain adjustment”). NOTE 3: Adjustment of a measuring system should not be confused with calibration, which is sometimes a prerequisite for adjustment. NOTE 4: After an adjustment of a measuring system, the measuring system must usually be recalibrated."@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Activity which has the goal of adjusting/tuning a measing instrument, without performing a measurement on a reference sample (which is a calibration). The output of this process can be a specific measurement parameter to be used in the characteriasation measurement process."@en ; @@ -9703,12 +9700,6 @@ Typically, a sample is illuminated with a laser beam. Electromagnetic radiation rdfs:subPropertyOf ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; skos:prefLabel "hasInstrumentForCalibration"@en . -:hasInstrumentToBeCalibrated a owl:ObjectProperty ; - rdfs:domain :CalibrationProcess ; - rdfs:isDefinedBy : ; - rdfs:range :CharacterisationMeasurementInstrument ; - rdfs:subPropertyOf ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 . - :hasInteractionVolume a owl:ObjectProperty ; rdfs:label "hasInteractionVolume"@en ; rdfs:comment ""^^xsd:string ; @@ -10965,7 +10956,7 @@ ns1:EMMO_4b2c223f_89fb_4407_b1b6_24774b7fe770 a owl:Class ; ns1:EMMO_4b32fc1e_5293_4247_9e8d_1175df9f1c0b a owl:Class ; rdfs:label "StrictFundamental"@en ; rdfs:comment "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no proper parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; owl:equivalentClass [ a owl:Class ; owl:intersectionOf ( ns1:EMMO_aaad78a9_abaf_4f97_9c1a_d763a94c4ba3 ns1:EMMO_f055e217_0b1b_4e7e_b8be_7340211b0c5e ) ] ; skos:prefLabel "StrictFundamental"@en ; @@ -11551,11 +11542,11 @@ This can be used in material characterization, to define exactly the type of mea owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; owl:someValuesFrom ns1:EMMO_10a5fd39_06aa_4648_9e70_f962a9cb2069 ] ; owl:equivalentClass [ a owl:Class ; - owl:unionOf ( ns1:EMMO_35d4c439_fcb6_4399_a855_a89a207b41e9 ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ) ], - [ a owl:Class ; owl:unionOf ( ns1:EMMO_1b6a95fb_3df7_44c9_ad3d_419c9c5fe7cb ns1:EMMO_9b87d718_9dcc_4f7d_ad20_12c2aa4c76be ) ], [ a owl:Class ; - owl:unionOf ( ns1:EMMO_251cfb4f_5c75_4778_91ed_6c8395212fd8 ns1:EMMO_2a888cdf_ec4a_4ec5_af1c_0343372fc978 ) ] ; + owl:unionOf ( ns1:EMMO_251cfb4f_5c75_4778_91ed_6c8395212fd8 ns1:EMMO_2a888cdf_ec4a_4ec5_af1c_0343372fc978 ) ], + [ a owl:Class ; + owl:unionOf ( ns1:EMMO_35d4c439_fcb6_4399_a855_a89a207b41e9 ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ) ] ; skos:prefLabel "Coded"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A conventional that stands for an object according to a code of interpretation to which the interpreter refers."@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "A biography that makes use of a code that is provided by the meaning of the element of the language used by the author."@en, @@ -11878,13 +11869,13 @@ ns1:EMMO_8f87e700_99a8_4427_8ffb_e493de05c217 a owl:Class ; rdfs:comment "A positive charged subatomic particle found in the atomic nucleus."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onClass ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ; + owl:onClass ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ], + owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], [ a owl:Restriction ; - owl:onClass ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ; + owl:onClass ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] ; + owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ] ; skos:prefLabel "Proton"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A positive charged subatomic particle found in the atomic nucleus."@en ; ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Proton"^^xsd:string . @@ -12810,13 +12801,13 @@ ns1:EMMO_df808271_df91_4f27_ba59_fa423c51896c a owl:Class ; rdfs:comment "An uncharged subatomic particle found in the atomic nucleus."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onClass ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ; + owl:onClass ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ], + owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], [ a owl:Restriction ; - owl:onClass ns1:EMMO_0a3f04a6_ba3a_49d9_99da_08b0e26f51f0 ; + owl:onClass ns1:EMMO_a4edc1d4_bb38_4897_ba1e_f87e7aa31c5b ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ] ; + owl:qualifiedCardinality "2"^^xsd:nonNegativeInteger ] ; skos:prefLabel "Neutron"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An uncharged subatomic particle found in the atomic nucleus."@en ; ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Neutron"^^xsd:string . @@ -13141,7 +13132,7 @@ ns1:EMMO_f895cb83_2280_42e9_9f4c_047273e70d3c a owl:Class ; ns1:EMMO_f8bd64d5_5d3e_4ad4_a46e_c30714fecb7f a owl:Class ; rdfs:label "Integer"@en ; rdfs:comment "An integer number."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom xsd:integer ; owl:onProperty ns1:EMMO_faf79f53_749d_40b2_807c_d34244c192f4 ], @@ -14279,14 +14270,14 @@ ns1:EMMO_463bcfda_867b_41d9_a967_211d4d437cfb a owl:Class ; "An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference based on a well defined mesurement procedure."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom ns1:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e ], + [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom ns1:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom ns1:EMMO_7dea2572_ab42_45bd_9fd7_92448cec762a ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom ns1:EMMO_0f6f0120_c079_4d95_bb11_4ddee05e530e ], ns1:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68, ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; skos:prefLabel "Measurement"@en ; @@ -14827,7 +14818,7 @@ ns1:EMMO_891d1351_3843_4da3_906b_3b30411bd512 a owl:Class ; ns1:EMMO_8944581c_64da_46a9_be29_7074f7cc8098 a owl:Class ; rdfs:label "SpatialTiling"@en ; rdfs:comment "A well formed tessellation with tiles that all spatial."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ; owl:onProperty ns1:EMMO_7efab93d_c8fe_49c7_ba8e_d21d13b38c85 ] ; @@ -14849,7 +14840,7 @@ ns1:EMMO_8ab3ff9d_35d4_44b7_9d66_7b0b30c40da8 a owl:Class ; ns1:EMMO_8c64fcfa_23aa_45f8_9e58_bdfd065fab8f a owl:Class ; rdfs:label "Constant"@en ; rdfs:comment "A variable that stand for a numerical constant, even if it is unknown."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_9e029526_79a2_47a8_a151_dd0545db471b ; skos:prefLabel "Constant"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A variable that stand for a numerical constant, even if it is unknown."@en . @@ -14962,7 +14953,7 @@ ns1:EMMO_9bb271f2_80a1_481a_ba78_368c4dccc235 a owl:Class ; ns1:EMMO_9be5fcc4_0d8b_481d_b984_6338d4b55588 a owl:Class ; rdfs:label "Measurer"@en ; rdfs:comment "An observer that makes use of a measurement tool and provides a quantitative property."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 ; skos:prefLabel "Measurer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An observer that makes use of a measurement tool and provides a quantitative property."@en . @@ -15222,7 +15213,7 @@ ns1:EMMO_c9c8f824_9127_4f93_bc21_69fe78a7f6f2 a owl:Class ; ns1:EMMO_caa63d00_80b1_4408_ac1b_cd0d23b0ec50 a owl:Class ; rdfs:label "ThroughTile"@en ; rdfs:comment "A tile that has next and is next of other tiles within the same tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; skos:prefLabel "ThroughTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tile that has next and is next of other tiles within the same tessellation."@en . @@ -15240,7 +15231,7 @@ ns1:EMMO_cbdea88b_fef1_4c7c_b69f_ae1f0f241c4a a owl:Class ; The role of dimensional unit and its subclasses is to express the physical dimensionality that is carried by the unit. Since the dimensionality of a physical quantity can be written as the product of powers of the physical dimensions of the base quantities in the selected system of quantities, the physical dimensionality of a measurement unit is uniquely determined by the exponents. For a dimensional unit, at least one of these exponents must be non-zero (making it disjoint from dimensionless units)."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "DimensionalUnit"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A subclass of measurement unit focusing on the physical dimensionality that is carried by the unit."@en ; ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f """The current version of EMMO does not provide explicit classes for physical dimensions. Rather it embraces the fact that the physical dimensionality of a physical quantity is carried by its measurement unit. @@ -15431,7 +15422,7 @@ ns1:EMMO_eb95a619_ca07_4678_a809_10021b25a13f a owl:Class ; ns1:EMMO_edf72228_e040_4edc_8b46_78b2a47c72d7 a owl:Class ; rdfs:label "EndTile"@en ; rdfs:comment ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; skos:prefLabel "EndTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_c0f48dc6_4a32_4d9a_a956_d68415954a8e . @@ -15609,7 +15600,7 @@ ns1:EMMO_fa3c9d4d_9fc9_4e8a_82c1_28c84e34133a a owl:Class ; ns1:EMMO_fa595892_070d_455e_9459_06c97179c080 a owl:Class ; rdfs:label "BeginTile"@en ; rdfs:comment ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 ; skos:prefLabel "BeginTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ns1:EMMO_fe63194f_7c04_4dbd_a244_524b38b6699b . @@ -15866,11 +15857,11 @@ ns1:EMMO_0527413c_b286_4e9c_b2d0_03fb2a038dee a owl:Class ; On the contrary, the interpreter is an agent recognized by the ontologist. The semiotic branch of the EMMO is the tool used by the ontologist to represent an interpreter's semiotic activity."""@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; - owl:someValuesFrom ns1:EMMO_008fd3b2_4013_451f_8827_52bceab11841 ], - [ a owl:Restriction ; owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:someValuesFrom ns1:EMMO_054af807_85cd_4a13_8eba_119dfdaaf38b ] ; + owl:someValuesFrom ns1:EMMO_054af807_85cd_4a13_8eba_119dfdaaf38b ], + [ a owl:Restriction ; + owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; + owl:someValuesFrom ns1:EMMO_008fd3b2_4013_451f_8827_52bceab11841 ] ; owl:equivalentClass [ a owl:Class ; owl:unionOf ( ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec ns1:EMMO_2d72e38c_d587_437f_98f6_f2718fb130eb ns1:EMMO_36a4c1ca_5085_49ca_9e13_4c70d00c50a5 ) ] ; skos:prefLabel "Interpreter"@en ; @@ -16097,7 +16088,7 @@ This happens due to e.g. the complexity of the object, the lack of a underlying A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s. e.g. you cannot evaluate the beauty of a person on objective basis."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Subjective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A coded conventional that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box."@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a """The beauty of that girl. @@ -16110,7 +16101,7 @@ ns1:EMMO_28fbea28_2204_4613_87ff_6d877b855fcd a owl:Class ; See Shape4x3Matrix as an example."""@en, "Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays."@en, "Arrays are ordered objects, since they are a subclasses of Arrangement."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 ; skos:prefLabel "Array"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Arrays are ordered mathematical objects who's elementary spatial parts are numbers. Their dimensionality is constructed with spatial direct parthood, where 1-dimensional arrays have spatial direct parts Number and n-dimensional array have spatial direct parts (n-1)-dimensional arrays."@en ; @@ -16167,7 +16158,7 @@ ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 a owl:Class ; """The definition of an arrangement implies that its spatial direct parts are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in an arrangement is constant. This does not mean that there cannot be a change in the internal structure of the arrangement direct parts. It means only that this change must not affect the existence of the direct part itself."""@en, "The use of spatial direct parthood in state definition means that an arrangement cannot overlap in space another arrangement that is direct part of the same whole."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_8944581c_64da_46a9_be29_7074f7cc8098 ; skos:altLabel "MereologicalState"@en ; skos:prefLabel "Arrangement"@en ; @@ -16201,11 +16192,11 @@ A data object may be used as the physical basis for a sign, under Semiotics pers We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective."""@en ; rdfs:isDefinedBy ; owl:equivalentClass [ a owl:Class ; - owl:unionOf ( ns1:EMMO_6fa1feac_c388_44cc_a721_283499d5addc ns1:EMMO_ed257e78_8b59_44c3_9d61_06c261184f55 ) ], - [ a owl:Class ; owl:unionOf ( ns1:EMMO_0d1c0018_42e2_4506_bc3d_f53c117c1ad3 ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 ) ], [ a owl:Class ; owl:unionOf ( ns1:EMMO_194e367c_9783_4bf5_96d0_9ad597d48d9a ns1:EMMO_50d6236a_7667_4883_8ae1_9bb5d190423a ) ], + [ a owl:Class ; + owl:unionOf ( ns1:EMMO_6fa1feac_c388_44cc_a721_283499d5addc ns1:EMMO_ed257e78_8b59_44c3_9d61_06c261184f55 ) ], [ a owl:Class ; owl:unionOf ( ns1:EMMO_888a5dea_3b7d_4dc0_93f2_d4e345a1f903 ns1:EMMO_ac1a05c5_0c17_4387_bac0_683f2a86f3ed ) ] ; skos:altLabel "EncodedVariation"@en ; @@ -16260,10 +16251,10 @@ ns1:EMMO_47bf3513_4ae6_4858_9c45_76e23230d68d a owl:Class ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_2d72e38c_d587_437f_98f6_f2718fb130eb ], + owl:someValuesFrom ns1:EMMO_35d2e130_6e01_41ed_94f7_00b333d46cf9 ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; - owl:someValuesFrom ns1:EMMO_35d2e130_6e01_41ed_94f7_00b333d46cf9 ], + owl:someValuesFrom ns1:EMMO_2d72e38c_d587_437f_98f6_f2718fb130eb ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; owl:someValuesFrom ns1:EMMO_c9805ac9_a943_4be4_ac4b_6da64ba36c73 ] ; @@ -16527,7 +16518,7 @@ ns1:EMMO_90798691_3b86_4d8c_910f_be2b39c98b39 a owl:Class ; ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 a owl:Class ; rdfs:label "Sequence"@en ; rdfs:comment "A tessellation of temporal slices."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c ; skos:prefLabel "Sequence"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A tessellation of temporal slices."@en . @@ -16544,7 +16535,7 @@ ns1:EMMO_9b075686_4ac2_43bb_b2a3_17b3ea24ff17 a owl:Class ; ns1:EMMO_9e029526_79a2_47a8_a151_dd0545db471b a owl:Class ; rdfs:label "NumericalVariable"@en ; rdfs:comment "A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_1eed0732_e3f1_4b2c_a9c4_b4e75eeb5895 ; skos:prefLabel "NumericalVariable"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A variable standing for a numerical defined mathematical object like e.g. a number, a vector of numbers, a matrix of numbers."@en . @@ -16565,7 +16556,7 @@ ns1:EMMO_9ffffb55_3496_4307_82b8_a0d78fe1fcd8 a owl:Class ; ns1:EMMO_aaad78a9_abaf_4f97_9c1a_d763a94c4ba3 a owl:Class ; rdfs:label "TemporallyFundamental"@en ; rdfs:comment "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "TemporallyFundamental"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of individuals that satisfy a whole defining criteria (i.e. belongs to a subclass of whole) and have no temporal parts that satisfy that same criteria (no parts that are of the same type of the whole)."@en . @@ -16631,7 +16622,7 @@ The unity criterion beyond the definition of a causal structure (the most genera - is made of at least two quantums (a structure is not a simple entity) - all quantum parts form a causally connected graph"""@en, "The union of CausalPath and CausalSystem classes."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; owl:disjointUnionOf [ a rdf:List ; rdf:first ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; rdf:rest [ a rdf:List ; @@ -16717,7 +16708,7 @@ ns1:EMMO_e97af6ec_4371_4bbc_8936_34b76e33302f a owl:Class ; ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 a owl:Class ; rdfs:label "Observer"@en ; rdfs:comment "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Observer"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object through the specific interaction required by the property definition."@en . @@ -16819,20 +16810,6 @@ ns1:EMMO_f8b20fd2_08b9_4368_b786_156e11d1cec8 a owl:Class ; skos:prefLabel "Osmometry"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Osmometry is an advanced analytical method for determining the osmotic concentration of solutions. The osmotic – or solute – concentration of a colloidal system is expressed in osmoles (Osm) per unit of volume (Osm/L) or weight (Osm/kg)."@en . -:Probe a owl:Class ; - rdfs:label "Probe"@en ; - rdfs:comment ""^^xsd:string, - "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en ; - rdfs:isDefinedBy : ; - rdfs:subClassOf :CharacterisationHardware ; - skos:prefLabel "Probe"@en ; - ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en ; - ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics."@en, - "In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm."@en, - "In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…)"@en, - "In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence)."@en, - "In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry"@en . - :Rationale a owl:Class ; rdfs:label "Rationale"@en ; rdfs:comment "A set of reasons or a logical basis for a decision or belief"^^xsd:string ; @@ -16876,7 +16853,7 @@ foaf:Person a owl:Class ; ns1:EMMO_06658d8d_dcde_4fc9_aae1_17f71c0bcdec a owl:Class ; rdfs:label "Vector"@en ; rdfs:comment "1-dimensional array who's spatial direct parts are numbers."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_b2282816_b7a3_44c6_b2cb_3feff1ceb7fe ; owl:someValuesFrom ns1:EMMO_21f56795_ee72_4858_b571_11cfaa59c1a8 ], @@ -16929,7 +16906,7 @@ ns1:EMMO_1b52ee70_121e_4d8d_8419_3f97cd0bd89c a owl:Class ; ns1:EMMO_1c0b22a2_be82_4fa8_9e2b_a569a625d442 a owl:Class ; rdfs:label "Estimation"@en ; rdfs:comment "A determination of an object without any actual interaction."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; owl:someValuesFrom ns1:EMMO_4a1c73f1_b6f5_4d10_a3a6_5de90bac7cd0 ] ; @@ -16973,7 +16950,7 @@ In the EMMO abstract entities do not exists, and numbers are simply defined by o Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system). The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used. For these reasons, the EMMO will consider numerals and numbers as the same concept."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_4ce76d7f_03f8_45b6_9003_90052a79bfaa, ns1:EMMO_a1083d0a_c1fb_471f_8e20_a98f881ad527 ; skos:altLabel "Numeral"@en ; @@ -17000,7 +16977,7 @@ ns1:EMMO_2b1fb71c_0eb0_445c_9be7_fb5d30ae79fd a owl:Class ; ns1:EMMO_2e46d966_9f14_4673_821e_7c7cf2957926 a owl:Class ; rdfs:label "SpatioTemporalTile"^^xsd:string ; rdfs:comment "https://w3id.org/emmo#EMMO_22c91e99_61f8_4433_8853_432d44a2a46a"^^xsd:string ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 ; owl:equivalentClass [ a owl:Class ; owl:unionOf ( ns1:EMMO_4cf484af_082a_40f5_9f11_930bf4634482 ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ns1:EMMO_d4c95fa1_5bda_4063_a22d_62c81fcea284 ) ], @@ -17083,7 +17060,7 @@ ns1:EMMO_3b031fa9_8623_4ea5_8b57_bcafb70c5c8b a owl:Class ; ns1:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68 a owl:Class ; rdfs:label "Observation"@en ; rdfs:comment "A characterisation of an object with an actual interaction."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; owl:someValuesFrom ns1:EMMO_ea67caa5_2609_4e91_98ae_81103f2d5c25 ] ; @@ -17102,14 +17079,14 @@ ns1:EMMO_3ecff38b_b3cf_4a78_b49f_8580abf8715b a owl:Class ; ns1:EMMO_4a1c73f1_b6f5_4d10_a3a6_5de90bac7cd0 a owl:Class ; rdfs:label "Estimator"@en ; rdfs:comment "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Estimator"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A characteriser that declares a property for an object without actually interact with it with the specific interaction required by the property definition (i.e. infer a property from other properties)."@en . ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b a owl:Class ; rdfs:label "TemporalTile"@en ; rdfs:comment "A direct part that is obtained by partitioning a whole purely in temporal parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "TemporalTile"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A direct part that is obtained by partitioning a whole purely in temporal parts."@en . @@ -17302,7 +17279,7 @@ ns1:EMMO_961d1aba_f75e_4411_aaa4_457f7516ed6b a owl:Class ; ns1:EMMO_9953c19f_ee33_4af8_be5e_dbf6d1e33581 a owl:Class ; rdfs:label "Tile"@en ; rdfs:comment "A causal object that is direct part of a tessellation."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty [ owl:inverseOf ns1:EMMO_74a75cf1_3418_4244_b43c_b5db94635d42 ] ; owl:someValuesFrom ns1:EMMO_ee0466e4_780d_4236_8281_ace7ad3fc5d2 ] ; @@ -17319,7 +17296,7 @@ ns1:EMMO_9a50a0ae_841a_46fe_8b23_3df319b60611 a owl:ObjectProperty ; ns1:EMMO_9b87d718_9dcc_4f7d_ad20_12c2aa4c76be a owl:Class ; rdfs:label "Estimated"@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Estimated"@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "The biography of a person that the author have not met."@en . @@ -17404,7 +17381,7 @@ ns1:EMMO_b6292331_94af_4f00_976b_ea55960c2f1c a owl:DatatypeProperty ; ns1:EMMO_bafc17b5_9be4_4823_8bbe_ab4e90b6738c a owl:Class ; rdfs:label "IntentionalProcess"@en ; rdfs:comment "A process occurring with the active participation of an agent that drives the process according to a specific objective (intention)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_cd24eb82_a11c_4a31_96ea_32f870c5580a ; owl:someValuesFrom ns1:EMMO_c130614a_2985_476d_a7ed_8a137847703c ], @@ -17466,7 +17443,7 @@ ns1:EMMO_d5f3e0e5_fc7d_4e64_86ad_555e74aaff84 a owl:Class ; ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 a owl:Class ; rdfs:label "Language"@en ; rdfs:comment "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; skos:prefLabel "Language"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A language object is a discrete data entity respecting a specific language syntactic rules (a well-formed formula)."@en . @@ -17538,7 +17515,7 @@ ns1:EMMO_f4a30d7e_8e8b_41e6_9695_d33a68f54f4b a owl:Class ; ns1:EMMO_f7f41d20_eabb_4bcb_9a16_0436851fcd5c a owl:Class ; rdfs:label "TemporalTiling"@en ; rdfs:comment "A well formed tessellation with tiles that are all temporal."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom ns1:EMMO_504ad89e_dd4a_4fa6_aeb6_15c8ce0cde9b ; owl:onProperty ns1:EMMO_7efab93d_c8fe_49c7_ba8e_d21d13b38c85 ] ; @@ -17573,6 +17550,52 @@ ns1:EMMO_ffb73b1e_5786_43e4_a964_cb32ac7affb7 a owl:Class ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Measure of the ease for electric current to pass through a material."@en ; ns1:EMMO_fe015383_afb3_44a6_ae86_043628697aa2 "https://doi.org/10.1351/goldbook.E01925"^^xsd:string . +:CalibrationProcess a owl:Class ; + rdfs:label "CalibrationProcess"@en ; + rdfs:comment """Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM)"""@en, + "Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data."@en, + "Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed."@en ; + rdfs:isDefinedBy : ; + rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom :CalibrationData ], + [ a owl:Restriction ; + owl:onClass :CharacterisationMeasurementInstrument ; + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], + :CharacterisationProcedure ; + skos:prefLabel "CalibrationProcess"@en ; + ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 """Operation performed on a measuring instrument or a measuring system that, under specified conditions +1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and +2. uses this information to establish a relation for obtaining a measurement result from an indication +NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. +NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. +NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from +measurement standards. +NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty +for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the +past the second step was usually considered to occur after the calibration. +NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement +standards. + +-- International Vocabulary of Metrology(VIM)"""@en ; + ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data."@en ; + ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data."@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed."@en . + :CharacterisationWorkflow a owl:Class ; rdfs:label "CharacterisationWorkflow"@en ; rdfs:comment "A characterisation procedure that has at least two characterisation tasks as proper parts."@en ; @@ -17598,12 +17621,32 @@ ns1:EMMO_ffb73b1e_5786_43e4_a964_cb32ac7affb7 a owl:Class ; ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Coulometry"@en ; ns1:EMMO_fe015383_afb3_44a6_ae86_043628697aa2 "https://doi.org/10.1515/pac-2018-0109"@en . +:Probe a owl:Class ; + rdfs:label "Probe"@en ; + rdfs:comment ""^^xsd:string, + "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en ; + rdfs:isDefinedBy : ; + rdfs:subClassOf :CharacterisationHardware ; + skos:prefLabel "Probe"@en ; + ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Probe is the physical tool (i.e., a disturbance, primary solicitation, or a gadget), controlled over time, that generates measurable fields that interact with the sample to acquire information on the specimen’s behaviour and properties."@en ; + ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "In dynamic light scattering, temporal fluctuations of backscattered light due to Brownian motion and flow of nanoparticles are the probe, resolved as function of pathlength in the sample. From fluctuation analysis (intensity correlations) and the wavelength of light in the medium, the (distribution of) diffusion coefficient(s) can be measured during flow. The Stokes-Einstein relation yields the particle size characteristics."@en, + "In electron microscopy (SEM or TEM), the probe is a beam of electrons with known energy that is focused (and scanned) on the sample’s surface with a well-defined beam-size and scanning algorithm."@en, + "In mechanical testing, the probe is a the tip plus a force actuator, which is designed to apply a force over-time on a sample. Many variants can be defined depending on way the force is applied (tensile/compressive uniaxial tests, bending test, indentation test) and its variation with time (static tests, dynamic/cyclic tests, impact tests, etc…)"@en, + "In spectroscopic methods, the probe is a beam of light with pre-defined energy (for example in the case of laser beam for Raman measurements) or pre-defined polarization (for example in the case of light beam for Spectroscopic Ellipsometry methods), that will be properly focused on the sample’s surface with a welldefined geometry (specific angle of incidence)."@en, + "In x-ray diffraction, the probe is a beam of x-rays with known energy that is properly focused on the sample’s surface with a well-defined geometry"@en . + :ProbeSampleInteraction a owl:Class ; rdfs:label "ProbeSampleInteraction"@en ; rdfs:comment ""^^xsd:string, "Process representing the interaction between the Probe and the Sample (with a certain Interaction Volume) which generates a Signal"@en ; rdfs:isDefinedBy : ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:someValuesFrom :Probe ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:someValuesFrom :Sample ], + [ a owl:Restriction ; owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; owl:someValuesFrom :Signal ], ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce ; @@ -17665,7 +17708,7 @@ ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 a owl:Class ; rdfs:comment "A discrete data whose elements can be decoded as tokens from one or more alphabets, without necessarily respecting syntactic rules."@en, """A symbolic entity is not necessarily graphical (e.g. it doesn't necessarily have the physical shape of a letter), but its elements can be decoded and put in relation with an alphabet. In other words, a sequence of bit "1000010" in a RAM (a non-graphical entity) is a valid symbol since it can be decoded through ASCII rules as the letter "B". The same holds for an entity standing for the sound of a voice saying: "Hello", since it can be decomposed in discrete parts, each of them being associated to a letter of an alphabet."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 ; owl:equivalentClass [ a owl:Class ; owl:unionOf ( ns1:EMMO_89a0c87c_0804_4013_937a_6fe234d9499c ns1:EMMO_a1083d0a_c1fb_471f_8e20_a98f881ad527 ) ] ; @@ -17749,7 +17792,7 @@ ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec a owl:Class ; ns1:EMMO_1eed0732_e3f1_4b2c_a9c4_b4e75eeb5895 a owl:Class ; rdfs:label "Variable"@en ; rdfs:comment "A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 ; skos:prefLabel "Variable"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set."@en ; @@ -18044,7 +18087,7 @@ ns1:EMMO_be8592a7_68d1_4a06_ad23_82f2b56ef926 a owl:Class ; rdfs:comment """A discrete schema may be based on a continuum material basis that is filtered according to its variations. For example, a continuous voltage based signal can be considered 1 or 0 according to some threshold. Discrete does not mean tha the material basis is discrete, but that the data are encoded according to such step-based rules."""@en, "Data whose variations are decoded according to a discrete schema."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "DiscreteData"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Data whose variations are decoded according to a discrete schema."@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "A text is a collection of discrete symbols. A compact disc is designed to host discrete states in the form of pits and lands."@en ; @@ -18123,11 +18166,11 @@ We cannot say that H₂ molecule has direct part two H atoms, but has direct par "An 'atom' is a 'nucleus' surrounded by an 'electron_cloud', i.e. a quantum system made of one or more bounded electrons."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; - owl:someValuesFrom ns1:EMMO_f835f4d4_c665_403d_ab25_dca5cc74be52 ], - [ a owl:Restriction ; owl:onProperty ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ; owl:someValuesFrom ns1:EMMO_8043d3c6_a4c1_4089_ba34_9744e28e5b3d ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ; + owl:someValuesFrom ns1:EMMO_f835f4d4_c665_403d_ab25_dca5cc74be52 ], ns1:EMMO_21205421_5783_4d3e_81e5_10c5d894a88a ; skos:altLabel "ChemicalElement"@en ; skos:prefLabel "Atom"@en ; @@ -18153,51 +18196,30 @@ ns1:EMMO_f675294e_6f30_4b1d_a68e_a74e59f3b2fc a owl:Class ; ns1:EMMO_26bf1bef_d192_4da6_b0eb_d2209698fb54 "https://www.wikidata.org/wiki/Q69427512"^^xsd:string ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Energy per amount of substance."@en . -:CalibrationProcess a owl:Class ; - rdfs:label "CalibrationProcess"@en ; - rdfs:comment """Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. - --- International Vocabulary of Metrology(VIM)"""@en, - "Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data."@en, - "Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed."@en ; +:CharacterisationMeasurementInstrument a owl:Class ; + rdfs:label "CharacterisationMeasurementInstrument"^^xsd:string ; + rdfs:comment """Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure."""@en, + "The instrument used for characterising a material, which usually has a probe and a detector as parts."@en ; rdfs:isDefinedBy : ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom :CalibrationData ], + owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; + owl:someValuesFrom :Probe ], [ a owl:Restriction ; - owl:onClass :CharacterisationMeasurementInstrument ; - owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; - owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger ], - :CharacterisationProcedure ; - skos:prefLabel "CalibrationProcess"@en ; - ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 """Operation performed on a measuring instrument or a measuring system that, under specified conditions -1. establishes a relation between the values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and -2. uses this information to establish a relation for obtaining a measurement result from an indication -NOTE 1 The objective of calibration is to provide traceability of measurement results obtained when using a calibrated measuring instrument or measuring system. -NOTE 2 The outcome of a calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consist of an additive or multiplicative correction of the indication with associated measurement uncertainty. -NOTE 3 Calibration should not be confused with adjustment of a measuring system, often mistakenly called “selfcalibration”, nor with verification of calibration. Calibration is sometimes a prerequisite for verification, which provides confirmation that specified requirements (often maximum permissible errors) are met. Calibration is sometimes also a prerequisite for adjustment, which is the set of operations carried out on a measuring system such that the system provides prescribed indications corresponding to given values of quantities being measured, typically obtained from -measurement standards. -NOTE 4 Sometimes the first step alone of the operation mentioned in the definition is intended as being calibration, as it was in previous editions of this Vocabulary. The second step is in fact required to establish instrumental uncertainty -for the measurement results obtained when using the calibrated measuring system. The two steps together aim to demonstrate the metrological traceability of measurement results obtained by a calibrated measuring system. In the -past the second step was usually considered to occur after the calibration. -NOTE 5 A comparison between two measurement standards may be viewed as a calibration if the comparison is used to check and, if necessary, correct the value and measurement uncertainty attributed to one of the measurement -standards. - --- International Vocabulary of Metrology(VIM)"""@en ; - ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Sequence of operations/actions that are needed to convert the initial signal (as produced by the detector) into a meaningful and useable raw data."@en ; - ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "In nanoindentation, the electrical signal coming from capacitive displacement gauge is converted into a real raw-displacement signal after using a proper calibration function (as obtained by the equipment manufacturer). Then, additional calibration procedures are applied to define the point of initial contact and to correct for instrument compliance, thermal drift, and indenter area function to obtain the real useable displacement data."@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Usually the calibration process involve a reference sample (with pre-defined, specific, and stable physical characteristics and known properties), in order to extract calibration data. In this way, the accuracy of the measurement tool and its components (for example the probe) will be evaluated and confirmed."@en . + owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; + owl:someValuesFrom :Detector ], + ns1:EMMO_f2d5d3ad_2e00_417f_8849_686f3988d929, + :CharacterisationHardware ; + skos:prefLabel "CharacterisationMeasurementInstrument"^^xsd:string ; + ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 """Device used for making measurements, alone or in conjunction with one or more supplementary +devices +NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. +NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure."""@en ; + ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The instrument used for characterising a material, which usually has a probe and a detector as parts."@en ; + ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "In nanoindentation is the nanoindenter"^^xsd:string ; + ns1:EMMO_bb49844b_45d7_4f0d_8cae_8e552cbc20d6 "Measuring instrument"@en . :OpticalTesting a owl:Class ; rdfs:label "OpticalTesting"@en ; @@ -18270,7 +18292,7 @@ ns1:EMMO_2a888cdf_ec4a_4ec5_af1c_0343372fc978 a owl:Class ; """The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure. This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "Objective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A coded conventional that is determined by each interpeter following a well defined determination procedure through a specific perception channel."@en . @@ -18298,7 +18320,7 @@ ns1:EMMO_4207e895_8b83_4318_996a_72cfb32acd94 a owl:Class ; ns1:EMMO_4ce76d7f_03f8_45b6_9003_90052a79bfaa a owl:Class ; rdfs:label "Numerical"@en ; rdfs:comment "A 'Mathematical' that has no unknown value, i.e. all its 'Variable\"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 ; skos:prefLabel "Numerical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "A 'Mathematical' that has no unknown value, i.e. all its 'Variable\"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations)."@en . @@ -18493,30 +18515,13 @@ ns1:EMMO_fcae603e_aa6e_4940_9fa1_9f0909cabf3b a owl:Class ; skos:prefLabel "NonTemporalRole"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "An holistic spatial part of a whole."@en . -:CharacterisationMeasurementInstrument a owl:Class ; - rdfs:label "CharacterisationMeasurementInstrument"^^xsd:string ; - rdfs:comment """Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure."""@en, - "The instrument used for characterising a material, which usually has a probe and a detector as parts."@en ; +:CharacterisationData a owl:Class ; + rdfs:label "CharacterisationData"^^xsd:string ; + rdfs:comment "Represents every type of data that is produced during a characterisation process"@en ; rdfs:isDefinedBy : ; - rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; - owl:someValuesFrom :Probe ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; - owl:someValuesFrom :Detector ], - ns1:EMMO_f2d5d3ad_2e00_417f_8849_686f3988d929, - :CharacterisationHardware ; - skos:prefLabel "CharacterisationMeasurementInstrument"^^xsd:string ; - ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 """Device used for making measurements, alone or in conjunction with one or more supplementary -devices -NOTE 1 A measuring instrument that can be used alone for making measurements is a measuring system. -NOTE 2 A measuring instrument is either an indicating measuring instrument or a material measure."""@en ; - ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The instrument used for characterising a material, which usually has a probe and a detector as parts."@en ; - ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "In nanoindentation is the nanoindenter"^^xsd:string ; - ns1:EMMO_bb49844b_45d7_4f0d_8cae_8e552cbc20d6 "Measuring instrument"@en . + rdfs:subClassOf ns1:EMMO_3e7add3d_e6ed_489a_a796_8e31fef9b490 ; + skos:prefLabel "CharacterisationData"^^xsd:string ; + ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Represents every type of data that is produced during a characterisation process"@en . :CharacterisationTask a owl:Class ; rdfs:label "CharacterisationTask"@en ; @@ -18614,7 +18619,7 @@ A collection can be partitioned in maximally connected items called members. The The combination of collection and item concepts is the EMMO mereocausality alternative to set theory. However, two items can be members only if they are non direct causally connected, giving some constraints to a collection definition. For example, two entities which are directly connected cannot be two distinct members, while their interiors (i.e. the entities obtained by removing the layer of parts that provides the causal contact between them) can be."""@en, "The class of not direct causally self-connected world entities."@en ; rdfs:isDefinedBy ; - rdfs:subClassOf _:82 ; + rdfs:subClassOf _:117 ; skos:prefLabel "Collection"@en ; ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 """A collection is the concept that complements the item concept, being an entity that possesses at least one part non directly causally connected with the rest. A collection can be partitioned in maximally connected items called members. The members are self-connected entities and there is no direct causality relation between them. @@ -18648,7 +18653,7 @@ ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 a owl:Class ; rdfs:comment "A procedure can be considered as an intentional process with a plan."@en, "The process in which an agent works with some entities according to some existing formalised operative rules."@en, "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_bafc17b5_9be4_4823_8bbe_ab4e90b6738c ; skos:altLabel "Elaboration"@en, "Work"@en ; @@ -18665,7 +18670,7 @@ ns1:EMMO_49267eba_5548_4163_8f36_518d65b583f9 a owl:Class ; rdfs:comment "The class of causal objects that stand for world objects according to a specific representational perspective."@en, """This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals. Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; skos:prefLabel "Perspective"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of causal objects that stand for world objects according to a specific representational perspective."@en ; @@ -18764,14 +18769,6 @@ ns1:EMMO_f3dd74c0_f480_49e8_9764_33b78638c235 a owl:Class ; ns1:EMMO_8de5d5bf_db1c_40ac_b698_095ba3b18578 "3-5"^^xsd:string ; ns1:EMMO_fe015383_afb3_44a6_ae86_043628697aa2 "https://doi.org/10.1351/goldbook.A00346"^^xsd:string . -:CharacterisationData a owl:Class ; - rdfs:label "CharacterisationData"^^xsd:string ; - rdfs:comment "Represents every type of data that is produced during a characterisation process"@en ; - rdfs:isDefinedBy : ; - rdfs:subClassOf ns1:EMMO_3e7add3d_e6ed_489a_a796_8e31fef9b490 ; - skos:prefLabel "CharacterisationData"^^xsd:string ; - ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Represents every type of data that is produced during a characterisation process"@en . - :CharacterisationMeasurementProcess a owl:Class ; rdfs:label "CharacterisationMeasurementProcess"@en ; rdfs:comment """Process of experimentally obtaining one or more values that can reasonably be attributed to a quantity together with any other available relevant information @@ -18798,12 +18795,12 @@ system specifications. [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :Sample ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; - owl:someValuesFrom :MeasurementParameter ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; owl:someValuesFrom :CharacterisationData ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; + owl:someValuesFrom :MeasurementParameter ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :CharacterisationEnvironment ], @@ -18835,21 +18832,21 @@ ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 a owl:Class ; "The class of entities that possess a temporal structure but no spatial structure."@en ; rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom [ a owl:Class ; + owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ; + owl:someValuesFrom [ a owl:Class ; owl:unionOf [ a rdf:List ; rdf:first ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; rdf:rest [ a rdf:List ; rdf:first ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; - rdf:rest () ] ] ] ; - owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ], + rdf:rest () ] ] ] ], [ a owl:Restriction ; - owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ; - owl:someValuesFrom [ a owl:Class ; + owl:allValuesFrom [ a owl:Class ; owl:unionOf [ a rdf:List ; rdf:first ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; rdf:rest [ a rdf:List ; rdf:first ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; - rdf:rest () ] ] ] ] ; + rdf:rest () ] ] ] ; + owl:onProperty ns1:EMMO_7afbed84_7593_4a23_bd88_9d9c6b04e8f6 ] ; owl:disjointUnionOf ( ns1:EMMO_7b79b2ac_3cf2_4d3b_8cdc_bcabb59d869e ns1:EMMO_5e00b1db_48fc_445b_82e8_ab0e2255bf52 ) ; skos:altLabel "CausalChain"@en, "Elementary"@en ; @@ -18876,7 +18873,7 @@ ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 a owl:Class ; ns1:EMMO_3227b821_26a5_4c7c_9c01_5c24483e0bd0 a owl:Class ; rdfs:label "DimensionlessUnit"@en ; rdfs:comment "The subclass of measurement units with no physical dimension."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:prefLabel "DimensionlessUnit"@en ; ns1:EMMO_1f1b164d_ec6a_4faa_8d5e_88bda62316cc "http://qudt.org/vocab/unit/UNITLESS"^^xsd:anyURI ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The subclass of measurement units with no physical dimension."@en ; @@ -18922,7 +18919,7 @@ ns1:EMMO_53bd0c90_41c3_46e2_8779_cd2a80f7e18b a owl:Class ; ns1:EMMO_64963ed6_39c9_4258_85e0_6466c4b5420c a owl:Class ; rdfs:label "Workflow"@en ; rdfs:comment "A procedure that has at least two procedures (tasks) as proper parts."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_8e52c42b_e879_4473_9fa1_4b23428b392b ; owl:someValuesFrom ns1:EMMO_4299e344_a321_4ef2_a744_bacfcce80afc ], @@ -18959,12 +18956,12 @@ manufacturing process: set of processes in manufacturing involving a flow and/or rdfs:subClassOf [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; - owl:someValuesFrom ns1:EMMO_c0afb341_7d31_4883_a307_ae4606df2a1b ], [ a owl:Restriction ; owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; owl:someValuesFrom ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ], + [ a owl:Restriction ; + owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; + owl:someValuesFrom ns1:EMMO_c0afb341_7d31_4883_a307_ae4606df2a1b ], ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; skos:prefLabel "Manufacturing"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The process of transforming precursor objects (e.g. raw materials) into a product by the use of manual labor, machinery or chemical/biological processes."@en ; @@ -19002,7 +18999,7 @@ ns1:EMMO_c2f5ee66_579c_44c6_a2e9_fa2eaa9fa4da a owl:Class ; is desirable (μm/m, nmol/mol). -- SI Brochure"""@en, "Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_3227b821_26a5_4c7c_9c01_5c24483e0bd0 ; skos:altLabel "RatioUnit"@en ; skos:prefLabel "FractionUnit"@en ; @@ -19204,6 +19201,9 @@ Following graph theory concepts, the quantums of an item are all connected toget "Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement."@en ; rdfs:isDefinedBy : ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; + owl:someValuesFrom :Sample ], + [ a owl:Restriction ; owl:onProperty ns1:EMMO_35c29eb6_f57e_48d8_85af_854f9e926e77 ; owl:someValuesFrom :SamplePreparationInstrument ], [ a owl:Restriction ; @@ -19212,9 +19212,6 @@ Following graph theory concepts, the quantums of an item are all connected toget [ a owl:Restriction ; owl:onProperty ns1:EMMO_36e69413_8c59_4799_946c_10b05d266e22 ; owl:someValuesFrom :SamplePreparationParameter ], - [ a owl:Restriction ; - owl:onProperty ns1:EMMO_c4bace1d_4db0_4cd3_87e9_18122bae2840 ; - owl:someValuesFrom :Sample ], :CharacterisationProcedure ; skos:prefLabel "SamplePreparation"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Sample preparation processes (e.g., machining, polishing, cutting to size, etc.) before actual observation and measurement."@en . @@ -19251,8 +19248,8 @@ Entities are not placed in space or time: space and time are always relative bet "The class of all the OWL individuals declared by EMMO as standing for world entities."@en, "The disjoint union of the Item and Collection classes."@en ; rdfs:isDefinedBy ; - rdfs:subClassOf _:106, - _:73 ; + rdfs:subClassOf _:81, + _:82 ; owl:disjointUnionOf [ a rdf:List ; rdf:first ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; rdf:rest [ a rdf:List ; @@ -19356,7 +19353,7 @@ ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba a owl:Class ; rdfs:label "Property"@en ; rdfs:comment "A coded that makes use of an atomic symbol with respect to the code used to refer to the interaction."@en, "A property is atomic in the sense that is aimed to deliver one and one only aspect of the object according to one code, such as the color with one sign (e.g., black) or a quantitiative property (e.g., 1.4 kg)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty [ owl:inverseOf ns1:EMMO_dc57d998_23db_4d8e_b2cd_f346b195b846 ] ; owl:someValuesFrom ns1:EMMO_10a5fd39_06aa_4648_9e70_f962a9cb2069 ] ; @@ -19478,7 +19475,7 @@ ns1:EMMO_54ee6b5e_5261_44a8_86eb_5717e7fdb9d0 a owl:Class ; rdfs:label "Mathematical"@en ; rdfs:comment "A mathematical object in this branch is not representing a concept but an actual graphical object built using mathematcal symbols arranged in some way, according to math conventions."^^xsd:string, "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; skos:prefLabel "Mathematical"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "The class of general mathematical symbolic objects respecting mathematical syntactic rules."@en . @@ -19490,7 +19487,7 @@ e.g. a math symbol is not made of other math symbols A Symbol may be a String in another language. e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters."""@en, "The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet)."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; skos:altLabel "AlphabeticEntity"@en ; skos:prefLabel "Symbol"@en ; @@ -19515,18 +19512,6 @@ Symbols of a formal language must be capable of being specified without any refe skos:prefLabel "Microscopy"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Microscopy is a category of characterization techniques which probe and map the surface and sub-surface structure of a material. These techniques can use photons, electrons, ions or physical cantilever probes to gather data about a sample's structure on a range of length scales."@en . -:Sample a owl:Class ; - rdfs:label "Sample"@en ; - rdfs:comment ""^^xsd:string, - "Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero."^^xsd:string, - "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en ; - rdfs:isDefinedBy : ; - rdfs:subClassOf ns1:EMMO_90ae56e4_d197_49b6_be1a_0049e4756606 ; - skos:altLabel "Specimen"^^xsd:string ; - skos:prefLabel "Sample"@en ; - ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero."^^xsd:string . - ns1:EMMO_194100e1_e11a_4b7c_bb5a_171655679fc8 a owl:Class ; rdfs:label "Extensive"@en ; rdfs:comment "A quantity whose magnitude is additive for subsystems."@en, @@ -19556,6 +19541,18 @@ ns1:EMMO_cd2cd0de_e0cc_4ef1_b27e_2e88db027bac a owl:Class ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Extend of a spatial dimension."@en ; ns1:EMMO_fe015383_afb3_44a6_ae86_043628697aa2 "https://doi.org/10.1351/goldbook.L03498"^^xsd:string . +:Sample a owl:Class ; + rdfs:label "Sample"@en ; + rdfs:comment ""^^xsd:string, + "Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero."^^xsd:string, + "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en ; + rdfs:isDefinedBy : ; + rdfs:subClassOf ns1:EMMO_90ae56e4_d197_49b6_be1a_0049e4756606 ; + skos:altLabel "Specimen"^^xsd:string ; + skos:prefLabel "Sample"@en ; + ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Portion of material selected from a larger quantity of material. The term needs to be qualified, e.g., bulk sample, representative sample, primary sample, bulked sample, test sample, etc. The term 'sample' implies the existence of a sampling error, i.e., the results obtained on the portions taken are only estimates of the concentration of a constituent or the quantity of a property present in the parent material. If there is no or negligible sampling error, the portion removed is a test portion, aliquot, or specimen."@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Sample and Specime are often used interchangeably. However in some cases the term Specimen is used to specify a portion taken under conditions such that the sampling variability cannot be assessed (usually because the population is changing), and is assumed, for convenience, to be zero."^^xsd:string . + rdfs:seeAlso rdfs:comment """EMMO applies the naming convension to its sub-properties of rdfs:seeAlso that their label must end with one of the following terms: - 'Match': resolvable URLs to corresponding entity in another ontology - 'Entry': resolvable URLs to a human readable resource describing the subject @@ -19573,7 +19570,7 @@ However that's not possible in general, since we will finally end to temporal pa In other terms, if the time span of a temporal part is lower than the inverse of the frequency of interactions between the constituents, then the constituents in such temporal part are not connected. The object is no more an object, neither an item, but simply a collection of fundamental parts. To overcome this issue, we can identify an minimum holistic temporal part (a lower time interval value), below which a specific definition for an object type does not hold anymore, that is called a fundamental."""@en, "A whole that is identified according to a criteria based on its spatial configuration that is satisfied throughout its time extension."@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:altLabel "Continuant"@en, "Endurant"@en ; skos:prefLabel "Object"@en ; @@ -19596,7 +19593,7 @@ ns1:EMMO_43e9a05d_98af_41b4_92f6_00f79a09bfce a owl:Class ; """Following the common definition of process, the reader may think that every whole should be a process, since every 4D object always has a time dimension. However, in the EMMO we restrict the meaning of the word process to items whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D time unfolding may be of interest for the ontologist and categorized as a process). For this reason, the definition of every specific process subclass requires the introduction of a primitive concept."""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; skos:altLabel "Occurrent"@en, "Perdurant"@en ; skos:prefLabel "Process"@en ; @@ -19838,7 +19835,7 @@ Examples of correspondance between dimensional units and their dimensional units - AmountOfSubstanceUnit <=> "T0 L0 M0 I0 Θ0 N+1 J0" - TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" - ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0\""""@en ; - rdfs:isDefinedBy ; + rdfs:isDefinedBy ; rdfs:subClassOf ns1:EMMO_cbdea88b_fef1_4c7c_b69f_ae1f0f241c4a ; skos:prefLabel "SIDimensionalUnit"@en ; ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 "Dimensional unit with its physical dimensionality described accortind to the International System of Units (SI)."@en ; @@ -19861,19 +19858,40 @@ Examples of correspondance between dimensional units and their dimensional units - TimeUnit <=> "T+1 L0 M0 I0 Θ0 N0 J0" - ElectricCurrentDensityUnit <=> "T0 L-2 M0 I+1 Θ0 N0 J0\""""@en . -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:ClassAtom ; - swrl:argument1 ; - swrl:classPredicate ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_d893d373_b579_4867_841e_1c2b31a8d2c6 ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing reflexivity of overlapping."@en . +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; + owl:annotatedTarget "isCauseOf"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; + owl:annotatedTarget "Collection"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin collectio, from colligere ‘gather together’."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; + owl:annotatedTarget "Elementary"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_3f2e4ac2_8ef3_4a14_b826_60d37f15f8ee ; + owl:annotatedTarget "mereological"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 """Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). +https://en.wiktionary.org/wiki/mereology"""@en . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget """The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. +The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. +The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. +Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). +Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions."""@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -19881,72 +19899,72 @@ Examples of correspondance between dimensional units and their dimensional units owl:annotatedTarget "CausalSystem"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Ancient Greek σύστημα (sústēma, “musical scale; organized body; whole made of several parts or members”), from σῠν- (sun-, prefix meaning ‘with, together’) + ἵστημι (hístēmi, “to stand”)."@en . -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_6835537c_d294_4005_a770_ec9621f29ed1 ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:SameIndividualAtom ; - swrl:argument1 ; - swrl:argument2 ] ; - rdf:rest () ] . +[] a owl:Axiom ; + owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget _:81 ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO."@en . [] a owl:Axiom ; - rdfs:seeAlso "EN 10028-1:2017-07"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_9900d51c_bdd3_40e8_aa82_ad1aa7092f71 ; - owl:annotatedTarget "heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium"^^xsd:string . + rdfs:seeAlso "DIN 8583-1:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_39d5c9c4_7d24_4409_ba3b_60ca3afde902 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 9110:2018-08"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_c7171429_b9e3_4812_95c1_e97309370538 ; - owl:annotatedTarget "action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage"^^xsd:string . + rdfs:seeAlso "https://en.wiktionary.org/wiki/workpiece"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "The raw material or partially finished piece that is shaped by performing various operations."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8584-1:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN EN ISO 5349-2:2015-12"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_6fba4018_24bd_450c_abc3_354e2c7809c9 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress."^^xsd:string . + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "Object that is processed with a machine"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 55405:2014-12"^^xsd:string ; + rdfs:seeAlso "DIN 8587:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_c790c7ff_2d10_4336_94ad_4f4e173109a9 ; - owl:annotatedTarget "Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents"^^xsd:string . + owl:annotatedSource ns1:EMMO_22744495_4f32_4a17_b189_259c644268f9 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by shear stress."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN ISO 4885:2018-07"^^xsd:string ; + rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_61846411_8c6f_410b_ae7b_8999ec18f2b2 ; - owl:annotatedTarget "Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite"^^xsd:string . + owl:annotatedSource ns1:EMMO_dc0874e8_36e1_44df_947d_0d7c81167a09 ; + owl:annotatedTarget "(according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982)"^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget "EMMO"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "EMMO is the acronym of Elementary Multiperspective Material Ontology."@en . + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_3cb27225_df45_4616_aa3b_32dba383524c ; + owl:annotatedTarget """ISO 3252:2019 Powder metallurgy +liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_607ccc15_38aa_4a69_a70a_effa8015bf42 ; - owl:annotatedTarget "Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material."^^xsd:string . + rdfs:seeAlso "ISO 23952:2020(en), 3.4.143"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; + owl:annotatedTarget "a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation"^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_02122e58_e0b3_4274_bdd4_745f64a61645 ; - owl:annotatedTarget "Factory"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin factor, from fact- ‘done’, from the verb facere (to do)."@en . + rdfs:seeAlso "DIN EN 13956:2013-03"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_06c415dc_ba26_407d_b596_283bd4d9a66f ; + owl:annotatedTarget "Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_1a2cbca8_3d3b_4e2c_9a71_e39273937786 ; - owl:annotatedTarget "Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) \"process in the effective zone on the surface of the workpiece\": - thermal ablation; - chemical ablation; - electrochemical ablation."^^xsd:string . + rdfs:seeAlso "EN 10028-1:2017-07"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_9900d51c_bdd3_40e8_aa82_ad1aa7092f71 ; + owl:annotatedTarget "heat treatment consisting of heating and soaking at a suitable temperature, followed by cooling under conditions such that, after return to ambient temperature, the metal will be in a structural state closer to that of equilibrium"^^xsd:string . + +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; + owl:annotatedTarget "Engineered"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin ingenium \"innate qualities, ability; inborn character,\" in Late Latin \"a war engine, battering ram\"; literally \"that which is inborn,\" from in- (\"in\") + gignere (\"give birth, beget\")."@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.60"^^xsd:anyURI ; @@ -19956,47 +19974,66 @@ Examples of correspondance between dimensional units and their dimensional units sintering: thermal treatment of a powder or compact, at a temperature below the melting point of the main constituent, for the purpose of increasing its strength by the metallurgical bonding of its particles"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-6:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_c7d004db_59fa_5ae3_adb1_e75736aa721a ; - owl:annotatedTarget "Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool"^^xsd:string . - + owl:annotatedSource ns1:EMMO_1d6b63d5_9938_483c_ad62_a09ac34153c9 ; + owl:annotatedTarget "Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard])."^^xsd:string . + +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:ClassAtom ; + swrl:argument1 ; + swrl:classPredicate ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ] ; + rdf:rest () ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_d893d373_b579_4867_841e_1c2b31a8d2c6 ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing reflexivity of overlapping."@en . + [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-0:2003-09"^^xsd:string ; owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_8679c7d3_fd5d_49ba_bc1f_1bb820a1f73f ; - owl:annotatedTarget "Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined"^^xsd:string . + owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; + owl:annotatedTarget "TangibleProduct"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From late Latin tangibilis, from tangere ‘to touch’."@en . [] a owl:Axiom ; rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_4f46c5ab_1c21_4639_90d5_3c4ebf3b156b ; - owl:annotatedTarget "Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85)."^^xsd:string . + owl:annotatedSource ns1:EMMO_410b5956_a06d_4370_b7df_b1bd2126fb4b ; + owl:annotatedTarget "Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO 23704-1:2022(en), 3.1.2"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_03eb9b46_8ff0_4fcd_b1a0_73f65ae7434e ; - owl:annotatedTarget "process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies,"^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; + owl:annotatedTarget "Manufacturing"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manu factum (\"made by hand\")."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 12258-1:2012-08"^^xsd:string ; + rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2138677c_845a_4bc2_8be7_7b0a07b4777d ; - owl:annotatedTarget "Removal of material by means of rigid or flexible discs or belts containing abrasives."^^xsd:string . + owl:annotatedSource ns1:EMMO_7432b843_cfd2_4345_a3d2_eaa539b27e61 ; + owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; - owl:annotatedTarget "Equipment"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From French équipement, from équiper ‘equip’."@en . + rdfs:seeAlso "DIN EN ISO 4885:2018-07"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_61846411_8c6f_410b_ae7b_8999ec18f2b2 ; + owl:annotatedTarget "Treatment carried out after hardening or case hardening consisting of cooling to a temperature below room temperature to complete the transformation of austenite to martensite"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO/ASTM 52900:2021(en), 3.3.1"^^xsd:string ; + rdfs:seeAlso "DIN 8589-3:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_253e1d54_69af_4931_90d0_5ccfd7e690ad ; - owl:annotatedTarget """fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology -Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use."""^^xsd:string . + owl:annotatedSource ns1:EMMO_44f91d47_3faf_48e2_844c_d44bbe3e22f6 ; + owl:annotatedTarget "Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface."^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_46dc0d51_b60f_49cd_8650_9aba7be3726c ; + owl:annotatedTarget "Verfestigen durch Umformen"^^xsd:string . [] a owl:Axiom ; rdfs:seeAlso "DIN EN ISO 15156-3:2015-12"^^xsd:string ; @@ -20005,10 +20042,17 @@ Note 1 to entry: This term is often used in a non-technical context synonymously owl:annotatedTarget "Heat to a temperature appropriate for the particular material, maintain at that temperature and then cool at an appropriate rate to reduce hardness, improve machinability or achieve desired properties."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; + owl:annotatedTarget """ISO 18435-1:2009 +manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area"""@en . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8589-2:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_1d6b63d5_9938_483c_ad62_a09ac34153c9 ; - owl:annotatedTarget "Cutting workpieces between two cutting edges that move past each other (see Figure 1 [see figure in the standard])."^^xsd:string . + owl:annotatedSource ns1:EMMO_c1dad83e_974f_432e_ac92_d016f2445279 ; + owl:annotatedTarget "machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound)."^^xsd:string . [] a owl:Axiom ; rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; @@ -20017,42 +20061,46 @@ Note 1 to entry: This term is often used in a non-technical context synonymously owl:annotatedTarget "Manufacturing by changing the properties of the material of which a workpiece is made, which is done, among other things, by changes in the submicroscopic or atomic range, e.g. by diffusion of atoms, generation and movement of dislocations in the atomic lattice or chemical reactions, and where unavoidable changes in shape are not part of the essence of these processes."^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_2b524942_4e3e_403a_b4ab_2b53750f3d3b ; - owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -reaction sintering: process wherein at least two constituents of a powder mixture react during sintering"""@en . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; + owl:annotatedTarget "Artifact"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin arte ‘by or using art’ + factum ‘something made’."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:18435:-1:ed-1:v1:en:term:3.16"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; - owl:annotatedTarget """ISO 18435-1:2009 -manufacturing process: set of processes in manufacturing involving a flow and/or transformation of material, information, energy, control, or any other element in a manufacturing area"""@en . + rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_b8ce01a5_1e0c_4c69_8e54_7235fd4fe47e ; + owl:annotatedTarget "A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8580:2022-12"^^xsd:string ; + rdfs:seeAlso "DIN 8589-0:2003-09"^^xsd:string ; owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_46dc0d51_b60f_49cd_8650_9aba7be3726c ; - owl:annotatedTarget "Verfestigen durch Umformen"^^xsd:string . + owl:annotatedSource ns1:EMMO_8679c7d3_fd5d_49ba_bc1f_1bb820a1f73f ; + owl:annotatedTarget "Machining in which a tool is used whose number of cutting edges, geometry of the cutting wedges and position of the cutting edges in relation to the workpiece are determined"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8584-2:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_01048432_3722_40a9_aa37_ea009da44272 ; - owl:annotatedTarget "Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction."^^xsd:string . + owl:annotatedSource ns1:EMMO_46f70544_818e_495e_99ef_d342c54ee7dc ; + owl:annotatedTarget "Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82)."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; - owl:annotatedTarget "Manufacturing"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manu factum (\"made by hand\")."@en . + rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_607ccc15_38aa_4a69_a70a_effa8015bf42 ; + owl:annotatedTarget "Strengthening by rolling is the strengthening of component surfaces by mechanically generating compressive stresses in the component surface and consolidating the material."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-4:1989-11"^^xsd:string ; + rdfs:seeAlso "DIN 8593-0:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_6ab555fd_5803_4f03_82e8_127c01aabfea ; + owl:annotatedTarget "The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole."^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN EN 10210-3:2020-11"^^xsd:string ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_c9f0abb6_d3e8_459e_bacc_c14ed5481998 ; - owl:annotatedTarget "Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN"^^xsd:string . + owl:annotatedSource ns1:EMMO_6fa330f7_3289_4228_81df_12ee8a9708ac ; + owl:annotatedTarget "Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air."^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20061,36 +20109,63 @@ manufacturing process: set of processes in manufacturing involving a flow and/or ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French asembler, based on Latin ad- ‘to’ + simul ‘together’."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_3ec45f3b_677d_4e71_be75_6f8966b4f808 ; - owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -loose-powder sintering, gravity sintering: sintering of uncompacted powder"""@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; + owl:annotatedTarget "Device"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French \"deviser\", meaning: arrange, plan, contrive. Literally \"dispose in portions,\" from Vulgar Latin \"divisare\", frequentative of Latin dividere, meaning \"to divide\"."@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_82fc8506_1f84_4add_9683_abea077bd1e3 ; - owl:annotatedTarget "Product"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’."@en . + rdfs:seeAlso "DIN EN 9110:2018-08"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_c7171429_b9e3_4812_95c1_e97309370538 ; + owl:annotatedTarget "action to disassemble a product or a component by removing all or some of its constituent parts with the intent to salvage"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-7:1989-11"^^xsd:string ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_8786cb47_8e1f_4968_9b15_f6d41fc51252 ; + owl:annotatedTarget """ISO 15531-1:2004 +discrete manufacturing: production of discrete items."""@en . + +[] a owl:Axiom ; + rdfs:seeAlso "ISO 23704-1:2022(en), 3.1.2"^^xsd:string ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_dc0874e8_36e1_44df_947d_0d7c81167a09 ; - owl:annotatedTarget "(according to DIN 8200) Shot peening to generate residual compressive stresses in layers of the blasting material close to the surface in order to improve certain component properties, e.g. fatigue strength, corrosion resistance, wear resistance (from: DIN 8200:1982)"^^xsd:string . + owl:annotatedSource ns1:EMMO_03eb9b46_8ff0_4fcd_b1a0_73f65ae7434e ; + owl:annotatedTarget "process of joining materials to make parts from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing (3.1.29) and formative manufacturing methodologies,"^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget "The disjoint union of the Item and Collection classes."@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f """The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). -Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time."""@en . + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.55"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_2b524942_4e3e_403a_b4ab_2b53750f3d3b ; + owl:annotatedTarget """ISO 3252:2019 Powder metallurgy +reaction sintering: process wherein at least two constituents of a powder mixture react during sintering"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 13831:2007-12"^^xsd:string ; + rdfs:seeAlso "DIN 8593-3:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_ecf78412_f0ca_4368_9078_559ffe8935d3 ; - owl:annotatedTarget "Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added"^^xsd:string . + owl:annotatedSource ns1:EMMO_bbf12904_e25e_4f49_87f3_8bd210a6b535 ; + owl:annotatedTarget "A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection."^^xsd:string . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource ns1:EMMO_0c7ad550_00ae_45ff_a4e2_58d6a61f48eb ; + owl:annotatedTarget "A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer."@en ; + ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Supply_chain"^^xsd:string . + +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ] ; + rdf:rest () ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_aa987900_caf1_4ce2_82fa_6b1d6fbd2ead ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing exclusivity between overlapping and causality."@en . [] a owl:Axiom ; rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; @@ -20099,29 +20174,47 @@ Disjointness means that a collection cannot be an item and viceversa, representi owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://en.wiktionary.org/wiki/workpiece"^^xsd:string ; + rdfs:seeAlso "ISO/TR 10809-1:2009, 0000_19"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_7cd8a4ec_b219_498e_b696_028257163aa4 ; + owl:annotatedTarget "Heat treatment process that generally produces martensite in the matrix."^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN EN 12258-1:2012-08"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "The raw material or partially finished piece that is shaped by performing various operations."^^xsd:string . + owl:annotatedSource ns1:EMMO_2138677c_845a_4bc2_8be7_7b0a07b4777d ; + owl:annotatedTarget "Removal of material by means of rigid or flexible discs or belts containing abrasives."^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.32"^^xsd:anyURI ; + rdfs:seeAlso "ISO 4885:2018-02"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_3c7affee_09ed_42e7_a190_4a10c75ab6dd ; + owl:annotatedTarget "hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution"^^xsd:string . + +[] a owl:Axiom ; + rdfs:seeAlso "DIN 8583-2:2003-09"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_91c2db4b_83e2_4c36_aadf_453acc72e6d2 ; + owl:annotatedTarget "Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools"^^xsd:string . + +[] a owl:Axiom ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_3cb27225_df45_4616_aa3b_32dba383524c ; - owl:annotatedTarget """ISO 3252:2019 Powder metallurgy -liquid-phase sintering: sintering of a powder or compact containing at least two constituents, under conditions such that a liquid phase is formed"""@en . + owl:annotatedSource ns1:EMMO_8786cb47_8e1f_4968_9b15_f6d41fc51252 ; + owl:annotatedTarget """ISO 8887-1:2017 +manufacturing: production of components"""@en . [] a owl:Axiom ; - rdfs:seeAlso "https://de.wikipedia.org/wiki/Werkst%C3%BCck"^^xsd:string ; + rdfs:seeAlso "https://www.collinsdictionary.com/it/dizionario/inglese/technology"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone )."^^xsd:string . + owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; + owl:annotatedTarget "Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO 23952:2020(en), 3.4.143"^^xsd:string ; + rdfs:seeAlso "https://de.wikipedia.org/wiki/Werkst%C3%BCck"^^xsd:string ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "a physical artifact, real or virtual, intended for subsequent transformation within some manufacturing operation"^^xsd:string . + owl:annotatedTarget "In manufacturing, a workpiece is a single, delimited part of largely solid material that is processed in some form (e.g. stone )."^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20130,55 +20223,36 @@ liquid-phase sintering: sintering of a powder or compact containing at least two ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Old English tōl, from a Germanic base meaning ‘prepare’."@en . [] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_0c7ad550_00ae_45ff_a4e2_58d6a61f48eb ; - owl:annotatedTarget "A supply chain is a system of organizations, people, activities, information, and resources involved in supplying a product or service to a consumer."@en ; - ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Supply_chain"^^xsd:string . + rdfs:seeAlso "EN 16603-11:2019-11"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; + owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN ISO 472/A1:2019-03"^^xsd:string ; + rdfs:seeAlso "DIN EN 14943:2006-03"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_f5655090_2266_41cb_b2e9_3b4569c45731 ; - owl:annotatedTarget "Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test."^^xsd:string . + owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; + owl:annotatedTarget "Conversion of materials and assembly of components for the manufacture of products"^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; - owl:annotatedTarget """ISO 15531-1:2004 -manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion"""@en . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_d5f98475_00ce_4987_99fb_262aed395e46 ; - owl:annotatedTarget "Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless)."^^xsd:string . - -[] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9"^^xsd:anyURI ; + rdfs:seeAlso "DIN EN 13831:2007-12"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_ecf78412_f0ca_4368_9078_559ffe8935d3 ; + owl:annotatedTarget "Forming of vessel parts from a flat mould into a three-dimensional shape by means of a press and tools, whereby material is neither removed nor added"^^xsd:string . + +[] a owl:Axiom ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso-astm:tr:52906:ed-1:v1:en:term:3.9"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; owl:annotatedSource ns1:EMMO_03441eb3_d1fd_4906_b953_b83312d7589e ; owl:annotatedTarget """ISO/ASTM TR 52906:2022 Additive manufacturing sintering: process of heating a powder metal compact to increase density and/or improve mechanical properties via solid state diffusion"""@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.9"^^xsd:anyURI ; + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:3252:ed-5:v1:en:term:3.3.33"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_8786cb47_8e1f_4968_9b15_f6d41fc51252 ; - owl:annotatedTarget """ISO 15531-1:2004 -discrete manufacturing: production of discrete items."""@en . - -[] a owl:Axiom ; - rdfs:seeAlso "ISO 4885:2018-02"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_3c7affee_09ed_42e7_a190_4a10c75ab6dd ; - owl:annotatedTarget "hardening of a workpiece caused by the precipitation of one or more compounds from a supersaturated solid solution"^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN 8593-0:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_6ab555fd_5803_4f03_82e8_127c01aabfea ; - owl:annotatedTarget "The permanent joining or other bringing together of two or more workpieces of a geometric shape or of similar workpieces with shapeless material. In each case, the cohesion is created locally and increased as a whole."^^xsd:string . + owl:annotatedSource ns1:EMMO_3ec45f3b_677d_4e71_be75_6f8966b4f808 ; + owl:annotatedTarget """ISO 3252:2019 Powder metallurgy +loose-powder sintering, gravity sintering: sintering of uncompacted powder"""@en . [] a owl:Axiom ; rdfs:seeAlso "DIN 8585-3:2003-09"^^xsd:string ; @@ -20187,173 +20261,120 @@ discrete manufacturing: production of discrete items."""@en . owl:annotatedTarget "Widening is tensile forming to increase the circumference of a hollow body. A distinction is made between: Widening, bulging."^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; - owl:annotatedTarget "Machine"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical."@en . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_46f70544_818e_495e_99ef_d342c54ee7dc ; - owl:annotatedTarget "Shot peening is shot peening for shaping or straightening workpieces by introducing residual compressive stresses (from: DIN 8200/10.82)."^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "ISO 13574:2015-02"^^xsd:string ; + rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_92eaefcb_50be_4237_9ec0_4a019ce24921 ; - owl:annotatedTarget "Process for removing unwanted residual or waste material from a given product or material"^^xsd:string . + owl:annotatedSource ns1:EMMO_1a2cbca8_3d3b_4e2c_9a71_e39273937786 ; + owl:annotatedTarget "Manufacturing by separating particles of material from a solid body by non-mechanical means. Ablation refers both to the removal of layers of material and to the separation of workpiece parts. The production process of ablation is considered in its stationary instantaneous state, independently of the application of auxiliary processes necessary to initiate the process. Ablation is divided into three subgroups according to the order point of view (OGP) \"process in the effective zone on the surface of the workpiece\": - thermal ablation; - chemical ablation; - electrochemical ablation."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "ISO 14034:2016-11"^^xsd:string ; + rdfs:seeAlso "ISO/ASTM 52900:2021(en), 3.3.1"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process"^^xsd:string . - -[] a owl:Axiom ; - rdfs:seeAlso "DIN EN 10210-3:2020-11"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_6fa330f7_3289_4228_81df_12ee8a9708ac ; - owl:annotatedTarget "Process consisting of two steps: - first, the steel is heated in a quenching treatment to a temperature above Ac3 and then rapidly cooled in a liquid to produce a process-specific grain structure; - subsequently, the steel is heated to a specific temperature during tempering to set the desired property and cooled in air."^^xsd:string . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "ManufacturedProduct"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manufacture: \"made by hand\"."@en . + owl:annotatedSource ns1:EMMO_253e1d54_69af_4931_90d0_5ccfd7e690ad ; + owl:annotatedTarget """fabrication of objects through the deposition of a material using a print head, nozzle or another printer technology +Note 1 to entry: This term is often used in a non-technical context synonymously with additive manufacturing (3.1.2) and, in these cases, typically associated with machines used for non-industrial purposes including personal use."""^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://www.collinsdictionary.com/it/dizionario/inglese/technology"^^xsd:string ; + rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "Technology refers to methods, systems, and devices which are the result of scientific knowledge being used for practical purposes."^^xsd:string . - -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "TangibleProduct"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From late Latin tangibilis, from tangere ‘to touch’."@en . - -[] a owl:Axiom ; - rdfs:seeAlso "ISO/TR 10809-1:2009, 0000_19"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_7cd8a4ec_b219_498e_b696_028257163aa4 ; - owl:annotatedTarget "Heat treatment process that generally produces martensite in the matrix."^^xsd:string . + owl:annotatedSource ns1:EMMO_aced32dd_1a13_49b0_8d8f_c79313942d19 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "EN 16603-11:2019-11"^^xsd:string ; + rdfs:seeAlso "DIN 8584-1:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts, systems or methods of organization in order to solve a problem or achieve an objective"^^xsd:string . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; - owl:annotatedTarget "Quantum"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin quantum (plural quanta) \"as much as, so much as\"."@en . + owl:annotatedSource ns1:EMMO_6fba4018_24bd_450c_abc3_354e2c7809c9 ; + owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a combined tensile and compressive stress."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "https://en.wikipedia.org/wiki/Technology"^^xsd:string ; + rdfs:seeAlso "DIN 55405:2014-12"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "Technology is the application of knowledge for achieving practical goals in a reproducible way."^^xsd:string . + owl:annotatedSource ns1:EMMO_c790c7ff_2d10_4336_94ad_4f4e173109a9 ; + owl:annotatedTarget "Method of joining metallic materials with the aid of a molten filler metal (solder), optionally with the use of flow agents"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; + rdfs:seeAlso "DIN 8588:2013-08"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_6800c3fd_bf5d_4a2a_8e6e_9e909eefc16c ; - owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70)."^^xsd:string . + owl:annotatedSource ns1:EMMO_d5f98475_00ce_4987_99fb_262aed395e46 ; + owl:annotatedTarget "Mechanical separation of workpieces without the formation of shapeless material, i.e. also without chips (chipless)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 14943:2006-03"^^xsd:string ; + rdfs:seeAlso "ISO 14034:2016-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; - owl:annotatedTarget "Conversion of materials and assembly of components for the manufacture of products"^^xsd:string . + owl:annotatedTarget "application of scientific knowledge, tools, techniques, crafts or systems in order to solve a problem or to achieve an objective which can result in a product or process"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN 13956:2013-03"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_06c415dc_ba26_407d_b596_283bd4d9a66f ; - owl:annotatedTarget "Joining process by softening the surfaces to be joined, either by heat or with a solvent (swelling welding, solvent welding), and pressing the softened surfaces together."^^xsd:string . + rdfs:seeAlso "DIN 65099-4:1989-11"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_c9f0abb6_d3e8_459e_bacc_c14ed5481998 ; + owl:annotatedTarget "Thermal ablation is the separation of material particles in solid, liquid or gaseous state by heat processes as well as the removal of these material particles by mechanical or electromagnetic forces (from: DIN"^^xsd:string . [] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "Engineered"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin ingenium \"innate qualities, ability; inborn character,\" in Late Latin \"a war engine, battering ram\"; literally \"that which is inborn,\" from in- (\"in\") + gignere (\"give birth, beget\")."@en . + rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:15531:-1:ed-1:v1:en:term:3.6.22"^^xsd:anyURI ; + owl:annotatedProperty rdfs:seeAlso ; + owl:annotatedSource ns1:EMMO_a4d66059_5dd3_4b90_b4cb_10960559441b ; + owl:annotatedTarget """ISO 15531-1:2004 +manufacturing: function or act of converting or transforming material from raw material or semi-finished state to a state of further completion"""@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8593-3:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 8589-6:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_bbf12904_e25e_4f49_87f3_8bd210a6b535 ; - owl:annotatedTarget "A collective term for the processes in which, during joining, the parts to be joined and any auxiliary parts are essentially only elastically deformed and unintentional loosening is prevented by frictional connection."^^xsd:string . + owl:annotatedSource ns1:EMMO_c7d004db_59fa_5ae3_adb1_e75736aa721a ; + owl:annotatedTarget "Cutting with circular or straight cutting motion, using a multi-toothed tool of small cutting width, the cutting motion being performed by the tool"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8586:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_aced32dd_1a13_49b0_8d8f_c79313942d19 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by a bending stress."^^xsd:string . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; - owl:annotatedTarget "Device"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French \"deviser\", meaning: arrange, plan, contrive. Literally \"dispose in portions,\" from Vulgar Latin \"divisare\", frequentative of Latin dividere, meaning \"to divide\"."@en . + owl:annotatedSource ns1:EMMO_4f46c5ab_1c21_4639_90d5_3c4ebf3b156b ; + owl:annotatedTarget "Nailing is joining by hammering or pressing nails (wire pins) as auxiliary parts into the solid material. Several parts are joined by pressing them together (from: DIN 8593 part 3/09.85)."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8583-2:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 8584-2:2003-09"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_91c2db4b_83e2_4c36_aadf_453acc72e6d2 ; - owl:annotatedTarget "Continuous or stepwise pressure forming with one or more rotating tools (rollers), without or with additional tools, e.g. plugs or mandrels, rods, guide tools"^^xsd:string . + owl:annotatedSource ns1:EMMO_01048432_3722_40a9_aa37_ea009da44272 ; + owl:annotatedTarget "Draw forming by drawing a workpiece through a tool opening that is narrowed in the drawing direction."^^xsd:string . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:8887:-1:ed-1:v1:en:term:3.1.5"^^xsd:anyURI ; - owl:annotatedProperty rdfs:seeAlso ; - owl:annotatedSource ns1:EMMO_8786cb47_8e1f_4968_9b15_f6d41fc51252 ; - owl:annotatedTarget """ISO 8887-1:2017 -manufacturing: production of components"""@en . + rdfs:seeAlso "DIN EN ISO 472/A1:2019-03"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource ns1:EMMO_f5655090_2266_41cb_b2e9_3b4569c45731 ; + owl:annotatedTarget "Type of scratching behaviour where the scratching force and the (displacement) deflection of the scratching tip are constant over the scratching distance during the test."^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; - owl:annotatedTarget "CausalStructure"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”)."@en . + owl:annotatedSource ns1:EMMO_82fc8506_1f84_4add_9683_abea077bd1e3 ; + owl:annotatedTarget "Product"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin productum ‘something produced’, derived from Latin producere, from pro- ‘forward’ + ducere ‘to lead’."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8583-1:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_39d5c9c4_7d24_4409_ba3b_60ca3afde902 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by uniaxial or multiaxial compressive stress."^^xsd:string . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; + owl:annotatedTarget "Machine"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin māchina (“a machine, engine, contrivance, device, stratagem, trick”), from Doric Greek μᾱχᾰνᾱ́ (mākhanā́), cognate with Attic Greek μηχᾰνή (mēkhanḗ, “a machine, engine, contrivance, device”), from which comes mechanical."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8590 Berichtigung 1:2004-02"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_b8ce01a5_1e0c_4c69_8e54_7235fd4fe47e ; - owl:annotatedTarget "A manufacturing process in which metallic material is anodically dissolved under the influence of an electric current and an electrolyte solution. The current flow can be caused either by connection to an external current source or due to local element formation on the workpiece (etching)."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; + owl:annotatedTarget "ManufacturedProduct"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin manufacture: \"made by hand\"."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8587:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_22744495_4f32_4a17_b189_259c644268f9 ; - owl:annotatedTarget "Forming of a solid body, whereby the plastic state is essentially brought about by shear stress."^^xsd:string . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_494b372c_cfdf_47d3_a4de_5e037c540de8 ; + owl:annotatedTarget "Equipment"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From French équipement, from équiper ‘equip’."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-2:2003-09"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_c1dad83e_974f_432e_ac92_d016f2445279 ; - owl:annotatedTarget "machining with a circular cutting movement in which the axis of rotation of the tool and the axis of the internal surface to be produced are identical and the feed movement is in the direction of this axis. The axis of rotation of the cutting movement maintains its position relative to the workpiece independently of the feed movement (axis of rotation workpiece-bound)."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_02122e58_e0b3_4274_bdd4_745f64a61645 ; + owl:annotatedTarget "Factory"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin factor, from fact- ‘done’, from the verb facere (to do)."@en . [] a owl:Axiom ; - rdfs:seeAlso "DIN 8589-3:2003-09"^^xsd:string ; + rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_44f91d47_3faf_48e2_844c_d44bbe3e22f6 ; - owl:annotatedTarget "Machining with a circular cutting movement, usually associated with a multi-toothed tool, and with a feed movement perpendicular or oblique to the axis of rotation of the tool, to produce any workpiece surface."^^xsd:string . - -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_86ca9b93_1183_4b65_81b8_c0fcd3bba5ad ; - owl:annotatedTarget "Artifact"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin arte ‘by or using art’ + factum ‘something made’."@en . + owl:annotatedSource ns1:EMMO_6800c3fd_bf5d_4a2a_8e6e_9e909eefc16c ; + owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other (from: DIN 8583 Part 3/05.70)."^^xsd:string . [] a owl:Axiom ; rdfs:seeAlso "DIN EN 62047-1:2016-12"^^xsd:string ; @@ -20362,50 +20383,34 @@ manufacturing: production of components"""@en . owl:annotatedTarget "Process for joining two (base) materials by means of an adhesive polymer material"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN EN ISO 5349-2:2015-12"^^xsd:string ; + rdfs:seeAlso "https://en.wikipedia.org/wiki/Technology"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_479db031_b344_4488_9efa_4bc12c6c1765 ; - owl:annotatedTarget "Object that is processed with a machine"^^xsd:string . + owl:annotatedSource ns1:EMMO_2b9cbfb5_dbd0_4a68_9c6f_acc41b40dd72 ; + owl:annotatedTarget "Technology is the application of knowledge for achieving practical goals in a reproducible way."^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-3:1989-11"^^xsd:string ; + rdfs:seeAlso "ISO 13574:2015-02"^^xsd:string ; owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_7432b843_cfd2_4345_a3d2_eaa539b27e61 ; - owl:annotatedTarget "Free forming is pressure forming with tools that do not or only partially contain the shape of the workpiece and move against each other."^^xsd:string . + owl:annotatedSource ns1:EMMO_92eaefcb_50be_4237_9ec0_4a019ce24921 ; + owl:annotatedTarget "Process for removing unwanted residual or waste material from a given product or material"^^xsd:string . [] a owl:Axiom ; - rdfs:seeAlso "DIN 65099-5:1989-11"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource ns1:EMMO_410b5956_a06d_4370_b7df_b1bd2126fb4b ; - owl:annotatedTarget "Screwing (screwing on, screwing in, screwing tight) is joining by pressing on by means of a self-locking thread (from: DIN 8593 Part 3/09.85)."^^xsd:string . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_3733bd38_ca2b_4264_a92a_3075a1715598 ; + owl:annotatedTarget "isPredecessorOf"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin prae (\"beforehand\") and decedere (\"depart\")."@en . [] a owl:Axiom ; - rdfs:seeAlso "https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; - owl:annotatedTarget "Axiom not included in the theory because of OWL 2 DL global restrictions for decidability."@en . + rdfs:seeAlso "https://en.wiktionary.org/wiki/Wiktionary"@en ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 ; + owl:annotatedTarget "Definitions are usually taken from Wiktionary."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; - owl:annotatedTarget "isCauseOf"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; - owl:annotatedTarget "CausalChain"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French chaine, chaene (“chain”), from Latin catēna (“chain”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget """The EMMO conceptualises the world using the primitive concepts of causality and parthood. Parthood is about the composition of world entities starting from other more fundamental entities. Causality is about the interactions between world entities. -The quantum is the smallest indivisible part of any world entity. Quantum individuals are the fundamental causal constituents of the universe, since it is implied that causality originates from quantum-to-quantum interactions. Quantums are no-dimensional, and their aggregation makes spacetime emerge from their causal structure. Causality between macro entities (i.e. entities made of more than one quantum) is explained as the sum of the causality relations between their quantum constituents. -The fundamental distinction between world entities is direct causality self-connectedness: a world entity can be self-connected xor not self-connected depending on the causality network of its fundamental components. -Void regions do not exist in the EMMO, or in other words there is no spacetime without entities, since space and time are measured quantities following a causality relation between entities (spacetime emerges as relational property not as a self-standing entity). -Entities are not placed in space or time: space and time are always relative between entities and are measured. In other words, space and time relations originates from causality interactions."""@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "While EMMO mereocausality conceptualisation can be used on any possibile domain, so that a quantum can be a Lego brick or an furniture component, it can be better understood when a quantum is elucidated as the smallest measured time interval of existence of an elementary particle (e.g. quark, photon)."@en . + owl:annotatedTarget "CausalPath"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek πάτος (pátos, “path”)."@en . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; @@ -20421,157 +20426,167 @@ Entities are not placed in space or time: space and time are always relative bet rdf:rest () ] ; ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing parthood reflexivity."@en . -[] a owl:Axiom ; - owl:annotatedProperty rdfs:subClassOf ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget _:106 ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "All EMMO individuals are part of the most comprehensive entity which is the universe."@en . +[] a swrl:Imp ; + rdfs:comment "Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities."^^rdfs:Literal ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_499e24a5_5072_4c83_8625_fe3f96ae4a8d ] ; + rdf:rest () ] ; + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; + rdf:rest () ] . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; - owl:annotatedTarget "Collection"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin collectio, from colligere ‘gather together’."@en . + rdfs:seeAlso "https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Global_Restrictions_on_Axioms_in_OWL_2_DL"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; + owl:annotatedTarget "Axiom not included in the theory because of OWL 2 DL global restrictions for decidability."@en . [] a swrl:Imp ; - rdfs:comment "Implementation of equality based on mereology."^^rdfs:Literal ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest () ] ] ; + swrl:propertyPredicate ns1:EMMO_6835537c_d294_4005_a770_ec9621f29ed1 ] ; + rdf:rest () ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:SameIndividualAtom ; swrl:argument1 ; swrl:argument2 ] ; rdf:rest () ] . -[] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; - owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; - owl:annotatedTarget ":isCauseOf owl:propertyDisjointWith :overlaps"@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property."^^xsd:string . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; - owl:annotatedTarget "CausalPath"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek πάτος (pátos, “path”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; - owl:annotatedTarget "Item"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin item, \"likewise, just so, moreover\"."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; - owl:annotatedTarget "CausalObject"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . - [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; - rdf:rest () ] ] ; + swrl:propertyPredicate ns1:EMMO_3733bd38_ca2b_4264_a92a_3075a1715598 ] ; + rdf:rest () ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing a strict one-way causality direction."@en . + +[] a swrl:Imp ; + swrl:body [ a swrl:AtomList ; + rdf:first [ a swrl:ClassAtom ; swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + swrl:classPredicate ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ] ; rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for parthood."@en . + swrl:head [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; + rdf:rest () ] ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing the fact that an entity cannot cause itself."@en . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; rdf:rest [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for proper parthood."@en . + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for parthood."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; + owl:annotatedTarget "CausalChain"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French chaine, chaene (“chain”), from Latin catēna (“chain”)."@en . + +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential"@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; + owl:annotatedTarget "CausalObject"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; + owl:annotatedTarget _:117 ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_6c03574f_6daa_4488_a970_ee355cca2530 ; + owl:annotatedTarget "CausalParticle"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 ; + owl:annotatedTarget "Quantum"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin quantum (plural quanta) \"as much as, so much as\"."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_c5ddfdba_c074_4aa4_ad6b_1ac4942d300d ; + owl:annotatedTarget "CausalStructure"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin causa (“reason, sake, cause”), and from Latin struere (“arrange, assemble, build”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; + owl:annotatedTarget "Item"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin item, \"likewise, just so, moreover\"."@en . [] a swrl:Imp ; + rdfs:comment "Implementation of equality based on mereology."^^rdfs:Literal ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ] ; - rdf:rest () ] ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ] ; + rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_aa987900_caf1_4ce2_82fa_6b1d6fbd2ead ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing exclusivity between overlapping and causality."@en . - -[] a swrl:Imp ; - rdfs:comment "Ensure that the hasNext relation expresses a strictly one-way causality arrow between two entities."^^rdfs:Literal ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; + rdf:first [ a swrl:SameIndividualAtom ; swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_499e24a5_5072_4c83_8625_fe3f96ae4a8d ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; + swrl:argument2 ] ; rdf:rest () ] . -[] a swrl:Imp ; - swrl:body [ a swrl:AtomList ; - rdf:first [ a swrl:ClassAtom ; - swrl:argument1 ; - swrl:classPredicate ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ] ; - rdf:rest () ] ; - swrl:head [ a swrl:AtomList ; - rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; - rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing the fact that an entity cannot cause itself."@en . - [] a owl:Axiom ; - rdfs:seeAlso "http://www.linfo.org/program.html"^^xsd:anyURI ; + rdfs:isDefinedBy "http://www.linfo.org/program.html"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; - owl:annotatedTarget """Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. -Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users."""@en . + owl:annotatedSource ns1:EMMO_65411b3d_c8d3_4111_86a9_a2ce0a64c647 ; + owl:annotatedTarget "A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data."@en . [] a owl:Axiom ; + rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_e94a9156_fb6c_4e16_88ee_829ac9933155 ; - owl:annotatedTarget "A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention."@en ; - ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention"^^xsd:string . + owl:annotatedSource ns1:EMMO_8a8f664b_dc59_4e00_ae00_81fdf1e1d12e ; + owl:annotatedTarget "The term \"Uniform Resource Locator\" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network \"location\")."@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; @@ -20580,22 +20595,23 @@ Here we explicitly include in the definition also all the data (e.g. source code owl:annotatedTarget "The term \"Uniform Resource Name\" (URN) has been used historically to refer to both URIs under the \"urn\" scheme [RFC2141], which are required to remain globally unique and persistent even when the resource ceases to exist or becomes unavailable, and to any other URI with the properties of a name."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_6470bbfa_04a6_4360_9534_1aa18d68329b ; - owl:annotatedTarget "A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource."@en . + rdfs:seeAlso "http://www.linfo.org/program.html"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; + owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; + owl:annotatedTarget """Software is usually used as a generic term for programs. However, in its broadest sense it can refer to all information (i.e., both programs and data) in electronic form and can provide a distinction from hardware, which refers to computers or other electronic systems on which software can exist and be use. +Here we explicitly include in the definition also all the data (e.g. source code, script files) that takes part to the building of the executable, are necessary to the execution of a program or that document it for the users."""@en . [] a owl:Axiom ; - rdfs:isDefinedBy "http://www.linfo.org/program.html"^^xsd:anyURI ; + rdfs:isDefinedBy "http://www.linfo.org/source_code.html"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_65411b3d_c8d3_4111_86a9_a2ce0a64c647 ; - owl:annotatedTarget "A program is a sequence of instructions understandable by a computer's central processing unit (CPU) that indicates which operations the computer should perform on a set of data."@en . + owl:annotatedSource ns1:EMMO_348d39f7_6a17_49d1_9860_9b33b69b51de ; + owl:annotatedTarget "Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters)."@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; - owl:annotatedTarget "Software"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953."@en . + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource ns1:EMMO_e94a9156_fb6c_4e16_88ee_829ac9933155 ; + owl:annotatedTarget "A path is a string of characters used to uniquely identify a location in a directory structure according to a particular convention."@en ; + ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Path_(computing)#Universal_Naming_Convention"^^xsd:string . [] a owl:Axiom ; rdfs:isDefinedBy "https://datatracker.ietf.org/doc/rfc3987/"^^xsd:anyURI ; @@ -20604,16 +20620,16 @@ Here we explicitly include in the definition also all the data (e.g. source code owl:annotatedTarget "An Internationalized Resource Identifier (IRI) is a compact sequence of characters that identifies an abstract or physical resource. It is similar to URI, but greatly extends the allowed character set from ASCII to the Universal Character Set."@en . [] a owl:Axiom ; - rdfs:isDefinedBy "http://www.linfo.org/source_code.html"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_348d39f7_6a17_49d1_9860_9b33b69b51de ; - owl:annotatedTarget "Source code (also referred to as source or code) is the version of software as it is originally written (i.e., typed into a computer) by a human in plain text (i.e., human readable alphanumeric characters)."@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; + owl:annotatedTarget "Software"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From soft +‎ -ware, by contrast with hardware (“the computer itself”). Coined by Paul Niquette in 1953."@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://www.ietf.org/rfc/rfc3986.txt"^^xsd:anyURI ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource ns1:EMMO_8a8f664b_dc59_4e00_ae00_81fdf1e1d12e ; - owl:annotatedTarget "The term \"Uniform Resource Locator\" (URL) refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network \"location\")."@en . + owl:annotatedSource ns1:EMMO_6470bbfa_04a6_4360_9534_1aa18d68329b ; + owl:annotatedTarget "A Uniform Resource Identifier (URI) is a compact sequence of characters that identifies an abstract or physical resource."@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/obp/ui/fr/#iso:std:iso-iec:2382:-1:ed-3:en"@en ; @@ -20621,29 +20637,41 @@ Here we explicitly include in the definition also all the data (e.g. source code owl:annotatedSource ns1:EMMO_8681074a_e225_4e38_b586_e85b0f43ce38 ; owl:annotatedTarget "All or part of the programs, procedures, rules, and associated documentation of an information processing system."@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_eff42cb3_208e_4768_9a39_f8b6b3c3d7a2 ; - owl:annotatedTarget "Computation"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin con- +‎ putō (“I reckon”)."@en . - [] a owl:Axiom ; rdfs:seeAlso "https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf"^^xsd:string ; owl:annotatedProperty rdfs:isDefinedBy ; owl:annotatedSource ns1:EMMO_e97af6ec_4371_4bbc_8936_34b76e33302f ; owl:annotatedTarget "CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata”"@en . +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "the time between changes in potential in step 2 is related to the concentration of analyte in the solution"@en . + [] a owl:Axiom ; rdfs:seeAlso "https://emmc.info/wp-content/uploads/2018/05/CWA_17284.pdf"^^xsd:anyURI ; owl:annotatedProperty rdfs:isDefinedBy ; owl:annotatedSource ns1:EMMO_b29fd350_39aa_4af7_9459_3faa0544cba6 ; owl:annotatedTarget "CEN Workshop Agreement – CWA 17284 “Materials modelling – terminology, classification and metadata”"@en . +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution"@en . + [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_1eed0732_e3f1_4b2c_a9c4_b4e75eeb5895 ; - owl:annotatedTarget "Variable"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Fom Latin variabilis (\"changeable\")."@en . + owl:annotatedSource ns1:EMMO_eff42cb3_208e_4768_9a39_f8b6b3c3d7a2 ; + owl:annotatedTarget "Computation"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin con- +‎ putō (“I reckon”)."@en . + +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :StepChronopotentiometry ; + owl:annotatedTarget "chronopotentiometry where the applied current is changed in steps"@en . [] a owl:Axiom ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; @@ -20651,12 +20679,30 @@ Here we explicitly include in the definition also all the data (e.g. source code owl:annotatedTarget "A variable is a symbolic object that stands for any other mathematical object, such as number, a vector, a matrix, a function, the argument of a function, a set, an element of a set."@en ; ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Variable_(mathematics)"^^xsd:anyURI . -[] owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger . +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_1eed0732_e3f1_4b2c_a9c4_b4e75eeb5895 ; + owl:annotatedTarget "Variable"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Fom Latin variabilis (\"changeable\")."@en . -[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . +[] a owl:Axiom ; + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "the accumulation is similar to that used in stripping voltammetry"@en . [] owl:qualifiedCardinality "4"^^xsd:nonNegativeInteger . +[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . + +[] owl:qualifiedCardinality "3"^^xsd:nonNegativeInteger . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; + owl:annotatedTarget "Language"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”)."@en . + [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_057e7d57_aff0_49de_911a_8861d85cef40 ; @@ -20665,9 +20711,9 @@ Here we explicitly include in the definition also all the data (e.g. source code [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_d8d2144e_5c8d_455d_a643_5caf4d8d9df8 ; - owl:annotatedTarget "Language"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin lingua (“tongue, speech, language”), from Old Latin dingua (“tongue”)."@en . + owl:annotatedSource ns1:EMMO_1e877c70_3b01_45a8_a8f6_8ce4f6a24660 ; + owl:annotatedTarget "Data"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; @@ -20682,17 +20728,8 @@ Here we explicitly include in the definition also all the data (e.g. source code We call "interpreting" the act of providing semantic meaning to data, which is covered by the semiotic perspective."""@en ; ns1:EMMO_b432d2d5_25f4_4165_99c5_5935a7763c1a "The electronical state of the RAM of my laptop is decoded by it as ASCII characters and printed on the screen."@en . -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :CyclicChronopotentiometry ; - owl:annotatedTarget "chronopotentiometry where the change in applied current undergoes a cyclic current reversal"@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_1e877c70_3b01_45a8_a8f6_8ce4f6a24660 ; - owl:annotatedTarget "Data"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin data, nominative plural of datum (“that is given”), neuter past participle of dō (“I give”)."@en . +[] a owl:AllDisjointClasses ; + owl:members ( :CompressionTesting :CreepTesting :DynamicMechanicalAnalysis :FatigueTesting :FibDic :HardnessTesting :Nanoindentation :ShearOrTorsionTesting :TensileTesting :WearTesting ) . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20711,17 +20748,17 @@ We call "interpreting" the act of providing semantic meaning to data, which is c rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_b2282816_b7a3_44c6_b2cb_3feff1ceb7fe ] ; + swrl:propertyPredicate ns1:EMMO_65a2c5b8_e4d8_4a51_b2f8_e55effc0547d ] ; rdf:rest [ a swrl:AtomList ; rdf:first [ a swrl:ClassAtom ; swrl:argument1 ; - swrl:classPredicate ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 ] ; + swrl:classPredicate ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 ] ; rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ] ; + swrl:propertyPredicate ns1:EMMO_2a33ee61_8235_4da4_b9a1_ca62cb87a016 ] ; rdf:rest () ] . [] a owl:Axiom ; @@ -20730,41 +20767,47 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedSource :AbrasiveStrippingVoltammetry ; owl:annotatedTarget "electrochemical method where traces of solid particles are abrasively transferred onto the surface of an electrode, followed by an electrochemical dissolution (anodic or cathodic dissolution) that is recorded as a current–voltage curve"@en . +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_52211e5e_d767_4812_845e_eb6b402c476a ; + owl:annotatedTarget "Existent"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest)."@en . + [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_65a2c5b8_e4d8_4a51_b2f8_e55effc0547d ] ; + swrl:propertyPredicate ns1:EMMO_b2282816_b7a3_44c6_b2cb_3feff1ceb7fe ] ; rdf:rest [ a swrl:AtomList ; rdf:first [ a swrl:ClassAtom ; swrl:argument1 ; - swrl:classPredicate ns1:EMMO_92829beb_6ed4_4c88_bbd5_3bc7403e2895 ] ; + swrl:classPredicate ns1:EMMO_36c79456_e29c_400d_8bd3_0eedddb82652 ] ; rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_2a33ee61_8235_4da4_b9a1_ca62cb87a016 ] ; + swrl:propertyPredicate ns1:EMMO_f68030be_94b8_4c61_a161_886468558054 ] ; rdf:rest () ] . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_52211e5e_d767_4812_845e_eb6b402c476a ; - owl:annotatedTarget "Existent"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest)."@en . + owl:annotatedSource ns1:EMMO_8c537c06_8e1d_4a3b_a251_1c89bb2c4790 ; + owl:annotatedTarget "ResemblanceIcon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_c7013b53_3071_410b_a5e4_a8d266dcdfb5 ; - owl:annotatedTarget "FunctionalIcon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”)."@en . + owl:annotatedSource ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec ; + owl:annotatedTarget "Cogniser"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know”"@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; - owl:annotatedTarget "Property"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”)."@en . + owl:annotatedSource ns1:EMMO_c7013b53_3071_410b_a5e4_a8d266dcdfb5 ; + owl:annotatedTarget "FunctionalIcon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin functiō (“performance, execution”), from functus, perfect participle of fungor (“to perform, execute, discharge”)."@en . [] a owl:Axiom ; rdfs:seeAlso "https://en.wikipedia.org/wiki/Semiotic_theory_of_Charles_Sanders_Peirce#II._Icon,_index,_symbol"^^xsd:anyURI ; @@ -20776,54 +20819,6 @@ We call "interpreting" the act of providing semantic meaning to data, which is c (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else [Wikipedia]"""@en . -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "the stripping potentiogram shows staircase curves of potential as a function of time. Frequently, the first derivative is displayed (dE/dt=f(t)), as this produces peak-shaped signals. The time between transitions (peaks) is proportional to the concentration of analyte in the test solution"@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_4f2d1fcc_e20c_4479_9ad7_7a0480dd3e44 ; - owl:annotatedTarget "AnalogicalIcon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”)."@en . - -[] a owl:Axiom ; - dcterms:source "International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :Electrogravimetry ; - owl:annotatedTarget "method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_19608340_178c_4bfd_bd4d_0d3b935c6fec ; - owl:annotatedTarget "Cogniser"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin cognitio (“knowledge, perception, a judicial examination, trial”), from cognitus, past participle of cognoscere (“to know”), from co- (“together”) + *gnoscere, older form of noscere (“to know”"@en . - -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :DifferentialStaircasePulseVoltammetry ; - owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_8c537c06_8e1d_4a3b_a251_1c89bb2c4790 ; - owl:annotatedTarget "ResemblanceIcon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Old French sambler, sembler, from Late Latin similāre, present active infinitive of similō, from Latin similis, from Proto-Italic *semalis, from Proto-Indo-European *sem- (“together, one”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68 ; - owl:annotatedTarget "Observation"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”),"@en . - -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "the time between changes in potential in step 2 is related to the concentration of analyte in the solution"@en . - [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; owl:annotatedSource ns1:EMMO_1c0b22a2_be82_4fa8_9e2b_a569a625d442 ; @@ -20834,13 +20829,7 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; owl:annotatedTarget "Model"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin modus (“measure”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; - owl:annotatedTarget "Icon"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”)."@en . + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin modus (“measure”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; @@ -20849,10 +20838,22 @@ We call "interpreting" the act of providing semantic meaning to data, which is c ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin simulacrum (\"likeness, semblance\")"@en . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :LinearChronopotentiometry ; - owl:annotatedTarget "chronopotentiometry where the applied current is changed linearly"@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_4f2d1fcc_e20c_4479_9ad7_7a0480dd3e44 ; + owl:annotatedTarget "AnalogicalIcon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek ἀναλογία (analogía), from ἀνά (aná) + λόγος (lógos, “speech, reckoning”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_d7788d1a_020d_4c78_85a1_13563fcec168 ; + owl:annotatedTarget "Icon"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek εἰκών (eikṓn, “likeness, image, portrait”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_3b19eab4_79be_4b02_bdaf_ecf1f0067a68 ; + owl:annotatedTarget "Observation"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin observare (“to watch, note, mark, heed, guard, keep, pay attention to, regard, comply with, etc.”), from ob (“before”) + servare (“to keep”),"@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20860,6 +20861,18 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedTarget "Index"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin index (“a discoverer, informer, spy; of things, an indicator, the forefinger, a title, superscription”), from indicō (“point out, show”)."@en . +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_b7bcff25_ffc3_474e_9ab5_01b1664bd4ba ; + owl:annotatedTarget "Property"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin proprietas (“a peculiarity, one's peculiar nature or quality, right or fact of possession, property”), from proprius (“special, particular, one's own”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_bb49844b_45d7_4f0d_8cae_8e552cbc20d6 ; + owl:annotatedSource ns1:EMMO_0650c031_42b6_4f0a_b62d_d88f071da6bf ; + owl:annotatedTarget "measurand"@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity."@en . + [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/standard/45324.html"^^xsd:anyURI ; owl:annotatedProperty rdfs:comment ; @@ -20873,10 +20886,10 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedTarget "Metrology is the science of measurement and its application and includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application (VIM3 2.2)"@en . [] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_bb49844b_45d7_4f0d_8cae_8e552cbc20d6 ; - owl:annotatedSource ns1:EMMO_0650c031_42b6_4f0a_b62d_d88f071da6bf ; - owl:annotatedTarget "measurand"@en ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "VIM defines measurand as a quantity intended to be measured. This is redundant in EMMO and correspond to Quantity."@en . + dcterms:source "International Electrotechnical Commission (IEC), IEC 60050 - International Electrotechnical Vocabulary, retrieved from: https://www.electropedia.org"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :Electrogravimetry ; + owl:annotatedTarget "method of electroanalytical chemistry used to separate by electrolyse ions of a substance and to derive the amount of this substance from the increase in mass of an electrode."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20884,6 +20897,12 @@ We call "interpreting" the act of providing semantic meaning to data, which is c owl:annotatedTarget "Procedure"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin pro-cedere (“to go forward, to proceed”)."@en . +[] a owl:Axiom ; + rdfs:seeAlso "https://en.wiktionary.org/wiki/procedure"^^xsd:anyURI ; + owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; + owl:annotatedSource ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; + owl:annotatedTarget "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en . + [] a owl:Axiom ; rdfs:isDefinedBy "https://www.iso.org/obp/ui/#iso:std:iso:55000:ed-1:v2:en:term:3.1.13"^^xsd:anyURI ; owl:annotatedProperty rdfs:seeAlso ; @@ -20898,10 +20917,16 @@ organization: person or group of people that has its own functions with responsi ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin intentionem, derived from intendere (\"stretching out\")"@en . [] a owl:Axiom ; - rdfs:seeAlso "https://en.wiktionary.org/wiki/procedure"^^xsd:anyURI ; - owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; - owl:annotatedSource ns1:EMMO_472a0ca2_58bf_4618_b561_6fe68bd9fd49 ; - owl:annotatedTarget "The set of established forms or methods of an organized body for accomplishing a certain task or tasks (Wiktionary)."@en . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_4f226cf3_6d02_4d35_8566_a9e641bc6ff3 ; + owl:annotatedTarget "Part"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin partire, partiri ‘divide, share’."@en . + +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_0277f24a_ea7f_4917_81b7_fb0406c8fc62 ; + owl:annotatedTarget "Holistic"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Holism (from Greek ὅλος holos \"all, whole, entire\")."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -20915,6 +20940,12 @@ organization: person or group of people that has its own functions with responsi owl:annotatedTarget "Role"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From French rôle, from obsolete French roule ‘roll’, referring originally to the roll of paper on which the actor's part was written."@en . +[] a owl:Axiom ; + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_1efe8b96_e006_4a33_bc9a_421406cbb9f0 ; + owl:annotatedTarget "Whole"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Middle English hole (“healthy, unhurt, whole”)."@en . + [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; owl:annotatedSource ns1:EMMO_57c75ca1_bf8a_42bc_85d9_58cfe38c7df2 ; @@ -20927,30 +20958,6 @@ organization: person or group of people that has its own functions with responsi owl:annotatedTarget "Wholistic"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From the word 'holistic' with the 'w-' prefix, due to the affinity with the existing word 'whole', that share the same meaning of 'holos'."@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_4f226cf3_6d02_4d35_8566_a9e641bc6ff3 ; - owl:annotatedTarget "Part"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin partire, partiri ‘divide, share’."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_0277f24a_ea7f_4917_81b7_fb0406c8fc62 ; - owl:annotatedTarget "Holistic"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "Holism (from Greek ὅλος holos \"all, whole, entire\")."@en . - -[] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "two-step electrochemical measurement in which 1) material is accumulated at an electrode and 2) the material is removed by chemical reaction or electrochemically at constant current with measurement of electrode potential"@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_1efe8b96_e006_4a33_bc9a_421406cbb9f0 ; - owl:annotatedTarget "Whole"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Middle English hole (“healthy, unhurt, whole”)."@en . - [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . @@ -20965,39 +20972,36 @@ organization: person or group of people that has its own functions with responsi [] a owl:Axiom ; dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :DifferentialLinearPulseVoltammetry ; - owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential."@en . + owl:annotatedProperty rdfs:comment ; + owl:annotatedSource :PotentiometricStrippingAnalysis ; + owl:annotatedTarget "historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury"@en . [] a owl:Axiom ; dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; - owl:annotatedSource :StepChronopotentiometry ; - owl:annotatedTarget "chronopotentiometry where the applied current is changed in steps"@en . - -[] a owl:AllDisjointClasses ; - owl:members ( :CalibrationProcess :CharacterisationDataValidation :CharacterisationMeasurementProcess :DataAnalysis :DataPostProcessing :DataPreparation :SampleExtraction :SampleInspection :SamplePreparation ) . + owl:annotatedSource :LinearChronopotentiometry ; + owl:annotatedTarget "chronopotentiometry where the applied current is changed linearly"@en . [] a owl:Axiom ; dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "the accumulation is similar to that used in stripping voltammetry"@en . + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :DifferentialStaircasePulseVoltammetry ; + owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a staircase potential ramp."@en . [] a owl:AllDisjointClasses ; - owl:members ( :CompressionTesting :CreepTesting :DynamicMechanicalAnalysis :FatigueTesting :FibDic :HardnessTesting :Nanoindentation :ShearOrTorsionTesting :TensileTesting :WearTesting ) . + owl:members ( :CalibrationProcess :CharacterisationDataValidation :CharacterisationMeasurementProcess :DataAnalysis :DataPostProcessing :DataPreparation :SampleExtraction :SampleInspection :SamplePreparation ) . [] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_0f795e3e_c602_4577_9a43_d5a231aa1360 ; - owl:annotatedTarget "Elementary"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :DifferentialLinearPulseVoltammetry ; + owl:annotatedTarget "Differential Pulse Voltammetry in which small potential pulses are superimposed onto a linearly varying potential."@en . [] a owl:Axiom ; - owl:annotatedProperty rdfs:subClassOf ; - owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; - owl:annotatedTarget _:73 ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every entity is made of quantum parts. This axiomatisation is the expression of the radical reductionistic approach of the EMMO."@en . + dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109."^^xsd:string ; + owl:annotatedProperty ns1:EMMO_967080e5_2f42_4eb2_a3a9_c58143e835f9 ; + owl:annotatedSource :CyclicChronopotentiometry ; + owl:annotatedTarget "chronopotentiometry where the change in applied current undergoes a cyclic current reversal"@en . [] a owl:Axiom ; rdfs:isDefinedBy "https://dictionary.iucr.org/Crystal"^^xsd:anyURI ; @@ -21016,49 +21020,31 @@ H=∑ni=1hia∗i (n≥3)"""^^xsd:string . owl:annotatedTarget "Crystal"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Ancient Greek κρύσταλλος (krústallos, “clear ice”), from κρύος (krúos, “frost”)."@en . -[] owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger . - -[] owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger . - -[] a owl:Axiom ; - rdfs:seeAlso "https://en.wiktionary.org/wiki/Wiktionary"@en ; - owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; - owl:annotatedSource ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 ; - owl:annotatedTarget "Definitions are usually taken from Wiktionary."@en . - [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . -[] owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger . +[] owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger . -[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . +[] owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger . [] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . -[] a owl:Axiom ; - owl:annotatedProperty skos:altLabel ; - owl:annotatedSource ns1:EMMO_a15cea10_9946_4d2b_95c5_cfc333fd2abb ; - owl:annotatedTarget "Particle"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . +[] owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger . -[] a owl:Axiom ; - owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; - owl:annotatedSource ns1:EMMO_220b7201_d277_4dca_bf6a_5a5e2c4062dd ; - owl:annotatedTarget "The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with \"condensed\" phases of matter: systems of many constituents with strong interactions between them."@en ; - ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Condensed_matter_physics"@en . +[] owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger . [] a owl:Axiom ; - dcterms:source "J. M. Pingarrón et al., Terminology of electrochemical methods of analysis (IUPAC Recommendations 2019), Pure and Applied Chemistry, 4, 92, 2020, 641-694. https://doi.org/10.1515/pac-2018-0109"^^xsd:string ; - owl:annotatedProperty rdfs:comment ; - owl:annotatedSource :PotentiometricStrippingAnalysis ; - owl:annotatedTarget "historically for the analysis of metal ions, mercury ions were added to the test solution to form a mercury amalgam when reduced. Alternatively, an HMDE or MFE was used and the oxidizing agent added after amalgam formation. However, the toxicity of mercury and its compounds have all but precluded the present-day use of mercury"@en . + owl:annotatedProperty skos:prefLabel ; + owl:annotatedSource ns1:EMMO_5b2222df_4da6_442f_8244_96e9e45887d1 ; + owl:annotatedTarget "Matter"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin materia (“matter, stuff, material”), from mater (“mother”)."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3733bd38_ca2b_4264_a92a_3075a1715598 ; - owl:annotatedTarget "isPredecessorOf"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin prae (\"beforehand\") and decedere (\"depart\")."@en . + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget "EMMO"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "EMMO is the acronym of Elementary Multiperspective Material Ontology."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -21068,15 +21054,9 @@ H=∑ni=1hia∗i (n≥3)"""^^xsd:string . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_5b2222df_4da6_442f_8244_96e9e45887d1 ; - owl:annotatedTarget "Matter"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin materia (“matter, stuff, material”), from mater (“mother”)."@en . - -[] a owl:Axiom ; - owl:annotatedProperty rdfs:subClassOf ; - owl:annotatedSource ns1:EMMO_2d2ecd97_067f_4d0e_950c_d746b7700a31 ; - owl:annotatedTarget _:82 ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Every collection has at least two item members, since a collection of one item is a self-connected entity (and then an item)."@en . + owl:annotatedSource ns1:EMMO_38b579de_4331_40e0_803d_09efa298e726 ; + owl:annotatedTarget "PhysicalObject"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin physica \"study of nature\" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . [] a owl:Axiom ; owl:annotatedProperty ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f ; @@ -21087,10 +21067,22 @@ The term phase is sometimes used as a synonym for state of matter, but there can ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Phase_(matter)"@en . [] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_38b579de_4331_40e0_803d_09efa298e726 ; - owl:annotatedTarget "PhysicalObject"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin physica \"study of nature\" (and Ancient Greek φυσικός, “natural”), and Medieval Latin obiectum (“object”, literally “thrown against”)."@en . + owl:annotatedProperty skos:altLabel ; + owl:annotatedSource ns1:EMMO_a15cea10_9946_4d2b_95c5_cfc333fd2abb ; + owl:annotatedTarget "Particle"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_c6e77b51_681b_4d04_b20d_a08f2b977470 ; + owl:annotatedSource ns1:EMMO_d67ee67e_4fac_4676_82c9_aec361dba698 ; + owl:annotatedTarget ":isCauseOf owl:propertyDisjointWith :overlaps"@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Due to the transitivity characteristic of :overlaps subclasses, that makes it a composite property."^^xsd:string . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_31252f35_c767_4b97_a877_1235076c3e13 ; + owl:annotatedSource ns1:EMMO_220b7201_d277_4dca_bf6a_5a5e2c4062dd ; + owl:annotatedTarget "The subject of condensed matter physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid phases which arise from electromagnetic forces between atoms. More generally, the subject deals with \"condensed\" phases of matter: systems of many constituents with strong interactions between them."@en ; + ns1:EMMO_c84c6752_6d64_48cc_9500_e54a3c34898d "https://en.wikipedia.org/wiki/Condensed_matter_physics"@en . [] a owl:Axiom ; owl:annotatedProperty skos:altLabel ; @@ -21100,31 +21092,42 @@ The term phase is sometimes used as a synonym for state of matter, but there can [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_3f2e4ac2_8ef3_4a14_b826_60d37f15f8ee ; - owl:annotatedTarget "mereological"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 """Coined by Stanisław Leśniewski in 1927, from Ancient Greek μέρος (méros, “part”) +‎ -logy (“study, discussion, science”). -https://en.wiktionary.org/wiki/mereology"""@en . + owl:annotatedSource ns1:EMMO_7b79b2ac_3cf2_4d3b_8cdc_bcabb59d869e ; + owl:annotatedTarget "ElementaryParticle"@en ; + ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . + +[] a owl:Axiom ; + owl:annotatedProperty ns1:EMMO_70fe84ff_99b6_4206_a9fc_9a8931836d84 ; + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget "The disjoint union of the Item and Collection classes."@en ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f """The union implies that world entities can only be items or collections (standing for a collection of causally disconnected items). +Disjointness means that a collection cannot be an item and viceversa, representing the fact that a world entity cannot be causally self-connected and non-self connected at the same time."""@en . + +[] a owl:Axiom ; + owl:annotatedProperty rdfs:subClassOf ; + owl:annotatedSource ns1:EMMO_802d3e92_8770_4f98_a289_ccaaab7fdddf ; + owl:annotatedTarget _:82 ; + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "All EMMO individuals are part of the most comprehensive entity which is the universe."@en . [] a swrl:Imp ; swrl:body [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; swrl:argument1 ; swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_3733bd38_ca2b_4264_a92a_3075a1715598 ] ; - rdf:rest () ] ; + swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + rdf:rest [ a swrl:AtomList ; + rdf:first [ a swrl:IndividualPropertyAtom ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; + rdf:rest () ] ] ; swrl:head [ a swrl:AtomList ; rdf:first [ a swrl:IndividualPropertyAtom ; - swrl:argument1 ; - swrl:argument2 ; - swrl:propertyPredicate ns1:EMMO_01e5766d_dac3_4574_8a78_310de92a5c9d ] ; + swrl:argument1 ; + swrl:argument2 ; + swrl:propertyPredicate ns1:EMMO_9380ab64_0363_4804_b13f_3a8a94119a76 ] ; rdf:rest () ] ; - ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Enforcing a strict one-way causality direction."@en . - -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_6c03574f_6daa_4488_a970_ee355cca2530 ; - owl:annotatedTarget "CausalParticle"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin particula (“small part, particle”), diminutive of pars (“part, piece”)."@en . + ns1:EMMO_c7b62dd7_063a_4c2a_8504_42f7264ba83f "Transitivity for proper parthood."@en . [] a owl:Axiom ; owl:annotatedProperty skos:prefLabel ; @@ -21132,24 +21135,18 @@ https://en.wiktionary.org/wiki/mereology"""@en . owl:annotatedTarget "FundamentalBoson"@en ; ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "1940s: named after S.N. Bose."@en . -[] a owl:Axiom ; - owl:annotatedProperty skos:prefLabel ; - owl:annotatedSource ns1:EMMO_7b79b2ac_3cf2_4d3b_8cdc_bcabb59d869e ; - owl:annotatedTarget "ElementaryParticle"@en ; - ns1:EMMO_705f27ae_954c_4f13_98aa_18473fc52b25 "From Latin elementārius (“elementary”), from elementum (“one of the four elements of antiquity; fundamentals”)."@en . - -_:138 owl:inverseOf ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f . +_:155 owl:inverseOf ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f . -_:106 a owl:Restriction ; - owl:hasValue ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 ; - owl:onProperty _:138 . +_:117 a owl:Restriction ; + owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ; + owl:onClass ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; + owl:onProperty ns1:EMMO_6b7276a4_4b9d_440a_b577_0277539c0fc4 . -_:73 a owl:Restriction ; +_:81 a owl:Restriction ; owl:onProperty ns1:EMMO_17e27c22_37e1_468c_9dd7_95e137f73e7f ; owl:someValuesFrom ns1:EMMO_3f9ae00e_810c_4518_aec2_7200e424cf68 . _:82 a owl:Restriction ; - owl:minQualifiedCardinality "2"^^xsd:nonNegativeInteger ; - owl:onClass ns1:EMMO_eb3a768e_d53e_4be9_a23b_0714833c36de ; - owl:onProperty ns1:EMMO_6b7276a4_4b9d_440a_b577_0277539c0fc4 . + owl:hasValue ns1:EMMO_08cb807c_e626_447b_863f_e2835540e918 ; + owl:onProperty _:155 . diff --git a/searchindex.js b/searchindex.js index 772cdb2..473c763 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"alltitles": {"ACVoltammetry": [[0, "acvoltammetry"]], "AbrasiveStrippingVoltammetry": [[0, "abrasivestrippingvoltammetry"]], "AccessConditions": [[0, "accessconditions"]], "AdsorptiveStrippingVoltammetry": [[0, "adsorptivestrippingvoltammetry"]], "AlphaSpectrometry": [[0, "alphaspectrometry"]], "Amperometry": [[0, "amperometry"]], "AnalyticalElectronMicroscopy": [[0, "analyticalelectronmicroscopy"]], "AnodicStrippingVoltammetry": [[0, "anodicstrippingvoltammetry"]], "AtomProbeTomography": [[0, "atomprobetomography"]], "AtomicForceMicroscopy": [[0, "atomicforcemicroscopy"]], "BPMNDiagram": [[0, "bpmndiagram"]], "BrunauerEmmettTellerMethod": [[0, "brunaueremmetttellermethod"]], "CalibrationData": [[0, "calibrationdata"]], "CalibrationDataPostProcessing": [[0, "calibrationdatapostprocessing"]], "CalibrationProcess": [[0, "calibrationprocess"]], "CalibrationTask": [[0, "calibrationtask"]], "Calorimetry": [[0, "calorimetry"]], "CathodicStrippingVoltammetry": [[0, "cathodicstrippingvoltammetry"]], "CharacterisationComponent": [[0, "characterisationcomponent"]], "CharacterisationData": [[0, "characterisationdata"]], "CharacterisationDataValidation": [[0, "characterisationdatavalidation"]], "CharacterisationEnvironment": [[0, "characterisationenvironment"]], "CharacterisationEnvironmentProperty": [[0, "characterisationenvironmentproperty"]], "CharacterisationExperiment": [[0, "characterisationexperiment"]], "CharacterisationHardware": [[0, "characterisationhardware"]], "CharacterisationHardwareSpecification": [[0, "characterisationhardwarespecification"]], "CharacterisationMeasurementInstrument": [[0, "characterisationmeasurementinstrument"]], "CharacterisationMeasurementProcess": [[0, "characterisationmeasurementprocess"]], "CharacterisationMeasurementTask": [[0, "characterisationmeasurementtask"]], "CharacterisationProcedure": [[0, "characterisationprocedure"]], "CharacterisationProcedureValidation": [[0, "characterisationprocedurevalidation"]], "CharacterisationProperty": [[0, "characterisationproperty"]], "CharacterisationProtocol": [[0, "characterisationprotocol"]], "CharacterisationSoftware": [[0, "characterisationsoftware"]], "CharacterisationSystem": [[0, "characterisationsystem"]], "CharacterisationTask": [[0, "characterisationtask"]], "CharacterisationTechnique": [[0, "characterisationtechnique"]], "CharacterisationWorkflow": [[0, "characterisationworkflow"]], "CharacterisedSample": [[0, "characterisedsample"]], "ChargeDistribution": [[0, "chargedistribution"]], "Chromatography": [[0, "chromatography"]], "Chronoamperometry": [[0, "chronoamperometry"]], "Chronocoulometry": [[0, "chronocoulometry"]], "Chronopotentiometry": [[0, "chronopotentiometry"]], "Classes": [[0, "classes"]], "CompressionTesting": [[0, "compressiontesting"]], "ConductometricTitration": [[0, "conductometrictitration"]], "Conductometry": [[0, "conductometry"]], "ConfocalMicroscopy": [[0, "confocalmicroscopy"]], "CoulometricTitration": [[0, "coulometrictitration"]], "Coulometry": [[0, "coulometry"]], "CreepTesting": [[0, "creeptesting"]], "CriticalAndSupercriticalChromatography": [[0, "criticalandsupercriticalchromatography"]], "CyclicChronopotentiometry": [[0, "cyclicchronopotentiometry"]], "CyclicVoltammetry": [[0, "cyclicvoltammetry"]], "DCPolarography": [[0, "dcpolarography"]], "DataAcquisitionRate": [[0, "dataacquisitionrate"]], "DataAnalysis": [[0, "dataanalysis"]], "DataFiltering": [[0, "datafiltering"]], "DataNormalisation": [[0, "datanormalisation"]], "DataPostProcessing": [[0, "datapostprocessing"]], "DataPreparation": [[0, "datapreparation"]], "DataProcessingThroughCalibration": [[0, "dataprocessingthroughcalibration"]], "DataQuality": [[0, "dataquality"]], "Detector": [[0, "detector"]], "DielectricAndImpedanceSpectroscopy": [[0, "dielectricandimpedancespectroscopy"]], "Dielectrometry": [[0, "dielectrometry"]], "DifferentialLinearPulseVoltammetry": [[0, "differentiallinearpulsevoltammetry"]], "DifferentialPulseVoltammetry": [[0, "differentialpulsevoltammetry"]], "DifferentialRefractiveIndex": [[0, "differentialrefractiveindex"]], "DifferentialScanningCalorimetry": [[0, "differentialscanningcalorimetry"]], "DifferentialStaircasePulseVoltammetry": [[0, "differentialstaircasepulsevoltammetry"]], "DifferentialThermalAnalysis": [[0, "differentialthermalanalysis"]], "Dilatometry": [[0, "dilatometry"]], "DirectCoulometryAtControlledCurrent": [[0, "directcoulometryatcontrolledcurrent"]], "DirectCoulometryAtControlledPotential": [[0, "directcoulometryatcontrolledpotential"]], "DirectCurrentInternalResistance": [[0, "directcurrentinternalresistance"]], "DynamicLightScattering": [[0, "dynamiclightscattering"]], "DynamicMechanicalAnalysis": [[0, "dynamicmechanicalanalysis"]], "DynamicMechanicalSpectroscopy": [[0, "dynamicmechanicalspectroscopy"]], "ElectrochemicalImpedanceSpectroscopy": [[0, "electrochemicalimpedancespectroscopy"]], "ElectrochemicalPiezoelectricMicrogravimetry": [[0, "electrochemicalpiezoelectricmicrogravimetry"]], "ElectrochemicalTesting": [[0, "electrochemicaltesting"]], "Electrogravimetry": [[0, "electrogravimetry"]], "ElectronBackscatterDiffraction": [[0, "electronbackscatterdiffraction"]], "ElectronProbeMicroanalysis": [[0, "electronprobemicroanalysis"]], "Ellipsometry": [[0, "ellipsometry"]], "EnergyDispersiveXraySpectroscopy": [[0, "energydispersivexrayspectroscopy"]], "EnvironmentalScanningElectronMicroscopy": [[0, "environmentalscanningelectronmicroscopy"]], "Exafs": [[0, "exafs"]], "FatigueTesting": [[0, "fatiguetesting"]], "FibDic": [[0, "fibdic"]], "FieldEmissionScanningElectronMicroscopy": [[0, "fieldemissionscanningelectronmicroscopy"]], "FourierTransformInfraredSpectroscopy": [[0, "fouriertransforminfraredspectroscopy"]], "Fractography": [[0, "fractography"]], "FreezingPointDepressionOsmometry": [[0, "freezingpointdepressionosmometry"]], "GalvanostaticIntermittentTitrationTechnique": [[0, "galvanostaticintermittenttitrationtechnique"]], "GammaSpectrometry": [[0, "gammaspectrometry"]], "GasAdsorptionPorosimetry": [[0, "gasadsorptionporosimetry"]], "Grinding": [[0, "grinding"]], "HPPC": [[0, "hppc"]], "HardnessTesting": [[0, "hardnesstesting"]], "HardwareManufacturer": [[0, "hardwaremanufacturer"]], "HardwareModel": [[0, "hardwaremodel"]], "Hazard": [[0, "hazard"]], "Holder": [[0, "holder"]], "HydrodynamicVoltammetry": [[0, "hydrodynamicvoltammetry"]], "ICI": [[0, "ici"]], "Impedimetry": [[0, "impedimetry"]], "InteractionVolume": [[0, "interactionvolume"]], "IntermediateSample": [[0, "intermediatesample"]], "IonChromatography": [[0, "ionchromatography"]], "IonMobilitySpectrometry": [[0, "ionmobilityspectrometry"]], "IsothermalMicrocalorimetry": [[0, "isothermalmicrocalorimetry"]], "Laboratory": [[0, "laboratory"]], "LevelOfAutomation": [[0, "levelofautomation"]], "LevelOfExpertise": [[0, "levelofexpertise"]], "LightScattering": [[0, "lightscattering"]], "LinearChronopotentiometry": [[0, "linearchronopotentiometry"]], "LinearScanVoltammetry": [[0, "linearscanvoltammetry"]], "MassSpectrometry": [[0, "massspectrometry"]], "MeasurementDataPostProcessing": [[0, "measurementdatapostprocessing"]], "MeasurementParameter": [[0, "measurementparameter"]], "MeasurementSystemAdjustment": [[0, "measurementsystemadjustment"]], "MeasurementTime": [[0, "measurementtime"]], "MechanicalTesting": [[0, "mechanicaltesting"]], "MembraneOsmometry": [[0, "membraneosmometry"]], "MercuryPorosimetry": [[0, "mercuryporosimetry"]], "Microscopy": [[0, "microscopy"]], "Milling": [[0, "milling"]], "Module: Characterisation Methodology Ontology": [[0, "module-characterisation-methodology-ontology"]], "Mounting": [[0, "mounting"]], "Nanoindentation": [[0, "nanoindentation"]], "NeutronSpinEchoSpectroscopy": [[0, "neutronspinechospectroscopy"]], "Nexafs": [[0, "nexafs"]], "NormalPulseVoltammetry": [[0, "normalpulsevoltammetry"]], "NuclearMagneticResonance": [[0, "nuclearmagneticresonance"]], "Object Properties": [[0, "object-properties"]], "OpenCircuitHold": [[0, "opencircuithold"]], "Operator": [[0, "operator"]], "OpticalMicroscopy": [[0, "opticalmicroscopy"]], "OpticalTesting": [[0, "opticaltesting"]], "Osmometry": [[0, "osmometry"]], "PhotoluminescenceMicroscopy": [[0, "photoluminescencemicroscopy"]], "PhysicsOfInteraction": [[0, "physicsofinteraction"]], "Polishing": [[0, "polishing"]], "Porosimetry": [[0, "porosimetry"]], "PostProcessingModel": [[0, "postprocessingmodel"]], "PotentiometricStrippingAnalysis": [[0, "potentiometricstrippinganalysis"]], "Potentiometry": [[0, "potentiometry"]], "PreparedSample": [[0, "preparedsample"]], "PrimaryData": [[0, "primarydata"]], "Probe": [[0, "probe"]], "ProbeSampleInteraction": [[0, "probesampleinteraction"]], "ProcessingReproducibility": [[0, "processingreproducibility"]], "Profilometry": [[0, "profilometry"]], "PseudoOpenCircuitVoltageMethod": [[0, "pseudoopencircuitvoltagemethod"]], "PulsedElectroacousticMethod": [[0, "pulsedelectroacousticmethod"]], "RamanSpectroscopy": [[0, "ramanspectroscopy"]], "Rationale": [[0, "rationale"]], "RawData": [[0, "rawdata"]], "RawSample": [[0, "rawsample"]], "ReferenceSample": [[0, "referencesample"]], "References": [[0, null]], "Sample": [[0, "sample"]], "SampleExtraction": [[0, "sampleextraction"]], "SampleInspection": [[0, "sampleinspection"]], "SampleInspectionInstrument": [[0, "sampleinspectioninstrument"]], "SampleInspectionParameter": [[0, "sampleinspectionparameter"]], "SamplePreparation": [[0, "samplepreparation"]], "SamplePreparationInstrument": [[0, "samplepreparationinstrument"]], "SamplePreparationParameter": [[0, "samplepreparationparameter"]], "SampledDCPolarography": [[0, "sampleddcpolarography"]], "ScanningAugerElectronMicroscopy": [[0, "scanningaugerelectronmicroscopy"]], "ScanningElectronMicroscopy": [[0, "scanningelectronmicroscopy"]], "ScanningKelvinProbe": [[0, "scanningkelvinprobe"]], "ScanningProbeMicroscopy": [[0, "scanningprobemicroscopy"]], "ScanningTunnelingMicroscopy": [[0, "scanningtunnelingmicroscopy"]], "ScatteringAndDiffraction": [[0, "scatteringanddiffraction"]], "SecondaryData": [[0, "secondarydata"]], "SecondaryIonMassSpectrometry": [[0, "secondaryionmassspectrometry"]], "ShearOrTorsionTesting": [[0, "shearortorsiontesting"]], "Signal": [[0, "signal"]], "Spectrometry": [[0, "spectrometry"]], "Spectroscopy": [[0, "spectroscopy"]], "SquareWaveVoltammetry": [[0, "squarewavevoltammetry"]], "StepChronopotentiometry": [[0, "stepchronopotentiometry"]], "StrippingVoltammetry": [[0, "strippingvoltammetry"]], "Synchrotron": [[0, "synchrotron"]], "TensileTesting": [[0, "tensiletesting"]], "ThermochemicalTesting": [[0, "thermochemicaltesting"]], "Thermogravimetry": [[0, "thermogravimetry"]], "ThreePointBendingTesting": [[0, "threepointbendingtesting"]], "Tomography": [[0, "tomography"]], "TransmissionElectronMicroscopy": [[0, "transmissionelectronmicroscopy"]], "UltrasonicTesting": [[0, "ultrasonictesting"]], "UserCase": [[0, "usercase"]], "VaporPressureDepressionOsmometry": [[0, "vaporpressuredepressionosmometry"]], "Viscometry": [[0, "viscometry"]], "Voltammetry": [[0, "voltammetry"]], "VoltammetryAtARotatingDiskElectrode": [[0, "voltammetryatarotatingdiskelectrode"]], "WearTesting": [[0, "weartesting"]], "XpsVariableKinetic": [[0, "xpsvariablekinetic"]], "XrayDiffraction": [[0, "xraydiffraction"]], "XrayPowderDiffraction": [[0, "xraypowderdiffraction"]], "XrdGrazingIncidence": [[0, "xrdgrazingincidence"]], "hasAccessConditions": [[0, "hasaccessconditions"]], "hasBPMNDiagram": [[0, "hasbpmndiagram"]], "hasBeginCharacterisationTask": [[0, "hasbegincharacterisationtask"]], "hasCharacterisationComponent": [[0, "hascharacterisationcomponent"]], "hasCharacterisationEnvironment": [[0, "hascharacterisationenvironment"]], "hasCharacterisationEnvironmentProperty": [[0, "hascharacterisationenvironmentproperty"]], "hasCharacterisationInput": [[0, "hascharacterisationinput"]], "hasCharacterisationMeasurementInstrument": [[0, "hascharacterisationmeasurementinstrument"]], "hasCharacterisationOutput": [[0, "hascharacterisationoutput"]], "hasCharacterisationProcedureValidation": [[0, "hascharacterisationprocedurevalidation"]], "hasCharacterisationProperty": [[0, "hascharacterisationproperty"]], "hasCharacterisationSoftware": [[0, "hascharacterisationsoftware"]], "hasCharacterisationTask": [[0, "hascharacterisationtask"]], "hasDataAcquisitionRate": [[0, "hasdataacquisitionrate"]], "hasDataProcessingThroughCalibration": [[0, "hasdataprocessingthroughcalibration"]], "hasDataQuality": [[0, "hasdataquality"]], "hasDataset": [[0, "hasdataset"]], "hasDateOfCalibration": [[0, "hasdateofcalibration"]], "hasEndCharacterisationTask": [[0, "hasendcharacterisationtask"]], "hasHardwareSpecification": [[0, "hashardwarespecification"]], "hasHazard": [[0, "hashazard"]], "hasHolder": [[0, "hasholder"]], "hasInstrumentForCalibration": [[0, "hasinstrumentforcalibration"]], "hasInstrumentToBeCalibrated": [[0, "hasinstrumenttobecalibrated"]], "hasInteractionVolume": [[0, "hasinteractionvolume"]], "hasInteractionWithProbe": [[0, "hasinteractionwithprobe"]], "hasInteractionWithSample": [[0, "hasinteractionwithsample"]], "hasLab": [[0, "haslab"]], "hasLevelOfAutomation": [[0, "haslevelofautomation"]], "hasManufacturer": [[0, "hasmanufacturer"]], "hasMeasurementDetector": [[0, "hasmeasurementdetector"]], "hasMeasurementParameter": [[0, "hasmeasurementparameter"]], "hasMeasurementProbe": [[0, "hasmeasurementprobe"]], "hasMeasurementSample": [[0, "hasmeasurementsample"]], "hasMeasurementTime": [[0, "hasmeasurementtime"]], "hasModel": [[0, "hasmodel"]], "hasOperator": [[0, "hasoperator"]], "hasPeerReviewedArticle": [[0, "haspeerreviewedarticle"]], "hasPhysicsOfInteraction": [[0, "hasphysicsofinteraction"]], "hasPostProcessingModel": [[0, "haspostprocessingmodel"]], "hasProcessingReproducibility": [[0, "hasprocessingreproducibility"]], "hasReferenceSample": [[0, "hasreferencesample"]], "hasSampleBeforeSamplePreparation": [[0, "hassamplebeforesamplepreparation"]], "hasSampleForInspection": [[0, "hassampleforinspection"]], "hasSampleInspectionInstrument": [[0, "hassampleinspectioninstrument"]], "hasSampleInspectionParameter": [[0, "hassampleinspectionparameter"]], "hasSamplePreparationInstrument": [[0, "hassamplepreparationinstrument"]], "hasSamplePreparationParameter": [[0, "hassamplepreparationparameter"]], "hasSampledSample": [[0, "hassampledsample"]], "hasUniqueID": [[0, "hasuniqueid"]], "rationaleHasCharacterisationProcedure": [[0, "rationalehascharacterisationprocedure"]], "rationaleHasUserCase": [[0, "rationalehasusercase"]], "requiresLevelOfExpertise": [[0, "requireslevelofexpertise"]]}, "docnames": ["chameo", "index"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["chameo.rst", "index.rst"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": 0, "0": 0, "000": 0, "00332": 0, "0109": 0, "023": 0, "04": 0, "1": 0, "10": 0, "100": 0, "10012": 0, "1007": 0, "11": 0, "114": 0, "12": 0, "13": 0, "14": 0, "15": 0, "150": 0, "1515": 0, "17858": 0, "1890": 0, "1967": 0, "2": 0, "20": 0, "200": 0, "2007": 0, "2018": 0, "3": 0, "30": 0, "3d": 0, "3nm": 0, "3rd": 0, "4": 0, "40": 0, "5": 0, "50": 0, "5nm": 0, "6": 0, "7": 0, "8": 0, "80": 0, "90": 0, "900": 0, "A": 0, "As": 0, "By": 0, "For": 0, "If": 0, "In": 0, "It": 0, "Near": 0, "Of": 0, "Such": 0, "The": 0, "Then": 0, "There": 0, "These": 0, "To": 0, "abbrevi": 0, "abil": 0, "abl": 0, "about": 0, "abov": 0, "abras": 0, "absorb": 0, "absorpt": 0, "ac": 0, "access": 0, "accompani": 0, "accomplish": 0, "accord": 0, "account": 0, "accumul": 0, "accur": 0, "accuraci": 0, "achiev": 0, "acid": 0, "acquir": 0, "acquisit": 0, "across": 0, "act": 0, "action": 0, "activ": 0, "actual": 0, "actuat": 0, "acv": 0, "ad": 0, "adapt": 0, "addit": 0, "addition": 0, "adjust": 0, "adsorb": 0, "adsorpt": 0, "adsv": 0, "advanc": 0, "advantag": 0, "advers": 0, "ae": 0, "aem": 0, "aerospac": 0, "affect": 0, "affin": 0, "afm": 0, "after": 0, "against": 0, "agent": 0, "aim": 0, "air": 0, "aircraft": 0, "albeit": 0, "algorithm": 0, "aliquot": 0, "all": 0, "alloi": 0, "allow": 0, "alon": 0, "along": 0, "alpha": 0, "alreadi": 0, "also": 0, "altern": 0, "although": 0, "altlabel": 0, "aluminium": 0, "amalgam": 0, "ambient": 0, "amount": 0, "amp": 0, "amperiometricdetect": 0, "amperometr": 0, "amperometriccurrenttimecurv": 0, "amplitud": 0, "ampoul": 0, "an": 0, "analog": 0, "analys": 0, "analysi": 0, "analyt": 0, "analyz": 0, "ancient": 0, "and2": 0, "andadapt": 0, "angl": 0, "ani": 0, "annot": 0, "annul": 0, "anod": 0, "anoth": 0, "anti": 0, "appli": 0, "applic": 0, "applicationprogram": 0, "apport": 0, "approach": 0, "apt": 0, "ar": 0, "archaeologi": 0, "area": 0, "argon": 0, "around": 0, "arrai": 0, "ascertain": 0, "assai": 0, "assembl": 0, "assess": 0, "assign": 0, "associ": 0, "assum": 0, "astrophys": 0, "asv": 0, "asymmetr": 0, "atmospher": 0, "atom": 0, "atsom": 0, "attach": 0, "attribut": 0, "auger": 0, "auto": 0, "autom": 0, "automat": 0, "automot": 0, "auxiliari": 0, "avail": 0, "averag": 0, "avoid": 0, "ax": 0, "back": 0, "background": 0, "backscatt": 0, "backward": 0, "band": 0, "base": 0, "baselin": 0, "basi": 0, "basic": 0, "batch": 0, "batteri": 0, "beam": 0, "becaus": 0, "becom": 0, "been": 0, "beer": 0, "befor": 0, "behav": 0, "behavior": 0, "behaviour": 0, "behind": 0, "being": 0, "belief": 0, "below": 0, "bend": 0, "bet": 0, "bet_theori": 0, "beta": 0, "better": 0, "between": 0, "bia": 0, "biamperometri": 0, "bias": 0, "biaxial": 0, "big": 0, "bind": 0, "biolog": 0, "biologi": 0, "biomolecul": 0, "bipotentiometri": 0, "bismuth": 0, "blade": 0, "block": 0, "bode": 0, "bodi": 0, "bombard": 0, "both": 0, "boundari": 0, "bragg": 0, "branch": 0, "break": 0, "bridg": 0, "broad": 0, "broadli": 0, "brownian": 0, "bse": 0, "buffer": 0, "bulk": 0, "c": 0, "calcul": 0, "calibr": 0, "calibratedmeasur": 0, "call": 0, "calli": 0, "calor": 0, "calorimet": 0, "camera": 0, "can": 0, "cannot": 0, "cantilev": 0, "capabl": 0, "capac": 0, "capacit": 0, "capillari": 0, "captur": 0, "carbon": 0, "care": 0, "carri": 0, "carrier": 0, "case": 0, "categori": 0, "cathod": 0, "cathodoluminesc": 0, "cation": 0, "caus": 0, "cell": 0, "center": 0, "certain": 0, "certifi": 0, "chain": 0, "chamber": 0, "chameo": 0, "chang": 0, "channel": 0, "character": 0, "characterias": 0, "characterisationhardwaremanufactur": 0, "characterisationhardwaremodel": 0, "characterisationinstru": 0, "characterist": 0, "charg": 0, "check": 0, "chemic": 0, "chemisorpt": 0, "chemistri": 0, "choic": 0, "cholesterol": 0, "chosen": 0, "circuit": 0, "cl": 0, "classif": 0, "clear": 0, "close": 0, "clsm": 0, "coat": 0, "coeffici": 0, "collect": 0, "collim": 0, "colloid": 0, "color": 0, "colour": 0, "combin": 0, "come": 0, "commensur": 0, "comment": 0, "common": 0, "commonli": 0, "compact": 0, "comparison": 0, "compart": 0, "compendium": 0, "compet": 0, "complementari": 0, "complex": 0, "complianc": 0, "compon": 0, "compos": 0, "composit": 0, "compound": 0, "compress": 0, "compris": 0, "comput": 0, "concentr": 0, "conceptu": 0, "concret": 0, "condens": 0, "condit": 0, "conditions1": 0, "conduct": 0, "configur": 0, "confirm": 0, "confoc": 0, "confus": 0, "conjunct": 0, "consid": 0, "consider": 0, "consist": 0, "constant": 0, "constitu": 0, "constraint": 0, "construct": 0, "consum": 0, "contact": 0, "contain": 0, "context": 0, "continu": 0, "contrast": 0, "contribut": 0, "control": 0, "convect": 0, "conveni": 0, "convent": 0, "convert": 0, "cool": 0, "coordin": 0, "cor": 0, "core": 0, "correct": 0, "correl": 0, "correspond": 0, "corros": 0, "cosmochemistri": 0, "cottrel": 0, "could": 0, "coulomet": 0, "coulometr": 0, "count": 0, "coupl": 0, "coupon": 0, "cover": 0, "crack": 0, "creation": 0, "creep": 0, "criteria": 0, "critic": 0, "cross": 0, "crush": 0, "crystal": 0, "crystallin": 0, "crystallit": 0, "crystallograph": 0, "csv": 0, "cumul": 0, "current": 0, "curv": 0, "cut": 0, "cv": 0, "cycl": 0, "cyclic": 0, "cyclic_voltammetri": 0, "d": 0, "dai": 0, "danger": 0, "dat": 0, "data": 0, "dataprocess": 0, "dataset": 0, "datatypeproperti": 0, "dbpedia": 0, "dbpediarefer": 0, "dc": 0, "de": 0, "dealt": 0, "decai": 0, "decis": 0, "declar": 0, "decomposit": 0, "deconvolut": 0, "decoupl": 0, "decreas": 0, "deem": 0, "deepli": 0, "defect": 0, "defin": 0, "definit": 0, "deform": 0, "degre": 0, "deioniz": 0, "demonstr": 0, "densiti": 0, "depend": 0, "deplet": 0, "deposit": 0, "depress": 0, "depth": 0, "deriv": 0, "describ": 0, "descript": 0, "design": 0, "desir": 0, "desorpt": 0, "destruct": 0, "detail": 0, "detec": 0, "detect": 0, "determin": 0, "develop": 0, "devic": 0, "diagnosi": 0, "diagram": 0, "dic": 0, "die": 0, "dielectr": 0, "dielectrometr": 0, "differ": 0, "differenti": 0, "differential_pulse_voltammetri": 0, "diffract": 0, "diffus": 0, "digit": 0, "dilut": 0, "dimension": 0, "diminish": 0, "dip": 0, "dipol": 0, "direct": 0, "directli": 0, "disc": 0, "discourag": 0, "discoveri": 0, "discrimin": 0, "dislodg": 0, "dispar": 0, "dispers": 0, "dispersive_x": 0, "displac": 0, "displai": 0, "dispos": 0, "dissolut": 0, "dissolv": 0, "distanc": 0, "distinct": 0, "distinguish": 0, "distribut": 0, "disturb": 0, "divid": 0, "dize": 0, "dl": 0, "dma": 0, "doe": 0, "doi": 0, "domain": 0, "done": 0, "doubl": 0, "doubt": 0, "down": 0, "dpv": 0, "dramat": 0, "drift": 0, "drop": 0, "drug": 0, "dsc": 0, "dt": 0, "dta": 0, "due": 0, "dure": 0, "dynam": 0, "e": 0, "each": 0, "earli": 0, "easili": 0, "ebsd": 0, "ebsp": 0, "echo": 0, "ed": 0, "edg": 0, "edit": 0, "edx": 0, "effect": 0, "effici": 0, "ei": 0, "einstein": 0, "either": 0, "eject": 0, "elabor": 0, "elaps": 0, "elast": 0, "elastiaclli": 0, "electr": 0, "electro": 0, "electroacoust": 0, "electroact": 0, "electroanalyt": 0, "electrochem": 0, "electrochemical_stripping_analysi": 0, "electrochemistri": 0, "electrod": 0, "electrolys": 0, "electrolysi": 0, "electromagnet": 0, "electron": 0, "electropedia": 0, "electrostat": 0, "element": 0, "elimin": 0, "elong": 0, "elucid": 0, "embed": 0, "emiss": 0, "emit": 0, "emitt": 0, "emmo": 0, "emploi": 0, "en": 0, "enabl": 0, "encodeddata": 0, "end": 0, "endotherm": 0, "energet": 0, "energi": 0, "enforc": 0, "engin": 0, "enhanc": 0, "enough": 0, "ensur": 0, "enthalpi": 0, "entir": 0, "entiti": 0, "environ": 0, "environment": 0, "epma": 0, "equal": 0, "equat": 0, "equilibrium": 0, "equip": 0, "equival": 0, "error": 0, "esca": 0, "esem": 0, "establish": 0, "estim": 0, "etc": 0, "ev": 0, "evalu": 0, "evapor": 0, "even": 0, "eventu": 0, "everi": 0, "everyon": 0, "exactli": 0, "examin": 0, "examinationnot": 0, "exampl": 0, "exce": 0, "exchang": 0, "excit": 0, "exclud": 0, "exhibit": 0, "exist": 0, "exotherm": 0, "exp": 0, "experi": 0, "experiment": 0, "expert": 0, "expertis": 0, "exploit": 0, "explos": 0, "exposur": 0, "express": 0, "extend": 0, "extens": 0, "extent": 0, "extern": 0, "extract": 0, "extrem": 0, "f": 0, "fabric": 0, "facil": 0, "facilit": 0, "fact": 0, "factor": 0, "failur": 0, "famili": 0, "farada": 0, "faradai": 0, "fatigu": 0, "fatti": 0, "fe": 0, "featur": 0, "fer": 0, "few": 0, "fib": 0, "fibdicresidualstressanalysi": 0, "field": 0, "film": 0, "filter": 0, "final": 0, "find": 0, "fine": 0, "fingerprint": 0, "first": 0, "fit": 0, "fix": 0, "fixtur": 0, "flaw": 0, "flexibl": 0, "flexur": 0, "flow": 0, "fluctuat": 0, "fluoresc": 0, "focu": 0, "focus": 0, "follow": 0, "food": 0, "forc": 0, "form": 0, "formal": 0, "formalis": 0, "format": 0, "forquant": 0, "forward": 0, "fourier": 0, "fractur": 0, "freez": 0, "frequenc": 0, "frequent": 0, "friction": 0, "from": 0, "frommeasur": 0, "ftir": 0, "full": 0, "function": 0, "functionalicon": 0, "fundament": 0, "further": 0, "g": 0, "ga": 0, "gadget": 0, "gain": 0, "galvanostat": 0, "gamma": 0, "gase": 0, "gaseou": 0, "gather": 0, "gaug": 0, "gener": 0, "geochem": 0, "geometri": 0, "geophys": 0, "get": 0, "gitt": 0, "give": 0, "given": 0, "glass": 0, "glassi": 0, "go": 0, "goal": 0, "goldbook": 0, "good": 0, "govern": 0, "grain": 0, "graph\u014d": 0, "gravimetr": 0, "greater": 0, "greatli": 0, "greek": 0, "grid": 0, "grinder": 0, "grindston": 0, "group": 0, "grow": 0, "growth": 0, "guid": 0, "ha": 0, "half": 0, "hand": 0, "hard": 0, "harden": 0, "harder": 0, "hardwar": 0, "harmon": 0, "hasag": 0, "hasbegincharacterizationtask": 0, "hasbegintask": 0, "hascharacterizationcompon": 0, "hascharacterizationenviron": 0, "hascharacterizationenvironmentproperti": 0, "hascharacterizationinput": 0, "hascharacterizationmeasurementinstru": 0, "hascharacterizationoutput": 0, "hascharacterizationproperti": 0, "hascharacterizationsoftwar": 0, "hascharacterizationtask": 0, "hascompon": 0, "hasconstitu": 0, "hasconvent": 0, "hasendcharacterizationtask": 0, "hasendtask": 0, "hasholisticpart": 0, "hasicon": 0, "hasinput": 0, "hasmeasuredproperti": 0, "hasoutput": 0, "hasparticip": 0, "hasproperti": 0, "hassampleforprepar": 0, "hassign": 0, "hastask": 0, "hastemporaryparticip": 0, "have": 0, "health": 0, "heat": 0, "height": 0, "henc": 0, "heyrovsk\u00fd": 0, "hi": 0, "high": 0, "higher": 0, "highest": 0, "highli": 0, "histor": 0, "hit": 0, "hmde": 0, "holisticsystem": 0, "homogen": 0, "hour": 0, "how": 0, "howev": 0, "http": 0, "human": 0, "humid": 0, "hv": 0, "hybridpulsepowercharacter": 0, "hybridpulsepowercharacteris": 0, "hydrodynam": 0, "hydrodynamic_voltammetri": 0, "hz": 0, "i": 0, "icon": 0, "ident": 0, "identif": 0, "identifi": 0, "iev": 0, "ievref": 0, "ievrefer": 0, "ii": 0, "iii": 0, "ilkovich": 0, "illumin": 0, "im": 0, "imag": 0, "imc": 0, "impact": 0, "imped": 0, "impedimetr": 0, "impli": 0, "import": 0, "impos": 0, "improv": 0, "impur": 0, "incid": 0, "includ": 0, "incorpor": 0, "increas": 0, "increment": 0, "indent": 0, "independ": 0, "index": 0, "indi": 0, "indic": 0, "indicationnot": 0, "indirectli": 0, "indium": 0, "individu": 0, "induc": 0, "induct": 0, "industri": 0, "inelast": 0, "inert": 0, "infiltr": 0, "infinit": 0, "inflect": 0, "influenc": 0, "influenti": 0, "inform": 0, "informationnot": 0, "infrar": 0, "inher": 0, "inhous": 0, "initi": 0, "input": 0, "inspect": 0, "inspectioncalibrationmicroscopyviscometrydata": 0, "instead": 0, "instrument": 0, "integr": 0, "intend": 0, "intens": 0, "intentionalag": 0, "interact": 0, "interatom": 0, "interchang": 0, "interest": 0, "intermittentcurrentinterruptionmethod": 0, "intern": 0, "interpret": 0, "interrupt": 0, "intersect": 0, "interv": 0, "intramolecular": 0, "introduc": 0, "intrus": 0, "invers": 0, "investig": 0, "involv": 0, "ion": 0, "ion_chromatographi": 0, "ionic": 0, "ioniz": 0, "iri": 0, "iso": 0, "iso17025": 0, "isotherm": 0, "isotrop": 0, "its": 0, "itself": 0, "iu": 0, "iupac": 0, "iupacrefer": 0, "j": 0, "jaroslav": 0, "judici": 0, "just": 0, "kelvin": 0, "kept": 0, "kev": 0, "kg": 0, "khz": 0, "kikuchi": 0, "kind": 0, "kindsnot": 0, "kinet": 0, "kinteic": 0, "knocker": 0, "known": 0, "kv": 0, "l": 0, "label": 0, "labil": 0, "lag": 0, "larg": 0, "larger": 0, "laser": 0, "later": 0, "latin": 0, "lattic": 0, "law": 0, "layer": 0, "lead": 0, "least": 0, "leav": 0, "len": 0, "length": 0, "less": 0, "level": 0, "levich": 0, "life": 0, "ligand": 0, "light": 0, "like": 0, "limit": 0, "limt": 0, "line": 0, "linear": 0, "linear_sweep_voltammetri": 0, "linearli": 0, "linearpolar": 0, "linearsweepvoltammetri": 0, "liquid": 0, "load": 0, "local": 0, "locat": 0, "logarithm": 0, "logic": 0, "long": 0, "lose": 0, "low": 0, "lower": 0, "lscm": 0, "lsv": 0, "m": 0, "machin": 0, "macroscop": 0, "made": 0, "magnet": 0, "magnif": 0, "magnifi": 0, "magnitud": 0, "mai": 0, "main": 0, "mainli": 0, "maintain": 0, "major": 0, "make": 0, "manag": 0, "mani": 0, "manifest": 0, "manipul": 0, "manner": 0, "manual": 0, "manufactur": 0, "map": 0, "mass": 0, "match": 0, "materi": 0, "mathemat": 0, "mathematicalmodel": 0, "matric": 0, "matter": 0, "maximum": 0, "mean": 0, "meaning": 0, "meas": 0, "measuer": 0, "measur": 0, "measurand": 0, "measuredproperti": 0, "measuredquantityproperti": 0, "measurementcondit": 0, "measurementresult": 0, "measurementstandard": 0, "measuringinstru": 0, "measuringsystem": 0, "mechan": 0, "mechani": 0, "mechanical_test": 0, "medic": 0, "medium": 0, "melt": 0, "membran": 0, "mention": 0, "mercuri": 0, "met": 0, "metal": 0, "metallurgi": 0, "meter": 0, "method": 0, "metrolog": 0, "metrologi": 0, "metron": 0, "mfe": 0, "mhz": 0, "micro": 0, "microanalysi": 0, "microbal": 0, "microcalorimetri": 0, "micrograph": 0, "micromet": 0, "microscal": 0, "microscop": 0, "microstructur": 0, "microwav": 0, "might": 0, "militari": 0, "millimet": 0, "million": 0, "misorient": 0, "mistakenli": 0, "mixtur": 0, "ml": 0, "mn": 0, "mobil": 0, "mode": 0, "model": 0, "modern": 0, "modifi": 0, "modulu": 0, "moistur": 0, "mol": 0, "mole": 0, "molecul": 0, "molecular": 0, "moment": 0, "moni": 0, "monitor": 0, "mono": 0, "monochrom": 0, "monochromat": 0, "monochromatis": 0, "monomolecular": 0, "more": 0, "moreov": 0, "morpholog": 0, "morphologi": 0, "most": 0, "motion": 0, "move": 0, "movement": 0, "mr": 0, "much": 0, "multi": 0, "multipl": 0, "must": 0, "mv": 0, "mw": 0, "n": 0, "name": 0, "nanc": 0, "nanomet": 0, "nanoparticl": 0, "nanoscal": 0, "nanosecond": 0, "nanostructur": 0, "narrow": 0, "nation": 0, "natur": 0, "nearli": 0, "necessari": 0, "need": 0, "neg": 0, "neglig": 0, "neighbour": 0, "nernst": 0, "net": 0, "neutron": 0, "nevertheless": 0, "nitrogen": 0, "nize": 0, "nm": 0, "nmr": 0, "nois": 0, "nomin": 0, "nominalproperti": 0, "non": 0, "nor": 0, "normal": 0, "notch": 0, "note": 0, "notion": 0, "now": 0, "npv": 0, "nse": 0, "nsf": 0, "nuclear": 0, "nuclei": 0, "nuclid": 0, "number": 0, "numer": 0, "nyquist": 0, "obei": 0, "objectproperti": 0, "observ": 0, "obtain": 0, "occasion": 0, "occur": 0, "oceanographi": 0, "ocvhold": 0, "offer": 0, "offset": 0, "often": 0, "oldest": 0, "oliv": 0, "onc": 0, "one": 0, "onli": 0, "onset": 0, "onto": 0, "open": 0, "openform": 0, "optic": 0, "option": 0, "order": 0, "org": 0, "organ": 0, "orient": 0, "origin": 0, "osm": 0, "osmol": 0, "osmot": 0, "osteryoungsquarewavevoltammetri": 0, "oswv": 0, "other": 0, "out": 0, "outcom": 0, "output": 0, "outsid": 0, "over": 0, "overal": 0, "oxi": 0, "oxid": 0, "pac": 0, "pad": 0, "page": 0, "palm": 0, "paramet": 0, "parent": 0, "part": 0, "parti": 0, "partial": 0, "particl": 0, "pass": 0, "past": 0, "pathlength": 0, "pattern": 0, "pc": 0, "pea": 0, "peak": 0, "penetr": 0, "per": 0, "percent": 0, "perform": 0, "period": 0, "perman": 0, "permiss": 0, "permit": 0, "person": 0, "perturb": 0, "pharr": 0, "phase": 0, "phenomena": 0, "phonon": 0, "phosphor": 0, "phosphoresc": 0, "photoabsorpt": 0, "photoelectr": 0, "photoelectron": 0, "photograph": 0, "photoluminesc": 0, "photometri": 0, "photon": 0, "physic": 0, "physicist": 0, "physicsequ": 0, "pinhol": 0, "pipework": 0, "place": 0, "plane": 0, "plasma": 0, "plastic": 0, "platen": 0, "plot": 0, "plu": 0, "point": 0, "point_flexural_test": 0, "poisson": 0, "polar": 0, "polaris": 0, "polarogram": 0, "polarograph": 0, "polarographi": 0, "polyethylen": 0, "polym": 0, "polymer": 0, "popul": 0, "pore": 0, "poros": 0, "porou": 0, "portabl": 0, "portion": 0, "posit": 0, "possess": 0, "possibl": 0, "possibli": 0, "post": 0, "potenti": 0, "potentiogram": 0, "potentiometr": 0, "powder": 0, "powder_diffract": 0, "power": 0, "practic": 0, "pre": 0, "precess": 0, "precipit": 0, "precis": 0, "preclud": 0, "preflabel": 0, "prepar": 0, "preparationsampl": 0, "prerequisit": 0, "prescrib": 0, "preselect": 0, "presenc": 0, "present": 0, "preset": 0, "press": 0, "pressur": 0, "previou": 0, "primari": 0, "principl": 0, "problem": 0, "procedur": 0, "process": 0, "produc": 0, "product": 0, "profil": 0, "program": 0, "programm": 0, "progress": 0, "project": 0, "prolong": 0, "propag": 0, "proper": 0, "properli": 0, "propertyvalu": 0, "propor": 0, "proport": 0, "propos": 0, "protocol": 0, "provid": 0, "psa": 0, "psd": 0, "pseudo": 0, "pseudoocv": 0, "puls": 0, "pure": 0, "puriti": 0, "purpos": 0, "q": 0, "q1136979": 0, "q1147647": 0, "q11778221": 0, "q120895154": 0, "q120906986": 0, "q12101244": 0, "q17028237": 0, "q2300905": 0, "q3492904": 0, "q386334": 0, "q4016323": 0, "q4016325": 0, "q5275361": 0, "q620700": 0, "q795838": 0, "q900632": 0, "q901180": 0, "q901559": 0, "q902953": 0, "q904093": 0, "q939328": 0, "qel": 0, "qt": 0, "qualifi": 0, "qualit": 0, "qualiti": 0, "qualitycontrol": 0, "quantif": 0, "quantifi": 0, "quantit": 0, "quantiti": 0, "quantum": 0, "quartz": 0, "quasi": 0, "quasistat": 0, "quot": 0, "radiat": 0, "radio": 0, "radioact": 0, "radiologi": 0, "radiometr": 0, "radionuclid": 0, "radiu": 0, "rai": 0, "raman": 0, "ramp": 0, "randl": 0, "randomli": 0, "rang": 0, "rate": 0, "ratio": 0, "raw": 0, "ray_crystallographi": 0, "ray_spectroscopi": 0, "rayleigh": 0, "reach": 0, "react": 0, "reaction": 0, "reactiv": 0, "reagent": 0, "real": 0, "realiti": 0, "rearrang": 0, "reason": 0, "recalibr": 0, "receiv": 0, "record": 0, "redox": 0, "reduc": 0, "reduct": 0, "referencemateri": 0, "referencespecimen": 0, "reflect": 0, "refract": 0, "region": 0, "regular": 0, "rel": 0, "relat": 0, "relationship": 0, "relev": 0, "reli": 0, "remco": 0, "remov": 0, "reorient": 0, "repeat": 0, "replac": 0, "replic": 0, "repres": 0, "represent": 0, "reproduc": 0, "requir": 0, "research": 0, "residu": 0, "resist": 0, "reso": 0, "resolut": 0, "resolv": 0, "reson": 0, "respect": 0, "respond": 0, "respons": 0, "rest": 0, "restrict": 0, "result": 0, "reveal": 0, "revers": 0, "rigid": 0, "ring": 0, "robust": 0, "root": 0, "rotat": 0, "rough": 0, "roughli": 0, "routin": 0, "rule": 0, "run": 0, "s05661": 0, "s10832": 0, "sacrif": 0, "safeti": 0, "salt": 0, "same": 0, "sauerbrei": 0, "scale": 0, "scan": 0, "scatter": 0, "scienc": 0, "scientif": 0, "scintil": 0, "scope": 0, "scratch": 0, "screen": 0, "se": 0, "second": 0, "secondari": 0, "section": 0, "sector": 0, "secur": 0, "see": 0, "select": 0, "selfcalibr": 0, "sem": 0, "semiconductor": 0, "semiperm": 0, "sensi": 0, "sensit": 0, "sensor": 0, "sent": 0, "sepa": 0, "separ": 0, "sequenc": 0, "seri": 0, "serum": 0, "servic": 0, "set": 0, "sever": 0, "shape": 0, "sharp": 0, "shift": 0, "short": 0, "should": 0, "show": 0, "si": 0, "sigmoid": 0, "significantli": 0, "sim": 0, "similar": 0, "simpl": 0, "simplest": 0, "simpli": 0, "sinc": 0, "singl": 0, "sinusoid": 0, "site": 0, "size": 0, "skb": 0, "skp": 0, "skpfm": 0, "slice": 0, "slide": 0, "slow": 0, "slowli": 0, "smal": 0, "small": 0, "smaller": 0, "smooth": 0, "snell": 0, "so": 0, "softwar": 0, "solicit": 0, "solid": 0, "solut": 0, "solvent": 0, "some": 0, "someon": 0, "sometim": 0, "sourc": 0, "space": 0, "span": 0, "spatial": 0, "speci": 0, "special": 0, "specialis": 0, "speciat": 0, "specif": 0, "specifi": 0, "specim": 0, "specimen": 0, "spectra": 0, "spectral": 0, "spectromet": 0, "spectroscop": 0, "spectrum": 0, "sphere": 0, "spin": 0, "spm": 0, "spot": 0, "sputter": 0, "squar": 0, "squarewave_voltammetri": 0, "stabl": 0, "stage": 0, "staircas": 0, "stand": 0, "standard": 0, "standardi": 0, "start": 0, "state": 0, "statement": 0, "static": 0, "statist": 0, "steadi": 0, "steel": 0, "stem": 0, "step": 0, "stiff": 0, "stir": 0, "stm": 0, "stoichiometr": 0, "stoke": 0, "stop": 0, "store": 0, "strain": 0, "strength": 0, "stress": 0, "string": 0, "strip": 0, "structur": 0, "studi": 0, "sub": 0, "subclass": 0, "subject": 0, "sublim": 0, "subsequ": 0, "subset": 0, "substanc": 0, "subtract": 0, "success": 0, "successfulli": 0, "suffici": 0, "suit": 0, "superimpos": 0, "supplementarydevicesnot": 0, "suppli": 0, "support": 0, "surfac": 0, "surround": 0, "suscept": 0, "suspens": 0, "switch": 0, "swv": 0, "synchro": 0, "synchron": 0, "synonym": 0, "system": 0, "t": 0, "t0": 0, "tabl": 0, "take": 0, "taken": 0, "target": 0, "task": 0, "tastpolarographi": 0, "techniqu": 0, "technologi": 0, "tem": 0, "temperatur": 0, "tempor": 0, "ten": 0, "tend": 0, "tensil": 0, "tension": 0, "tensiontest": 0, "term": 0, "terminologi": 0, "test": 0, "textur": 0, "tga": 0, "than": 0, "thei": 0, "thelatt": 0, "them": 0, "themeasur": 0, "theori": 0, "thepast": 0, "theprocess": 0, "thequant": 0, "thermal": 0, "thermoanalyt": 0, "thermodynam": 0, "thermogram": 0, "thermogravimetr": 0, "thermomechan": 0, "thi": 0, "thick": 0, "thin": 0, "thing": 0, "thinner": 0, "those": 0, "though": 0, "three": 0, "threepointflexuraltest": 0, "through": 0, "throughout": 0, "thu": 0, "tilt": 0, "time": 0, "tin": 0, "tion": 0, "tional": 0, "tip": 0, "titrant": 0, "titrat": 0, "tiviti": 0, "tma": 0, "togeth": 0, "tomo": 0, "tomogram": 0, "tomograph": 0, "too": 0, "tool": 0, "topdataproperti": 0, "topobjectproperti": 0, "topograph": 0, "topographi": 0, "total": 0, "toward": 0, "towhich": 0, "toxic": 0, "trace": 0, "traceabl": 0, "tran": 0, "transfer": 0, "transform": 0, "transform_infrared_spectroscopi": 0, "transient": 0, "transit": 0, "transmiss": 0, "transmit": 0, "transport": 0, "travel": 0, "tribolog": 0, "tube": 0, "tune": 0, "tunnel": 0, "turbid": 0, "twice": 0, "two": 0, "type": 0, "typic": 0, "u": 0, "ubbelohd": 0, "ultim": 0, "ultra": 0, "ultrason": 0, "ultrathin": 0, "ultraviolet": 0, "uncertainti": 0, "uncertaintyfor": 0, "uncoat": 0, "under": 0, "undergo": 0, "underli": 0, "understand": 0, "undetect": 0, "uniaxi": 0, "uniform": 0, "uniqu": 0, "uniqueid": 0, "unit": 0, "unknown": 0, "unprocess": 0, "until": 0, "up": 0, "upac": 0, "upon": 0, "us": 0, "usag": 0, "useabl": 0, "user": 0, "usual": 0, "ut": 0, "v": 0, "vaccin": 0, "vacuum": 0, "valid": 0, "valu": 0, "valuabl": 0, "vapor": 0, "vari": 0, "variabl": 0, "variant": 0, "variat": 0, "varieti": 0, "variou": 0, "veri": 0, "verif": 0, "version": 0, "versu": 0, "via": 0, "vibrat": 0, "view": 0, "vim": 0, "vimterm": 0, "virtual": 0, "viscomet": 0, "viscos": 0, "visibl": 0, "visual": 0, "vital": 0, "voc": 0, "vocabulari": 0, "volatil": 0, "volta": 0, "voltag": 0, "voltammetr": 0, "voltammogram": 0, "volum": 0, "volumetr": 0, "vpo": 0, "v\u03b4": 0, "w3id": 0, "wa": 0, "wai": 0, "water": 0, "wave": 0, "waveform": 0, "wavelength": 0, "wd": 0, "weak": 0, "wear": 0, "weight": 0, "well": 0, "welldefin": 0, "were": 0, "wet": 0, "what": 0, "whatev": 0, "wheel": 0, "when": 0, "whenev": 0, "where": 0, "wherea": 0, "which": 0, "while": 0, "whilst": 0, "who": 0, "whole": 0, "why": 0, "wide": 0, "width": 0, "wiki": 0, "wikidata": 0, "wikidatarefer": 0, "wikipedia": 0, "wikipediarefer": 0, "within": 0, "without": 0, "wood": 0, "word": 0, "work": 0, "workflow": 0, "workpiec": 0, "world": 0, "would": 0, "write": 0, "www": 0, "x": 0, "x27": 0, "xa": 0, "xane": 0, "xp": 0, "xrd": 0, "xrpd": 0, "y": 0, "yet": 0, "yield": 0, "you": 0, "young": 0, "your": 0, "zation": 0, "zero": 0, "\u0161ev\u010d\u00edk": 0, "\u02c8r\u0251\u02d0m\u0259n": 0, "\u03b3\u03c1\u03ac\u03c6\u03c9": 0, "\u03b4": 0, "\u03b7": 0, "\u03b70": 0, "\u03bcj": 0, "\u03bcw": 0, "\u03bc\u03ad\u03c4\u03c1\u03bf\u03bd": 0, "\u03c4\u03cc\u03bc\u03bf\u03c2": 0, "\u03c6": 0}, "titles": ["References", "<no title>"], "titleterms": {"abrasivestrippingvoltammetri": 0, "accesscondit": 0, "acvoltammetri": 0, "adsorptivestrippingvoltammetri": 0, "alphaspectrometri": 0, "amperometri": 0, "analyticalelectronmicroscopi": 0, "anodicstrippingvoltammetri": 0, "atomicforcemicroscopi": 0, "atomprobetomographi": 0, "bpmndiagram": 0, "brunaueremmetttellermethod": 0, "calibrationdata": 0, "calibrationdatapostprocess": 0, "calibrationprocess": 0, "calibrationtask": 0, "calorimetri": 0, "cathodicstrippingvoltammetri": 0, "characteris": 0, "characterisationcompon": 0, "characterisationdata": 0, "characterisationdatavalid": 0, "characterisationenviron": 0, "characterisationenvironmentproperti": 0, "characterisationexperi": 0, "characterisationhardwar": 0, "characterisationhardwarespecif": 0, "characterisationmeasurementinstru": 0, "characterisationmeasurementprocess": 0, "characterisationmeasurementtask": 0, "characterisationprocedur": 0, "characterisationprocedurevalid": 0, "characterisationproperti": 0, "characterisationprotocol": 0, "characterisationsoftwar": 0, "characterisationsystem": 0, "characterisationtask": 0, "characterisationtechniqu": 0, "characterisationworkflow": 0, "characterisedsampl": 0, "chargedistribut": 0, "chromatographi": 0, "chronoamperometri": 0, "chronocoulometri": 0, "chronopotentiometri": 0, "class": 0, "compressiontest": 0, "conductometri": 0, "conductometrictitr": 0, "confocalmicroscopi": 0, "coulometri": 0, "coulometrictitr": 0, "creeptest": 0, "criticalandsupercriticalchromatographi": 0, "cyclicchronopotentiometri": 0, "cyclicvoltammetri": 0, "dataacquisitionr": 0, "dataanalysi": 0, "datafilt": 0, "datanormalis": 0, "datapostprocess": 0, "dataprepar": 0, "dataprocessingthroughcalibr": 0, "dataqu": 0, "dcpolarographi": 0, "detector": 0, "dielectricandimpedancespectroscopi": 0, "dielectrometri": 0, "differentiallinearpulsevoltammetri": 0, "differentialpulsevoltammetri": 0, "differentialrefractiveindex": 0, "differentialscanningcalorimetri": 0, "differentialstaircasepulsevoltammetri": 0, "differentialthermalanalysi": 0, "dilatometri": 0, "directcoulometryatcontrolledcurr": 0, "directcoulometryatcontrolledpotenti": 0, "directcurrentinternalresist": 0, "dynamiclightscatt": 0, "dynamicmechanicalanalysi": 0, "dynamicmechanicalspectroscopi": 0, "electrochemicalimpedancespectroscopi": 0, "electrochemicalpiezoelectricmicrogravimetri": 0, "electrochemicaltest": 0, "electrogravimetri": 0, "electronbackscatterdiffract": 0, "electronprobemicroanalysi": 0, "ellipsometri": 0, "energydispersivexrayspectroscopi": 0, "environmentalscanningelectronmicroscopi": 0, "exaf": 0, "fatiguetest": 0, "fibdic": 0, "fieldemissionscanningelectronmicroscopi": 0, "fouriertransforminfraredspectroscopi": 0, "fractographi": 0, "freezingpointdepressionosmometri": 0, "galvanostaticintermittenttitrationtechniqu": 0, "gammaspectrometri": 0, "gasadsorptionporosimetri": 0, "grind": 0, "hardnesstest": 0, "hardwaremanufactur": 0, "hardwaremodel": 0, "hasaccesscondit": 0, "hasbegincharacterisationtask": 0, "hasbpmndiagram": 0, "hascharacterisationcompon": 0, "hascharacterisationenviron": 0, "hascharacterisationenvironmentproperti": 0, "hascharacterisationinput": 0, "hascharacterisationmeasurementinstru": 0, "hascharacterisationoutput": 0, "hascharacterisationprocedurevalid": 0, "hascharacterisationproperti": 0, "hascharacterisationsoftwar": 0, "hascharacterisationtask": 0, "hasdataacquisitionr": 0, "hasdataprocessingthroughcalibr": 0, "hasdataqu": 0, "hasdataset": 0, "hasdateofcalibr": 0, "hasendcharacterisationtask": 0, "hashardwarespecif": 0, "hashazard": 0, "hashold": 0, "hasinstrumentforcalibr": 0, "hasinstrumenttobecalibr": 0, "hasinteractionvolum": 0, "hasinteractionwithprob": 0, "hasinteractionwithsampl": 0, "haslab": 0, "haslevelofautom": 0, "hasmanufactur": 0, "hasmeasurementdetector": 0, "hasmeasurementparamet": 0, "hasmeasurementprob": 0, "hasmeasurementsampl": 0, "hasmeasurementtim": 0, "hasmodel": 0, "hasoper": 0, "haspeerreviewedarticl": 0, "hasphysicsofinteract": 0, "haspostprocessingmodel": 0, "hasprocessingreproduc": 0, "hasreferencesampl": 0, "hassamplebeforesampleprepar": 0, "hassampledsampl": 0, "hassampleforinspect": 0, "hassampleinspectioninstru": 0, "hassampleinspectionparamet": 0, "hassamplepreparationinstru": 0, "hassamplepreparationparamet": 0, "hasuniqueid": 0, "hazard": 0, "holder": 0, "hppc": 0, "hydrodynamicvoltammetri": 0, "ici": 0, "impedimetri": 0, "interactionvolum": 0, "intermediatesampl": 0, "ionchromatographi": 0, "ionmobilityspectrometri": 0, "isothermalmicrocalorimetri": 0, "laboratori": 0, "levelofautom": 0, "levelofexpertis": 0, "lightscatt": 0, "linearchronopotentiometri": 0, "linearscanvoltammetri": 0, "massspectrometri": 0, "measurementdatapostprocess": 0, "measurementparamet": 0, "measurementsystemadjust": 0, "measurementtim": 0, "mechanicaltest": 0, "membraneosmometri": 0, "mercuryporosimetri": 0, "methodologi": 0, "microscopi": 0, "mill": 0, "modul": 0, "mount": 0, "nanoindent": 0, "neutronspinechospectroscopi": 0, "nexaf": 0, "normalpulsevoltammetri": 0, "nuclearmagneticreson": 0, "object": 0, "ontologi": 0, "opencircuithold": 0, "oper": 0, "opticalmicroscopi": 0, "opticaltest": 0, "osmometri": 0, "photoluminescencemicroscopi": 0, "physicsofinteract": 0, "polish": 0, "porosimetri": 0, "postprocessingmodel": 0, "potentiometri": 0, "potentiometricstrippinganalysi": 0, "preparedsampl": 0, "primarydata": 0, "probe": 0, "probesampleinteract": 0, "processingreproduc": 0, "profilometri": 0, "properti": 0, "pseudoopencircuitvoltagemethod": 0, "pulsedelectroacousticmethod": 0, "ramanspectroscopi": 0, "rational": 0, "rationalehascharacterisationprocedur": 0, "rationalehasusercas": 0, "rawdata": 0, "rawsampl": 0, "refer": 0, "referencesampl": 0, "requireslevelofexpertis": 0, "sampl": 0, "sampleddcpolarographi": 0, "sampleextract": 0, "sampleinspect": 0, "sampleinspectioninstru": 0, "sampleinspectionparamet": 0, "sampleprepar": 0, "samplepreparationinstru": 0, "samplepreparationparamet": 0, "scanningaugerelectronmicroscopi": 0, "scanningelectronmicroscopi": 0, "scanningkelvinprob": 0, "scanningprobemicroscopi": 0, "scanningtunnelingmicroscopi": 0, "scatteringanddiffract": 0, "secondarydata": 0, "secondaryionmassspectrometri": 0, "shearortorsiontest": 0, "signal": 0, "spectrometri": 0, "spectroscopi": 0, "squarewavevoltammetri": 0, "stepchronopotentiometri": 0, "strippingvoltammetri": 0, "synchrotron": 0, "tensiletest": 0, "thermochemicaltest": 0, "thermogravimetri": 0, "threepointbendingtest": 0, "tomographi": 0, "transmissionelectronmicroscopi": 0, "ultrasonictest": 0, "usercas": 0, "vaporpressuredepressionosmometri": 0, "viscometri": 0, "voltammetri": 0, "voltammetryatarotatingdiskelectrod": 0, "weartest": 0, "xpsvariablekinet": 0, "xraydiffract": 0, "xraypowderdiffract": 0, "xrdgrazingincid": 0}}) \ No newline at end of file +Search.setIndex({"alltitles": {"ACVoltammetry": [[0, "acvoltammetry"]], "AbrasiveStrippingVoltammetry": [[0, "abrasivestrippingvoltammetry"]], "AccessConditions": [[0, "accessconditions"]], "AdsorptiveStrippingVoltammetry": [[0, "adsorptivestrippingvoltammetry"]], "AlphaSpectrometry": [[0, "alphaspectrometry"]], "Amperometry": [[0, "amperometry"]], "AnalyticalElectronMicroscopy": [[0, "analyticalelectronmicroscopy"]], "AnodicStrippingVoltammetry": [[0, "anodicstrippingvoltammetry"]], "AtomProbeTomography": [[0, "atomprobetomography"]], "AtomicForceMicroscopy": [[0, "atomicforcemicroscopy"]], "BPMNDiagram": [[0, "bpmndiagram"]], "BrunauerEmmettTellerMethod": [[0, "brunaueremmetttellermethod"]], "CalibrationData": [[0, "calibrationdata"]], "CalibrationDataPostProcessing": [[0, "calibrationdatapostprocessing"]], "CalibrationProcess": [[0, "calibrationprocess"]], "CalibrationTask": [[0, "calibrationtask"]], "Calorimetry": [[0, "calorimetry"]], "CathodicStrippingVoltammetry": [[0, "cathodicstrippingvoltammetry"]], "CharacterisationComponent": [[0, "characterisationcomponent"]], "CharacterisationData": [[0, "characterisationdata"]], "CharacterisationDataValidation": [[0, "characterisationdatavalidation"]], "CharacterisationEnvironment": [[0, "characterisationenvironment"]], "CharacterisationEnvironmentProperty": [[0, "characterisationenvironmentproperty"]], "CharacterisationExperiment": [[0, "characterisationexperiment"]], "CharacterisationHardware": [[0, "characterisationhardware"]], "CharacterisationHardwareSpecification": [[0, "characterisationhardwarespecification"]], "CharacterisationMeasurementInstrument": [[0, "characterisationmeasurementinstrument"]], "CharacterisationMeasurementProcess": [[0, "characterisationmeasurementprocess"]], "CharacterisationMeasurementTask": [[0, "characterisationmeasurementtask"]], "CharacterisationProcedure": [[0, "characterisationprocedure"]], "CharacterisationProcedureValidation": [[0, "characterisationprocedurevalidation"]], "CharacterisationProperty": [[0, "characterisationproperty"]], "CharacterisationProtocol": [[0, "characterisationprotocol"]], "CharacterisationSoftware": [[0, "characterisationsoftware"]], "CharacterisationSystem": [[0, "characterisationsystem"]], "CharacterisationTask": [[0, "characterisationtask"]], "CharacterisationTechnique": [[0, "characterisationtechnique"]], "CharacterisationWorkflow": [[0, "characterisationworkflow"]], "CharacterisedSample": [[0, "characterisedsample"]], "ChargeDistribution": [[0, "chargedistribution"]], "Chromatography": [[0, "chromatography"]], "Chronoamperometry": [[0, "chronoamperometry"]], "Chronocoulometry": [[0, "chronocoulometry"]], "Chronopotentiometry": [[0, "chronopotentiometry"]], "Classes": [[0, "classes"]], "CompressionTesting": [[0, "compressiontesting"]], "ConductometricTitration": [[0, "conductometrictitration"]], "Conductometry": [[0, "conductometry"]], "ConfocalMicroscopy": [[0, "confocalmicroscopy"]], "CoulometricTitration": [[0, "coulometrictitration"]], "Coulometry": [[0, "coulometry"]], "CreepTesting": [[0, "creeptesting"]], "CriticalAndSupercriticalChromatography": [[0, "criticalandsupercriticalchromatography"]], "CyclicChronopotentiometry": [[0, "cyclicchronopotentiometry"]], "CyclicVoltammetry": [[0, "cyclicvoltammetry"]], "DCPolarography": [[0, "dcpolarography"]], "DataAcquisitionRate": [[0, "dataacquisitionrate"]], "DataAnalysis": [[0, "dataanalysis"]], "DataFiltering": [[0, "datafiltering"]], "DataNormalisation": [[0, "datanormalisation"]], "DataPostProcessing": [[0, "datapostprocessing"]], "DataPreparation": [[0, "datapreparation"]], "DataProcessingThroughCalibration": [[0, "dataprocessingthroughcalibration"]], "DataQuality": [[0, "dataquality"]], "Detector": [[0, "detector"]], "DielectricAndImpedanceSpectroscopy": [[0, "dielectricandimpedancespectroscopy"]], "Dielectrometry": [[0, "dielectrometry"]], "DifferentialLinearPulseVoltammetry": [[0, "differentiallinearpulsevoltammetry"]], "DifferentialPulseVoltammetry": [[0, "differentialpulsevoltammetry"]], "DifferentialRefractiveIndex": [[0, "differentialrefractiveindex"]], "DifferentialScanningCalorimetry": [[0, "differentialscanningcalorimetry"]], "DifferentialStaircasePulseVoltammetry": [[0, "differentialstaircasepulsevoltammetry"]], "DifferentialThermalAnalysis": [[0, "differentialthermalanalysis"]], "Dilatometry": [[0, "dilatometry"]], "DirectCoulometryAtControlledCurrent": [[0, "directcoulometryatcontrolledcurrent"]], "DirectCoulometryAtControlledPotential": [[0, "directcoulometryatcontrolledpotential"]], "DirectCurrentInternalResistance": [[0, "directcurrentinternalresistance"]], "DynamicLightScattering": [[0, "dynamiclightscattering"]], "DynamicMechanicalAnalysis": [[0, "dynamicmechanicalanalysis"]], "DynamicMechanicalSpectroscopy": [[0, "dynamicmechanicalspectroscopy"]], "ElectrochemicalImpedanceSpectroscopy": [[0, "electrochemicalimpedancespectroscopy"]], "ElectrochemicalPiezoelectricMicrogravimetry": [[0, "electrochemicalpiezoelectricmicrogravimetry"]], "ElectrochemicalTesting": [[0, "electrochemicaltesting"]], "Electrogravimetry": [[0, "electrogravimetry"]], "ElectronBackscatterDiffraction": [[0, "electronbackscatterdiffraction"]], "ElectronProbeMicroanalysis": [[0, "electronprobemicroanalysis"]], "Ellipsometry": [[0, "ellipsometry"]], "EnergyDispersiveXraySpectroscopy": [[0, "energydispersivexrayspectroscopy"]], "EnvironmentalScanningElectronMicroscopy": [[0, "environmentalscanningelectronmicroscopy"]], "Exafs": [[0, "exafs"]], "FatigueTesting": [[0, "fatiguetesting"]], "FibDic": [[0, "fibdic"]], "FieldEmissionScanningElectronMicroscopy": [[0, "fieldemissionscanningelectronmicroscopy"]], "FourierTransformInfraredSpectroscopy": [[0, "fouriertransforminfraredspectroscopy"]], "Fractography": [[0, "fractography"]], "FreezingPointDepressionOsmometry": [[0, "freezingpointdepressionosmometry"]], "GalvanostaticIntermittentTitrationTechnique": [[0, "galvanostaticintermittenttitrationtechnique"]], "GammaSpectrometry": [[0, "gammaspectrometry"]], "GasAdsorptionPorosimetry": [[0, "gasadsorptionporosimetry"]], "Grinding": [[0, "grinding"]], "HPPC": [[0, "hppc"]], "HardnessTesting": [[0, "hardnesstesting"]], "HardwareManufacturer": [[0, "hardwaremanufacturer"]], "HardwareModel": [[0, "hardwaremodel"]], "Hazard": [[0, "hazard"]], "Holder": [[0, "holder"]], "HydrodynamicVoltammetry": [[0, "hydrodynamicvoltammetry"]], "ICI": [[0, "ici"]], "Impedimetry": [[0, "impedimetry"]], "InteractionVolume": [[0, "interactionvolume"]], "IntermediateSample": [[0, "intermediatesample"]], "IonChromatography": [[0, "ionchromatography"]], "IonMobilitySpectrometry": [[0, "ionmobilityspectrometry"]], "IsothermalMicrocalorimetry": [[0, "isothermalmicrocalorimetry"]], "Laboratory": [[0, "laboratory"]], "LevelOfAutomation": [[0, "levelofautomation"]], "LevelOfExpertise": [[0, "levelofexpertise"]], "LightScattering": [[0, "lightscattering"]], "LinearChronopotentiometry": [[0, "linearchronopotentiometry"]], "LinearScanVoltammetry": [[0, "linearscanvoltammetry"]], "MassSpectrometry": [[0, "massspectrometry"]], "MeasurementDataPostProcessing": [[0, "measurementdatapostprocessing"]], "MeasurementParameter": [[0, "measurementparameter"]], "MeasurementSystemAdjustment": [[0, "measurementsystemadjustment"]], "MeasurementTime": [[0, "measurementtime"]], "MechanicalTesting": [[0, "mechanicaltesting"]], "MembraneOsmometry": [[0, "membraneosmometry"]], "MercuryPorosimetry": [[0, "mercuryporosimetry"]], "Microscopy": [[0, "microscopy"]], "Milling": [[0, "milling"]], "Module: Characterisation Methodology Ontology": [[0, "module-characterisation-methodology-ontology"]], "Mounting": [[0, "mounting"]], "Nanoindentation": [[0, "nanoindentation"]], "NeutronSpinEchoSpectroscopy": [[0, "neutronspinechospectroscopy"]], "Nexafs": [[0, "nexafs"]], "NormalPulseVoltammetry": [[0, "normalpulsevoltammetry"]], "NuclearMagneticResonance": [[0, "nuclearmagneticresonance"]], "Object Properties": [[0, "object-properties"]], "OpenCircuitHold": [[0, "opencircuithold"]], "Operator": [[0, "operator"]], "OpticalMicroscopy": [[0, "opticalmicroscopy"]], "OpticalTesting": [[0, "opticaltesting"]], "Osmometry": [[0, "osmometry"]], "PhotoluminescenceMicroscopy": [[0, "photoluminescencemicroscopy"]], "PhysicsOfInteraction": [[0, "physicsofinteraction"]], "Polishing": [[0, "polishing"]], "Porosimetry": [[0, "porosimetry"]], "PostProcessingModel": [[0, "postprocessingmodel"]], "PotentiometricStrippingAnalysis": [[0, "potentiometricstrippinganalysis"]], "Potentiometry": [[0, "potentiometry"]], "PreparedSample": [[0, "preparedsample"]], "PrimaryData": [[0, "primarydata"]], "Probe": [[0, "probe"]], "ProbeSampleInteraction": [[0, "probesampleinteraction"]], "ProcessingReproducibility": [[0, "processingreproducibility"]], "Profilometry": [[0, "profilometry"]], "PseudoOpenCircuitVoltageMethod": [[0, "pseudoopencircuitvoltagemethod"]], "PulsedElectroacousticMethod": [[0, "pulsedelectroacousticmethod"]], "RamanSpectroscopy": [[0, "ramanspectroscopy"]], "Rationale": [[0, "rationale"]], "RawData": [[0, "rawdata"]], "RawSample": [[0, "rawsample"]], "ReferenceSample": [[0, "referencesample"]], "References": [[0, null]], "Sample": [[0, "sample"]], "SampleExtraction": [[0, "sampleextraction"]], "SampleInspection": [[0, "sampleinspection"]], "SampleInspectionInstrument": [[0, "sampleinspectioninstrument"]], "SampleInspectionParameter": [[0, "sampleinspectionparameter"]], "SamplePreparation": [[0, "samplepreparation"]], "SamplePreparationInstrument": [[0, "samplepreparationinstrument"]], "SamplePreparationParameter": [[0, "samplepreparationparameter"]], "SampledDCPolarography": [[0, "sampleddcpolarography"]], "ScanningAugerElectronMicroscopy": [[0, "scanningaugerelectronmicroscopy"]], "ScanningElectronMicroscopy": [[0, "scanningelectronmicroscopy"]], "ScanningKelvinProbe": [[0, "scanningkelvinprobe"]], "ScanningProbeMicroscopy": [[0, "scanningprobemicroscopy"]], "ScanningTunnelingMicroscopy": [[0, "scanningtunnelingmicroscopy"]], "ScatteringAndDiffraction": [[0, "scatteringanddiffraction"]], "SecondaryData": [[0, "secondarydata"]], "SecondaryIonMassSpectrometry": [[0, "secondaryionmassspectrometry"]], "ShearOrTorsionTesting": [[0, "shearortorsiontesting"]], "Signal": [[0, "signal"]], "Spectrometry": [[0, "spectrometry"]], "Spectroscopy": [[0, "spectroscopy"]], "SquareWaveVoltammetry": [[0, "squarewavevoltammetry"]], "StepChronopotentiometry": [[0, "stepchronopotentiometry"]], "StrippingVoltammetry": [[0, "strippingvoltammetry"]], "Synchrotron": [[0, "synchrotron"]], "TensileTesting": [[0, "tensiletesting"]], "ThermochemicalTesting": [[0, "thermochemicaltesting"]], "Thermogravimetry": [[0, "thermogravimetry"]], "ThreePointBendingTesting": [[0, "threepointbendingtesting"]], "Tomography": [[0, "tomography"]], "TransmissionElectronMicroscopy": [[0, "transmissionelectronmicroscopy"]], "UltrasonicTesting": [[0, "ultrasonictesting"]], "UserCase": [[0, "usercase"]], "VaporPressureDepressionOsmometry": [[0, "vaporpressuredepressionosmometry"]], "Viscometry": [[0, "viscometry"]], "Voltammetry": [[0, "voltammetry"]], "VoltammetryAtARotatingDiskElectrode": [[0, "voltammetryatarotatingdiskelectrode"]], "WearTesting": [[0, "weartesting"]], "XpsVariableKinetic": [[0, "xpsvariablekinetic"]], "XrayDiffraction": [[0, "xraydiffraction"]], "XrayPowderDiffraction": [[0, "xraypowderdiffraction"]], "XrdGrazingIncidence": [[0, "xrdgrazingincidence"]], "hasAccessConditions": [[0, "hasaccessconditions"]], "hasBPMNDiagram": [[0, "hasbpmndiagram"]], "hasBeginCharacterisationTask": [[0, "hasbegincharacterisationtask"]], "hasCharacterisationComponent": [[0, "hascharacterisationcomponent"]], "hasCharacterisationEnvironment": [[0, "hascharacterisationenvironment"]], "hasCharacterisationEnvironmentProperty": [[0, "hascharacterisationenvironmentproperty"]], "hasCharacterisationInput": [[0, "hascharacterisationinput"]], "hasCharacterisationMeasurementInstrument": [[0, "hascharacterisationmeasurementinstrument"]], "hasCharacterisationOutput": [[0, "hascharacterisationoutput"]], "hasCharacterisationProcedureValidation": [[0, "hascharacterisationprocedurevalidation"]], "hasCharacterisationProperty": [[0, "hascharacterisationproperty"]], "hasCharacterisationSoftware": [[0, "hascharacterisationsoftware"]], "hasCharacterisationTask": [[0, "hascharacterisationtask"]], "hasDataAcquisitionRate": [[0, "hasdataacquisitionrate"]], "hasDataProcessingThroughCalibration": [[0, "hasdataprocessingthroughcalibration"]], "hasDataQuality": [[0, "hasdataquality"]], "hasDataset": [[0, "hasdataset"]], "hasDateOfCalibration": [[0, "hasdateofcalibration"]], "hasEndCharacterisationTask": [[0, "hasendcharacterisationtask"]], "hasHardwareSpecification": [[0, "hashardwarespecification"]], "hasHazard": [[0, "hashazard"]], "hasHolder": [[0, "hasholder"]], "hasInstrumentForCalibration": [[0, "hasinstrumentforcalibration"]], "hasInteractionVolume": [[0, "hasinteractionvolume"]], "hasInteractionWithProbe": [[0, "hasinteractionwithprobe"]], "hasInteractionWithSample": [[0, "hasinteractionwithsample"]], "hasLab": [[0, "haslab"]], "hasLevelOfAutomation": [[0, "haslevelofautomation"]], "hasManufacturer": [[0, "hasmanufacturer"]], "hasMeasurementDetector": [[0, "hasmeasurementdetector"]], "hasMeasurementParameter": [[0, "hasmeasurementparameter"]], "hasMeasurementProbe": [[0, "hasmeasurementprobe"]], "hasMeasurementSample": [[0, "hasmeasurementsample"]], "hasMeasurementTime": [[0, "hasmeasurementtime"]], "hasModel": [[0, "hasmodel"]], "hasOperator": [[0, "hasoperator"]], "hasPeerReviewedArticle": [[0, "haspeerreviewedarticle"]], "hasPhysicsOfInteraction": [[0, "hasphysicsofinteraction"]], "hasPostProcessingModel": [[0, "haspostprocessingmodel"]], "hasProcessingReproducibility": [[0, "hasprocessingreproducibility"]], "hasReferenceSample": [[0, "hasreferencesample"]], "hasSampleBeforeSamplePreparation": [[0, "hassamplebeforesamplepreparation"]], "hasSampleForInspection": [[0, "hassampleforinspection"]], "hasSampleInspectionInstrument": [[0, "hassampleinspectioninstrument"]], "hasSampleInspectionParameter": [[0, "hassampleinspectionparameter"]], "hasSamplePreparationInstrument": [[0, "hassamplepreparationinstrument"]], "hasSamplePreparationParameter": [[0, "hassamplepreparationparameter"]], "hasSampledSample": [[0, "hassampledsample"]], "hasUniqueID": [[0, "hasuniqueid"]], "rationaleHasCharacterisationProcedure": [[0, "rationalehascharacterisationprocedure"]], "rationaleHasUserCase": [[0, "rationalehasusercase"]], "requiresLevelOfExpertise": [[0, "requireslevelofexpertise"]]}, "docnames": ["chameo", "index"], "envversion": {"sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2}, "filenames": ["chameo.rst", "index.rst"], "indexentries": {}, "objects": {}, "objnames": {}, "objtypes": {}, "terms": {"": 0, "0": 0, "000": 0, "00332": 0, "0109": 0, "023": 0, "04": 0, "1": 0, "10": 0, "100": 0, "10012": 0, "1007": 0, "11": 0, "114": 0, "12": 0, "13": 0, "14": 0, "15": 0, "150": 0, "1515": 0, "17858": 0, "1890": 0, "1967": 0, "2": 0, "20": 0, "200": 0, "2007": 0, "2018": 0, "3": 0, "30": 0, "3d": 0, "3nm": 0, "3rd": 0, "4": 0, "40": 0, "5": 0, "50": 0, "5nm": 0, "6": 0, "7": 0, "8": 0, "80": 0, "90": 0, "900": 0, "A": 0, "As": 0, "By": 0, "For": 0, "If": 0, "In": 0, "It": 0, "Near": 0, "Of": 0, "Such": 0, "The": 0, "Then": 0, "There": 0, "These": 0, "To": 0, "abbrevi": 0, "abil": 0, "abl": 0, "about": 0, "abov": 0, "abras": 0, "absorb": 0, "absorpt": 0, "ac": 0, "access": 0, "accompani": 0, "accomplish": 0, "accord": 0, "account": 0, "accumul": 0, "accur": 0, "accuraci": 0, "achiev": 0, "acid": 0, "acquir": 0, "acquisit": 0, "across": 0, "act": 0, "action": 0, "activ": 0, "actual": 0, "actuat": 0, "acv": 0, "ad": 0, "adapt": 0, "addit": 0, "addition": 0, "adjust": 0, "adsorb": 0, "adsorpt": 0, "adsv": 0, "advanc": 0, "advantag": 0, "advers": 0, "ae": 0, "aem": 0, "aerospac": 0, "affect": 0, "affin": 0, "afm": 0, "after": 0, "against": 0, "agent": 0, "aim": 0, "air": 0, "aircraft": 0, "albeit": 0, "algorithm": 0, "aliquot": 0, "all": 0, "alloi": 0, "allow": 0, "alon": 0, "along": 0, "alpha": 0, "alreadi": 0, "also": 0, "altern": 0, "although": 0, "altlabel": 0, "aluminium": 0, "amalgam": 0, "ambient": 0, "amount": 0, "amp": 0, "amperiometricdetect": 0, "amperometr": 0, "amperometriccurrenttimecurv": 0, "amplitud": 0, "ampoul": 0, "an": 0, "analog": 0, "analys": 0, "analysi": 0, "analyt": 0, "analyz": 0, "ancient": 0, "and2": 0, "andadapt": 0, "angl": 0, "ani": 0, "annot": 0, "annul": 0, "anod": 0, "anoth": 0, "anti": 0, "appli": 0, "applic": 0, "applicationprogram": 0, "apport": 0, "approach": 0, "apt": 0, "ar": 0, "archaeologi": 0, "area": 0, "argon": 0, "around": 0, "arrai": 0, "ascertain": 0, "assai": 0, "assembl": 0, "assess": 0, "assign": 0, "associ": 0, "assum": 0, "astrophys": 0, "asv": 0, "asymmetr": 0, "atmospher": 0, "atom": 0, "atsom": 0, "attach": 0, "attribut": 0, "auger": 0, "auto": 0, "autom": 0, "automat": 0, "automot": 0, "auxiliari": 0, "avail": 0, "averag": 0, "avoid": 0, "ax": 0, "back": 0, "background": 0, "backscatt": 0, "backward": 0, "band": 0, "base": 0, "baselin": 0, "basi": 0, "basic": 0, "batch": 0, "batteri": 0, "beam": 0, "becaus": 0, "becom": 0, "been": 0, "beer": 0, "befor": 0, "behav": 0, "behavior": 0, "behaviour": 0, "behind": 0, "being": 0, "belief": 0, "below": 0, "bend": 0, "bet": 0, "bet_theori": 0, "beta": 0, "better": 0, "between": 0, "bia": 0, "biamperometri": 0, "bias": 0, "biaxial": 0, "big": 0, "bind": 0, "biolog": 0, "biologi": 0, "biomolecul": 0, "bipotentiometri": 0, "bismuth": 0, "blade": 0, "block": 0, "bode": 0, "bodi": 0, "bombard": 0, "both": 0, "boundari": 0, "bragg": 0, "branch": 0, "break": 0, "bridg": 0, "broad": 0, "broadli": 0, "brownian": 0, "bse": 0, "buffer": 0, "bulk": 0, "c": 0, "calcul": 0, "calibr": 0, "calibratedmeasur": 0, "call": 0, "calli": 0, "calor": 0, "calorimet": 0, "camera": 0, "can": 0, "cannot": 0, "cantilev": 0, "capabl": 0, "capac": 0, "capacit": 0, "capillari": 0, "captur": 0, "carbon": 0, "care": 0, "carri": 0, "carrier": 0, "case": 0, "categori": 0, "cathod": 0, "cathodoluminesc": 0, "cation": 0, "caus": 0, "cell": 0, "center": 0, "certain": 0, "certifi": 0, "chain": 0, "chamber": 0, "chameo": 0, "chang": 0, "channel": 0, "character": 0, "characterias": 0, "characterisationhardwaremanufactur": 0, "characterisationhardwaremodel": 0, "characterisationinstru": 0, "characterist": 0, "charg": 0, "check": 0, "chemic": 0, "chemisorpt": 0, "chemistri": 0, "choic": 0, "cholesterol": 0, "chosen": 0, "circuit": 0, "cl": 0, "classif": 0, "clear": 0, "close": 0, "clsm": 0, "coat": 0, "coeffici": 0, "collect": 0, "collim": 0, "colloid": 0, "color": 0, "colour": 0, "combin": 0, "come": 0, "commensur": 0, "comment": 0, "common": 0, "commonli": 0, "compact": 0, "comparison": 0, "compart": 0, "compendium": 0, "compet": 0, "complementari": 0, "complex": 0, "complianc": 0, "compon": 0, "compos": 0, "composit": 0, "compound": 0, "compress": 0, "compris": 0, "comput": 0, "concentr": 0, "conceptu": 0, "concret": 0, "condens": 0, "condit": 0, "conditions1": 0, "conduct": 0, "configur": 0, "confirm": 0, "confoc": 0, "confus": 0, "conjunct": 0, "consid": 0, "consider": 0, "consist": 0, "constant": 0, "constitu": 0, "constraint": 0, "construct": 0, "consum": 0, "contact": 0, "contain": 0, "context": 0, "continu": 0, "contrast": 0, "contribut": 0, "control": 0, "convect": 0, "conveni": 0, "convent": 0, "convert": 0, "cool": 0, "coordin": 0, "cor": 0, "core": 0, "correct": 0, "correl": 0, "correspond": 0, "corros": 0, "cosmochemistri": 0, "cottrel": 0, "could": 0, "coulomet": 0, "coulometr": 0, "count": 0, "coupl": 0, "coupon": 0, "cover": 0, "crack": 0, "creation": 0, "creep": 0, "criteria": 0, "critic": 0, "cross": 0, "crush": 0, "crystal": 0, "crystallin": 0, "crystallit": 0, "crystallograph": 0, "csv": 0, "cumul": 0, "current": 0, "curv": 0, "cut": 0, "cv": 0, "cycl": 0, "cyclic": 0, "cyclic_voltammetri": 0, "d": 0, "dai": 0, "danger": 0, "dat": 0, "data": 0, "dataprocess": 0, "dataset": 0, "datatypeproperti": 0, "dbpedia": 0, "dbpediarefer": 0, "dc": 0, "de": 0, "dealt": 0, "decai": 0, "decis": 0, "declar": 0, "decomposit": 0, "deconvolut": 0, "decoupl": 0, "decreas": 0, "deem": 0, "deepli": 0, "defect": 0, "defin": 0, "definit": 0, "deform": 0, "degre": 0, "deioniz": 0, "demonstr": 0, "densiti": 0, "depend": 0, "deplet": 0, "deposit": 0, "depress": 0, "depth": 0, "deriv": 0, "describ": 0, "descript": 0, "design": 0, "desir": 0, "desorpt": 0, "destruct": 0, "detail": 0, "detec": 0, "detect": 0, "determin": 0, "develop": 0, "devic": 0, "diagnosi": 0, "diagram": 0, "dic": 0, "die": 0, "dielectr": 0, "dielectrometr": 0, "differ": 0, "differenti": 0, "differential_pulse_voltammetri": 0, "diffract": 0, "diffus": 0, "digit": 0, "dilut": 0, "dimension": 0, "diminish": 0, "dip": 0, "dipol": 0, "direct": 0, "directli": 0, "disc": 0, "discourag": 0, "discoveri": 0, "discrimin": 0, "dislodg": 0, "dispar": 0, "dispers": 0, "dispersive_x": 0, "displac": 0, "displai": 0, "dispos": 0, "dissolut": 0, "dissolv": 0, "distanc": 0, "distinct": 0, "distinguish": 0, "distribut": 0, "disturb": 0, "divid": 0, "dize": 0, "dl": 0, "dma": 0, "doe": 0, "doi": 0, "domain": 0, "done": 0, "doubl": 0, "doubt": 0, "down": 0, "dpv": 0, "dramat": 0, "drift": 0, "drop": 0, "drug": 0, "dsc": 0, "dt": 0, "dta": 0, "due": 0, "dure": 0, "dynam": 0, "e": 0, "each": 0, "earli": 0, "easili": 0, "ebsd": 0, "ebsp": 0, "echo": 0, "ed": 0, "edg": 0, "edit": 0, "edx": 0, "effect": 0, "effici": 0, "ei": 0, "einstein": 0, "either": 0, "eject": 0, "elabor": 0, "elaps": 0, "elast": 0, "elastiaclli": 0, "electr": 0, "electro": 0, "electroacoust": 0, "electroact": 0, "electroanalyt": 0, "electrochem": 0, "electrochemical_stripping_analysi": 0, "electrochemistri": 0, "electrod": 0, "electrolys": 0, "electrolysi": 0, "electromagnet": 0, "electron": 0, "electropedia": 0, "electrostat": 0, "element": 0, "elimin": 0, "elong": 0, "elucid": 0, "embed": 0, "emiss": 0, "emit": 0, "emitt": 0, "emmo": 0, "emploi": 0, "en": 0, "enabl": 0, "encodeddata": 0, "end": 0, "endotherm": 0, "energet": 0, "energi": 0, "enforc": 0, "engin": 0, "enhanc": 0, "enough": 0, "ensur": 0, "enthalpi": 0, "entir": 0, "entiti": 0, "environ": 0, "environment": 0, "epma": 0, "equal": 0, "equat": 0, "equilibrium": 0, "equip": 0, "equival": 0, "error": 0, "esca": 0, "esem": 0, "establish": 0, "estim": 0, "etc": 0, "ev": 0, "evalu": 0, "evapor": 0, "even": 0, "eventu": 0, "everi": 0, "everyon": 0, "exactli": 0, "examin": 0, "examinationnot": 0, "exampl": 0, "exce": 0, "exchang": 0, "excit": 0, "exclud": 0, "exhibit": 0, "exist": 0, "exotherm": 0, "exp": 0, "experi": 0, "experiment": 0, "expert": 0, "expertis": 0, "exploit": 0, "explos": 0, "exposur": 0, "express": 0, "extend": 0, "extens": 0, "extent": 0, "extern": 0, "extract": 0, "extrem": 0, "f": 0, "fabric": 0, "facil": 0, "facilit": 0, "fact": 0, "factor": 0, "failur": 0, "famili": 0, "farada": 0, "faradai": 0, "fatigu": 0, "fatti": 0, "fe": 0, "featur": 0, "fer": 0, "few": 0, "fib": 0, "fibdicresidualstressanalysi": 0, "field": 0, "film": 0, "filter": 0, "final": 0, "find": 0, "fine": 0, "fingerprint": 0, "first": 0, "fit": 0, "fix": 0, "fixtur": 0, "flaw": 0, "flexibl": 0, "flexur": 0, "flow": 0, "fluctuat": 0, "fluoresc": 0, "focu": 0, "focus": 0, "follow": 0, "food": 0, "forc": 0, "form": 0, "formal": 0, "formalis": 0, "format": 0, "forquant": 0, "forward": 0, "fourier": 0, "fractur": 0, "freez": 0, "frequenc": 0, "frequent": 0, "friction": 0, "from": 0, "frommeasur": 0, "ftir": 0, "full": 0, "function": 0, "functionalicon": 0, "fundament": 0, "further": 0, "g": 0, "ga": 0, "gadget": 0, "gain": 0, "galvanostat": 0, "gamma": 0, "gase": 0, "gaseou": 0, "gather": 0, "gaug": 0, "gener": 0, "geochem": 0, "geometri": 0, "geophys": 0, "get": 0, "gitt": 0, "give": 0, "given": 0, "glass": 0, "glassi": 0, "go": 0, "goal": 0, "goldbook": 0, "good": 0, "govern": 0, "grain": 0, "graph\u014d": 0, "gravimetr": 0, "greater": 0, "greatli": 0, "greek": 0, "grid": 0, "grinder": 0, "grindston": 0, "group": 0, "grow": 0, "growth": 0, "guid": 0, "ha": 0, "half": 0, "hand": 0, "hard": 0, "harden": 0, "harder": 0, "hardwar": 0, "harmon": 0, "hasag": 0, "hasbegincharacterizationtask": 0, "hasbegintask": 0, "hascharacterizationcompon": 0, "hascharacterizationenviron": 0, "hascharacterizationenvironmentproperti": 0, "hascharacterizationinput": 0, "hascharacterizationmeasurementinstru": 0, "hascharacterizationoutput": 0, "hascharacterizationproperti": 0, "hascharacterizationsoftwar": 0, "hascharacterizationtask": 0, "hascompon": 0, "hasconstitu": 0, "hasconvent": 0, "hasendcharacterizationtask": 0, "hasendtask": 0, "hasholisticpart": 0, "hasicon": 0, "hasinput": 0, "hasmeasuredproperti": 0, "hasoutput": 0, "hasparticip": 0, "hasproperti": 0, "hassampleforprepar": 0, "hassign": 0, "hastask": 0, "hastemporaryparticip": 0, "have": 0, "health": 0, "heat": 0, "height": 0, "henc": 0, "heyrovsk\u00fd": 0, "hi": 0, "high": 0, "higher": 0, "highest": 0, "highli": 0, "histor": 0, "hit": 0, "hmde": 0, "holisticsystem": 0, "homogen": 0, "hour": 0, "how": 0, "howev": 0, "http": 0, "human": 0, "humid": 0, "hv": 0, "hybridpulsepowercharacter": 0, "hybridpulsepowercharacteris": 0, "hydrodynam": 0, "hydrodynamic_voltammetri": 0, "hz": 0, "i": 0, "icon": 0, "ident": 0, "identif": 0, "identifi": 0, "iev": 0, "ievref": 0, "ievrefer": 0, "ii": 0, "iii": 0, "ilkovich": 0, "illumin": 0, "im": 0, "imag": 0, "imc": 0, "impact": 0, "imped": 0, "impedimetr": 0, "impli": 0, "import": 0, "impos": 0, "improv": 0, "impur": 0, "incid": 0, "includ": 0, "incorpor": 0, "increas": 0, "increment": 0, "indent": 0, "independ": 0, "index": 0, "indi": 0, "indic": 0, "indicationnot": 0, "indirectli": 0, "indium": 0, "individu": 0, "induc": 0, "induct": 0, "industri": 0, "inelast": 0, "inert": 0, "infiltr": 0, "infinit": 0, "inflect": 0, "influenc": 0, "influenti": 0, "inform": 0, "informationnot": 0, "infrar": 0, "inher": 0, "inhous": 0, "initi": 0, "input": 0, "inspect": 0, "inspectioncalibrationmicroscopyviscometrydata": 0, "instead": 0, "instrument": 0, "integr": 0, "intend": 0, "intens": 0, "intentionalag": 0, "interact": 0, "interatom": 0, "interchang": 0, "interest": 0, "intermittentcurrentinterruptionmethod": 0, "intern": 0, "interpret": 0, "interrupt": 0, "intersect": 0, "interv": 0, "intramolecular": 0, "introduc": 0, "intrus": 0, "invers": 0, "investig": 0, "involv": 0, "ion": 0, "ion_chromatographi": 0, "ionic": 0, "ioniz": 0, "iri": 0, "iso": 0, "iso17025": 0, "isotherm": 0, "isotrop": 0, "its": 0, "itself": 0, "iu": 0, "iupac": 0, "iupacrefer": 0, "j": 0, "jaroslav": 0, "judici": 0, "just": 0, "kelvin": 0, "kept": 0, "kev": 0, "kg": 0, "khz": 0, "kikuchi": 0, "kind": 0, "kindsnot": 0, "kinet": 0, "kinteic": 0, "knocker": 0, "known": 0, "kv": 0, "l": 0, "label": 0, "labil": 0, "lag": 0, "larg": 0, "larger": 0, "laser": 0, "later": 0, "latin": 0, "lattic": 0, "law": 0, "layer": 0, "lead": 0, "least": 0, "leav": 0, "len": 0, "length": 0, "less": 0, "level": 0, "levich": 0, "life": 0, "ligand": 0, "light": 0, "like": 0, "limit": 0, "limt": 0, "line": 0, "linear": 0, "linear_sweep_voltammetri": 0, "linearli": 0, "linearpolar": 0, "linearsweepvoltammetri": 0, "liquid": 0, "load": 0, "local": 0, "locat": 0, "logarithm": 0, "logic": 0, "long": 0, "lose": 0, "low": 0, "lower": 0, "lscm": 0, "lsv": 0, "m": 0, "machin": 0, "macroscop": 0, "made": 0, "magnet": 0, "magnif": 0, "magnifi": 0, "magnitud": 0, "mai": 0, "main": 0, "mainli": 0, "maintain": 0, "major": 0, "make": 0, "manag": 0, "mani": 0, "manifest": 0, "manipul": 0, "manner": 0, "manual": 0, "manufactur": 0, "map": 0, "mass": 0, "match": 0, "materi": 0, "mathemat": 0, "mathematicalmodel": 0, "matric": 0, "matter": 0, "maximum": 0, "mean": 0, "meaning": 0, "meas": 0, "measuer": 0, "measur": 0, "measurand": 0, "measuredproperti": 0, "measuredquantityproperti": 0, "measurementcondit": 0, "measurementparameteradjust": 0, "measurementresult": 0, "measurementstandard": 0, "measuringinstru": 0, "measuringsystem": 0, "mechan": 0, "mechani": 0, "mechanical_test": 0, "medic": 0, "medium": 0, "melt": 0, "membran": 0, "mention": 0, "mercuri": 0, "met": 0, "metal": 0, "metallurgi": 0, "meter": 0, "method": 0, "metrolog": 0, "metrologi": 0, "metron": 0, "mfe": 0, "mhz": 0, "micro": 0, "microanalysi": 0, "microbal": 0, "microcalorimetri": 0, "micrograph": 0, "micromet": 0, "microscal": 0, "microscop": 0, "microstructur": 0, "microwav": 0, "might": 0, "militari": 0, "millimet": 0, "million": 0, "misorient": 0, "mistakenli": 0, "mixtur": 0, "ml": 0, "mn": 0, "mobil": 0, "mode": 0, "model": 0, "modern": 0, "modifi": 0, "modulu": 0, "moistur": 0, "mol": 0, "mole": 0, "molecul": 0, "molecular": 0, "moment": 0, "moni": 0, "monitor": 0, "mono": 0, "monochrom": 0, "monochromat": 0, "monochromatis": 0, "monomolecular": 0, "more": 0, "moreov": 0, "morpholog": 0, "morphologi": 0, "most": 0, "motion": 0, "move": 0, "movement": 0, "mr": 0, "much": 0, "multi": 0, "multipl": 0, "must": 0, "mv": 0, "mw": 0, "n": 0, "name": 0, "nanc": 0, "nanomet": 0, "nanoparticl": 0, "nanoscal": 0, "nanosecond": 0, "nanostructur": 0, "narrow": 0, "nation": 0, "natur": 0, "nearli": 0, "necessari": 0, "need": 0, "neg": 0, "neglig": 0, "neighbour": 0, "nernst": 0, "net": 0, "neutron": 0, "nevertheless": 0, "nitrogen": 0, "nize": 0, "nm": 0, "nmr": 0, "nois": 0, "nomin": 0, "nominalproperti": 0, "non": 0, "nor": 0, "normal": 0, "notch": 0, "note": 0, "notion": 0, "now": 0, "npv": 0, "nse": 0, "nsf": 0, "nuclear": 0, "nuclei": 0, "nuclid": 0, "number": 0, "numer": 0, "nyquist": 0, "obei": 0, "objectproperti": 0, "observ": 0, "obtain": 0, "occasion": 0, "occur": 0, "oceanographi": 0, "ocvhold": 0, "offer": 0, "offset": 0, "often": 0, "oldest": 0, "oliv": 0, "onc": 0, "one": 0, "onli": 0, "onset": 0, "onto": 0, "open": 0, "openform": 0, "optic": 0, "option": 0, "order": 0, "org": 0, "organ": 0, "orient": 0, "origin": 0, "osm": 0, "osmol": 0, "osmot": 0, "osteryoungsquarewavevoltammetri": 0, "oswv": 0, "other": 0, "out": 0, "outcom": 0, "output": 0, "outsid": 0, "over": 0, "overal": 0, "oxi": 0, "oxid": 0, "pac": 0, "pad": 0, "page": 0, "palm": 0, "paramet": 0, "parent": 0, "part": 0, "parti": 0, "partial": 0, "particl": 0, "pass": 0, "past": 0, "pathlength": 0, "pattern": 0, "pc": 0, "pea": 0, "peak": 0, "penetr": 0, "per": 0, "percent": 0, "perform": 0, "period": 0, "perman": 0, "permiss": 0, "permit": 0, "person": 0, "perturb": 0, "pharr": 0, "phase": 0, "phenomena": 0, "phonon": 0, "phosphor": 0, "phosphoresc": 0, "photoabsorpt": 0, "photoelectr": 0, "photoelectron": 0, "photograph": 0, "photoluminesc": 0, "photometri": 0, "photon": 0, "physic": 0, "physicist": 0, "physicsequ": 0, "pinhol": 0, "pipework": 0, "place": 0, "plane": 0, "plasma": 0, "plastic": 0, "platen": 0, "plot": 0, "plu": 0, "point": 0, "point_flexural_test": 0, "poisson": 0, "polar": 0, "polaris": 0, "polarogram": 0, "polarograph": 0, "polarographi": 0, "polyethylen": 0, "polym": 0, "polymer": 0, "popul": 0, "pore": 0, "poros": 0, "porou": 0, "portabl": 0, "portion": 0, "posit": 0, "possess": 0, "possibl": 0, "possibli": 0, "post": 0, "potenti": 0, "potentiogram": 0, "potentiometr": 0, "powder": 0, "powder_diffract": 0, "power": 0, "practic": 0, "pre": 0, "precess": 0, "precipit": 0, "precis": 0, "preclud": 0, "preflabel": 0, "prepar": 0, "preparationsampl": 0, "prerequisit": 0, "prescrib": 0, "preselect": 0, "presenc": 0, "present": 0, "preset": 0, "press": 0, "pressur": 0, "previou": 0, "primari": 0, "principl": 0, "problem": 0, "procedur": 0, "process": 0, "produc": 0, "product": 0, "profil": 0, "program": 0, "programm": 0, "progress": 0, "project": 0, "prolong": 0, "propag": 0, "proper": 0, "properli": 0, "propertyvalu": 0, "propor": 0, "proport": 0, "propos": 0, "protocol": 0, "provid": 0, "psa": 0, "psd": 0, "pseudo": 0, "pseudoocv": 0, "puls": 0, "pure": 0, "puriti": 0, "purpos": 0, "q": 0, "q1136979": 0, "q1147647": 0, "q11778221": 0, "q120895154": 0, "q120906986": 0, "q12101244": 0, "q17028237": 0, "q2300905": 0, "q3492904": 0, "q386334": 0, "q4016323": 0, "q4016325": 0, "q5275361": 0, "q620700": 0, "q795838": 0, "q900632": 0, "q901180": 0, "q901559": 0, "q902953": 0, "q904093": 0, "q939328": 0, "qel": 0, "qt": 0, "qualifi": 0, "qualit": 0, "qualiti": 0, "qualitycontrol": 0, "quantif": 0, "quantifi": 0, "quantit": 0, "quantiti": 0, "quantum": 0, "quartz": 0, "quasi": 0, "quasistat": 0, "quot": 0, "radiat": 0, "radio": 0, "radioact": 0, "radiologi": 0, "radiometr": 0, "radionuclid": 0, "radiu": 0, "rai": 0, "raman": 0, "ramp": 0, "randl": 0, "randomli": 0, "rang": 0, "rate": 0, "ratio": 0, "raw": 0, "ray_crystallographi": 0, "ray_spectroscopi": 0, "rayleigh": 0, "reach": 0, "react": 0, "reaction": 0, "reactiv": 0, "reagent": 0, "real": 0, "realiti": 0, "rearrang": 0, "reason": 0, "recalibr": 0, "receiv": 0, "record": 0, "redox": 0, "reduc": 0, "reduct": 0, "referencemateri": 0, "referencespecimen": 0, "reflect": 0, "refract": 0, "region": 0, "regular": 0, "rel": 0, "relat": 0, "relationship": 0, "relev": 0, "reli": 0, "remco": 0, "remov": 0, "reorient": 0, "repeat": 0, "replac": 0, "replic": 0, "repres": 0, "represent": 0, "reproduc": 0, "requir": 0, "research": 0, "residu": 0, "resist": 0, "reso": 0, "resolut": 0, "resolv": 0, "reson": 0, "respect": 0, "respond": 0, "respons": 0, "rest": 0, "restrict": 0, "result": 0, "reveal": 0, "revers": 0, "rigid": 0, "ring": 0, "robust": 0, "root": 0, "rotat": 0, "rough": 0, "roughli": 0, "routin": 0, "rule": 0, "run": 0, "s05661": 0, "s10832": 0, "sacrif": 0, "safeti": 0, "salt": 0, "same": 0, "sauerbrei": 0, "scale": 0, "scan": 0, "scatter": 0, "scienc": 0, "scientif": 0, "scintil": 0, "scope": 0, "scratch": 0, "screen": 0, "se": 0, "second": 0, "secondari": 0, "section": 0, "sector": 0, "secur": 0, "see": 0, "select": 0, "selfcalibr": 0, "sem": 0, "semiconductor": 0, "semiperm": 0, "sensi": 0, "sensit": 0, "sensor": 0, "sent": 0, "sepa": 0, "separ": 0, "sequenc": 0, "seri": 0, "serum": 0, "servic": 0, "set": 0, "sever": 0, "shape": 0, "sharp": 0, "shift": 0, "short": 0, "should": 0, "show": 0, "si": 0, "sigmoid": 0, "significantli": 0, "sim": 0, "similar": 0, "simpl": 0, "simplest": 0, "simpli": 0, "sinc": 0, "singl": 0, "sinusoid": 0, "site": 0, "size": 0, "skb": 0, "skp": 0, "skpfm": 0, "slice": 0, "slide": 0, "slow": 0, "slowli": 0, "smal": 0, "small": 0, "smaller": 0, "smooth": 0, "snell": 0, "so": 0, "softwar": 0, "solicit": 0, "solid": 0, "solut": 0, "solvent": 0, "some": 0, "someon": 0, "sometim": 0, "sourc": 0, "space": 0, "span": 0, "spatial": 0, "speci": 0, "special": 0, "specialis": 0, "speciat": 0, "specif": 0, "specifi": 0, "specim": 0, "specimen": 0, "spectra": 0, "spectral": 0, "spectromet": 0, "spectroscop": 0, "spectrum": 0, "sphere": 0, "spin": 0, "spm": 0, "spot": 0, "sputter": 0, "squar": 0, "squarewave_voltammetri": 0, "stabl": 0, "stage": 0, "staircas": 0, "stand": 0, "standard": 0, "standardi": 0, "start": 0, "state": 0, "statement": 0, "static": 0, "statist": 0, "steadi": 0, "steel": 0, "stem": 0, "step": 0, "stiff": 0, "stir": 0, "stm": 0, "stoichiometr": 0, "stoke": 0, "stop": 0, "store": 0, "strain": 0, "strength": 0, "stress": 0, "string": 0, "strip": 0, "structur": 0, "studi": 0, "sub": 0, "subclass": 0, "subject": 0, "sublim": 0, "subsequ": 0, "subset": 0, "substanc": 0, "subtract": 0, "success": 0, "successfulli": 0, "suffici": 0, "suit": 0, "superimpos": 0, "supplementarydevicesnot": 0, "suppli": 0, "support": 0, "surfac": 0, "surround": 0, "suscept": 0, "suspens": 0, "switch": 0, "swv": 0, "synchro": 0, "synchron": 0, "synonym": 0, "system": 0, "t": 0, "t0": 0, "tabl": 0, "take": 0, "taken": 0, "target": 0, "task": 0, "tastpolarographi": 0, "techniqu": 0, "technologi": 0, "tem": 0, "temperatur": 0, "tempor": 0, "ten": 0, "tend": 0, "tensil": 0, "tension": 0, "tensiontest": 0, "term": 0, "terminologi": 0, "test": 0, "textur": 0, "tga": 0, "than": 0, "thei": 0, "thelatt": 0, "them": 0, "themeasur": 0, "theori": 0, "thepast": 0, "theprocess": 0, "thequant": 0, "thermal": 0, "thermoanalyt": 0, "thermodynam": 0, "thermogram": 0, "thermogravimetr": 0, "thermomechan": 0, "thi": 0, "thick": 0, "thin": 0, "thing": 0, "thinner": 0, "those": 0, "though": 0, "three": 0, "threepointflexuraltest": 0, "through": 0, "throughout": 0, "thu": 0, "tilt": 0, "time": 0, "tin": 0, "tion": 0, "tional": 0, "tip": 0, "titrant": 0, "titrat": 0, "tiviti": 0, "tma": 0, "togeth": 0, "tomo": 0, "tomogram": 0, "tomograph": 0, "too": 0, "tool": 0, "topdataproperti": 0, "topobjectproperti": 0, "topograph": 0, "topographi": 0, "total": 0, "toward": 0, "towhich": 0, "toxic": 0, "trace": 0, "traceabl": 0, "tran": 0, "transfer": 0, "transform": 0, "transform_infrared_spectroscopi": 0, "transient": 0, "transit": 0, "transmiss": 0, "transmit": 0, "transport": 0, "travel": 0, "tribolog": 0, "tube": 0, "tune": 0, "tunnel": 0, "turbid": 0, "twice": 0, "two": 0, "type": 0, "typic": 0, "u": 0, "ubbelohd": 0, "ultim": 0, "ultra": 0, "ultrason": 0, "ultrathin": 0, "ultraviolet": 0, "uncertainti": 0, "uncertaintyfor": 0, "uncoat": 0, "under": 0, "undergo": 0, "underli": 0, "understand": 0, "undetect": 0, "uniaxi": 0, "uniform": 0, "uniqu": 0, "uniqueid": 0, "unit": 0, "unknown": 0, "unprocess": 0, "until": 0, "up": 0, "upac": 0, "upon": 0, "us": 0, "usag": 0, "useabl": 0, "user": 0, "usual": 0, "ut": 0, "v": 0, "vaccin": 0, "vacuum": 0, "valid": 0, "valu": 0, "valuabl": 0, "vapor": 0, "vari": 0, "variabl": 0, "variant": 0, "variat": 0, "varieti": 0, "variou": 0, "veri": 0, "verif": 0, "version": 0, "versu": 0, "via": 0, "vibrat": 0, "view": 0, "vim": 0, "vimterm": 0, "virtual": 0, "viscomet": 0, "viscos": 0, "visibl": 0, "visual": 0, "vital": 0, "voc": 0, "vocabulari": 0, "volatil": 0, "volta": 0, "voltag": 0, "voltammetr": 0, "voltammogram": 0, "volum": 0, "volumetr": 0, "vpo": 0, "v\u03b4": 0, "w3id": 0, "wa": 0, "wai": 0, "water": 0, "wave": 0, "waveform": 0, "wavelength": 0, "wd": 0, "weak": 0, "wear": 0, "weight": 0, "well": 0, "welldefin": 0, "were": 0, "wet": 0, "what": 0, "whatev": 0, "wheel": 0, "when": 0, "whenev": 0, "where": 0, "wherea": 0, "which": 0, "while": 0, "whilst": 0, "who": 0, "whole": 0, "why": 0, "wide": 0, "width": 0, "wiki": 0, "wikidata": 0, "wikidatarefer": 0, "wikipedia": 0, "wikipediarefer": 0, "within": 0, "without": 0, "wood": 0, "word": 0, "work": 0, "workflow": 0, "workpiec": 0, "world": 0, "would": 0, "write": 0, "www": 0, "x": 0, "x27": 0, "xa": 0, "xane": 0, "xp": 0, "xrd": 0, "xrpd": 0, "y": 0, "yet": 0, "yield": 0, "you": 0, "young": 0, "your": 0, "zation": 0, "zero": 0, "\u0161ev\u010d\u00edk": 0, "\u02c8r\u0251\u02d0m\u0259n": 0, "\u03b3\u03c1\u03ac\u03c6\u03c9": 0, "\u03b4": 0, "\u03b7": 0, "\u03b70": 0, "\u03bcj": 0, "\u03bcw": 0, "\u03bc\u03ad\u03c4\u03c1\u03bf\u03bd": 0, "\u03c4\u03cc\u03bc\u03bf\u03c2": 0, "\u03c6": 0}, "titles": ["References", "<no title>"], "titleterms": {"abrasivestrippingvoltammetri": 0, "accesscondit": 0, "acvoltammetri": 0, "adsorptivestrippingvoltammetri": 0, "alphaspectrometri": 0, "amperometri": 0, "analyticalelectronmicroscopi": 0, "anodicstrippingvoltammetri": 0, "atomicforcemicroscopi": 0, "atomprobetomographi": 0, "bpmndiagram": 0, "brunaueremmetttellermethod": 0, "calibrationdata": 0, "calibrationdatapostprocess": 0, "calibrationprocess": 0, "calibrationtask": 0, "calorimetri": 0, "cathodicstrippingvoltammetri": 0, "characteris": 0, "characterisationcompon": 0, "characterisationdata": 0, "characterisationdatavalid": 0, "characterisationenviron": 0, "characterisationenvironmentproperti": 0, "characterisationexperi": 0, "characterisationhardwar": 0, "characterisationhardwarespecif": 0, "characterisationmeasurementinstru": 0, "characterisationmeasurementprocess": 0, "characterisationmeasurementtask": 0, "characterisationprocedur": 0, "characterisationprocedurevalid": 0, "characterisationproperti": 0, "characterisationprotocol": 0, "characterisationsoftwar": 0, "characterisationsystem": 0, "characterisationtask": 0, "characterisationtechniqu": 0, "characterisationworkflow": 0, "characterisedsampl": 0, "chargedistribut": 0, "chromatographi": 0, "chronoamperometri": 0, "chronocoulometri": 0, "chronopotentiometri": 0, "class": 0, "compressiontest": 0, "conductometri": 0, "conductometrictitr": 0, "confocalmicroscopi": 0, "coulometri": 0, "coulometrictitr": 0, "creeptest": 0, "criticalandsupercriticalchromatographi": 0, "cyclicchronopotentiometri": 0, "cyclicvoltammetri": 0, "dataacquisitionr": 0, "dataanalysi": 0, "datafilt": 0, "datanormalis": 0, "datapostprocess": 0, "dataprepar": 0, "dataprocessingthroughcalibr": 0, "dataqu": 0, "dcpolarographi": 0, "detector": 0, "dielectricandimpedancespectroscopi": 0, "dielectrometri": 0, "differentiallinearpulsevoltammetri": 0, "differentialpulsevoltammetri": 0, "differentialrefractiveindex": 0, "differentialscanningcalorimetri": 0, "differentialstaircasepulsevoltammetri": 0, "differentialthermalanalysi": 0, "dilatometri": 0, "directcoulometryatcontrolledcurr": 0, "directcoulometryatcontrolledpotenti": 0, "directcurrentinternalresist": 0, "dynamiclightscatt": 0, "dynamicmechanicalanalysi": 0, "dynamicmechanicalspectroscopi": 0, "electrochemicalimpedancespectroscopi": 0, "electrochemicalpiezoelectricmicrogravimetri": 0, "electrochemicaltest": 0, "electrogravimetri": 0, "electronbackscatterdiffract": 0, "electronprobemicroanalysi": 0, "ellipsometri": 0, "energydispersivexrayspectroscopi": 0, "environmentalscanningelectronmicroscopi": 0, "exaf": 0, "fatiguetest": 0, "fibdic": 0, "fieldemissionscanningelectronmicroscopi": 0, "fouriertransforminfraredspectroscopi": 0, "fractographi": 0, "freezingpointdepressionosmometri": 0, "galvanostaticintermittenttitrationtechniqu": 0, "gammaspectrometri": 0, "gasadsorptionporosimetri": 0, "grind": 0, "hardnesstest": 0, "hardwaremanufactur": 0, "hardwaremodel": 0, "hasaccesscondit": 0, "hasbegincharacterisationtask": 0, "hasbpmndiagram": 0, "hascharacterisationcompon": 0, "hascharacterisationenviron": 0, "hascharacterisationenvironmentproperti": 0, "hascharacterisationinput": 0, "hascharacterisationmeasurementinstru": 0, "hascharacterisationoutput": 0, "hascharacterisationprocedurevalid": 0, "hascharacterisationproperti": 0, "hascharacterisationsoftwar": 0, "hascharacterisationtask": 0, "hasdataacquisitionr": 0, "hasdataprocessingthroughcalibr": 0, "hasdataqu": 0, "hasdataset": 0, "hasdateofcalibr": 0, "hasendcharacterisationtask": 0, "hashardwarespecif": 0, "hashazard": 0, "hashold": 0, "hasinstrumentforcalibr": 0, "hasinteractionvolum": 0, "hasinteractionwithprob": 0, "hasinteractionwithsampl": 0, "haslab": 0, "haslevelofautom": 0, "hasmanufactur": 0, "hasmeasurementdetector": 0, "hasmeasurementparamet": 0, "hasmeasurementprob": 0, "hasmeasurementsampl": 0, "hasmeasurementtim": 0, "hasmodel": 0, "hasoper": 0, "haspeerreviewedarticl": 0, "hasphysicsofinteract": 0, "haspostprocessingmodel": 0, "hasprocessingreproduc": 0, "hasreferencesampl": 0, "hassamplebeforesampleprepar": 0, "hassampledsampl": 0, "hassampleforinspect": 0, "hassampleinspectioninstru": 0, "hassampleinspectionparamet": 0, "hassamplepreparationinstru": 0, "hassamplepreparationparamet": 0, "hasuniqueid": 0, "hazard": 0, "holder": 0, "hppc": 0, "hydrodynamicvoltammetri": 0, "ici": 0, "impedimetri": 0, "interactionvolum": 0, "intermediatesampl": 0, "ionchromatographi": 0, "ionmobilityspectrometri": 0, "isothermalmicrocalorimetri": 0, "laboratori": 0, "levelofautom": 0, "levelofexpertis": 0, "lightscatt": 0, "linearchronopotentiometri": 0, "linearscanvoltammetri": 0, "massspectrometri": 0, "measurementdatapostprocess": 0, "measurementparamet": 0, "measurementsystemadjust": 0, "measurementtim": 0, "mechanicaltest": 0, "membraneosmometri": 0, "mercuryporosimetri": 0, "methodologi": 0, "microscopi": 0, "mill": 0, "modul": 0, "mount": 0, "nanoindent": 0, "neutronspinechospectroscopi": 0, "nexaf": 0, "normalpulsevoltammetri": 0, "nuclearmagneticreson": 0, "object": 0, "ontologi": 0, "opencircuithold": 0, "oper": 0, "opticalmicroscopi": 0, "opticaltest": 0, "osmometri": 0, "photoluminescencemicroscopi": 0, "physicsofinteract": 0, "polish": 0, "porosimetri": 0, "postprocessingmodel": 0, "potentiometri": 0, "potentiometricstrippinganalysi": 0, "preparedsampl": 0, "primarydata": 0, "probe": 0, "probesampleinteract": 0, "processingreproduc": 0, "profilometri": 0, "properti": 0, "pseudoopencircuitvoltagemethod": 0, "pulsedelectroacousticmethod": 0, "ramanspectroscopi": 0, "rational": 0, "rationalehascharacterisationprocedur": 0, "rationalehasusercas": 0, "rawdata": 0, "rawsampl": 0, "refer": 0, "referencesampl": 0, "requireslevelofexpertis": 0, "sampl": 0, "sampleddcpolarographi": 0, "sampleextract": 0, "sampleinspect": 0, "sampleinspectioninstru": 0, "sampleinspectionparamet": 0, "sampleprepar": 0, "samplepreparationinstru": 0, "samplepreparationparamet": 0, "scanningaugerelectronmicroscopi": 0, "scanningelectronmicroscopi": 0, "scanningkelvinprob": 0, "scanningprobemicroscopi": 0, "scanningtunnelingmicroscopi": 0, "scatteringanddiffract": 0, "secondarydata": 0, "secondaryionmassspectrometri": 0, "shearortorsiontest": 0, "signal": 0, "spectrometri": 0, "spectroscopi": 0, "squarewavevoltammetri": 0, "stepchronopotentiometri": 0, "strippingvoltammetri": 0, "synchrotron": 0, "tensiletest": 0, "thermochemicaltest": 0, "thermogravimetri": 0, "threepointbendingtest": 0, "tomographi": 0, "transmissionelectronmicroscopi": 0, "ultrasonictest": 0, "usercas": 0, "vaporpressuredepressionosmometri": 0, "viscometri": 0, "voltammetri": 0, "voltammetryatarotatingdiskelectrod": 0, "weartest": 0, "xpsvariablekinet": 0, "xraydiffract": 0, "xraypowderdiffract": 0, "xrdgrazingincid": 0}}) \ No newline at end of file