-
Notifications
You must be signed in to change notification settings - Fork 344
/
train.py
85 lines (66 loc) · 2.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
# Set random seed
seed = 42
################################
########## DATA PREP ###########
################################
# Load in the data
df = pd.read_csv("wine_quality.csv")
# Split into train and test sections
y = df.pop("quality")
X_train, X_test, y_train, y_test = train_test_split(df, y, test_size=0.2, random_state=seed)
#################################
########## MODELLING ############
#################################
# Fit a model on the train section
regr = RandomForestRegressor(max_depth=2, random_state=seed)
regr.fit(X_train, y_train)
# Report training set score
train_score = regr.score(X_train, y_train) * 100
# Report test set score
test_score = regr.score(X_test, y_test) * 100
# Write scores to a file
with open("metrics.txt", 'w') as outfile:
outfile.write("Training variance explained: %2.1f%%\n" % train_score)
outfile.write("Test variance explained: %2.1f%%\n" % test_score)
##########################################
##### PLOT FEATURE IMPORTANCE ############
##########################################
# Calculate feature importance in random forest
importances = regr.feature_importances_
labels = df.columns
feature_df = pd.DataFrame(list(zip(labels, importances)), columns = ["feature","importance"])
feature_df = feature_df.sort_values(by='importance', ascending=False,)
# image formatting
axis_fs = 18 #fontsize
title_fs = 22 #fontsize
sns.set(style="whitegrid")
ax = sns.barplot(x="importance", y="feature", data=feature_df)
ax.set_xlabel('Importance',fontsize = axis_fs)
ax.set_ylabel('Feature', fontsize = axis_fs)#ylabel
ax.set_title('Random forest\nfeature importance', fontsize = title_fs)
plt.tight_layout()
plt.savefig("feature_importance.png",dpi=120)
plt.close()
##########################################
############ PLOT RESIDUALS #############
##########################################
y_pred = regr.predict(X_test) + np.random.normal(0,0.25,len(y_test))
y_jitter = y_test + np.random.normal(0,0.25,len(y_test))
res_df = pd.DataFrame(list(zip(y_jitter,y_pred)), columns = ["true","pred"])
ax = sns.scatterplot(x="true", y="pred",data=res_df)
ax.set_aspect('equal')
ax.set_xlabel('True wine quality',fontsize = axis_fs)
ax.set_ylabel('Predicted wine quality', fontsize = axis_fs)#ylabel
ax.set_title('Residuals', fontsize = title_fs)
# Make it pretty- square aspect ratio
ax.plot([1, 10], [1, 10], 'black', linewidth=1)
plt.ylim((2.5,8.5))
plt.xlim((2.5,8.5))
plt.tight_layout()
plt.savefig("residuals.png",dpi=120)