forked from ssg-aero/yams
-
Notifications
You must be signed in to change notification settings - Fork 0
/
curvaturesolver_experimental.h
471 lines (431 loc) · 17.5 KB
/
curvaturesolver_experimental.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
#pragma once
#include "curvaturesolver.h"
#include "meridionalsolvercase_experiemental.h"
namespace yams
{
template <typename T>
auto balance_massflow(SolverCaseBiPass<T> &bip_case, int i, T tol_mf)
{
T span_geom_residual{};
if( i==bip_case.iBip())
{
return span_geom_residual;
}
if( i >= bip_case.iBip())
{
span_geom_residual = std::max(
balance_massflow(bip_case.primary(), i, tol_mf),
balance_massflow(bip_case.secondary(), i, tol_mf)
);
}
else
{
auto nj_prim = bip_case.primary().gi->nj;
auto nj_sec = bip_case.secondary().gi->nj;
auto nj = nj_prim + nj_sec - 1;
auto & g_prim = *(bip_case.primary().gi->g);
auto & g_sec = *(bip_case.secondary().gi->g);
auto l_prim = std::next(g_prim.end(i),-1)->l;
auto l_sec = std::next(g_sec.end(i),-1)->l;
auto l_tot = l_prim + l_sec;
auto mf_prim_ref = std::next(g_prim.end(bip_case.iBip()),-1)->q;
auto mf_sec_ref =std::next(g_sec.end(bip_case.iBip()),-1)->q;
auto mf_prim = std::next(g_prim.end(i),-1)->q;
auto mf_sec = std::next(g_sec.end(i),-1)->q;
// Compute full mass_flow
std::vector<T> q(nj);
for (auto j = 0; j < nj; j++)
{
// Use last cumulative mass flow rather than specified to perfectly match and then solve better
if(j<nj_prim)
{
q[j] = g_prim(i, j).q * mf_prim_ref / mf_prim;
}
else
{
q[j] = g_sec(i, j - nj_prim + 1).q * mf_sec_ref / mf_sec + mf_prim_ref;
}
}
// Compute span pos law
gbs::points_vector<T, 2> X(nj);
std::vector<T> u(nj);
for (auto j = 0; j < nj; j++)
{
if(j<nj_prim)
{
const auto &gp = g_prim(i, j);
X[j][0] = gp.x;
X[j][1] = gp.y;
u[j] = gp.l / l_tot;
}
else
{
const auto &gp = g_sec(i, j - nj_prim + 1);
X[j][0] = gp.x;
X[j][1] = gp.y;
u[j] = (gp.l + l_prim) / l_tot;
}
}
size_t p = fmax(fmin(3, nj), 1);
auto f_X = gbs::interpolate(X, u, p);
auto f_Q = gbs::interpolate(q, u, f_X.degree());
//
// auto span_geom_residual = 0.;
// TODO use specifc params
auto RF = bip_case.primary().gi->RF;
auto tol_f = bip_case.primary().gi->tol_newtow_mf_f;
auto tol_u = bip_case.primary().gi->tol_newtow_mf_u;
auto nj_ = nj-1;
for (auto j = 1; j < nj_; j++)
{
auto [u1, u2] = f_Q.bounds();
auto q = j<nj_prim ? g_prim(bip_case.iBip(), j).q : g_sec(bip_case.iBip(), j - nj_prim +1).q + mf_prim;
auto [l, delta, count] = newton_solve<T>(f_Q, q, u[j], u1, u2, tol_f, tol_u);
T dx{},dy{};
if(j<nj_prim)
{
auto X = f_X.value(l);
dx = g_prim(i, j).x - X[0];
dy = g_prim(i, j).y - X[1];
g_prim(i, j).x += RF * (X[0] - g_prim(i, j).x);
g_prim(i, j).y += RF * (X[1] - g_prim(i, j).y);
}
else
{
auto X = f_X.value(l);
auto j_ = j - nj_prim + 1;
dx = g_sec(i, j_).x - X[0];
dy = g_sec(i, j_).y - X[1];
g_sec(i, j_).x += RF * (X[0] - g_sec(i, j_).x);
g_sec(i, j_).y += RF * (X[1] - g_sec(i, j_).y);
}
span_geom_residual = fmax(fmax(fabs(dx), fabs(dy)), span_geom_residual);
}
g_sec(i, 0).x = g_prim(i,nj_prim-1).x;
g_sec(i, 0).y = g_prim(i,nj_prim-1).y;
}
return span_geom_residual;
}
template <typename T>
auto apply_mf(SolverCaseBiPass<T> &bip)
{
bip.primary().inlet.mode = bip.inlet().inlet.mode;
bip.secondary().inlet.mode = bip.inlet().inlet.mode;
if(bip.inlet().inlet.mode == MeridionalBC::INLET_VmMoy_Ts_Ps_Vu)
{
std::for_each(bip.primary().gi->g->begin(0),bip.primary().gi->g->end(0),
[Vm = bip.inlet().inlet.Vm_moy](auto &gp)
{
gp.Vm=Vm;
}
);
std::for_each(bip.secondary().gi->g->begin(0),bip.secondary().gi->g->end(0),
[Vm = bip.inlet().inlet.Vm_moy](auto &gp)
{
gp.Vm=Vm;
}
);
bip.inlet().inlet.Mf = compute_massflow(*(bip.primary().gi->g), 0) + compute_massflow(*(bip.secondary().gi->g), 0);
bip.primary().inlet.Mf = bip.inlet().inlet.Mf / ( 1 + bip.BPR);
bip.secondary().inlet.Mf =bip.primary().inlet.Mf * bip.BPR;
// std::cout << "Mass flow set to: " << solver_case.inlet.Mf <<std::endl;
}
else
{
throw std::invalid_argument("Unsupported yet");
}
bip.primary().mf.resize(bip.primary().gi->ni);
bip.secondary().mf.resize(bip.secondary().gi->ni);
std::fill(bip.primary().mf.begin(),bip.primary().mf.end(),bip.primary().inlet.Mf); // Todo add leakage and reintroduction
std::fill(bip.secondary().mf.begin(),bip.secondary().mf.end(),bip.secondary().inlet.Mf); // Todo add leakage and reintroduction
}
template <typename T, auto ExPo = std::execution::par>
auto curvature_solver(SolverCaseBiPass<T> &bip_case)
{
auto &prim = bip_case.primary();
auto &sec = bip_case.secondary();
size_t max_geom=prim.max_geom;
auto eps = prim.eps;
auto tol_rel_mf =prim.tol_rel_mf;
// auto tol_pos = prim.tol_rel_pos * ( prim.gi->g(0, prim.gi->nj - 1).l + sec.gi->g(0, sec.gi->nj - 1).l );
auto l_prim = prim.gi->g->end(0)->l;
auto l_sec = sec.gi->g->end(0)->l;
auto tol_pos = prim.tol_rel_pos * ( l_prim + l_sec );
T vmi;
int count_geom = 0;
auto converged = false;
// auto i_0 = 0;
bip_case.primary().log.clear();
bip_case.secondary().log.clear();
T delta_pos_max {};
T delta_pos {};
T delta_pos_moy {};
// compute spans mass flow
apply_mf(bip_case);
// apply boundary conditions
apply_bc(prim);
apply_bc(sec);
// innit values
init_values(prim,tol_rel_mf, eps);
init_values(sec,tol_rel_mf, eps);
// apply rotation sppeds
apply_rotation_speeds(prim);
apply_rotation_speeds(sec);
std::vector<T> delta_pos_array_prim(prim.gi->ni);
std::vector<T> delta_pos_array_sec(sec.gi->ni);
auto span_range_prim = gbs::make_range<size_t>(0,prim.gi->ni-1);
auto span_range_sec = gbs::make_range<size_t>(0,sec.gi->ni-1);
while (!converged && (count_geom < 1000))
{
// integrate radial eq equation and update gas properties
compute_vm_distribution(prim, tol_rel_mf, eps, true, 0 );
compute_vm_distribution(sec, tol_rel_mf, eps, true, 0 );
// Compute mass flow distribution
std::for_each(
ExPo,
span_range_prim.begin(), span_range_prim.end(),
[&](const auto &i){
compute_massflow_distribution(prim.gi->g->begin(i), prim.gi->g->end(i));
}
);
std::for_each(
ExPo,
span_range_sec.begin(), span_range_sec.end(),
[&](const auto &i){
compute_massflow_distribution(sec.gi->g->begin(i), sec.gi->g->end(i));
}
);
// relocate streams to balance mass flow
std::transform(
// ExPo,
span_range_prim.begin(),
std::next(span_range_prim.begin(), bip_case.iBip()),
delta_pos_array_prim.begin(),
[&](const auto &i)
{
return balance_massflow(bip_case, i, tol_rel_mf * bip_case.inlet().inlet.Mf);// / g(i,nj-1).l;
}
);
std::transform(
// ExPo,
std::next(span_range_prim.begin(), bip_case.iBip()+1),
span_range_prim.end(),
std::next(delta_pos_array_prim.begin(), bip_case.iBip()+1),
[&](const auto &i)
{
return balance_massflow(prim, i, tol_rel_mf * bip_case.inlet().inlet.Mf);// / g(i,nj-1).l;
}
);
std::transform(
// ExPo,
std::next(span_range_sec.begin(), bip_case.iBip()+1),
span_range_sec.end(),
std::next(delta_pos_array_sec.begin(), bip_case.iBip()+1),
[&](const auto &i)
{
return balance_massflow(sec, i, tol_rel_mf * bip_case.inlet().inlet.Mf);// / g(i,nj-1).l;
}
);
count_geom++;
}
}
template <typename T, auto ExPo = std::execution::par>
auto compute_vm_distribution2(SolverCase<T> &solver_case, T tol_rel_mf, T eps, bool integrate)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
size_t ni = g.nRows();
size_t nj = g.nCols();
gbs::VectorX<T> vmi(ni), vmi_1(ni), vmi_2(ni), F(ni);
auto indexes = gbs::make_range<size_t>(0, ni - 1);
std::transform(
ExPo,
indexes.begin(), indexes.end(),
vmi.begin(),
[nj, &g, &gi] (size_t i)
{
return g(i, std::round((nj - 1 ) * gi.j_0)).Vm;
}
);
gbs::MatrixX<T> J(ni, ni);
T err{};
size_t count{};
do{
for(size_t i{}; i < ni; i++)
{
std::copy(
ExPo,
vmi.begin(), vmi.end(),vmi_1.begin()
);
std::copy(
ExPo,
vmi.begin(), vmi.end(),vmi_2.begin()
);
vmi_1(i) -= eps * 0.5;
vmi_2(i) += eps * 0.5;
// for(size_t j{}; j < ni; j++)
std::for_each(
ExPo,
indexes.begin(), indexes.end(),
[&](size_t j)
{
auto F2 = eq_massflow(vmi_2(j), solver_case, j, true) - solver_case.mf[j];
auto F1 = eq_massflow(vmi_1(j), solver_case, j, true) - solver_case.mf[j];
J(i,j) = ( F2 - F1 ) / eps;
}
);
}
// std::cout << J << std::endl;
auto J_inv = J.partialPivLu();
// auto J_inv = J.llt();
for(size_t i{}; i < ni; i++) // run in par
{
F(i) = eq_massflow(vmi(i), solver_case, i, true) - solver_case.mf[i];
}
auto delta = J_inv.solve(F);
err = std::sqrt(delta.squaredNorm());
vmi -= delta;
// std::cout << delta << std::endl << std::endl << err << std::endl;
for(size_t i{}; i < ni; i++)
{
eq_massflow(vmi(i), solver_case, i, true);
int j_0 = std::round((nj - 1 ) * gi.j_0);
g(i, j_0).Vm = vmi(i);
compute_gas_properties(solver_case,i);
}
count++;
} while (err>1e-6 && count < 500);
std::cout << "Count: " << count << " err: " << err << std::endl;
}
template <typename T>
auto init_values(SolverCaseSet<T> &solver_case, T tol_rel_mf, T eps)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
size_t ni = g.nRows();
auto vmi = g(0, 0).Vm;
for (auto i = 0; i < ni; i++)
{
compute_vm_distribution(solver_case, vmi, i, tol_rel_mf, eps, false);
compute_gas_properties(solver_case, i);
}
for (auto i = 0; i < ni; i++)
{
compute_vm_distribution(solver_case, vmi, i, tol_rel_mf, eps, false);
compute_gas_properties(solver_case, i);
}
}
template <typename T, auto ExPo = std::execution::par>
auto curvature_solver(SolverCaseSet<T> &set)
{
auto solver_case_in = set.cases().front();
// apply boundary conditions
apply_bc(*solver_case_in);
solver_case_in->mf_ref_span = solver_case_in->gi->ni - 1;
std::for_each(
std::next(set.cases().begin()), set.cases().end(),
[](auto &solver_case)
{
solver_case->inlet.mode = MeridionalBC::CON;
solver_case->mf_ref_span = 0; // The starting span will be updated by connection
}
);
for(int i = 0 ; i < 1000 ; i++)
{
std::for_each( // Todo solve according connection tree
set.cases().begin(), set.cases().end(),
[&set](auto &solver_case)
{
auto &gi = *solver_case->gi;
auto &g = *gi.g;
auto &g_metrics = *gi.g_metrics;
size_t ni = g.nRows();
size_t nj = g.nCols();
// size_t max_geom=solver_case.max_geom;
auto eps = solver_case->eps;
auto tol_rel_mf =solver_case->tol_rel_mf;
// auto tol_pos = solver_case.tol_rel_pos * g(0, nj - 1).l;
// compute spans mass flow
apply_mf(*solver_case);
// // get connections curvature influence
// std::for_each(
// set.connections().begin(),set.connections().end(),
// [&solver_case](auto & connection)
// {
// if(connection.isLeft(solver_case))
// {
// connection.interpolateCurvature();
// }
// }
// );
// integrate radial eq equation and update gas properties
for (auto i = 0; i < ni; i++)
{
if( ( solver_case->inlet.mode != MeridionalBC::INLET_Vm_Ts_Ps_Vu && solver_case->inlet.mode != MeridionalBC::CON )
|| i != 0)
{
auto vmi = g(i, std::round((nj - 1 ) * gi.j_0)).Vm;
compute_vm_distribution(*solver_case, vmi, i, tol_rel_mf, eps,true);
}
// compute_gas_properties<T>(solver_case,i);
}
if( !solver_case->relocate )
{
return;
}
auto span_range = gbs::make_range<size_t>(0,ni-1);
// Compute mass flow distribution
std::for_each(
ExPo,
span_range.begin(), span_range.end(),
[&](const auto &i){
compute_massflow_distribution(g.begin(i), g.end(i));
}
);
// relocate streams to balance mass flow
// std::transform(
std::for_each(
ExPo,
span_range.begin(),
span_range.end(),
// delta_pos_array.begin(),
[&](const auto &i)
{
return balance_massflow(*solver_case, i, tol_rel_mf * solver_case->mf[i]) / g(i,nj-1).l;
}
);
// copy to rights sides, this includes curvature
std::for_each(
set.connections().begin(),set.connections().end(),
[&solver_case](auto & connection)
{
if(connection.isLeft(solver_case))
{
connection.copyLeftToRight();
}
}
);
compute_grid_metrics(g,g_metrics,f_m,f_l);// TODO run in //
// // set connections curvature influence
// std::for_each(
// set.connections().begin(),set.connections().end(),
// [&solver_case](auto & connection)
// {
// if(connection.isLeft(solver_case))
// {
// connection.interpolateCurvature();
// }
// }
// );
}
);
std::for_each(
set.connections().begin(),set.connections().end(),
[](auto & connection)
{
connection.interpolateCurvature();
}
);
}
}
}