diff --git a/lib/scholar/manifold/mds.ex b/lib/scholar/manifold/mds.ex index 7976c9da..ae62b720 100644 --- a/lib/scholar/manifold/mds.ex +++ b/lib/scholar/manifold/mds.ex @@ -1,10 +1,7 @@ defmodule Scholar.Manifold.MDS do @moduledoc """ - TSNE (t-Distributed Stochastic Neighbor Embedding) is a nonlinear dimensionality reduction technique. - - ## References - - * [t-SNE: t-Distributed Stochastic Neighbor Embedding](http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf) + Multidimensional scaling (MDS) seeks a low-dimensional representation of the data + in which the distances respect well the distances in the original high-dimensional space. """ import Nx.Defn import Scholar.Shared diff --git a/notebooks/cv_gradient_boosting_tree.livemd b/notebooks/cv_gradient_boosting_tree.livemd index 9fe6d970..f9a6a970 100644 --- a/notebooks/cv_gradient_boosting_tree.livemd +++ b/notebooks/cv_gradient_boosting_tree.livemd @@ -1,4 +1,4 @@ -# Using cross-validation with gradient boosting trees +# Cross-validation with gradient boosting trees ```elixir Mix.install([ diff --git a/notebooks/hierarchical_clustering.livemd b/notebooks/hierarchical_clustering.livemd index b7096029..fd86e0d4 100644 --- a/notebooks/hierarchical_clustering.livemd +++ b/notebooks/hierarchical_clustering.livemd @@ -1,4 +1,4 @@ -# Hierarchical Clustering +# Hierarchical clustering ```elixir app_root = Path.join(__DIR__, "..") diff --git a/notebooks/k_means.livemd b/notebooks/k_means.livemd index d747d825..a8b22086 100644 --- a/notebooks/k_means.livemd +++ b/notebooks/k_means.livemd @@ -1,6 +1,6 @@ -# K-means clustering +# k-means clustering ```elixir Mix.install([ diff --git a/notebooks/k_nearest_neighbors.livemd b/notebooks/k_nearest_neighbors.livemd index 01f27f7d..014e3df5 100644 --- a/notebooks/k_nearest_neighbors.livemd +++ b/notebooks/k_nearest_neighbors.livemd @@ -1,6 +1,6 @@ -# K-Nearest Neighbors +# k-nearest neighbors ```elixir Mix.install([ diff --git a/notebooks/linear_regression.livemd b/notebooks/linear_regression.livemd index 81f69e9c..a5c83c26 100644 --- a/notebooks/linear_regression.livemd +++ b/notebooks/linear_regression.livemd @@ -1,6 +1,6 @@ -# Linear Regression in Practice +# Linear regression in practice ```elixir Mix.install([ diff --git a/notebooks/mds.livemd b/notebooks/mds.livemd index b47f4bc9..21d3ecd7 100644 --- a/notebooks/mds.livemd +++ b/notebooks/mds.livemd @@ -1,4 +1,4 @@ -# MDS +# Multidimensional scaling (MDS) ```elixir Mix.install([ @@ -25,6 +25,8 @@ alias Explorer.DataFrame, as: DF ## Swiss Roll +Multidimensional scaling (MDS) seeks a low-dimensional representation of the data in which the distances respect well the distances in the original high-dimensional space. + The first example demonstrating MDS will use so-called Swiss Roll dataset. It's call as such because it resembles a popular sponge cake. Let's have a look on this dataset. | ![Skewness](https://scikit-learn.org/stable/_images/sphx_glr_plot_swissroll_001.png) | @@ -1098,7 +1100,7 @@ labels Let's look how one of the images look like ```elixir -image = +image = Nx.reshape(digits_data[[1234, ..]], {image_height, image_width}) |> Nx.as_type({:u, 8})