-
Notifications
You must be signed in to change notification settings - Fork 0
/
2_SPADE_10000.R
85 lines (73 loc) · 3.24 KB
/
2_SPADE_10000.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Load the preprocessed data:
# See script_preprocessing.R
# ff: Compensated flowFrame
# ff_t: Compensated and logicle transformed flowFrame
# manual: Array with label for each cell
# selected: Array with TRUE/FALSE whether cell falls in single live
# cells
# gatingMatrix: Matrix with rows corresponding to cells and a column for
# each manual gate. Each column contains TRUE/FALSE values
# indicating whether the cells fall in the specific gate
# colsToCluster: Columns to use for clustering
load("FR-FCM-ZZQY/21-10-15_Tube_028.Rdata")
# Load the plot settings
# See script_plotSettings.R
# cellTypeColors,markerColors,markerNames,
# circular_markerOrder,grid_markerOrder
load("plotSettings.Rdata")
# Load the SPADE library
library(spade)
# Set some parameters
SPADE_nClusters = 50
# Set seed for reproducable results
set.seed(42)
# Record start time
start <- Sys.time()
# Run the SPADE algorithm
out_dir <- "SPADE_10000"
SPADE.driver("fcs/21-10-15_Tube_028_selected_10000.fcs",
out_dir=out_dir,
cluster_cols=colnames(ff)[colsToCluster],
comp=FALSE, transforms=logicleTransform(),
k=SPADE_nClusters)
# Plot the results
mst_graph <- igraph:::read.graph(paste(out_dir,"mst.gml",
sep=.Platform$file.sep),
format="gml")
layout <- read.table(paste(out_dir,"layout.table",sep=.Platform$file.sep))
SPADE.plot.trees(mst_graph,out_dir,layout=as.matrix(layout),
out_dir=paste(out_dir,"pdf",sep=.Platform$file.sep))
# Record end time
t_SPADE_10000<- Sys.time() - start
# Fit the SPADE results in a FlowSOM object for the visualization
# used in the paper.
library(FlowSOM)
spade_fcs <- read.FCS(paste0(out_dir,"/21-10-15_Tube_028_selected_10000.fcs.density.fcs.cluster.fcs"))
spade_res <- list("MST"=list(),"map"=list(),"data"=exprs(ff_t[selected,][1:10000,]))
spade_res$MST$graph <- mst_graph
spade_res$MST$l <- as.matrix(layout)
spade_res$map$mapping <- exprs(spade_fcs[,"cluster"])
vsize <- table(spade_res$map$mapping)/nrow(spade_res$map$mapping)
spade_res$MST$size <- (vsize/(max(vsize, na.rm = TRUE)) * 3 + 2) * 4 # same resizing as in SPADE library
spade_res$map$codes <- spade_res$map$medianValues <- t(sapply(seq_len(SPADE_nClusters), function(i) {
apply(subset(spade_res$data, spade_res$map$mapping[, 1] == i),
2, median)
}))
spade_res$map$medianValues[is.nan(spade_res$map$medianValues)] <- 0
spade_res$map$grid <- matrix(1:SPADE_nClusters,nrow=SPADE_nClusters,ncol=1)
# Save results
save(t_SPADE_10000, spade_res, file="SPADE_10000.Rdata")
# Plot results
pdf("SPADE_10000.pdf",useDingbats = FALSE)
PlotPies(UpdateNodeSize(spade_res,reset=T),manual[selected][1:10000],
colorPalette = colorRampPalette(c("#FFFFFF",cellTypeColors)))
# Plot individual markers
par(mfrow=c(3,3))
for(m in grid_markerOrder){
channel <- colnames(ff)[m]
PlotMarker(spade_res,channel,
colorPalette = colorRampPalette(c("#dddddd",markerColors[channel])),
main=markerNames[channel])
}
par(mfrow=c(1,1))
dev.off()