forked from ssg-aero/yams
-
Notifications
You must be signed in to change notification settings - Fork 0
/
curvaturesolver.h
969 lines (907 loc) · 37.7 KB
/
curvaturesolver.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
#pragma once
#include <eqcurvaturesolver.h>
#include <meridionalsolvercase.h>
#include <gridmetrics.h>
#include <gbs/bscinterp.h>
#include <gbs/bscapprox.h>
#include <meshtools.h>
// const bool use_meridional_grad = false;
// const bool use_meridional_grad = true;
const bool verbose = false;
namespace yams
{
using gbs::operator*;
using gbs::operator+;
using gbs::operator-;
const bool cap_vm_rk2 = false;
auto f_sqV = [](const auto &gp)
{
return gp.Vm * gp.Vm + gp.Vu * gp.Vu;
};
auto f_sqW = [](const auto &gp)
{
auto Wu = gp.Vu - gp.omg * gp.y;
return gp.Vm * gp.Vm + Wu * Wu;
};
auto f_Tt = [](const auto &gp)
{
return gp.Ts + f_sqV(gp) / 2. / gp.Cp;
};
template <typename T>
auto newton_solve = [](const auto &crv, auto p, T u0, T u1, T u2, T tol_f = 1.e-3, T tol_u = 1.e-4, size_t it_max = 100, T factor = 1.0)
{
auto delta = tol_u * 10., d0 = tol_f * 10.;
auto u = u0;
auto count = 0;
while (fabs(delta) > tol_u && fabs(d0) > tol_f && count < it_max)
{
auto d0 = crv(u) - p;
auto d1 = crv(u, 1);
auto d2 = crv(u, 2);
delta = d1 * d0 / (d2 * d0 + d1 * d1);
u -= delta * factor;
u = fmax(u1, fmin(u2, u));
count++;
}
return std::make_tuple(u, delta, count);
};
template <typename T, typename _Func>
void integrate_RK2_vm_sheet(size_t i, GridInfo<T> &gi, _Func F, int j_beg, int j_end, int j_stp)
{
auto &g = *gi.g;
auto &g_metrics= *gi.g_metrics;
auto Vmi = g(i, j_beg - j_stp).Vm;
auto sqVm_max_q2 = 3 * Vmi * Vmi / 2.;
sqVm_max_q2 = sqVm_max_q2 * sqVm_max_q2 /2;
auto nj = gi.nj;
auto l = g(i,nj-1);
auto Fjcap = 0.3*Vmi*Vmi/2;
for (int j = j_beg; j != j_end; j+=j_stp)
{
auto Vm_prev = g(i, j - j_stp).Vm;
const auto &gp = g(i, j);
const auto &gp_prev = g(i, j - j_stp);
auto sqVmq2 = f_sqVmq2(gp_prev);
auto dl = gp.l - gp_prev.l;
auto Fjm= F(g,g_metrics, i, j - j_stp,gi.d_ksi,gi.d_eth);// assert(Fjm==Fjm);
// Fjm = std::max<T>(-Fjcap/dl,std::min<T>(Fjcap/dl,Fjm));
auto sqVmq2_1 = std::fmin(
sqVm_max_q2,
std::fmax(0.1,sqVmq2 + Fjm * dl)
);
// auto sqVmq2_1 = std::fmax(0.1,sqVmq2 + Fjm * dl);
// auto sqVmq2_1 = sqVmq2 + Fjm * dl;
g(i, j).Vm = sqrt(2. * sqVmq2_1);
auto Fj = F(g,g_metrics, i, j,gi.d_ksi,gi.d_eth);// assert(Fj==Fj);
// Fj = std::max<T>(-Fjcap/dl,std::min<T>(Fjcap/dl,Fj));
auto sqVmq2_2 = std::fmin(
sqVm_max_q2,
std::fmax(0.1,sqVmq2 + Fj * dl)
);
// auto sqVmq2_2 = std::fmax(0.1,sqVmq2 + Fj * dl);
// auto sqVmq2_2 = sqVmq2 + Fj * dl;
// auto Vm_new = 0.5 * (g(i, j).Vm + sqrt(2. * sqVmq2_2));
// auto dVm = (Vm_new-Vm_prev)/Vm_prev;
// g(i, j).Vm = Vm_prev + Vm_prev * cap(dVm,0.3);
// auto dVm_dl = (Vm_new-Vm_prev)/dl;
// g(i, j).Vm = Vm_prev + Vm_prev * cap(dVm,0.3)
// g(i, j).Vm = 0.5 * (g(i, j).Vm + sqrt(2. * sqVmq2_2));
// g(i, j).Vm = 0.5 * (g(i, j).Vm + sqrt(2. * sqVmq2_2));
// auto dVm = ( g(i, j).Vm - Vm_prev ) / Vmi;
// dVm = cap(dVm,0.3);
// g(i, j).Vm = dVm * Vmi + Vm_prev;
g(i, j).Vm = 0.5 * (g(i, j).Vm + sqrt(2. * sqVmq2_2));
}
}
template <typename T, typename _Func>
void integrate_RK2_vm_sheet(T vmi, size_t i, GridInfo<T> &gi, _Func F, bool integrate)
{
auto &g = *gi.g;
if(!integrate)
{
std::for_each(g.begin(i),g.end(i),[vmi](auto &gp){gp.Vm=vmi;});
return;
}
size_t nj = g.nCols();
int j_0 = std::round((nj - 1 ) * gi.j_0);
g(i, j_0).Vm = vmi;
integrate_RK2_vm_sheet(i,gi,F,j_0+1,nj, 1);
integrate_RK2_vm_sheet(i,gi,F,j_0-1,-1,-1);
}
/**
* @brief Integrate mass-flow function over span (computation plane)
*
* @tparam Iterator
* @param begin
* @param end
*/
template <typename Iterator>
void compute_massflow_distribution(Iterator begin, Iterator end)
{
std::transform(
begin,
std::next(end, -1),
std::next(begin),
std::next(begin),
[](const auto &gp_prev, auto &gp)
{
gp.q = (f_mf(gp_prev) + f_mf(gp)) * (gp.l - gp_prev.l) * 0.5 + gp_prev.q;
return gp;
});
}
template <typename T>
auto compute_massflow(const MeridionalGrid<T> &g, int i)
{
auto nj = g.nCols();
auto mf = 0.;
for (auto j = 1; j < nj; j++)
{
mf += (f_mf(g(i, j)) + f_mf(g(i, j - 1))) * (g(i, j).l - g(i, j - 1).l) * 0.5;
}
return mf;
}
template <typename T>
auto compute_gas_properties(SolverCase<T> &solver_case, int i)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
auto nj = g.nCols();
if (i != 0) // except inlet
{
// Compute totals values
for (auto j = 0; j < nj; j++)
{
const auto &g1 = g(i - 1, j);
auto &g2 = g(i, j);
// Compute enthalpy variation
g2.H = g1.H + g2.omg * (g2.y * g2.Vu - g1.y * g1.Vu); // So it also works if g1 is not a blade
g2.I = g2.H - g2.omg * g2.y * g2.Vu;
g2.Tt = g1.Tt + (g2.H - g1.H) / ( 0.5 * ( g1.Cp + g2.Cp) );
auto ga = 0.5 * (g1.ga + g2.ga);
if(g2.iB<0)
{
auto P2is = g1.Pt * std::pow(g2.Tt / g1.Tt, ga / (ga - 1));
g2.Pt = P2is - 0.5 * g1.rho * g1.omg_ * f_sqW(g1);
}
else
{
auto i1 = solver_case.bld_info_lst[g2.iB].i1;
auto i2 = solver_case.bld_info_lst[g2.iB].i2;
if(i>i1) // apply losses
{
T omg_{};
const auto &g_le = g(i1, j);
const auto &g_te = g(i2, j);
if (solver_case.bld_info_lst[g2.iB].omg_) // losses defined
{
omg_ = solver_case.bld_info_lst[g2.iB].omg_(g_le.l / g(i1, nj - 1).l);
omg_ *= (g2.m - g_le.m) / (g_te.m - g_le.m);
}
auto P2is = g_le.Pt * std::pow(g2.Tt / g_le.Tt, ga / (ga - 1));
g2.Pt = P2is - 0.5 * g_le.rho * omg_ * f_sqW(g_le);
}
else
{
auto P2is = g1.Pt * std::pow(g2.Tt / g1.Tt, ga / (ga - 1));
g2.Pt = P2is - 0.5 * g1.rho * g1.omg_ * f_sqW(g1);
}
}
}
}
// Compute static values
for (auto j = 0; j < nj; j++)
{
auto &gp = g(i, j);
// TODO use Coolprop
gp.Ts = gp.Tt - f_sqV(gp) / 2. / gp.Cp;
gp.Ps = gp.Pt * std::pow(gp.Ts / gp.Tt, gp.ga / (gp.ga - 1));
// gp.rho = gp.Ps / gi.R / gp.Ts;
// TODO update cp
gp.ga = 1. / (1. - gi.R / gp.Cp);
// Compute entropy rise
// TODO compute elementary entropy rises from different losses and the compute Ps then Pt
gp.s = std::log(pow(gp.Ts/gi.Tref,gp.Cp)/std::pow(gp.Ps/gi.Pref,gi.R)) ;
}
}
template<typename T>
void eval_span_grad(SolverCase<T> &solver_case, int i)
{
auto &gi=*(solver_case.gi);
auto &g_metrics = *gi.g_metrics;
auto &g = *gi.g;
auto nj = gi.nj;
int j_0 = std::round((nj - 1 ) * gi.j_0);
// for (size_t j{}; j < nj; j++)
// {
// // g(i, j).dH_dl = D1_O2_dx2(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_H);
// // g(i, j).dI_dl = D1_O2_dx2(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_I);
// // g(i, j).dS_dl = D1_O2_dx2(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_S_);
// // g(i, j).drVu_dl= D1_O2_dx2(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_rVu);
// // g(i, j).drTb_dl= D1_O2_dx2(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_rTanBeta);
// }
for (int j{1}; j < nj; j++)
{
g(i, j).dH_dl= ( g(i, j).H - g(i, j-1).H ) / ( g(i, j).l - g(i, j-1).l );
g(i, j).dH_dl= ( g(i, j).H - g(i, j-1).H ) / ( g(i, j).l - g(i, j-1).l );
g(i, j).dS_dl= ( g(i, j).s - g(i, j-1).s ) / ( g(i, j).l - g(i, j-1).l );
g(i, j).drVu_dl= ( g(i, j).y * g(i, j).Vu - g(i, j-1).y * g(i, j-1).Vu ) / ( g(i, j).l - g(i, j-1).l );
g(i, j).drTb_dl= ( g(i, j).y * tan(g(i, j).bet) - g(i, j-1).y * tan(g(i, j-1).bet) ) / ( g(i, j).l - g(i, j-1).l );
}
// for (int j{j_0-1}; j >= 0; j--)
// {
size_t j = 0 ;
g(i, j).dH_dl= ( g(i, j+1).H - g(i, j).H ) / ( g(i, j+1).l - g(i, j).l );
g(i, j).dI_dl= ( g(i, j+1).I - g(i, j).I ) / ( g(i, j+1).l - g(i, j).l );
g(i, j).dS_dl= ( g(i, j+1).s - g(i, j).s ) / ( g(i, j+1).l - g(i, j).l );
g(i, j).drVu_dl= ( g(i, j+1).y * g(i, j+1).Vu - g(i, j).y * g(i, j).Vu ) / ( g(i, j+1).l - g(i, j).l );
g(i, j).drTb_dl= ( g(i, j+1).y * tan(g(i, j+1).bet) - g(i, j).y * tan(g(i, j).bet) ) / ( g(i, j+1).l - g(i, j).l );
// }
// if(j_0==0)
// {
// }
// else if
// g(i, j0).drVu_dl = 0.5 * ( g(i, fmin(j0+1,nj-1)).drVu_dl + g(i, fmax(j0-1,0)).drVu_dl );
// g(i, j0).drTb_dl = 0.5 * ( g(i, fmin(j0+1,nj-1)).drTb_dl + g(i, fmax(j0-1,0)).drTb_dl );
}
template <typename T>
auto eq_massflow_no_blade(T vmi, SolverCase<T> &solver_case, int i, bool integrate) -> void
{
auto &gi=*(solver_case.gi);
auto &g = *gi.g;
auto nj = g.nCols();
for (auto j = 0; j < nj; j++)
{
if (i > 0)
{
g(i, j).Vu = g(i, j).y > 0. ? g(i - 1, j).y * g(i - 1, j).Vu / g(i, j).y : 0.;
}
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg , g(i, j).Vm); // <- lag from previous
}
compute_gas_properties(solver_case,i); // needed for span grad
eval_span_grad(solver_case,i);
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
}
template <typename T>
auto eq_massflow_blade_direct(T vmi, SolverCase<T> &solver_case, int i, int i1, int i2, bool integrate) -> void
{
auto &gi=*(solver_case.gi);
auto &g = *gi.g;
auto nj = g.nCols();
if(i == i1)
{
for (auto j = 0; j < nj; j++)
{
g(i, j).Vu = g(i, j).y > 0. ? g(i - 1, j).y * g(i - 1, j).Vu / g(i, j).y : 0.;
g(i, j).bet = cap_angle( atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg, g(i, j).Vm)); // <- lag from previous
}
compute_gas_properties(solver_case,i); // needed for span grad
eval_span_grad(solver_case,i);
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
}
else{
for (auto j = 0; j < nj; j++)
{
// apply deviation
auto iB = g(i, j).iB;
T dev{};
if(iB>=0)
{
auto bld_info = solver_case.bld_info_lst[iB];
if(bld_info.dev)
{
dev = bld_info.dev(g(i, j).l / g(i, nj - 1).l);
dev *= (g(i, j).m - g(i1, j).m) / (g(i2, j).m - g(i1, j).m);
}
}
if(g(i, j).omg>0.)
{
dev = -dev;
}
g(i, j).bet = g(i, j).k + dev;
g(i, j).Vu = g(i, j).Vm * tan(g(i, j).bet) + g(i, j).y * g(i, j).omg;
}
compute_gas_properties(solver_case,i); // needed for span grad
eval_span_grad(solver_case,i);
integrate_RK2_vm_sheet(vmi, i, gi, eq_bet, integrate);
for (auto j = 0; j < nj; j++)
{
g(i, j).Vu = g(i, j).Vm * tan(g(i, j).bet) + g(i, j).y * g(i, j).omg;
}
}
}
template <typename T>
auto eq_massflow_blade_beta_out(T vmi, SolverCase<T> &solver_case, int i, int i1, int i2, const auto &bet_out, bool integrate) -> void
{
auto &gi=*(solver_case.gi);
auto &g = *gi.g;
auto nj = g.nCols();
if(i == i1)
{
for (auto j = 0; j < nj; j++)
{
g(i, j).Vu = g(i, j).y > 0. ? g(i - 1, j).y * g(i - 1, j).Vu / g(i, j).y : 0.;
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg, g(i, j).Vm); // <- lag from previous
}
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
}
else
{
for (auto j = 0; j < nj; j++)
{
auto m_rel_loc = (g(i, j).m - g(i1, j).m) / (g(i2, j ).m - g(i1, j).m);
auto l_rel = (g(i, j).l - g(i , 0).l) / (g(i , nj-1).l - g(i , 0).l);
auto bet_in = g(i1, j).bet;
g(i, j).bet = bet_in *(1.-m_rel_loc) + bet_out(l_rel) * m_rel_loc;
}
integrate_RK2_vm_sheet(vmi, i, gi, eq_bet, integrate);
for (auto j = 0; j < nj; j++)
{
g(i, j).Vu = g(i, j).Vm * tan(g(i, j).bet) + g(i, j).y * g(i, j).omg; // <- lag from previous
}
}
}
// Buggy
template <typename T>
auto eq_massflow_blade_alpha_out(T vmi, SolverCase<T> &solver_case, int i, int i1, int i2, const auto &alf_out, bool integrate) -> void
{
auto &gi=*(solver_case.gi);
auto &g = *gi.g;
auto nj = g.nCols();
if(i == i1)
{
for (auto j = 0; j < nj; j++)
{
g(i, j).Vu = g(i, j).y > 0. ? g(i - 1, j).y * g(i - 1, j).Vu / g(i, j).y : 0.;
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg, g(i, j).Vm); // <- lag from previous
}
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
}
else
{
for (auto j = 0; j < nj; j++)
{
auto m_rel_loc = (g(i, j).m - g(i1, j).m) / (g(i2, j ).m - g(i1, j).m);
auto l_rel = (g(i, j).l - g(i , 0).l) / (g(i , nj-1).l - g(i , 0).l);
auto alpha_in = atan2(g(i1, j).Vu, g(i1, j).Vm);
auto alpha = alpha_in *(1.-m_rel_loc) + alf_out(l_rel) * m_rel_loc;
g(i, j).Vu = g(i, j).Vm * tan(alpha); // <- lag from previous
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg, g(i, j).Vm); // <- lag from previous
}
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
}
}
template <typename T>
auto eq_massflow_blade_design_psi(T vmi, SolverCase<T> &solver_case, int i, int i1, int i2, const auto &f_psi, bool integrate) -> void
{
auto &gi=*(solver_case.gi);
auto &g = *gi.g;
auto nj = g.nCols();
if(i == i1)
{
for (auto j = 0; j < nj; j++)
{
g(i, j).Vu = g(i, j).y > 0. ? g(i - 1, j).y * g(i - 1, j).Vu / g(i, j).y : 0.;
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg, g(i, j).Vm); // <- lag from previous
}
compute_gas_properties(solver_case,i); // needed for span grad
eval_span_grad(solver_case,i);
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
}
else
{
for (auto j = 0; j < nj; j++)
{
auto m_rel_loc = (g(i, j).m - g(i1, j).m) / (g(i2, j ).m - g(i1, j).m);
auto l_rel = (g(i, j).l - g(i , 0).l) / (g(i , nj-1).l - g(i , 0).l);
auto phi_out =f_psi(l_rel);
g(i, j).Vu = g(i1, j).Vu + m_rel_loc * phi_out * g(i, j).y * g(i, j).omg;
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg , g(i, j).Vm); // <- lag from previous
}
compute_gas_properties(solver_case,i);// needed for span grad
eval_span_grad(solver_case,i);
integrate_RK2_vm_sheet(vmi, i, gi, eq_vu, integrate);
for (auto j = 0; j < nj; j++)
{
g(i, j).bet = atan2(g(i, j).Vu - g(i, j).y * g(i, j).omg , g(i, j).Vm); // <- lag from previous
}
}
}
/**
* @brief
*
* @tparam T
* @param vmi : initial Vm value for integration, if no integration performed this value is the constant value on comptation plane
* @param solver_case
* @param i : computation plane index
* @param integrate : activate use contant value for Vm or not
* @return T : Current massflow crossing computation plane
*/
template <typename T>
auto eq_massflow(T vmi, SolverCase<T> &solver_case, int i, bool integrate) -> T
{
auto &gi= *solver_case.gi;
auto &g = *gi.g;
auto nj = g.nCols();
if (g(i, 0).iB == -1)
{
eq_massflow_no_blade(vmi, solver_case, i, integrate);
}
else
{
auto i1 = solver_case.bld_info_lst[g(i, 0).iB].i1;
auto i2 = solver_case.bld_info_lst[g(i, 0).iB].i2;
if(solver_case.bld_info_lst[g(i, 0).iB].mode == MeridionalBladeMode::DIRECT)
{
eq_massflow_blade_direct(vmi,solver_case, i, i1, i2, integrate);
}
else if(solver_case.bld_info_lst[g(i, 0).iB].mode == MeridionalBladeMode::DESIGN_BETA_OUT)
{
eq_massflow_blade_beta_out(vmi, solver_case, i, i1, i2, solver_case.bld_info_lst[g(i, 0).iB].beta_out, integrate);
}
else if(solver_case.bld_info_lst[g(i, 0).iB].mode == MeridionalBladeMode::DESIGN_ALPHA_OUT)
{
eq_massflow_blade_alpha_out(vmi, solver_case, i, i1, i2, solver_case.bld_info_lst[g(i, 0).iB].alpha_out, integrate);
}
else if(solver_case.bld_info_lst[g(i, 0).iB].mode == MeridionalBladeMode::DESIGN_PSI)
{
eq_massflow_blade_design_psi(vmi, solver_case, i, i1, i2, solver_case.bld_info_lst[g(i, 0).iB].psi, integrate);
}
}
compute_gas_properties(solver_case,i);
return compute_massflow(g, i);
}
template <typename T>
auto compute_span_curve(const MeridionalGrid<T> &g, int i)
{
auto nj = g.nCols();
std::vector<T> u(nj);
gbs::points_vector<T, 2> X(nj);
auto l_tot = g(i, nj - 1).l;
for (auto j = 0; j < nj; j++)
{
const auto &gp = g(i, j);
X[j][0] = gp.x;
X[j][1] = gp.y;
u[j] = gp.l / l_tot;
}
size_t p = fmax(fmin(3, nj), 1);
return std::make_tuple( gbs::interpolate(X, u, 1), u );
// return std::make_tuple( gbs::approx(X, u, p, true), u );
}
// template <typename T, typename _Func>
// inline auto streamsheet_value_vector(const MeridionalGrid<T> &g, size_t i, _Func f)
// {
// std::vector<T> vec(g.nCols());
// std::transform(
// std::execution::par,
// g.begin(i),
// g.end(i),
// vec.begin(),
// [&f](const auto &gp) { return f(gp); });
// return vec;
// }
// template <typename T, typename _Func>
// inline auto find_streamsheet_max(const MeridionalGrid<T> &g, size_t i, _Func f)
// {
// auto vec = streamsheet_value_vector(g,i,f);
// return *std::max_element(
// std::execution::par,
// vec.begin(),
// vec.end());
// }
// template <typename T, typename _Func>
// inline auto find_streamsheet_max(const MeridionalGrid<T> &g, size_t i, size_t stride, _Func f)
// {
// auto vec = streamsheet_value_vector(g,i,stride,f);
// return *std::max_element(
// std::execution::par,
// vec.begin(),
// vec.end());
// }
// template <typename T>
// inline auto eval_RF(const MeridionalGrid<T> &g, int i, T B_)
// {
// T dm_max = 0.;
// if (i > 0)
// {
// dm_max = find_streamsheet_max(g, i, -1, f_m);
// }
// if (i < g.nRows() - 1)
// {
// dm_max = fmax(dm_max, find_streamsheet_max(g, i + 1, -1, f_m));
// }
// auto Mm = fmax(0.95, find_streamsheet_max(g, i, f_Mm));
// auto l = (*(std::next(g.end(i), -1))).l;
// return 1. / (1. + (1 - Mm * Mm) * l * l / (B_ * dm_max * dm_max) );
// }
template <typename T>
auto balance_massflow(SolverCase<T> &solver_case, int i, T tol_mf)
{
auto i_ref = solver_case.mf_ref_span;
if(!solver_case.mf_uniform && i==i_ref)
{
return T{};
}
auto &gi= *solver_case.gi;
auto &g = *gi.g;
auto nj = g.nCols();
std::vector<T> q(nj);
auto l_tot = g(i, nj - 1).l;
for (auto j = 0; j < nj; j++)
{
// Use last cumulative mass flow rather than specified to perfectly match and then solve better
q[j] = g(i, j).q * g(0, nj - 1).q / g(i, nj - 1).q;
}
auto [f_X, u] = compute_span_curve(g,i);
auto f_Q = gbs::interpolate(q, u, f_X.degree());
auto span_geom_residual = 0.;
auto RF = gi.RF;
auto tol_f = gi.tol_newtow_mf_f;
auto tol_u = gi.tol_newtow_mf_u;
// T B_ = fmin(8., 0.5 * 60. / g.nRows());
// auto RF = eval_RF(g,i,B_);
auto count = nj-1;
auto [u1, u2] = f_Q.bounds();
for (auto j = 1; j < count; j++)
{
auto q = solver_case.mf_uniform ? (solver_case.inlet.Mf * j) / count : g(i_ref, j).q;
auto [l, delta, count] = newton_solve<T>(f_Q, q, u[j], u1, u2, tol_f, tol_u);
auto X = f_X.value(l);
auto dx = g(i, j).x - X[0];
auto dy = g(i, j).y - X[1];
g(i, j).x += RF * (X[0] - g(i, j).x);
g(i, j).y += RF * (X[1] - g(i, j).y);
span_geom_residual = fmax(fmax(fabs(dx), fabs(dy)), span_geom_residual);
}
return span_geom_residual;
}
template <typename T>
auto compute_vm_distribution(SolverCase<T> &solver_case, T vmi, size_t i, T tol_rel_mf, T eps, bool integrate)
{
auto mf = solver_case.mf[i];
auto err_mf = tol_rel_mf * 10.;
auto mf_ = 0., mf_pre = 0.; // mf shall allways be strictly positive
int count = 0;
auto max_count = solver_case.gi->vm_distribution_max_count;
while (err_mf > tol_rel_mf && count < max_count)
{
if(i==0 && solver_case.inlet.mode == MeridionalBC::INLET_Mf_Tt_Pt_Vu)
{
apply_bc(solver_case);
}
mf_pre = eq_massflow(vmi - eps, solver_case, i, integrate);
mf_ = eq_massflow(vmi, solver_case, i, integrate);
vmi = vmi - eps * (mf_ - mf) / (mf_ - mf_pre);
vmi = fmin(fmax(1e-3,vmi),360.); // TODO improve test
err_mf = fabs(mf_ - mf) / mf;
count++;
}
if (verbose)
{
if (count == max_count && err_mf > tol_rel_mf)
{
std::cout << "Warning span: " << i << " did not converged after " << count << " err_mf: " << err_mf * 100 << "%" << std::endl;
}
if (integrate)
{
std::cout << " i: " << i << " count: " << count << " err_mf: " << err_mf << std::endl;
}
}
}
template <typename T>
auto compute_vm_distribution(SolverCase<T> &solver_case, T tol_rel_mf, T eps, bool integrate, size_t i0)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
// auto &g_metrics = *gi.g_metrics;
size_t ni = g.nRows();
size_t nj = g.nCols();
T vmi{};
for (auto i = i0; i < ni; i++)
{
if( ( solver_case.inlet.mode != MeridionalBC::INLET_Vm_Ts_Ps_Vu && solver_case.inlet.mode != MeridionalBC::CON )
|| i != 0 )
{
vmi = g(i, std::round((nj - 1 ) * gi.j_0)).Vm;
compute_vm_distribution(solver_case, vmi, i, tol_rel_mf, eps,integrate);
}
// compute_gas_properties(solver_case,i);
}
}
template <typename T>
auto apply_bc(SolverCase<T> &solver_case)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
const auto &inlet = solver_case.inlet;
size_t nj = g.nCols();
auto l_tot = g(0, nj - 1).l;
auto Pref = gi.Pref;
auto Tref = gi.Tref;
if (solver_case.inlet.mode == MeridionalBC::INLET_VmMoy_Ts_Ps_Vu ||
solver_case.inlet.mode == MeridionalBC::INLET_Mf_Ts_Ps_Vu)
{
std::for_each(g.begin(0), g.end(0), [l_tot, Tref, Pref, &inlet, &gi](auto &gp)
{
auto l_rel = gp.l / l_tot;
gp.Vu = inlet.Vu(l_rel);
gp.Ts = inlet.Ts(l_rel);
gp.Ps = inlet.Ps(l_rel);
if(!gi.rho_cst)
gp.rho = gp.Ps / (gi.R) / gp.Ts;
gp.Tt = gp.Ts + (gp.Vm * gp.Vm + gp.Vu * gp.Vu) / 2. / gp.Cp;
// gp.Pt = gp.Ps + (gp.Vm * gp.Vm + gp.Vu * gp.Vu) / 2. * gp.rho;
gp.Pt = gp.Ps / std::pow(gp.Ts / gp.Tt, gp.ga / (gp.ga - 1));
gp.H = gp.Tt * gp.Cp;
gp.s = std::log(pow(gp.Ts / Tref, gp.Cp) / std::pow(gp.Ps / Pref, gi.R));
});
}
if(solver_case.inlet.mode == MeridionalBC::INLET_Vm_Ts_Ps_Vu)
{
std::for_each(g.begin(0), g.end(0), [l_tot, Tref, Pref, &inlet, &gi](auto &gp)
{
auto l_rel = gp.l / l_tot;
gp.Vu = inlet.Vm(l_rel);
gp.Vu = inlet.Vu(l_rel);
gp.Ts = inlet.Ts(l_rel);
gp.Ps = inlet.Ps(l_rel);
if(!gi.rho_cst)
gp.rho = gp.Ps / (gi.R) / gp.Ts;
gp.Tt = gp.Ts + (gp.Vm * gp.Vm + gp.Vu * gp.Vu) / 2. / gp.Cp;
// gp.Pt = gp.Ps + (gp.Vm * gp.Vm + gp.Vu * gp.Vu) / 2. * gp.rho;
gp.Pt = gp.Ps / std::pow(gp.Ts / gp.Tt, gp.ga / (gp.ga - 1));
gp.H = gp.Tt * gp.Cp;
gp.s = std::log(pow(gp.Ts / Tref, gp.Cp) / std::pow(gp.Ps / Pref, gi.R));
});
}
if(solver_case.inlet.mode == MeridionalBC::INLET_Mf_Tt_Pt_Vu)
{
std::for_each(g.begin(0), g.end(0), [l_tot, Tref, Pref, &inlet, &gi](auto &gp)
{
auto l_rel = gp.l / l_tot;
gp.Vm = inlet.Vm(l_rel);
gp.Vu = inlet.Vu(l_rel);
gp.Tt = inlet.Tt(l_rel);
gp.Pt = inlet.Pt(l_rel);
gp.Ts = gp.Tt - (gp.Vm * gp.Vm + gp.Vu * gp.Vu) / 2. / gp.Cp;
gp.Ps = gp.Pt / std::pow(gp.Tt / gp.Ts, gp.ga / (gp.ga - 1));
if(!gi.rho_cst)
gp.rho = gp.Ps / (gi.R) / gp.Ts;
gp.H = gp.Tt * gp.Cp;
gp.s = std::log(pow(gp.Ts / Tref, gp.Cp) / std::pow(gp.Ps / Pref, gi.R));
});
}
compute_gas_properties(solver_case,0);
}
template <typename T>
auto apply_mf(SolverCase<T> &solver_case)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
size_t ni = g.nRows();
size_t nj = g.nCols();
if(solver_case.inlet.mode == MeridionalBC::INLET_VmMoy_Ts_Ps_Vu)
{
std::for_each(g.begin(0),g.end(0),
[Vm = solver_case.inlet.Vm_moy](auto &gp)
{
gp.Vm=Vm;
}
);
solver_case.inlet.Mf = compute_massflow(g, 0);
// std::cout << "Mass flow set to: " << solver_case.inlet.Mf <<std::endl;
}
if(solver_case.inlet.mode == MeridionalBC::INLET_Vm_Ts_Ps_Vu)
{
std::for_each(g.begin(0),g.end(0),
[l_tot = g(0,nj-1).l,&solver_case](auto &gp)
{
gp.Vm=solver_case.inlet.Vm(gp.l / l_tot );
}
);
solver_case.inlet.Mf = compute_massflow(g, 0);
// std::cout << "Mass flow set to: " << solver_case.inlet.Mf <<std::endl;
}
if(solver_case.inlet.mode == MeridionalBC::CON)
{
solver_case.inlet.Mf = compute_massflow(g, 0);
}
solver_case.mf.resize(ni);
std::fill(solver_case.mf.begin(),solver_case.mf.end(),solver_case.inlet.Mf); // Todo add leakage and reintroduction
}
template <typename T, auto ExPo = std::execution::par>
auto init_values(SolverCase<T> &solver_case, T tol_rel_mf, T eps)
{
compute_vm_distribution(solver_case, tol_rel_mf, eps, false, 0);
compute_vm_distribution(solver_case, tol_rel_mf, eps, false, 0);
auto ni = solver_case.gi->ni;
auto nj = solver_case.gi->nj;
auto &gi = *solver_case.gi;
auto &g = *gi.g;
}
template <typename T>
auto apply_rotation_speeds(SolverCase<T> &solver_case)
{
auto &gi = *solver_case.gi;
auto &g = *gi.g;
size_t nj = g.nCols();
for (const auto &bld_info : solver_case.bld_info_lst)
{
auto i1 = bld_info.i1;
auto i2 = bld_info.i2;
auto omg= bld_info.omg;
for (auto i = i1; i <= i2; i++)
{
for (auto j = 0; j < nj; j++)
{
g(i, j).omg = omg;
}
}
}
}
template <typename T, auto ExPo = std::execution::par>
auto curvature_solver(SolverCase<T> &solver_case)
{
// init values
auto &gi = *solver_case.gi;
auto &g = *gi.g;
auto &g_metrics = *gi.g_metrics;
size_t ni = g.nRows();
size_t nj = g.nCols();
if (ni < 3 && nj < 3)
{
throw std::length_error("Grid must have dimensions >= 3");
}
size_t max_geom=solver_case.max_geom;
auto eps = solver_case.eps;
auto tol_rel_mf =solver_case.tol_rel_mf;
auto tol_pos = solver_case.tol_rel_pos * g(0, nj - 1).l;
T vmi;
int count_geom = 0;
auto converged = false;
// auto i_0 = 0;
// solver_case.log.clear();
T delta_pos_max {};
T delta_pos {};
T delta_pos_moy {};
std::vector<T> delta_pos_array(ni);
auto span_range = gbs::make_range<size_t>(0,ni-1);
// apply boundary conditions
apply_bc(solver_case);
// compute spans mass flow
apply_mf(solver_case);
// apply blade info
apply_blade_info(solver_case);
// innit values
init_values(solver_case,tol_rel_mf, eps);
// apply rotation speeds
apply_rotation_speeds(solver_case);
// run computation
while (!converged && (count_geom < max_geom))
{
// integrate radial eq equation and update gas properties
size_t grad_count{};
size_t max_grd_count = solver_case.use_meridional_grad ? 10 : 1;
while(grad_count < max_grd_count) // TODO add criteria
{
compute_vm_distribution(solver_case, tol_rel_mf, eps, true, 0 );
// compute_vm_distribution2(solver_case, tol_rel_mf, eps, true);
if(solver_case.use_meridional_grad)
{
std::for_each( // update meridional gradients
ExPo,
span_range.begin(), span_range.end(),
[&](const auto &i){
for (size_t j{}; j < nj; j++)
{
// if(i==0 || i == ni-1)
// {
// g(i, j).dsqVm_dm_2 = 0.;
// g(i, j).ds_dm = 0.;
// }
// else
// {
// g(i, j).dsqVm_dm_2 = D1_O2_dx1(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_sqVmq2);
// g(i, j).ds_dm = D1_O2_dx1(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_S_);
// g(i,j).drtb_dm = D1_O2_dx1(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_rTanBeta);
// g(i,j).drVu_dm = D1_O2_dx1(g, g_metrics, i, j, gi.d_ksi, gi.d_eth, f_rVu);
// }
// if(i==0)
// {
// // g(i, j).dsqVm_dm_2 = 0.;
// g(i, j).dsqVm_dm_2 = ( f_sqVmq2(g(i+1 , j)) - f_sqVmq2(g(i, j)) / (g(i+1, j).m - g(i, j).m) );
// g(i, j).ds_dm = 0.;
// }
// else if( i == ni-1)
// {
// g(i, j).dsqVm_dm_2 = ( f_sqVmq2(g(i , j)) - f_sqVmq2(g(i-1, j)) / (g(i, j).m - g(i-1, j).m) );
// }
if(i==0 || i == ni-1)
{
g(i, j).dsqVm_dm_2 = 0.;
g(i, j).ds_dm = 0.;
g(i,j).drtb_dm = 0.;
g(i,j).drVu_dm = 0.;
}
else
{
auto dm1 = g(i+1, j).m - g(i, j).m;
auto dm2 = g(i, j).m - g(i-1, j).m;
auto gp1 = g(i+1, j);
auto gp2 = g(i , j);
auto gp3 = g(i-1, j);
g(i, j).dsqVm_dm_2 = ( ( f_sqVmq2(gp1) - f_sqVmq2(gp2) ) / dm1 + ( f_sqVmq2(gp2) - f_sqVmq2(gp3) )/dm2 )/2;
g(i, j).ds_dm = ( ( f_S_(gp1) - f_S_(gp2) ) / dm1 + ( f_S_(gp2) - f_S_(gp3) )/dm2 )/2;
g(i,j).drtb_dm = ( ( f_rTanBeta(gp1) - f_rTanBeta(gp2) ) / dm1 + ( f_rTanBeta(gp2) - f_rTanBeta(gp3) )/dm2 )/2;
g(i,j).drVu_dm = ( ( f_rVu(gp1) - f_rVu(gp2) ) / dm1 + ( f_rVu(gp2) - f_rVu(gp3) )/dm2 )/2;
}
}
}
);
}
grad_count++;
}
// compute_vm_distribution2(solver_case, tol_rel_mf, eps, true);
if( !solver_case.relocate )
{
break;
}
// update density
if(!gi.rho_cst && delta_pos_moy < 1e-2 )
{
std::for_each(
ExPo,
span_range.begin(), span_range.end(),
[&](const auto &i){
for (size_t j{}; j < nj; j++)
{
g(i, j).rho = g(i, j).Ps / gi.R / g(i,j).Ts;
}
}
);
}
// Compute mass flow distribution
std::for_each(
ExPo,
span_range.begin(), span_range.end(),
[&](const auto &i){
compute_massflow_distribution(g.begin(i), g.end(i));
// for (size_t j{}; j < nj; j++)
// {
// g(i, j).Vm_pre = g(i, j).Vm;
// }
}
);
// relocate streams to balance mass flow
std::transform(
ExPo,
span_range.begin(),
span_range.end(),
delta_pos_array.begin(),
[&](const auto &i)
{
return balance_massflow(solver_case, i, tol_rel_mf * solver_case.mf[i]) / g(i,nj-1).l;
}
);
// update blades info
apply_blade_info(solver_case);
// compute residuals
delta_pos_moy = std::reduce(
ExPo,
delta_pos_array.begin(),delta_pos_array.end()
) / delta_pos_array.size();
delta_pos_max = *std::max_element(
delta_pos_array.begin(),delta_pos_array.end()
);
// add residuals to logger
solver_case.log.delta_pos.push_back(delta_pos_array);
solver_case.log.delta_pos_max.push_back(delta_pos_max);
solver_case.log.delta_pos_moy.push_back(delta_pos_moy);
// update metrics
compute_grid_metrics(g,g_metrics,f_m,f_l);// TODO run in //
// update convergence criteria
converged = delta_pos_moy < tol_pos;
count_geom++;
}
}
}