-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathdelivery_plume_tiler.py
340 lines (268 loc) · 16.4 KB
/
delivery_plume_tiler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import argparse
import subprocess
import datetime
import masked_plume_delineator
import logging
from spectral.io import envi
import numpy as np
import os
from utils import envi_header
from osgeo import gdal
import pandas as pd
import time
import json
import glob
from scrape_refine_upload import write_color_plume, rawspace_coordinate_conversion
from apply_glt import single_image_ortho
from copy import deepcopy
from rasterio.features import rasterize
from shapely.geometry import Polygon
import matplotlib.pyplot as plt
import requests
if os.environ.get("GHG_DEBUG"):
logging.info("Using internal ray")
import rray as ray
else:
import ray
class SerialEncoder(json.JSONEncoder):
"""Encoder for json to help ensure json objects can be passed to the workflow manager.
"""
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
else:
return super(SerialEncoder, self).default(obj)
def write_science_cog(output_img, output_file, geotransform, projection, metadata):
tmp_file = os.path.splitext(output_file)[0] + '_tmp.tif'
driver = gdal.GetDriverByName('GTiff')
driver.Register()
outDataset = driver.Create(tmp_file,output_img.shape[1],output_img.shape[0],1,gdal.GDT_Float32,options = ['COMPRESS=LZW'])
md = outDataset.GetMetadata()
md.update(metadata)
outDataset.SetMetadata(md)
outDataset.GetRasterBand(1).WriteArray(output_img)
outDataset.GetRasterBand(1).SetNoDataValue(-9999)
outDataset.SetProjection(projection)
outDataset.SetGeoTransform(geotransform)
del outDataset
subprocess.call(f'sh /home/brodrick/bin/cog.sh {tmp_file} {output_file} 1',shell=True)
subprocess.call(f'rm {tmp_file}',shell=True)
def tile_dcid(features, outdir, datadir):
dcid = features[0]["properties"]["DCID"]
ds = gdal.Open(os.path.join(datadir, f'dcid_{dcid}_mf_ort.tif'))
dat = ds.ReadAsArray().squeeze()
plume_mask = np.zeros(dat.shape,dtype=bool)
for feat in features:
outmask_ort_file = os.path.join(datadir, f'{feat["properties"]["Plume ID"]}_mask_ort.tif')
loc_dcid_mask = np.squeeze(gdal.Open(outmask_ort_file).ReadAsArray()).astype(bool)
plume_mask[loc_dcid_mask] = 1
color_ort_file = os.path.join(outdir, f'{dcid}_color_ort.tif')
write_color_plume(dat, plume_mask, ds, color_ort_file, style='ch4')
fids = np.unique([sublist for feat in features for sublist in feat['properties']['Scene FIDs']])
start_date=fids[0][4:]
start_ftime=fids[0].split('t')[-1].split('_')[0]
end_date=fids[-1][4:]
end_ftime=fids[-1].split('t')[-1].split('_')[0]
od_date = f'{start_date[:4]}-{start_date[4:6]}-{start_date[6:8]}T{start_ftime[:2]}_{start_ftime[2:4]}_{start_ftime[4:]}Z-to-{end_date[:4]}-{end_date[4:6]}-{end_date[6:8]}T{end_ftime[:2]}_{end_ftime[2:4]}_{str(int(end_ftime[4:6])+1):02}Z'
cmd_str = f'gdal2tiles.py -z 2-12 --srcnodata 0 --processes=40 -r antialias {color_ort_file} {outdir}/{od_date} -x'
subprocess.call(cmd_str,shell=True)
@ray.remote
def single_plume_proc(all_plume_meta, index, output_base, dcid_sourcedir, source_dir, extra_metadata):
plume_dict = {"crs": {"properties": {"name": "urn:ogc:def:crs:OGC:1.3:CRS84" }, "type": "name"},"features":[],"name":"methane_metadata","type":"FeatureCollection" }
plume_dict['features'] = [deepcopy(all_plume_meta['features'][index])]
plume_id = plume_dict['features'][0]['properties']['Plume ID']
# rasterize that polygon
ds = gdal.Open(os.path.join(dcid_sourcedir, f'dcid_{plume_dict["features"][0]["properties"]["DCID"]}_mf_ort.tif'))
dat = ds.ReadAsArray().squeeze()
rawspace_coords = rawspace_coordinate_conversion([], plume_dict['features'][0]['geometry']['coordinates'][0], ds.GetGeoTransform(), ortho=True)
manual_mask = rasterize(shapes=[Polygon(rawspace_coords)], out_shape=(dat.shape[0],dat.shape[1])) # numpy binary mask for manual IDs
y_locs = np.where(np.sum(manual_mask > 0, axis=1))[0]
x_locs = np.where(np.sum(manual_mask > 0, axis=0))[0]
dat[manual_mask < 1] = -9999
dat = dat[y_locs[0]:y_locs[-1],x_locs[0]:x_locs[-1]]
outtrans = list(ds.GetGeoTransform())
outtrans[0] = outtrans[0] + x_locs[0]*outtrans[1]
outtrans[3] = outtrans[3] + y_locs[0]*outtrans[5]
scene_names = []
for _s in range(len(plume_dict['features'][0]['properties']['Scene FIDs'])):
fid =plume_dict['features'][0]['properties']['Scene FIDs'][_s]
scene =plume_dict['features'][0]['properties']['DAAC Scene Numbers'][_s]
orbit =plume_dict['features'][0]['properties']['Orbit']
scene_names.append(f'EMIT_L2B_CH4ENH_{extra_metadata["product_version"]}_{fid[4:12]}T{fid[13:19]}_{orbit}_{scene}')
metadata = {
'Plume_Complex': plume_dict['features'][0]['properties']['Plume ID'],
'Estimated_Uncertainty_ppmm': plume_dict['features'][0]['properties']['Concentration Uncertainty (ppm m)'],
'UTC_Time_Observed': plume_dict['features'][0]['properties']['UTC Time Observed'],
#Source_Scenes - match full conventions j
'Source_Scenes': ','.join(scene_names),
'Latitude of max concentration': plume_dict['features'][0]['properties']['Latitude of max concentration'],
'Longitude of max concentration': plume_dict['features'][0]['properties']['Longitude of max concentration'],
'Max Plume Concentration (ppm m)': plume_dict['features'][0]['properties']['Max Plume Concentration (ppm m)'],
}
metadata.update(extra_metadata)
write_science_cog(dat, output_base + '.tif', outtrans, ds.GetProjection(), metadata)
write_color_quicklook(dat, output_base + '.png')
plume_output_file = os.path.join(output_base + '.json')
# conger the DAAC Scene Numbers to full dac names, as above
plume_dict['features'][0]['properties']['DAAC Scene Names'] = scene_names
del plume_dict['features'][0]['properties']['style']
del plume_dict['features'][0]['properties']['Data Download']
with open(plume_output_file, 'w') as fout:
fout.write(json.dumps(plume_dict, cls=SerialEncoder))
def write_color_quicklook(indat, output_file):
dat = indat.copy()
mask = dat != -9999
dat[dat < 0] = 0
dat = dat /1500.
output = np.zeros((indat.shape[0],indat.shape[1],3),dtype=np.uint8)
output[mask,:] = np.round(plt.cm.plasma(dat[mask])[...,:3] * 255).astype(np.uint8)
output[mask,:] = np.maximum(1, output[mask])
memdriver = gdal.GetDriverByName('MEM')
memdriver.Register()
outDataset = memdriver.Create('',dat.shape[1],dat.shape[0],3,gdal.GDT_Byte)
for n in range(1,4):
outDataset.GetRasterBand(n).WriteArray(output[...,n-1])
outDataset.GetRasterBand(n).SetNoDataValue(0)
driver = gdal.GetDriverByName('PNG')
driver.Register()
dst_ds = driver.CreateCopy(output_file, outDataset, strict=0)
del dst_ds, outDataset
@ray.remote
def single_scene_proc(input_file, output_file, extra_metadata):
ds = gdal.Open(input_file)
dat = ds.ReadAsArray().squeeze()
write_science_cog(dat, output_file, ds.GetGeoTransform(), ds.GetProjection(), extra_metadata)
write_color_quicklook(dat, output_file.replace('.tif','.png'))
def get_daac_link(feature, product_version, outbasedir):
prod_v = product_version.split('V')[-1]
fid=feature['Scene FIDs'][0]
cid= feature['Plume ID'].split('-')[-1].zfill(6)
link = f'https://data.lpdaac.earthdatacloud.nasa.gov/lp-prod-protected/EMITL2BCH4PLM.{prod_v}/EMIT_L2B_CH4PLM_{prod_v}_{fid[4:12]}T{fid[13:19]}_{cid}/EMIT_L2B_CH4PLM_{prod_v}_{fid[4:12]}T{fid[13:19]}_{cid}.tif'
if len(glob.glob(os.path.join(outbasedir, fid[4:12], 'l2bch4plm', f'EMIT_L2B_CH4PLM_{prod_v}_{fid[4:12]}T{fid[13:19]}_{cid}*.json'))) > 0:
return link
else:
return 'Coming soon'
def main(input_args=None):
parser = argparse.ArgumentParser(description="Delineate/colorize plume")
parser.add_argument('--source_dir', type=str, default='methane_20230813')
parser.add_argument('--dest_dir', type=str, default='visions_delivery')
parser.add_argument('--manual_del_dir', type=str, default='/beegfs/scratch/brodrick/methane/ch4_plumedir_scenetest/')
parser.add_argument('--software_version', type=str, default=None)
parser.add_argument('--data_version', type=str, default=None)
parser.add_argument('--visions_delivery', type=int, choices=[0,1,2],default=0)
parser.add_argument('--n_cores', type=int, default=1)
parser.add_argument('--overwrite', action='store_true')
parser.add_argument('--previous_plume_file', type=str, default='visions_delivery/plume_list.txt')
parser.add_argument('--loglevel', type=str, default='DEBUG', help='logging verbosity')
parser.add_argument('--logfile', type=str, default=None, help='output file to write log to')
args = parser.parse_args(input_args)
logging.basicConfig(format='%(levelname)s:%(asctime)s ||| %(message)s', level=args.loglevel,
filename=args.logfile, datefmt='%Y-%m-%d,%H:%M:%S')
tile_dir = os.path.join(args.dest_dir, 'ch4_plume_tiles')
with open(args.previous_plume_file,'r') as f:
delivered_plume_names = f.read().splitlines()
delivered_plume_ids = [f'CH4_PlumeComplex-{x.split("_")[-1]}' for x in delivered_plume_names]
all_plume_meta = json.load(open(f'{args.manual_del_dir}/combined_plume_metadata.json'))
unique_fids = np.unique([sublist for feat in all_plume_meta['features'] for sublist in feat['properties']['Scene FIDs']])
dcids = np.array([feat['properties']['DCID'] for feat in all_plume_meta['features']])
unique_dcids = np.unique(dcids)
valid_plume_idx = [x for x, feat in enumerate(all_plume_meta['features']) if feat['properties']['style']['color'] == 'white' and feat['geometry']['type'] == 'Polygon']
valid_point_idx = [x for x, feat in enumerate(all_plume_meta['features']) if feat['properties']['style']['color'] == 'white' and feat['geometry']['type'] == 'Point']
plume_count = 1
ray.init(num_cpus=args.n_cores)
extra_metadata = {}
if args.software_version:
extra_metadata['software_build_version'] = args.software_version
else:
cmd = ["git", "symbolic-ref", "-q", "--short", "HEAD", "||", "git", "describe", "--tags", "--exact-match"]
output = subprocess.run(" ".join(cmd), shell=True, capture_output=True)
if output.returncode != 0:
raise RuntimeError(output.stderr.decode("utf-8"))
extra_metadata['software_build_version'] = output.stdout.decode("utf-8").replace("\n", "")
if args.data_version:
extra_metadata['product_version'] = args.data_version
extra_metadata['keywords'] = "Imaging Spectroscopy, minerals, EMIT, dust, radiative forcing"
extra_metadata['sensor'] = "EMIT (Earth Surface Mineral Dust Source Investigation)"
extra_metadata['instrument'] = "EMIT"
extra_metadata['platform'] = "ISS"
extra_metadata['Conventions'] = "CF-1.63"
extra_metadata['institution'] = "NASA Jet Propulsion Laboratory/California Institute of Technology"
extra_metadata['license'] = "https://science.nasa.gov/earth-science/earth-science-data/data-information-policy/"
extra_metadata['naming_authority'] = "LPDAAC"
extra_metadata['date_created'] = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ")
extra_metadata['keywords_vocabulary'] = "NASA Global Change Master Directory (GCMD) Science Keywords"
extra_metadata['stdname_vocabulary'] = "NetCDF Climate and Forecast (CF) Metadata Convention"
extra_metadata['creator_name'] = "Jet Propulsion Laboratory/California Institute of Technology"
extra_metadata['creator_url'] = "https://earth.jpl.nasa.gov/emit/"
extra_metadata['project'] = "Earth Surface Mineral Dust Source Investigation"
extra_metadata['project_url'] = "https://earth.jpl.nasa.gov/emit/"
extra_metadata['publisher_name'] = "NASA LPDAAC"
extra_metadata['publisher_url'] = "https://lpdaac.usgs.gov"
extra_metadata['publisher_email'] = "[email protected]"
extra_metadata['identifier_product_doi_authority'] = "https://doi.org"
extra_metadata['title'] = "EMIT"
extra_metadata['Units']= 'ppm m'
print(delivered_plume_ids)
if args.visions_delivery != 2:
jobs = []
for _feat, feat in enumerate(all_plume_meta['features']):
if _feat not in valid_plume_idx:
continue
complex_id= feat['properties']['Plume ID'].split('-')[-1]
if f'CH4_PlumeComplex-{complex_id.zfill(6)}' in delivered_plume_ids:
continue
logging.info(f'Processing plume {_feat+1}/{len(all_plume_meta["features"])}')
if feat['geometry']['type'] == 'Polygon':
outdir=os.path.join(args.dest_dir, feat['properties']['Scene FIDs'][0][4:12], 'l2bch4plm')
if os.path.isdir(outdir) is False:
subprocess.call(f'mkdir -p {outdir}',shell=True)
output_base = os.path.join(outdir, feat['properties']['Scene FIDs'][0] + '_' + feat['properties']['Plume ID'])
if args.overwrite or os.path.isfile(output_base + '.tif') is False:
jobs.append(single_plume_proc.remote(all_plume_meta, _feat, output_base, args.manual_del_dir, args.source_dir, extra_metadata))
rreturn = [ray.get(jid) for jid in jobs]
jobs = []
for fid in unique_fids:
outdir = os.path.join(args.dest_dir, fid[4:12], 'l2bch4enh')
if os.path.isdir(outdir) is False:
subprocess.call(f'mkdir -p {outdir}',shell=True)
of = os.path.join(outdir, fid + 'ch4_enh.tif')
if args.overwrite or os.path.isfile(of) is False:
jobs.append(single_scene_proc.remote(os.path.join(args.source_dir, fid[4:12], fid + '_ch4_mf_ort'), of, extra_metadata))
rreturn = [ray.get(jid) for jid in jobs]
if args.visions_delivery == 1 or args.visions_delivery == 2:
outdir = os.path.join(args.dest_dir, 'visions_ch4_tiles')
if os.path.isdir(outdir) is False:
subprocess.call(f'mkdir -p {outdir}',shell=True)
logging.info('Build output geojson')
outdict = {"crs": {"properties": {"name": "urn:ogc:def:crs:OGC:1.3:CRS84" }, "type": "name"},"features":[],"name":"methane_metadata","type":"FeatureCollection" }
for nmi in valid_plume_idx:
newfeat = all_plume_meta['features'][nmi].copy()
pc = newfeat['properties']['Plume ID']
if newfeat['geometry']['type'] == 'Polygon':
newfeat['properties']['plume_complex_count'] = plume_count
newfeat['properties']['Data Download'] = get_daac_link(newfeat['properties'], extra_metadata['product_version'], args.dest_dir)
outdict['features'].append(newfeat)
for npi in valid_point_idx:
pointfeat = all_plume_meta['features'][npi].copy()
if pointfeat['properties']['Plume ID'] == newfeat['properties']['Plume ID']:
pointfeat['properties']['plume_complex_count'] = plume_count
pointfeat['properties']['Data Download'] = newfeat['properties']['Data Download']
pointfeat['properties']['style'] = {'color': 'red','fillOpacity':0,'maxZoom':9,'minZoom':0,'opacity':1,'radius':10,'weight':2}
outdict['features'].append(pointfeat)
break
plume_count += 1
with open(os.path.join(args.dest_dir, 'combined_plume_metadata.json'), 'w') as fout:
fout.write(json.dumps(outdict, cls=SerialEncoder))
subprocess.call("rsync visions_delivery/combined_plume_metadata.json brodrick@${EMIT_SCIENCE_IP}:/data/emit/mmgis/coverage/combined_plume_metadata.json",shell=True)
logging.info('Tile output')
for _dcid, dcid in enumerate(unique_dcids):
logging.info(f'Tiling {_dcid + 1} / {len(unique_dcids)}')
match_idx = np.where(dcids == dcid)[0]
subfeatures = [feat for _feat, feat in enumerate(all_plume_meta['features']) if _feat in match_idx and _feat in valid_plume_idx]
if len(subfeatures) > 0:
tile_dcid(subfeatures, outdir, args.manual_del_dir)
subprocess.call("rsync -a --info=progress2 visions_delivery/visions_ch4_tiles/ brodrick@${EMIT_SCIENCE_IP}:/data/emit/mmgis/mosaics/ch4_plume_tiles/",shell=True)
if __name__ == '__main__':
main()