The program calculates the vector representation from items using an encoder NN
(tensorflow) $ ./itemsEncoder.py --help
usage: itemsEncoder.py [-h] [--input-folder INPUT_FOLDER]
[--out-folder OUT_FOLDER] [--batch-size BATCH_SIZE]
[--embedding-size EMBEDDING_SIZE]
[--num-neg-sampled NUM_NEG_SAMPLED] [--epochs EPOCHS]
[--learning-rate LEARNING_RATE]
Train an encoder NN to extract a vector representation from items create a
final_embeddings_<embedding_size>.tsv file inside the output folder
optional arguments:
-h, --help show this help message and exit
--input-folder INPUT_FOLDER
input data directory with COOCCURRENCE_* folder
--out-folder OUT_FOLDER
The log directory for TensorBoard summaries.
--batch-size BATCH_SIZE
the batch size
--embedding-size EMBEDDING_SIZE
the embedding size
--num-neg-sampled NUM_NEG_SAMPLED
the number of negative sampled items
--epochs EPOCHS the number of training epochs
--learning-rate LEARNING_RATE
the learning rate
./itemsEncoder.py --input-folder ../orac-sdk/ETL_FOLDER