-
Notifications
You must be signed in to change notification settings - Fork 10
/
EGM96.c
259 lines (227 loc) · 8.46 KB
/
EGM96.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
* Copyright (c) 2006 D.Ineiev <[email protected]>
* Copyright (c) 2020 Emeric Grange <[email protected]>
*
* This software is provided 'as-is', without any express or implied warranty.
* In no event will the authors be held liable for any damages arising from
* the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/*
* This program is designed for the calculation of a geoid undulation at a point
* whose latitude and longitude is specified.
*
* This program is designed to be used with the constants of EGM96 and those of
* the WGS84(g873) system. The undulation will refer to the WGS84 ellipsoid.
*
* It's designed to use the potential coefficient model EGM96 and a set of
* spherical harmonic coefficients of a correction term.
* The correction term is composed of several different components, the primary
* one being the conversion of a height anomaly to a geoid undulation.
* The principles of this procedure were initially described in the paper:
* - use of potential coefficient models for geoid undulation determination using
* a spherical harmonic representation of the height anomaly/geoid undulation
* difference by R.H. Rapp, Journal of Geodesy, 1996.
*
* This program is a modification of the program described in the following report:
* - a fortran program for the computation of gravimetric quantities from high
* degree spherical harmonic expansions, Richard H. Rapp, report 334, Department
* of Geodetic Science and Surveying, the Ohio State University, Columbus, 1982
*/
#include "EGM96.h"
#include "EGM96_data.h"
#include <math.h>
/* ************************************************************************** */
#define _coeffs (65341) //!< Size of correction and harmonic coefficients arrays (361*181)
#define _nmax (360) //!< Maximum degree and orders of harmonic coefficients.
#define _361 (361)
/* ************************************************************************** */
double hundu(double p[_coeffs+1],
double sinml[_361+1], double cosml[_361+1],
double gr, double re)
{
// WGS 84 gravitational constant in m³/s² (mass of Earth’s atmosphere included)
const double GM = 0.3986004418e15;
// WGS 84 datum surface equatorial radius
const double ae = 6378137.0;
double ar = ae/re;
double arn = ar;
double ac = 0;
double a = 0;
unsigned k = 3;
for (unsigned n = 2; n <= _nmax; n++)
{
arn *= ar;
k++;
double sum = p[k]*egm96_data[k][2];
double sumc = p[k]*egm96_data[k][0];
for (unsigned m = 1; m <= n; m++)
{
k++;
double tempc = egm96_data[k][0]*cosml[m] + egm96_data[k][1]*sinml[m];
double temp = egm96_data[k][2]*cosml[m] + egm96_data[k][3]*sinml[m];
sumc += p[k]*tempc;
sum += p[k]*temp;
}
ac += sumc;
a += sum*arn;
}
ac += egm96_data[1][0] + (p[2]*egm96_data[2][0]) + (p[3] * (egm96_data[3][0]*cosml[1] + egm96_data[3][1]*sinml[1]));
// Add haco = ac/100 to convert height anomaly on the ellipsoid to the undulation
// Add -0.53m to make undulation refer to the WGS84 ellipsoid
return ((a * GM) / (gr * re)) + (ac / 100.0) - 0.53;
}
void dscml(double rlon, double sinml[_361+1], double cosml[_361+1])
{
double a = sin(rlon);
double b = cos(rlon);
sinml[1] = a;
cosml[1] = b;
sinml[2] = 2*b*a;
cosml[2] = 2*b*b - 1;
for (unsigned m = 3; m <= _nmax; m++)
{
sinml[m] = 2*b*sinml[m-1] - sinml[m-2];
cosml[m] = 2*b*cosml[m-1] - cosml[m-2];
}
}
/*!
* \param m: order.
* \param theta: Colatitude (radians).
* \param rleg: Normalized legendre function.
*
* This subroutine computes all normalized legendre function in 'rleg'.
* The dimensions of array 'rleg' must be at least equal to nmax+1.
* All calculations are in double precision.
*
* Original programmer: Oscar L. Colombo, Dept. of Geodetic Science the Ohio State University, August 1980.
* ineiev: I removed the derivatives, for they are never computed here.
*/
void legfdn(unsigned m, double theta, double rleg[_361+1])
{
static double drts[1301], dirt[1301], cothet, sithet, rlnn[_361+1];
static int ir; // TODO 'ir' must be set to zero before the first call to this sub.
unsigned nmax1 = _nmax + 1;
unsigned nmax2p = (2 * _nmax) + 1;
unsigned m1 = m + 1;
unsigned m2 = m + 2;
unsigned m3 = m + 3;
unsigned n, n1, n2;
if (!ir)
{
ir = 1;
for (n = 1; n <= nmax2p; n++)
{
drts[n] = sqrt(n);
dirt[n] = 1 / drts[n];
}
}
cothet = cos(theta);
sithet = sin(theta);
// compute the legendre functions
rlnn[1] = 1;
rlnn[2] = sithet * drts[3];
for (n1 = 3; n1 <= m1; n1++)
{
n = n1 - 1;
n2 = 2 * n;
rlnn[n1] = drts[n2 + 1] * dirt[n2] * sithet * rlnn[n];
}
switch (m)
{
case 1:
rleg[2] = rlnn[2];
rleg[3] = drts[5] * cothet * rleg[2];
break;
case 0:
rleg[1] = 1;
rleg[2] = cothet * drts[3];
break;
}
rleg[m1] = rlnn[m1];
if (m2 <= nmax1)
{
rleg[m2] = drts[m1*2 + 1] * cothet * rleg[m1];
if (m3 <= nmax1)
{
for (n1 = m3; n1 <= nmax1; n1++)
{
n = n1 - 1;
if ((!m && n < 2) || (m == 1 && n < 3)) continue;
n2 = 2 * n;
rleg[n1] = drts[n2+1] * dirt[n+m] * dirt[n-m] * (drts[n2-1] * cothet * rleg[n1-1] - drts[n+m-1] * drts[n-m-1] * dirt[n2-3] * rleg[n1-2]);
}
}
}
}
/*!
* \param lat: Latitude in radians.
* \param lon: Longitude in radians.
* \param re: Geocentric radius.
* \param rlat: Geocentric latitude.
* \param gr: Normal gravity (m/sec²).
*
* This subroutine computes geocentric distance to the point, the geocentric
* latitude, and an approximate value of normal gravity at the point based the
* constants of the WGS84(g873) system are used.
*/
void radgra(double lat, double lon, double *rlat, double *gr, double *re)
{
const double a = 6378137.0;
const double e2 = 0.00669437999013;
const double geqt = 9.7803253359;
const double k = 0.00193185265246;
double t1 = sin(lat) * sin(lat);
double n = a / sqrt(1.0 - (e2 * t1));
double t2 = n * cos(lat);
double x = t2 * cos(lon);
double y = t2 * sin(lon);
double z = (n * (1 - e2)) * sin(lat);
*re = sqrt((x * x) + (y * y) + (z * z)); // compute the geocentric radius
*rlat = atan(z / sqrt((x * x) + (y * y))); // compute the geocentric latitude
*gr = geqt * (1 + (k * t1)) / sqrt(1 - (e2 * t1)); // compute normal gravity (m/sec²)
}
/*!
* \brief Compute the geoid undulation from the EGM96 potential coefficient model, for a given latitude and longitude.
* \param lat: Latitude in radians.
* \param lon: Longitude in radians.
* \return The geoid undulation / altitude offset (in meters).
*/
double undulation(double lat, double lon)
{
double p[_coeffs+1], sinml[_361+1], cosml[_361+1], rleg[_361+1];
double rlat, gr, re;
unsigned nmax1 = _nmax + 1;
// compute the geocentric latitude, geocentric radius, normal gravity
radgra(lat, lon, &rlat, &gr, &re);
rlat = (M_PI / 2) - rlat;
for (unsigned j = 1; j <= nmax1; j++)
{
unsigned m = j - 1;
legfdn(m, rlat, rleg);
for (unsigned i = j ; i <= nmax1; i++)
{
p[(((i - 1) * i) / 2) + m + 1] = rleg[i];
}
}
dscml(lon, sinml, cosml);
return hundu(p, sinml, cosml, gr, re);
}
/* ************************************************************************** */
double egm96_compute_altitude_offset(double lat, double lon)
{
const double rad = (180.0 / M_PI);
return undulation(lat/rad, lon/rad);
}
/* ************************************************************************** */