-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlistsort_helpers.c
932 lines (844 loc) · 27.2 KB
/
listsort_helpers.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/* Lots of code for an adaptive, stable, natural mergesort. There are many
* pieces to this algorithm; read listsort.txt for overviews and details.
*/
/* A sortslice contains a pointer to an array of keys and a pointer to
* an array of corresponding values. In other words, keys[i]
* corresponds with values[i]. If values == NULL, then the keys are
* also the values.
*
* Several convenience routines are provided here, so that keys and
* values are always moved in sync.
*/
static void
reverse_slice(PyObject **lo, PyObject **hi)
{
assert(lo && hi);
--hi;
while (lo < hi) {
PyObject *t = *lo;
*lo = *hi;
*hi = t;
++lo;
--hi;
}
}
typedef struct {
PyObject **keys;
PyObject **values;
} sortslice;
Py_LOCAL_INLINE(void)
sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j)
{
s1->keys[i] = s2->keys[j];
if (s1->values != NULL)
s1->values[i] = s2->values[j];
}
Py_LOCAL_INLINE(void)
sortslice_copy_incr(sortslice *dst, sortslice *src)
{
*dst->keys++ = *src->keys++;
if (dst->values != NULL)
*dst->values++ = *src->values++;
}
Py_LOCAL_INLINE(void)
sortslice_copy_decr(sortslice *dst, sortslice *src)
{
*dst->keys-- = *src->keys--;
if (dst->values != NULL)
*dst->values-- = *src->values--;
}
Py_LOCAL_INLINE(void)
sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
Py_ssize_t n)
{
memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
if (s1->values != NULL)
memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
}
Py_LOCAL_INLINE(void)
sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j,
Py_ssize_t n)
{
memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n);
if (s1->values != NULL)
memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n);
}
Py_LOCAL_INLINE(void)
sortslice_advance(sortslice *slice, Py_ssize_t n)
{
slice->keys += n;
if (slice->values != NULL)
slice->values += n;
}
/* binarysort is the best method for sorting small arrays: it does
few compares, but can do data movement quadratic in the number of
elements.
[lo, hi) is a contiguous slice of a list, and is sorted via
binary insertion. This sort is stable.
On entry, must have lo <= start <= hi, and that [lo, start) is already
sorted (pass start == lo if you don't know!).
If islt() complains return -1, else 0.
Even in case of error, the output slice will be some permutation of
the input (nothing is lost or duplicated).
*/
static int
binarysort(sortslice lo, PyObject **hi, PyObject **start)
{
PyObject **l, **p, **r;
PyObject *pivot;
assert(lo.keys <= start && start <= hi);
/* assert [lo, start) is sorted */
if (lo.keys == start)
++start;
for (; start < hi; ++start) {
/* set l to where *start belongs */
l = lo.keys;
r = start;
pivot = *r;
/* Invariants:
* pivot >= all in [lo, l).
* pivot < all in [r, start).
* The second is vacuously true at the start.
*/
assert(l < r);
do {
p = l + ((r - l) >> 1);
IFLT(pivot, *p)
r = p;
else
l = p+1;
} while (l < r);
assert(l == r);
/* The invariants still hold, so pivot >= all in [lo, l) and
pivot < all in [l, start), so pivot belongs at l. Note
that if there are elements equal to pivot, l points to the
first slot after them -- that's why this sort is stable.
Slide over to make room.
Caution: using memmove is much slower under MSVC 5;
we're not usually moving many slots. */
for (p = start; p > l; --p)
*p = *(p-1);
*l = pivot;
if (lo.values != NULL) {
Py_ssize_t offset = lo.values - lo.keys;
p = start + offset;
pivot = *p;
l += offset;
for (p = start + offset; p > l; --p)
*p = *(p-1);
*l = pivot;
}
}
return 0;
fail:
return -1;
}
/*
Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi
is required on entry. "A run" is the longest ascending sequence, with
lo[0] <= lo[1] <= lo[2] <= ...
or the longest descending sequence, with
lo[0] > lo[1] > lo[2] > ...
Boolean *descending is set to 0 in the former case, or to 1 in the latter.
For its intended use in a stable mergesort, the strictness of the defn of
"descending" is needed so that the caller can safely reverse a descending
sequence without violating stability (strict > ensures there are no equal
elements to get out of order).
Returns -1 in case of error.
*/
static Py_ssize_t
count_run(PyObject **lo, PyObject **hi, int *descending)
{
Py_ssize_t n;
assert(lo < hi);
*descending = 0;
++lo;
if (lo == hi)
return 1;
n = 2;
IFLT(*lo, *(lo-1)) {
*descending = 1;
for (lo = lo+1; lo < hi; ++lo, ++n) {
IFLT(*lo, *(lo-1))
;
else
break;
}
}
else {
for (lo = lo+1; lo < hi; ++lo, ++n) {
IFLT(*lo, *(lo-1))
break;
}
}
return n;
fail:
return -1;
}
/*
Locate the proper position of key in a sorted vector; if the vector contains
an element equal to key, return the position immediately to the left of
the leftmost equal element. [gallop_right() does the same except returns
the position to the right of the rightmost equal element (if any).]
"a" is a sorted vector with n elements, starting at a[0]. n must be > 0.
"hint" is an index at which to begin the search, 0 <= hint < n. The closer
hint is to the final result, the faster this runs.
The return value is the int k in 0..n such that
a[k-1] < key <= a[k]
pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW,
key belongs at index k; or, IOW, the first k elements of a should precede
key, and the last n-k should follow key.
Returns -1 on error. See listsort.txt for info on the method.
*/
static Py_ssize_t
gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
Py_ssize_t ofs;
Py_ssize_t lastofs;
Py_ssize_t k;
assert(key && a && n > 0 && hint >= 0 && hint < n);
a += hint;
lastofs = 0;
ofs = 1;
IFLT(*a, key) {
/* a[hint] < key -- gallop right, until
* a[hint + lastofs] < key <= a[hint + ofs]
*/
const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
while (ofs < maxofs) {
IFLT(a[ofs], key) {
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
else /* key <= a[hint + ofs] */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
else {
/* key <= a[hint] -- gallop left, until
* a[hint - ofs] < key <= a[hint - lastofs]
*/
const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
while (ofs < maxofs) {
IFLT(*(a-ofs), key)
break;
/* key <= a[hint - ofs] */
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to positive offsets relative to &a[0]. */
k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
a -= hint;
assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
/* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] < key <= a[ofs].
*/
++lastofs;
while (lastofs < ofs) {
Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
IFLT(a[m], key)
lastofs = m+1; /* a[m] < key */
else
ofs = m; /* key <= a[m] */
}
assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */
return ofs;
fail:
return -1;
}
/*
Exactly like gallop_left(), except that if key already exists in a[0:n],
finds the position immediately to the right of the rightmost equal value.
The return value is the int k in 0..n such that
a[k-1] <= key < a[k]
or -1 if error.
The code duplication is massive, but this is enough different given that
we're sticking to "<" comparisons that it's much harder to follow if
written as one routine with yet another "left or right?" flag.
*/
static Py_ssize_t
gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
Py_ssize_t ofs;
Py_ssize_t lastofs;
Py_ssize_t k;
assert(key && a && n > 0 && hint >= 0 && hint < n);
a += hint;
lastofs = 0;
ofs = 1;
IFLT(key, *a) {
/* key < a[hint] -- gallop left, until
* a[hint - ofs] <= key < a[hint - lastofs]
*/
const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */
while (ofs < maxofs) {
IFLT(key, *(a-ofs)) {
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
else /* a[hint - ofs] <= key */
break;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to positive offsets relative to &a[0]. */
k = lastofs;
lastofs = hint - ofs;
ofs = hint - k;
}
else {
/* a[hint] <= key -- gallop right, until
* a[hint + lastofs] <= key < a[hint + ofs]
*/
const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */
while (ofs < maxofs) {
IFLT(key, a[ofs])
break;
/* a[hint + ofs] <= key */
lastofs = ofs;
ofs = (ofs << 1) + 1;
if (ofs <= 0) /* int overflow */
ofs = maxofs;
}
if (ofs > maxofs)
ofs = maxofs;
/* Translate back to offsets relative to &a[0]. */
lastofs += hint;
ofs += hint;
}
a -= hint;
assert(-1 <= lastofs && lastofs < ofs && ofs <= n);
/* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the
* right of lastofs but no farther right than ofs. Do a binary
* search, with invariant a[lastofs-1] <= key < a[ofs].
*/
++lastofs;
while (lastofs < ofs) {
Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1);
IFLT(key, a[m])
ofs = m; /* key < a[m] */
else
lastofs = m+1; /* a[m] <= key */
}
assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */
return ofs;
fail:
return -1;
}
/* The maximum number of entries in a MergeState's pending-runs stack.
* This is enough to sort arrays of size up to about
* 32 * phi ** MAX_MERGE_PENDING
* where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
* with 2**64 elements.
*/
#define MAX_MERGE_PENDING 85
/* When we get into galloping mode, we stay there until both runs win less
* often than MIN_GALLOP consecutive times. See listsort.txt for more info.
*/
#define MIN_GALLOP 7
/* Avoid malloc for small temp arrays. */
#define MERGESTATE_TEMP_SIZE 256
/* One MergeState exists on the stack per invocation of mergesort. It's just
* a convenient way to pass state around among the helper functions.
*/
struct s_slice {
sortslice base;
Py_ssize_t len;
};
typedef struct s_MergeState {
/* This controls when we get *into* galloping mode. It's initialized
* to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
* random data, and lower for highly structured data.
*/
Py_ssize_t min_gallop;
/* 'a' is temp storage to help with merges. It contains room for
* alloced entries.
*/
sortslice a; /* may point to temparray below */
Py_ssize_t alloced;
/* A stack of n pending runs yet to be merged. Run #i starts at
* address base[i] and extends for len[i] elements. It's always
* true (so long as the indices are in bounds) that
*
* pending[i].base + pending[i].len == pending[i+1].base
*
* so we could cut the storage for this, but it's a minor amount,
* and keeping all the info explicit simplifies the code.
*/
int n;
struct s_slice pending[MAX_MERGE_PENDING];
/* 'a' points to this when possible, rather than muck with malloc. */
PyObject *temparray[MERGESTATE_TEMP_SIZE];
} MergeState;
/* Conceptually a MergeState's constructor. */
static void
merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc)
{
assert(ms != NULL);
if (has_keyfunc) {
/* The temporary space for merging will need at most half the list
* size rounded up. Use the minimum possible space so we can use the
* rest of temparray for other things. In particular, if there is
* enough extra space, listsort() will use it to store the keys.
*/
ms->alloced = (list_size + 1) / 2;
/* ms->alloced describes how many keys will be stored at
ms->temparray, but we also need to store the values. Hence,
ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */
if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced)
ms->alloced = MERGESTATE_TEMP_SIZE / 2;
ms->a.values = &ms->temparray[ms->alloced];
}
else {
ms->alloced = MERGESTATE_TEMP_SIZE;
ms->a.values = NULL;
}
ms->a.keys = ms->temparray;
ms->n = 0;
ms->min_gallop = MIN_GALLOP;
}
/* Free all the temp memory owned by the MergeState. This must be called
* when you're done with a MergeState, and may be called before then if
* you want to free the temp memory early.
*/
static void
merge_freemem(MergeState *ms)
{
assert(ms != NULL);
if (ms->a.keys != ms->temparray)
PyMem_Free(ms->a.keys);
}
/* Ensure enough temp memory for 'need' array slots is available.
* Returns 0 on success and -1 if the memory can't be gotten.
*/
static int
merge_getmem(MergeState *ms, Py_ssize_t need)
{
int multiplier;
assert(ms != NULL);
if (need <= ms->alloced)
return 0;
multiplier = ms->a.values != NULL ? 2 : 1;
/* Don't realloc! That can cost cycles to copy the old data, but
* we don't care what's in the block.
*/
merge_freemem(ms);
if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject*) / multiplier) {
PyErr_NoMemory();
return -1;
}
ms->a.keys = (PyObject**)PyMem_Malloc(multiplier * need
* sizeof(PyObject *));
if (ms->a.keys != NULL) {
ms->alloced = need;
if (ms->a.values != NULL)
ms->a.values = &ms->a.keys[need];
return 0;
}
PyErr_NoMemory();
return -1;
}
#define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \
merge_getmem(MS, NEED))
/* Merge the na elements starting at ssa with the nb elements starting at
* ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0.
* Must also have that ssa.keys[na-1] belongs at the end of the merge, and
* should have na <= nb. See listsort.txt for more info. Return 0 if
* successful, -1 if error.
*/
static Py_ssize_t
merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
sortslice ssb, Py_ssize_t nb)
{
Py_ssize_t k;
sortslice dest;
int result = -1; /* guilty until proved innocent */
Py_ssize_t min_gallop;
assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
assert(ssa.keys + na == ssb.keys);
if (MERGE_GETMEM(ms, na) < 0)
return -1;
sortslice_memcpy(&ms->a, 0, &ssa, 0, na);
dest = ssa;
ssa = ms->a;
sortslice_copy_incr(&dest, &ssb);
--nb;
if (nb == 0)
goto Succeed;
if (na == 1)
goto CopyB;
min_gallop = ms->min_gallop;
for (;;) {
Py_ssize_t acount = 0; /* # of times A won in a row */
Py_ssize_t bcount = 0; /* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for (;;) {
assert(na > 1 && nb > 0);
IFLT(ssb.keys[0], ssa.keys[0]){
sortslice_copy_incr(&dest, &ssb);
++bcount;
acount = 0;
--nb;
if (nb == 0)
goto Succeed;
if (bcount >= min_gallop)
break;
}
else {
sortslice_copy_incr(&dest, &ssa);
++acount;
bcount = 0;
--na;
if (na == 1)
goto CopyB;
if (acount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++min_gallop;
do {
assert(na > 1 && nb > 0);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
k = gallop_right(ssb.keys[0], ssa.keys, na, 0);
acount = k;
if (k) {
if (k < 0)
goto fail;
sortslice_memcpy(&dest, 0, &ssa, 0, k);
sortslice_advance(&dest, k);
sortslice_advance(&ssa, k);
na -= k;
if (na == 1)
goto CopyB;
/* na==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if (na == 0)
goto Succeed;
}
sortslice_copy_incr(&dest, &ssb);
--nb;
if (nb == 0)
goto Succeed;
k = gallop_left(ssa.keys[0], ssb.keys, nb, 0);
bcount = k;
if (k) {
if (k < 0)
goto fail;
sortslice_memmove(&dest, 0, &ssb, 0, k);
sortslice_advance(&dest, k);
sortslice_advance(&ssb, k);
nb -= k;
if (nb == 0)
goto Succeed;
}
sortslice_copy_incr(&dest, &ssa);
--na;
if (na == 1)
goto CopyB;
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
++min_gallop; /* penalize it for leaving galloping mode */
ms->min_gallop = min_gallop;
}
Succeed:
result = 0;
fail:
if (na)
sortslice_memcpy(&dest, 0, &ssa, 0, na);
return result;
CopyB:
assert(na == 1 && nb > 0);
/* The last element of ssa belongs at the end of the merge. */
sortslice_memmove(&dest, 0, &ssb, 0, nb);
sortslice_copy(&dest, nb, &ssa, 0);
return 0;
}
/* Merge the na elements starting at pa with the nb elements starting at
* ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0.
* Must also have that ssa.keys[na-1] belongs at the end of the merge, and
* should have na >= nb. See listsort.txt for more info. Return 0 if
* successful, -1 if error.
*/
static Py_ssize_t
merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
sortslice ssb, Py_ssize_t nb)
{
Py_ssize_t k;
sortslice dest, basea, baseb;
int result = -1; /* guilty until proved innocent */
Py_ssize_t min_gallop;
assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0);
assert(ssa.keys + na == ssb.keys);
if (MERGE_GETMEM(ms, nb) < 0)
return -1;
dest = ssb;
sortslice_advance(&dest, nb-1);
sortslice_memcpy(&ms->a, 0, &ssb, 0, nb);
basea = ssa;
baseb = ms->a;
ssb.keys = ms->a.keys + nb - 1;
if (ssb.values != NULL)
ssb.values = ms->a.values + nb - 1;
sortslice_advance(&ssa, na - 1);
sortslice_copy_decr(&dest, &ssa);
--na;
if (na == 0)
goto Succeed;
if (nb == 1)
goto CopyA;
min_gallop = ms->min_gallop;
for (;;) {
Py_ssize_t acount = 0; /* # of times A won in a row */
Py_ssize_t bcount = 0; /* # of times B won in a row */
/* Do the straightforward thing until (if ever) one run
* appears to win consistently.
*/
for (;;) {
assert(na > 0 && nb > 1);
IFLT(ssb.keys[0], ssa.keys[0]){
sortslice_copy_decr(&dest, &ssa);
++acount;
bcount = 0;
--na;
if (na == 0)
goto Succeed;
if (acount >= min_gallop)
break;
}
else {
sortslice_copy_decr(&dest, &ssb);
++bcount;
acount = 0;
--nb;
if (nb == 1)
goto CopyA;
if (bcount >= min_gallop)
break;
}
}
/* One run is winning so consistently that galloping may
* be a huge win. So try that, and continue galloping until
* (if ever) neither run appears to be winning consistently
* anymore.
*/
++min_gallop;
do {
assert(na > 0 && nb > 1);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
k = gallop_right(ssb.keys[0], basea.keys, na, na-1);
if (k < 0)
goto fail;
k = na - k;
acount = k;
if (k) {
sortslice_advance(&dest, -k);
sortslice_advance(&ssa, -k);
sortslice_memmove(&dest, 1, &ssa, 1, k);
na -= k;
if (na == 0)
goto Succeed;
}
sortslice_copy_decr(&dest, &ssb);
--nb;
if (nb == 1)
goto CopyA;
k = gallop_left(ssa.keys[0], baseb.keys, nb, nb-1);
if (k < 0)
goto fail;
k = nb - k;
bcount = k;
if (k) {
sortslice_advance(&dest, -k);
sortslice_advance(&ssb, -k);
sortslice_memcpy(&dest, 1, &ssb, 1, k);
nb -= k;
if (nb == 1)
goto CopyA;
/* nb==0 is impossible now if the comparison
* function is consistent, but we can't assume
* that it is.
*/
if (nb == 0)
goto Succeed;
}
sortslice_copy_decr(&dest, &ssa);
--na;
if (na == 0)
goto Succeed;
} while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP);
++min_gallop; /* penalize it for leaving galloping mode */
ms->min_gallop = min_gallop;
}
Succeed:
result = 0;
fail:
if (nb)
sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb);
return result;
CopyA:
assert(nb == 1 && na > 0);
/* The first element of ssb belongs at the front of the merge. */
sortslice_memmove(&dest, 1-na, &ssa, 1-na, na);
sortslice_advance(&dest, -na);
sortslice_advance(&ssa, -na);
sortslice_copy(&dest, 0, &ssb, 0);
return 0;
}
/* Merge the two runs at stack indices i and i+1.
* Returns 0 on success, -1 on error.
*/
static Py_ssize_t
merge_at(MergeState *ms, Py_ssize_t i)
{
sortslice ssa, ssb;
Py_ssize_t na, nb;
Py_ssize_t k;
assert(ms != NULL);
assert(ms->n >= 2);
assert(i >= 0);
assert(i == ms->n - 2 || i == ms->n - 3);
ssa = ms->pending[i].base;
na = ms->pending[i].len;
ssb = ms->pending[i+1].base;
nb = ms->pending[i+1].len;
assert(na > 0 && nb > 0);
assert(ssa.keys + na == ssb.keys);
/* Record the length of the combined runs; if i is the 3rd-last
* run now, also slide over the last run (which isn't involved
* in this merge). The current run i+1 goes away in any case.
*/
ms->pending[i].len = na + nb;
if (i == ms->n - 3)
ms->pending[i+1] = ms->pending[i+2];
--ms->n;
/* Where does b start in a? Elements in a before that can be
* ignored (already in place).
*/
k = gallop_right(*ssb.keys, ssa.keys, na, 0);
if (k < 0)
return -1;
sortslice_advance(&ssa, k);
na -= k;
if (na == 0)
return 0;
/* Where does a end in b? Elements in b after that can be
* ignored (already in place).
*/
nb = gallop_left(ssa.keys[na-1], ssb.keys, nb, nb-1);
if (nb <= 0)
return nb;
/* Merge what remains of the runs, using a temp array with
* min(na, nb) elements.
*/
if (na <= nb)
return merge_lo(ms, ssa, na, ssb, nb);
else
return merge_hi(ms, ssa, na, ssb, nb);
}
/* Examine the stack of runs waiting to be merged, merging adjacent runs
* until the stack invariants are re-established:
*
* 1. len[-3] > len[-2] + len[-1]
* 2. len[-2] > len[-1]
*
* See listsort.txt for more info.
*
* Returns 0 on success, -1 on error.
*/
static int
merge_collapse(MergeState *ms)
{
struct s_slice *p = ms->pending;
assert(ms);
while (ms->n > 1) {
Py_ssize_t n = ms->n - 2;
if ((n > 0 && p[n-1].len <= p[n].len + p[n+1].len) ||
(n > 1 && p[n-2].len <= p[n-1].len + p[n].len)) {
if (p[n-1].len < p[n+1].len)
--n;
if (merge_at(ms, n) < 0)
return -1;
}
else if (p[n].len <= p[n+1].len) {
if (merge_at(ms, n) < 0)
return -1;
}
else
break;
}
return 0;
}
/* Regardless of invariants, merge all runs on the stack until only one
* remains. This is used at the end of the mergesort.
*
* Returns 0 on success, -1 on error.
*/
static int
merge_force_collapse(MergeState *ms)
{
struct s_slice *p = ms->pending;
assert(ms);
while (ms->n > 1) {
Py_ssize_t n = ms->n - 2;
if (n > 0 && p[n-1].len < p[n+1].len)
--n;
if (merge_at(ms, n) < 0)
return -1;
}
return 0;
}
/* Compute a good value for the minimum run length; natural runs shorter
* than this are boosted artificially via binary insertion.
*
* If n < 64, return n (it's too small to bother with fancy stuff).
* Else if n is an exact power of 2, return 32.
* Else return an int k, 32 <= k <= 64, such that n/k is close to, but
* strictly less than, an exact power of 2.
*
* See listsort.txt for more info.
*/
static Py_ssize_t
merge_compute_minrun(Py_ssize_t n)
{
Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */
assert(n >= 0);
while (n >= 64) {
r |= n & 1;
n >>= 1;
}
return n + r;
}
static void
reverse_sortslice(sortslice *s, Py_ssize_t n)
{
reverse_slice(s->keys, &s->keys[n]);
if (s->values != NULL)
reverse_slice(s->values, &s->values[n]);
}