diff --git a/nx/lib/nx/defn/sharding_compiler.ex b/nx/lib/nx/defn/sharding_compiler.ex index df5d35f575..e556b8db3a 100644 --- a/nx/lib/nx/defn/sharding_compiler.ex +++ b/nx/lib/nx/defn/sharding_compiler.ex @@ -5,9 +5,10 @@ defmodule Nx.Defn.ShardingCompiler do alias Nx.Defn.ShardingCompiler.Shard - @behaviour Nx.Defn.Compiler + alias Nx.Defn.ShardingCompiler.Passes.ShardPropagation + alias Nx.Defn.ShardingCompiler.Passes.GraphSplitter - defstruct [:id, :shards, :input_tensor_shardings, :parameter_ids_to_index] + @behaviour Nx.Defn.Compiler @impl true def __jit__(key, vars, fun, args, opts) do @@ -20,17 +21,15 @@ defmodule Nx.Defn.ShardingCompiler do [args] = args - [ - %T{ - shape: shape, - type: type, - data: %__MODULE__{ - shards: output_shards, - parameter_ids_to_index: parameter_ids_to_index - } + %T{ + shape: shape, + type: type, + data: %ShardPropagation{ + shards: output_shards, + parameter_ids_to_index: parameter_ids_to_index } - ] = - __compile__(key, vars, fun, sharding_config: opts[:sharding_config]).([args]) + } = + propagate_shards(vars, fun, opts[:sharding_config] || []) data_sections = output_shards |> Enum.sort_by(fn {axis, _} -> axis end) |> cartesian_product() @@ -139,40 +138,24 @@ defmodule Nx.Defn.ShardingCompiler do defp cartesian_product([]), do: [[]] @impl true - def __compile__(_key, vars, fun, opts) do - opts = Keyword.validate!(opts, [:sharding_config]) + def __compile__(_key, _vars, _fun, _opts) do + raise "Not implemented yet" + end + + def propagate_shards(vars, fun, sharding_config) do expr = fun.(vars) - state_shard_configs = - opts - |> Keyword.get(:sharding_config) + tensor_shardings = + sharding_config |> Enum.zip_with(vars, fn config, var -> Shard.from_config(var, config) end) |> Enum.with_index(fn x, idx -> {idx, x} end) |> Map.new() - fn [params] -> - state_params = params |> Enum.with_index(fn x, idx -> {idx, x} end) |> Map.new() - - {container, {_cache, state}} = - composite_eval( - expr, - %{ - gc?: opts[:garbage_collect] || false, - params: state_params, - tensor_shardings: state_shard_configs, - parameter_ids_to_index: %{}, - contracted_tensor_shardings: %{} - }, - %{} - ) - - container = put_in(container.data.input_tensor_shardings, state_shard_configs) - container = put_in(container.data.parameter_ids_to_index, state.parameter_ids_to_index) - - [container] - end + {container, _cache, _state} = ShardPropagation.traverse(expr, tensor_shardings) + + container end @impl true @@ -187,366 +170,6 @@ defmodule Nx.Defn.ShardingCompiler do def init(opts), do: opts - def inspect( - %T{data: %__MODULE__{shards: shards}}, - inspect_opts - ) do - import Inspect.Algebra - - shards - |> Enum.sort_by(fn {axis, _} -> axis end) - |> Enum.map(fn {axis, shards} -> - axis_name = inspect_opts.custom_options[:axis_names][axis] || axis - - shard_doc = - shards - |> Enum.flat_map(fn %Shard{} = shard -> - opts = put_in(inspect_opts.custom_options[:single_line], true) - opts = put_in(opts.custom_options[:print_axis], false) - - [ - line(), - Shard.inspect(shard, opts) - ] - end) - |> concat() - |> nest(2) - - concat([ - "#{axis_name}: ", - shard_doc - ]) - end) - |> Enum.intersperse(line()) - |> concat() - end - - defp put_shards(tensor, shards, opts \\ []) do - shards = - if input_id = opts[:input_id] do - Map.new(shards, fn {axis, shards} -> - {axis, Enum.map(shards, &%Shard{&1 | input_id: input_id})} - end) - else - shards - end - - data = %__MODULE__{id: make_ref(), shards: shards} - %{tensor | data: data} - end - - def shard_from_config(tensor, config, opts \\ []) do - shards = Shard.from_config(tensor, config, opts) - put_shards(tensor, shards, opts) - end - - defp composite_eval(expr, state, cache) do - Composite.traverse(expr, {cache, state}, &eval/2) - end - - defp eval(%T{data: %Expr{op: :tensor, args: [t]}}, {cache, state}) do - config = - t - |> Nx.axes() - |> Map.new(fn axis -> - {axis, [0..(elem(t.shape, axis) - 1)]} - end) - - {shard_from_config(t, config), {cache, state}} - end - - defp eval(%T{data: %Expr{op: :constant, args: [_constant]}} = ans, {cache, state}) do - {shard_from_config(ans, %{0 => [0..0]}), {cache, state}} - end - - defp eval(%T{data: %Expr{op: :metadata, args: [expr, _meta]}}, {cache, state}) do - composite_eval(expr, state, cache) - end - - defp eval(%T{data: %Expr{id: id, op: op}} = ans, {cache, state}) do - case cache do - %{^id => res} -> - {res, {cache, state}} - - _ -> - eval_apply(op, ans, {cache, state}) - end - end - - defp eval(other, {cache, state}) do - {other, {cache, state}} - end - - defp eval_apply(:parameter, %T{data: %Expr{id: id, args: [i]}}, {cache, state}) do - %T{} = tensor = Map.fetch!(state.params, i).() - shards = Map.fetch!(state.tensor_shardings, i) - res = tensor |> Nx.devectorize() |> put_shards(shards, input_id: id) - - state = put_in(state.parameter_ids_to_index[id], i) - {res, {Map.put(cache, id, res), state}} - end - - defp eval_apply(:elem, %T{data: %Expr{id: id, args: [tuple, i]}}, {cache, state}) do - {tuple, cache} = composite_eval(tuple, state, cache) - res = elem(tuple, i) - {res, {Map.put(cache, id, res), state}} - end - - defp eval_apply(op, %T{data: %Expr{id: id}} = ans, {cache, state}) do - {args, {cache, state}} = Nx.Defn.Tree.apply_args(ans, {cache, state}, &eval/2) - - {res, state} = apply_op(op, ans, args, state) - {res, {Map.put(cache, id, res), state}} - end - - @unary_ops [:exp, :expm1, :log, :log1p, :sigmoid, :cos, :sin, :tan, :cosh, :sinh, :tanh] ++ - [:acosh, :asinh, :atanh, :sqrt, :rsqrt, :cbrt, :negate, :sign, :abs, :bitwise_not] ++ - [:is_nan, :is_infinity] ++ - [:conjugate, :population_count, :count_leading_zeros, :floor, :ceil, :round] ++ - [:erf, :erfc, :erf_inv, :acos, :asin, :atan, :bitcast, :real, :imag] - - defp apply_op(op, ans, [arg], state) when op in @unary_ops do - {put_shards(ans, arg.data.shards), state} - end - - @binary_ops [ - :add, - :subtract, - :multiply, - :pow, - :remainder, - :divide, - :atan2, - :min, - :max, - :quotient - ] ++ - [:bitwise_and, :bitwise_or, :bitwise_xor, :left_shift, :right_shift] ++ - [:equal, :not_equal, :greater, :less, :greater_equal, :less_equal] ++ - [:logical_and, :logical_or, :logical_xor] - - defp apply_op(op, ans, [arg0, arg1], state) when op in @binary_ops do - {shards, state} = bin_op_tensor_sharding(arg0, arg1, ans, state) - {put_shards(ans, shards), state} - end - - # defp apply_op(:reshape, ans, [arg], state) do - # TODO: support reshape: we need to find a way to map the shards to the new shape - # This can be achieved in a few cases, but not all. - # Examples: - # [2, 3] -> [3, 2] works iff both axes are fully sharded - # [2, 6] -> [2, 1, 3, 2] works if we can fit the shards of axis 1 into [3, 2] - # end - - defp apply_op(:squeeze, ans, [arg, squeeze_axes], state) do - shards = Enum.sort_by(arg.data.shards, fn {axis, _} -> axis end) - - {[], _, out_shards} = - Enum.reduce(shards, {Enum.sort(squeeze_axes, :asc), 0, %{}}, fn - {axis, _shards}, {[axis | squeeze_axes], num_squeezed_axes, out_shards} -> - {squeeze_axes, num_squeezed_axes + 1, out_shards} - - {axis, shards}, {squeeze_axes, num_squeezed_axes, out_shards} -> - {squeeze_axes, num_squeezed_axes, Map.put(out_shards, axis - num_squeezed_axes, shards)} - end) - - {put_shards(ans, out_shards), state} - end - - defp apply_op(:transpose, ans, [arg, axes], state) do - shards = arg.data.shards - - out_shards = - axes - |> Enum.with_index(fn in_axis, out_axis -> - out_shards = make_child_shards(Map.fetch!(shards, in_axis), out_axis) - {out_axis, out_shards} - end) - |> Map.new() - - {put_shards(ans, out_shards), state} - end - - defp apply_op(:dot, ans, [t0, c0, b0, t1, c1, b1], state) do - # TO-DO: Make it so that sharding over a contracting axis becomes - # an all-reduce op instead of simply ignoring the sharding - left_sharding = - Enum.reduce(c0, t0.data.shards, fn axis, acc -> - Map.put(acc, axis, [ - %Shard{ - id: make_ref(), - axis: axis, - start: 0, - length: elem(t0.shape, axis), - parents: [] - } - ]) - end) - - right_sharding = - Enum.reduce(c1, t1.data.shards, fn axis, acc -> - Map.put(acc, axis, [ - %Shard{ - id: make_ref(), - axis: axis, - start: 0, - length: elem(t1.shape, axis), - parents: [] - } - ]) - end) - - offset = length(b0) - - batch_shards = - Enum.zip_with([b0, b1, 0..(offset - 1)], fn left_axis, right_axis, axis -> - left_shards = Map.fetch!(left_sharding, left_axis) - right_shards = Map.fetch!(right_sharding, right_axis) - resolve_sharding_broadcast(axis, left_shards, false, right_shards, false) - end) - - out_shards_left = - Enum.with_index(Nx.axes(t0) -- c0, fn axis, idx -> - {idx + offset, - left_sharding - |> Map.fetch!(axis) - |> make_child_shards(idx + offset)} - end) - - offset = offset + length(out_shards_left) - - out_shards_right = - Enum.with_index(Nx.axes(t1) -- c1, fn axis, idx -> - {idx + offset, - right_sharding - |> Map.fetch!(axis) - |> make_child_shards(idx + offset)} - end) - - out_shards = Map.new(batch_shards ++ out_shards_left ++ out_shards_right) - {put_shards(ans, out_shards), state} - end - - defp apply_op(op, _ans, _args, _state) do - raise "Unsupported op: #{op}" - end - - defp bin_op_tensor_sharding( - %T{ - shape: left_shape, - data: %__MODULE__{ - shards: left_config - } - }, - %T{ - shape: right_shape, - data: %__MODULE__{ - shards: right_config - } - }, - %T{shape: out_shape}, - state - ) do - left_broadcast_axes = Nx.Shape.broadcast_axes(left_shape, out_shape) - right_broadcast_axes = Nx.Shape.broadcast_axes(right_shape, out_shape) - - left_shards = - Enum.map(Nx.axes(left_shape), fn axis -> - {axis, left_config[axis]} - end) - - left_shards = - Enum.zip_with(left_broadcast_axes, left_shards, fn new_axis, {_id, shard} -> - {new_axis, shard} - end) - |> Map.new() - - left_axis_sizes = - Enum.with_index(left_broadcast_axes, fn out_axis, in_axis -> - {out_axis, elem(left_shape, in_axis)} - end) - |> Map.new() - - right_shards = - Enum.map(Nx.axes(right_shape), fn axis -> - {axis, right_config[axis]} - end) - - right_axis_sizes = - Enum.with_index(right_broadcast_axes, fn out_axis, in_axis -> - {out_axis, elem(right_shape, in_axis)} - end) - |> Map.new() - - right_shards = - Enum.zip_with(right_broadcast_axes, right_shards, fn new_axis, {_id, shard} -> - {new_axis, shard} - end) - |> Map.new() - - out_axes = Nx.axes(out_shape) - - left_shards_list = - Enum.map(out_axes, fn axis -> - left_shards[axis] || [] - end) - - right_shards_list = - Enum.map(out_axes, fn axis -> - right_shards[axis] || [] - end) - - result = - Enum.reduce(out_axes, {left_shards_list, right_shards_list, []}, fn - axis, {[left_shards | left_acc], [right_shards | right_acc], out_acc} -> - out_shards = - case {left_shards, right_shards} do - {[], []} -> - [] - - {[], shards} -> - make_child_shards(shards, axis) - - {shards, []} -> - make_child_shards(shards, axis) - - {left, right} -> - # If we are dealing with a broadcast axis on either tensor, we can - # map the single shard to all shards on the other tensor. - - left_size = left_axis_sizes[axis] - right_size = right_axis_sizes[axis] - - left_is_broadcasting = left_size != right_size and left_size == 1 - right_is_broadcasting = left_size != right_size and right_size == 1 - - resolve_sharding_broadcast( - axis, - left, - left_is_broadcasting, - right, - right_is_broadcasting - ) - end - - { - left_acc, - right_acc, - [out_shards | out_acc] - } - end) - - {[], [], out_reverse_shards} = result - - out_shards = - out_reverse_shards - |> Enum.reverse() - |> Enum.with_index() - |> Map.new(fn {shards, idx} -> {idx, shards} end) - - {out_shards, state} - end - defp get_root_parents(shard, acc \\ []) defp get_root_parents(%Shard{parents: []} = shard, acc), do: List.flatten([shard | acc]) @@ -555,48 +178,4 @@ defmodule Nx.Defn.ShardingCompiler do Enum.reduce(parents, acc, &get_root_parents/2) |> List.flatten() end - - defp resolve_sharding_broadcast(axis, [left_shard], true, right_shards, false) do - # We have a single shard on the left that we'll map onto the right shards. - make_child_shards(right_shards, axis, [left_shard]) - end - - defp resolve_sharding_broadcast(axis, left_shards, false, [right_shard], true) do - # We have a single shard on the right that we'll map onto the left shards. - make_child_shards(left_shards, axis, [right_shard]) - end - - defp resolve_sharding_broadcast(axis, left_shards, false, right_shards, false) do - # We have a shard on both sides. We need to determine the intersection of the two. - # This is fine only if all shards are equal - {reverse_out_shards, all_shards_match} = - Enum.zip_reduce(left_shards, right_shards, {[], true}, fn left, - right, - {out_acc, match_acc} -> - match_acc = match_acc and left.start == right.start and left.length == right.length - - out_acc = make_child_shards([left], axis, [right]) ++ out_acc - - {out_acc, match_acc} - end) - - if not all_shards_match do - raise "incompatible sharding" - end - - Enum.reverse(reverse_out_shards) - end - - defp make_child_shards(shards, axis, extra_parents \\ []) do - Enum.map(shards, fn shard -> - %Shard{ - id: make_ref(), - axis: axis, - start: shard.start, - length: shard.length, - input_id: nil, - parents: [shard | extra_parents] - } - end) - end end diff --git a/nx/lib/nx/defn/sharding_compiler/passes/shard_propagation.ex b/nx/lib/nx/defn/sharding_compiler/passes/shard_propagation.ex new file mode 100644 index 0000000000..85e00d09e4 --- /dev/null +++ b/nx/lib/nx/defn/sharding_compiler/passes/shard_propagation.ex @@ -0,0 +1,419 @@ +defmodule Nx.Defn.ShardingCompiler.Passes.ShardPropagation do + alias Nx.Defn.Composite + alias Nx.Tensor, as: T + alias Nx.Defn.Expr + + alias Nx.Defn.ShardingCompiler.Shard + + defstruct [:id, :shards, :input_tensor_shardings, :parameter_ids_to_index] + + def traverse(expr, tensor_shardings) do + {container, {cache, state}} = + composite_traverse( + expr, + %{ + tensor_shardings: tensor_shardings, + parameter_ids_to_index: %{} + }, + %{} + ) + + container = put_in(container.data.input_tensor_shardings, tensor_shardings) + container = put_in(container.data.parameter_ids_to_index, state.parameter_ids_to_index) + + {container, cache, state} + end + + defp put_shards(tensor, shards, opts \\ []) do + shards = + if input_id = opts[:input_id] do + Map.new(shards, fn {axis, shards} -> + {axis, Enum.map(shards, &%Shard{&1 | input_id: input_id})} + end) + else + shards + end + + data = %__MODULE__{id: make_ref(), shards: shards} + %{tensor | data: data} + end + + def shard_from_config(tensor, config, opts \\ []) do + shards = Shard.from_config(tensor, config, opts) + put_shards(tensor, shards, opts) + end + + defp composite_traverse(expr, state, cache) do + Composite.traverse(expr, {cache, state}, &eval/2) + end + + defp eval(%T{data: %Expr{op: :tensor, args: [t]}}, {cache, state}) do + config = + t + |> Nx.axes() + |> Map.new(fn axis -> + {axis, [0..(elem(t.shape, axis) - 1)]} + end) + + {shard_from_config(t, config), {cache, state}} + end + + defp eval(%T{data: %Expr{op: :constant, args: [_constant]}} = ans, {cache, state}) do + {shard_from_config(ans, %{0 => [0..0]}), {cache, state}} + end + + defp eval(%T{data: %Expr{op: :metadata, args: [expr, _meta]}}, {cache, state}) do + composite_traverse(expr, state, cache) + end + + defp eval(%T{data: %Expr{id: id, op: op}} = ans, {cache, state}) do + case cache do + %{^id => res} -> + {res, {cache, state}} + + _ -> + eval_apply(op, ans, {cache, state}) + end + end + + defp eval(other, {cache, state}) do + {other, {cache, state}} + end + + defp eval_apply(:parameter, %T{data: %Expr{id: id, args: [i]}} = expr, {cache, state}) do + shards = Map.fetch!(state.tensor_shardings, i) + res = put_shards(expr, shards, input_id: id) + + state = put_in(state.parameter_ids_to_index[id], i) + {res, {Map.put(cache, id, res), state}} + end + + defp eval_apply(:elem, %T{data: %Expr{id: id, args: [tuple, i]}}, {cache, state}) do + {tuple, cache} = composite_traverse(tuple, state, cache) + res = elem(tuple, i) + {res, {Map.put(cache, id, res), state}} + end + + defp eval_apply(op, %T{data: %Expr{id: id}} = ans, {cache, state}) do + {args, {cache, state}} = Nx.Defn.Tree.apply_args(ans, {cache, state}, &eval/2) + + {res, state} = apply_op(op, ans, args, state) + {res, {Map.put(cache, id, res), state}} + end + + @unary_ops [:exp, :expm1, :log, :log1p, :sigmoid, :cos, :sin, :tan, :cosh, :sinh, :tanh] ++ + [:acosh, :asinh, :atanh, :sqrt, :rsqrt, :cbrt, :negate, :sign, :abs, :bitwise_not] ++ + [:is_nan, :is_infinity] ++ + [:conjugate, :population_count, :count_leading_zeros, :floor, :ceil, :round] ++ + [:erf, :erfc, :erf_inv, :acos, :asin, :atan, :bitcast, :real, :imag] + + defp apply_op(op, ans, [arg], state) when op in @unary_ops do + {put_shards(ans, arg.data.shards), state} + end + + @binary_ops [ + :add, + :subtract, + :multiply, + :pow, + :remainder, + :divide, + :atan2, + :min, + :max, + :quotient + ] ++ + [:bitwise_and, :bitwise_or, :bitwise_xor, :left_shift, :right_shift] ++ + [:equal, :not_equal, :greater, :less, :greater_equal, :less_equal] ++ + [:logical_and, :logical_or, :logical_xor] + + defp apply_op(op, ans, [arg0, arg1], state) when op in @binary_ops do + {shards, state} = bin_op_tensor_sharding(arg0, arg1, ans, state) + {put_shards(ans, shards), state} + end + + defp apply_op(:squeeze, ans, [arg, squeeze_axes], state) do + shards = Enum.sort_by(arg.data.shards, fn {axis, _} -> axis end) + + {[], _, out_shards} = + Enum.reduce(shards, {Enum.sort(squeeze_axes, :asc), 0, %{}}, fn + {axis, _shards}, {[axis | squeeze_axes], num_squeezed_axes, out_shards} -> + {squeeze_axes, num_squeezed_axes + 1, out_shards} + + {axis, shards}, {squeeze_axes, num_squeezed_axes, out_shards} -> + {squeeze_axes, num_squeezed_axes, Map.put(out_shards, axis - num_squeezed_axes, shards)} + end) + + {put_shards(ans, out_shards), state} + end + + defp apply_op(:transpose, ans, [arg, axes], state) do + shards = arg.data.shards + + out_shards = + axes + |> Enum.with_index(fn in_axis, out_axis -> + out_shards = make_child_shards(Map.fetch!(shards, in_axis), out_axis) + {out_axis, out_shards} + end) + |> Map.new() + + {put_shards(ans, out_shards), state} + end + + defp apply_op(:dot, ans, [t0, c0, b0, t1, c1, b1], state) do + left_sharding = + Enum.reduce(c0, t0.data.shards, fn axis, acc -> + Map.put(acc, axis, [ + %Shard{ + id: make_ref(), + axis: axis, + start: 0, + length: elem(t0.shape, axis), + parents: [] + } + ]) + end) + + right_sharding = + Enum.reduce(c1, t1.data.shards, fn axis, acc -> + Map.put(acc, axis, [ + %Shard{ + id: make_ref(), + axis: axis, + start: 0, + length: elem(t1.shape, axis), + parents: [] + } + ]) + end) + + offset = length(b0) + + batch_shards = + Enum.zip_with([b0, b1, 0..(offset - 1)], fn left_axis, right_axis, axis -> + left_shards = Map.fetch!(left_sharding, left_axis) + right_shards = Map.fetch!(right_sharding, right_axis) + resolve_sharding_broadcast(axis, left_shards, false, right_shards, false) + end) + + out_shards_left = + Enum.with_index(Nx.axes(t0) -- c0, fn axis, idx -> + {idx + offset, + left_sharding + |> Map.fetch!(axis) + |> make_child_shards(idx + offset)} + end) + + offset = offset + length(out_shards_left) + + out_shards_right = + Enum.with_index(Nx.axes(t1) -- c1, fn axis, idx -> + {idx + offset, + right_sharding + |> Map.fetch!(axis) + |> make_child_shards(idx + offset)} + end) + + out_shards = Map.new(batch_shards ++ out_shards_left ++ out_shards_right) + {put_shards(ans, out_shards), state} + end + + defp apply_op(op, _ans, _args, _state) do + raise "Unsupported op: #{op}" + end + + defp bin_op_tensor_sharding( + %T{ + shape: left_shape, + data: %__MODULE__{ + shards: left_config + } + }, + %T{ + shape: right_shape, + data: %__MODULE__{ + shards: right_config + } + }, + %T{shape: out_shape}, + state + ) do + left_broadcast_axes = Nx.Shape.broadcast_axes(left_shape, out_shape) + right_broadcast_axes = Nx.Shape.broadcast_axes(right_shape, out_shape) + + left_shards = + Enum.map(Nx.axes(left_shape), fn axis -> + {axis, left_config[axis]} + end) + + left_shards = + Enum.zip_with(left_broadcast_axes, left_shards, fn new_axis, {_id, shard} -> + {new_axis, shard} + end) + |> Map.new() + + left_axis_sizes = + Enum.with_index(left_broadcast_axes, fn out_axis, in_axis -> + {out_axis, elem(left_shape, in_axis)} + end) + |> Map.new() + + right_shards = + Enum.map(Nx.axes(right_shape), fn axis -> + {axis, right_config[axis]} + end) + + right_axis_sizes = + Enum.with_index(right_broadcast_axes, fn out_axis, in_axis -> + {out_axis, elem(right_shape, in_axis)} + end) + |> Map.new() + + right_shards = + Enum.zip_with(right_broadcast_axes, right_shards, fn new_axis, {_id, shard} -> + {new_axis, shard} + end) + |> Map.new() + + out_axes = Nx.axes(out_shape) + + left_shards_list = + Enum.map(out_axes, fn axis -> + left_shards[axis] || [] + end) + + right_shards_list = + Enum.map(out_axes, fn axis -> + right_shards[axis] || [] + end) + + result = + Enum.reduce(out_axes, {left_shards_list, right_shards_list, []}, fn + axis, {[left_shards | left_acc], [right_shards | right_acc], out_acc} -> + out_shards = + case {left_shards, right_shards} do + {[], []} -> + [] + + {[], shards} -> + make_child_shards(shards, axis) + + {shards, []} -> + make_child_shards(shards, axis) + + {left, right} -> + # If we are dealing with a broadcast axis on either tensor, we can + # map the single shard to all shards on the other tensor. + + left_size = left_axis_sizes[axis] + right_size = right_axis_sizes[axis] + + left_is_broadcasting = left_size != right_size and left_size == 1 + right_is_broadcasting = left_size != right_size and right_size == 1 + + resolve_sharding_broadcast( + axis, + left, + left_is_broadcasting, + right, + right_is_broadcasting + ) + end + + { + left_acc, + right_acc, + [out_shards | out_acc] + } + end) + + {[], [], out_reverse_shards} = result + + out_shards = + out_reverse_shards + |> Enum.reverse() + |> Enum.with_index() + |> Map.new(fn {shards, idx} -> {idx, shards} end) + + {out_shards, state} + end + + defp resolve_sharding_broadcast(axis, [left_shard], true, right_shards, false) do + # We have a single shard on the left that we'll map onto the right shards. + make_child_shards(right_shards, axis, [left_shard]) + end + + defp resolve_sharding_broadcast(axis, left_shards, false, [right_shard], true) do + # We have a single shard on the right that we'll map onto the left shards. + make_child_shards(left_shards, axis, [right_shard]) + end + + defp resolve_sharding_broadcast(axis, left_shards, false, right_shards, false) do + # We have a shard on both sides. We need to determine the intersection of the two. + # This is fine only if all shards are equal + {reverse_out_shards, all_shards_match} = + Enum.zip_reduce(left_shards, right_shards, {[], true}, fn left, + right, + {out_acc, match_acc} -> + match_acc = match_acc and left.start == right.start and left.length == right.length + + out_acc = make_child_shards([left], axis, [right]) ++ out_acc + + {out_acc, match_acc} + end) + + if not all_shards_match do + raise "incompatible sharding" + end + + Enum.reverse(reverse_out_shards) + end + + defp make_child_shards(shards, axis, extra_parents \\ []) do + Enum.map(shards, fn shard -> + %Shard{ + id: make_ref(), + axis: axis, + start: shard.start, + length: shard.length, + input_id: nil, + parents: [shard | extra_parents] + } + end) + end + + def inspect( + %T{data: %__MODULE__{shards: shards}}, + inspect_opts + ) do + import Inspect.Algebra + + shards + |> Enum.sort_by(fn {axis, _} -> axis end) + |> Enum.map(fn {axis, shards} -> + axis_name = inspect_opts.custom_options[:axis_names][axis] || axis + + shard_doc = + shards + |> Enum.flat_map(fn %Shard{} = shard -> + opts = put_in(inspect_opts.custom_options[:single_line], true) + opts = put_in(opts.custom_options[:print_axis], false) + + [ + line(), + Shard.inspect(shard, opts) + ] + end) + |> concat() + |> nest(2) + + concat([ + "#{axis_name}: ", + shard_doc + ]) + end) + |> Enum.intersperse(line()) + |> concat() + end +end